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1 Introduction

The dynamics of predator-prey interactions have a long tradition in the theoretical popula-
tion biology and date back to the seminal works of Lotka (1925) and Volterra (1926). The
original Lotka-Volterra model of natural predator-prey systems (May 1973, Clark 1976)
turned out to be of limited value as a descriptive model and it therefore has been refined
in several ways (May 1981, Kuang and Beretta 1998, Cantrell and Cosner 2001). The ba-
sic building blocks of these models of the Lotka-Volterra type are difference or differential
equations. Each species is represented by a single equation containing as variables the own
population and the population of its preys or predators. Hence these predator-prey models
are macro-approaches in the sense that they take populations as basic units of analysis.
Population growth is assumed rather than explained. Choosing populations as basic en-
dogenous variables amounts to disregarding the transactions of individual organisms, fails
to identify the types and scales of those transactions and does not answer the question as

to how the interaction of individual organisms translates into population changes.

The present paper aims at providing a microfoundation of predator-prey dynamics in
a unidirectional food chain by means of economic methodology. The starting point of our
approach is the short-run ecosystem model in which populations are constant. The repre-
sentative organisms are assumed to behave as if they maximize their net biomass as price
takers subject to appropriate constraints.? Similar as in models of perfectly competitive
economies a short-run ecosystem equilibrium is defined as a state where all organisms are
maximizing their net biomass, and biomass demand of predators equals biomass supply of
preys. Such equilibria are shown to exist. The equilibrium allocation of biomass transac-
tions completely determines the net biomasses each species acquired during the short-run
period. Net biomass represents (positive or negative) net offspring and hence population
change. When the population change is linked to the populations that have prevailed and
kept constant during the period under consideration, a sequence of short-run net biomasses

constitutes the predator-prey dynamics.

2The notion of organisms behaving as if they maximize some objective function has first been investigated
in formal analysis by Hannon (1976), Crocker and Tschirhart (1992), Tschirhart (2000, 2002) and Pethig
and Tschirhart (2001). These authors assume that organisms maximize net energy rather than net biomass.
However, in our view net energy maximization can be considered equivalent to net biomass maximization.
As-if maximization is also applied by Pethig (2003) and Eichner and Pethig (2003) but on the level of
species rather than individual organisms. Their models deviate substantially from the present approach. A
common feature of all these models are equilibrating ecosystem prices and price-taking behavior on the part
of organisms or species. For an optimizing approach relying on Nash behavior without prices see Pethig
(2003).



We take the view that there are remarkable similarities between a consumer’s decision
problem in the conventional economic household theory and an organism’s decision problem.
The problem faced by the consumer is to choose among all commodities that are available
for purchase in the market. The consumer’s purchase is financed by her capital income
and/or labor income. Supplying labor is necessary for (most) consumers to earn their
living and this is similar in case of organisms with their supply of own biomass. The
link between demanding commodities and supplying labor is formally established in the
budget constraint. In the ecosystem, an organism demands biomass of preys and supplies
own biomass to predators. The ecological predation risk (Lima and Dik 1990) suggests
that an organism’s demand, capture and intake of prey biomass necessarily is correlated to
its exposure to predators and hence necessarily entails the sacrifice of some own biomass.
Introducing prices as scarcity indicators for each type of biomass the predation risk takes
the form of a budget constraint requiring the expenditures for biomass of prey species
not to exceed the income from supplying own biomass. The representative organism of
a species maximizes its net biomass subject to the budget constraint. In this framework
the organisms’ optimal demands and supplies can be thought of as being coordinated by
prices. Thus a concept of a general short-run ecosystem equilibrium is put forward which is

equivalent, in spirit, to the notion of a general perfectly competitive economic equilibrium.

Although the idea of providing a microfoundation for population dynamics is not new
and some important contributions have already been made, notably Tschirhart (2000) and
Pethig and Tschirhart (2001), the derivation of concrete differential equations based on the
short-run optimization problems of representative organisms turns out to be difficult. To
our knowledge, Pethig and Tschirhart (2001) is the only paper in which such a differential
equation is derived.> Their differential equation relates to a single species for the special
case that the populations of all other species are constant. In contrast, our present ap-
proach exhibits a number of generalizations and differences that will be detailed below.
The most substantial deviation from earlier studies consists in treating representative or-
ganisms similar to economic consumers. While Hannon (1976), Tschirhart (2000, 2002) and
Finnoff and Tschirhart (2003) model organisms as economic (production) firms, Pethig and
Tschirhart (2001) apply the economic concept of congestion, well known from the public
goods literature. This concept is well suited for resource competition but appears to be less

appropriate for explaining predator-prey relations.

The present paper is organized as follows. Section 2 presents the short-run ecosystem

model, derives the short-run ecosystem equilibrium and proves its existence thus assuring

3Eichner and Pethig (2003) also derive differential population equations but their basic unit of analysis

are species rather than representative organisms of species.



that our results are not vacuous. At the end of section 2 we perform a comparative static
analysis to answer the question as to how the ecosystem equilibria are affected by changes
in resource endowments and populations. In section 3 we turn to the growth of populations
and derive the differential equations which characterize the predator-prey dynamics. In
section 4 we parametrize the model by Cobb-Douglas functions and provide three different
numerical specifications yielding more concrete information about the development of the
predator-prey system in time. The population dynamics derived here turn out to differ

significantly from those assumed in the standard Lotka-Volterra model.

2 The ecosystem in the short term

2.1 Organisms as decision makers

Consider an ecosystem of fixed size (or space) in which m species form a one-directional
non-circular food chain: Species m feeds on species m — 1, species m — 1 feeds on species
m — 2, ..., species 2 feeds on species 1, and species 1 feeds on a resource referred to as
‘species 0’ in the formal model. Basic units of analysis are the individual organisms of each
species. To simplify, all organisms of one and the same species are assumed alike. Hence it
suffices to focus on a representative individual of each species 7, © = 1,..., m which we call

organism ¢, for short.

In the short-run period the population n; of each species i is assumed to be constant.
Denote by z; ; organism i’s intake of biomass of species i — 1 (demand) and by y; organism
i’s loss (or sacrifice) of own biomass® to its predators (supply) during the period under
consideration. If organism i = 1,...,m carries out the transaction (z;_1,¥;), its net biomass

acquired is

b = B (%‘—b%) ) (1)

+ —

where the function B® is a concave mapping from R, x [0, 7] into R. Since organism ¢
transforms the prey biomass z; ; into own biomass, we have B > 0. Moreover, B! < 0
reflects decreasing marginal returns. On the other hand, Bé < 0 because own biomass built
up by foraging is conceded to predators. BZy < 0 is plausible, because growing losses of own
biomass have an increasingly serious negative impact on the organism’s rate of reproduction.
The upper bound 7; on the domain of B? is introduced because the representative organism

cannot sustain the loss of own biomass beyond some threshold, say ;. More formally,

Fori =1, x;_q is organism 1’s intake of the resource.



B! is assumed to satisfy B’ (0,y;) = B*(x;_1,%;) = —1 which implies, by assumption, the
extinction of species i. B’ is a physiological function, similar to that employed by Hannon
(1976), Crocker and Tschirhart (1992) and Tschirhart (2000). It accounts for maintenance,
respiration and metabolism which depends partly on transactions and is partly independent

of transactions.

From an economist’s perspective, B is a production function since (for y; = 0) the
input ’biomass of ¢ — 17 is transformed into the output 'biomass of i’. But rather than
making the entire output available to other agents, as economic firms do, only part of it,
namely y;, is offered for that purpose. The rest, B*(z;_1,v;), is transferred to the next

period (to be specified further below).

Another striking similarity between ecosystems and economies is the existence and
the role of commodities and transactions. In ecosystems the biomass of each species can be
viewed as a commodity and so can resources (nutrients, sunlight, water etc.). The latter are
used as primary inputs and the former as intermediate products. Transactions take place
via predator-prey interactions which one might also describe as trade. As in economic
models, traders can be identified: there are those who demand biomass of other species
(predators) and those who supply own biomass (preys). All organisms (other than the top
predator; see below) trade own biomass for prey biomass. The total supply of some species’
(prey) biomass must equal the total demand for that biomass on the part of predators.
Since most ecosystem commodities are in short supply, demanders compete for their use

implying that shadow prices are attached to all of these commodities.

Our approach is even more explicit about those prices. We assume that ecosystem
transactions are guided and ultimately coordinated by prices in much the same way as
transactions are guided by prices in perfectly competitive economies. Denote by p; the
price of the biomass of species i = 0,1,...,m. Organism ¢’s transactions are constrained

by the inequality
Dili = Pi—1Ti—1 1=1,...,m. (2)

Obviously, (2) is isomorphic to a standard household budget constraint in economic models.
The expenditure p;_;x;_; on prey biomass must be financed out of the organism’s income

earned by supplying own biomass, p;y;.

The prices p; and p; ; determine how much own biomass organism i needs to offer
to its predators to purchase a given amount x;_; of prey biomass. The budget constraint
(2) reflects in a simple but straightforward way what ecologists refer to as organism i’s
predation risk, the risk of being preyed upon while preying (Lima and Dik 1990). During

the process of foraging ("purchasing x; ;") organism i exposes itself to its predators, and
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the more prey biomass organism ¢ demands the greater is the risk of being devoured by
preditors. Although our model is deterministic, (2) captures the notion that at a given
state of scarcity (prices) organism i must sacrifice the more own biomass the greater the
amount of prey biomass it wants to take in. Moreover, (2) also offers the remarkable and
well-fitting interpretation that organism i’s cost of some given amount x; ; of prey biomass,
in terms of own biomass sacrificed, is the higher, the lower priced is its own biomass relative
to that of prey species i — 1. In other words, i’s cost of z;_; rises when prey species 7 — 1
becomes scarcer relative to predator species i. The scarcer the prey the more time is spent
for foraging a given amount of prey biomass and the longer is the exposure to predators.
The prices reflect relative scarcities of the species involved and hence (2) expresses the
hypothesis that organism #’s predation risk depends on both the amount of prey biomass

intake, ;_1, and the relative abundance of its prey species as measured by the price ratio
Pi—1/Di-

Obviously there is a complete analogy between (2) and the household’s budget con-
straint. Yet a counter factual implication emerges when p; > 0 and p; ; = 0. In that case
organism ¢ is in the land of Cockaign with respect to its prey and, moreover, it can satisfy
(2) without any supply of own biomass. As shown below organism i would then choose
y; = 0, in fact, irrespective of its exposure to risk through foraging and irrespective of its
own scarcity (p;). To prevent the predation risk from vanishing in situations of abundant
prey we will complement (2) by the assumption that there is always a minimum predation
risk that increases with the intake of prey biomass independent of prices. The simplest

possible formalization of this assumption is
Yi = CiTia 1=1,...,m (3)

where ¢; is interpreted as the loss (= supply) of i’s own biomass per unit of prey biomass
caught (= demand), and this loss occurs irrespective of whether p; ; = 0 or p; ; > 0. Hence
c; > 0 expresses the extent to which organism ¢ is exposed to price-independent predation
risk. From the organism’s point of view ¢; is a constant like all prices. But as will be

discussed in the next section, ¢; will be endogenously determined in equilibrium.

Obviously, members of the highest ranking predator species, m, do not face any
predation risk since they do not have natural enemies by assumption. In our formal model,
members of the highest ranking predator species m require special treatment because at
this element the food chain is arbitrarily cut off. Although the model contains no demand
for biomass of species m we will extend the constraint (3) to ¢ = m implying y,, > 0

whenever z,,_; > 0.° Moreover, we assume p,, > 0 and constant and interprete p,,ym,

5In real ecosystems organisms of the species at the top of the food chain do die, are eaten by the



as organism m’s income from "exporting" v, at "world market price" p,,. Intuitively, ¢;
tends to decrease with increasing 7 since the higher a species in the food chain the less it is
challenged by preditors. Hence ¢, will probably be small, p,,%., will be small and so will be
the prey intake x,, ;. Arguably, this is not a fully satisfactory description of the powerful

position of a high ranking predator.’
Having specified organism ¢’s constraints we now turn to its decision problem. We
assume that all individual organisms behave as if they solve the maximization problem:’

max  B'(z;_1,1) st (2)and (3). (4)

(iz1,9i)

To our knowledge, the hypothesis of ’as if” maximization in an ecosystem has first been sug-
gested and employed in formal analysis by Hannon (1976) and has since been used in several
other studies. For its motivation and rationalization see, e.g., Hirshleifer (1977), Finnoff
and Tschirhart (2003) and Tschirhart (2000, 2002). Our approach deviates significantly
from previous studies regarding the constraints (2) and (3). As we have outlined above the
organism’s optimization problem (4) is very similar to the economic household’s problem
of maximizing utility subject to his or her budget constraint. In analogy, B(-) corresponds
to the consumer’s utility derived from the amount x;_; of a consumer good demanded and
the amount y; of labor supplied. Note, however, that in consumer choice models lower
bounds on labor supply such as (3) are unknown and that in the present paper B'(-) is
physical biomass produced rather than intangible utility generated in the consumer’s mind.
Organisms are therefore treated as "hermaphrodites’ in the sense that they are consumers
regarding their budget constraint but producers regarding their production of net biomass

according to biological (rather than engineering) blueprints.

The solution to the individual optimization problem (4) yields demand and supply

functions that will turn out to depend on prices. More specifically, we infer

Proposition 1. (Biomass demand and supply)
For given non-negative prices p;_1 and p; and ¢ = 1,...,m the demand and supply of

0Tganism i are

decomposers and in that sense they too are prey.
6 An attractive way out is to endow organism m with some extra purchasing power, namely the revenues

from selling the resource, poZo/nm, so that organism m’s budget constraint would be given by (pofo/nm) +
PmYm > Pm—1Tm—1. With this budget constraint one could assume p,, = 0 and ¢,;; = 0 to the effect that
with pg > 0 organism m would be able to purchase prey without supplying own biomass. However, to ease
the exposition, we will stick to the assumption that (i) p,, > 0 and constant and (ii) that organism m

cannot dispose of any resource income.
"Since B* (z;_1,0) = B* (z;_1, ;) = —1 the solution will satisfy y; < ;.



(i) i | = x5 | = argmax,, , B' (z;_1,¢;w; 1) and y; = c;x§ | for all prices that do not

satisfy pi_1 > pic; > 0.

(i) wj_y = x]_, = argmax,, , B’ (xz;l, ’%xq) and y; = (pi-1/pi)xi_y, if pi-1 = pici >
0.

All propositions are proved in the appendix. According to proposition 1 for any con-
stellation of prices the demand z; ; is equal to either z{_, or z] ;. In fact, we have
Z;_; = min [xf_l,x?_l]. To see the reason for this result suppose first that all prices are
strictly positive. Then organism ¢ faces the constraint y; > 7, 12, 1 and y; > ¢;x; 1 where
Ti—1 = pi—1/p; are the terms of trade. Clearly, the constraint (2) [constraint (3)] is not
binding if m;_1 < ¢; |21 > ¢ since for any (z;_1,y;) with x;_; > 0 satisfying y; = ¢;2;_4
ly; = m;i 12, 1| we necessarily get y; > m;_12; 1 |y; > ¢;xi1]. Figure 1 illustrates the conse-
quences for organism i’s optimal plan. The straight lines 07? |, Oc; and 07¢ , are the graphs
of the linear functions y; = 7% ,x;_1, ¥; = ¢;zi_1 and y; = 7 2,_1, respectively, satisfying
7o | > ¢; > 7w . If the relative price 7% , prevails, the organism would like to choose point
A in figure 1 but is forced to choose point B since (3) is more restrictive than (2) and hence
(3) is the only binding constraint. Conversely, at relative price 72 |, y; > 72 ,@; 1 is the
binding constraint and consequently the organism is forced to choose point C' (rather than
B).

In terms of predation risk, the interpretation is straightforward. If organism ¢’s prey
species i — 1 is relatively abundant (m; ; < ¢;), i’s exposure to its own predators during
foraging increases with the amount of prey intake. But when m;_; > ¢; organism ¢ needs
more time to search for (each unit of) prey and hence carries a greater risk of being preyed

upon during foraging.

The argument of (2) and (3) being mutually exclusive constraints can be easily ex-
tended to cover zero prices. If, for example, m;,_; = 0, the line y; = m;,_1x;_1 coincides
with the abscissa in figure 1. Since ¢; > m;_; = 0, the organism’s best choice is the point
B. In other words, i chooses x§ ; (point B) for any m;, 1 € [0,¢], that is, ¢ is indifferent
with respect to price changes within that interval. Due to this observation one could take
¢; > 0 as a lower bound of 7;_; for all 2 = 1,...,m — 1. Note, however, that by definition
of mo = (po/p1), m1 = (p1/p2) ete., w1 > ¢; simultaneously establishes an upper bound on
all m; 1. These bounds constitute additional barriers to the smooth working of the price
mechanism creating problems in establishing the existence of equilibrium. This is why we

refrain from introducing the constraints m;_; > ¢; forallz=1,...,m — 1.

Consider now the case that z; , = 27, = argmax,, , B'(z; ,m 17; 1) and y] =

m;1x¢ ;. Then the maximum of B?(-) with respect to z; ; is obviously characterized by

7
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Figure 1: Organism 4’s optimal demand and supply

the first-order condition

B (211, 97)
B;lz; (l‘?—la y;k)

As known from textbook consumer theory this equation requires organism i to expand

= T;_1 for . =1,...,m.

the intake of prey biomass, x;_1, to the point at which —B./B}, the marginal rate of
substituting own biomass for prey biomass, equals the (external) rate of exchanging own
biomass for each unit of prey biomass. If zj | = xf |, we get (—B}/B}) = ¢; with an

interpretation analogous to that given above.



2.2 Short-run ecosystem equilibrium

So far our focus has been the representative individual organism as a price taker. Now we

turn to the coordination of market transactions by suitable (market clearing) prices. Since

in the short-run all populations n; for 7 = 1,..., m are constant, an ecosystem allocation
(0 o Te15 U0, Y15 - - - s Ym—1) 1S feasible if

Yo = nido, (5a)

Y, = N1 for all i = 1, N 1. (5b)

The inequality sign in (5a) corresponds to the conventional view in economic equilibrium
analysis that an excess supply may be, but an excess demand is not, compatible with
equilibrium. This notion fits well for the resource. However, biomass transactions between
predators and preys require the equality sign as imposed in (5b), since in that case, an
excess supply constitutes an infeasibility. As argued in more detail in Eichner and Pethig
(2003), n;y; > myp1x; implies that each organism i would lose more own biomass than
their predators actually consume. This is clearly a disequilibrium feature, since organism ¢
would certainly be eager to reclaim the excess supply of its own biomass. This observation
highlights the principal difference between resource constraints in economic models and
(5b). In an equilibrium of a competitive economy a market good is in excess supply if
and only if its price is zero. No agent is interested in claiming the excess supply since
everybody has already come forward with his or her satiation demand. Hence economic
goods in (equilibrium) excess supply are free goods, and the excess supply vanishes by virtue
of the assumption of free disposal. Yet biomass of prey species always "hurts" the prey
and hence cannot be a free good in the sense of economic theory. Neither is free disposal

of excess supplies of prey biomass a sensible concept in ecosystem analysis.

Unlike (5b), (5a) is very much in the spirit of economic resource constraints and
the resource can rightly be called abundant in case of yy > nyzy. Yet we will show that
po = 0 is only sufficient but not necessary for this inequality to hold in equilibrium. Having
rationalized the equality signs in (5b) it should be added that securing these equality signs
will turn out to be a non-trivial issue in establishing an equilibrium. The difficulties stem
from the implications of proposition 1 that with demand prices approaching zero finite

"satiation demands" are attained for all species’ biomass.

To make this point rigorously consider the following

Equilibrium definition I: For any given yo > 0, p,, > 0, n; > 0 and ¢; > 0 for
i =1,...,m an ecosystem allocation of transactions (xj,..., x5 _1,yi,...,y’) and prices
(Poy -+ -y Pm—1) s said to constitute a short-run ecosystem equilibrium I, if

9



(i) (xf 1, yF) solves (4) for alli=1,...,m,

(i1) (5a) and (5b) hold.

Proposition 2. (Failure of existence of equilibrium I)
Let 4o > 0, pp, > 0, n; > 0 and ¢; > 0 fori=1,....,m be given. A short-run ecosystem

equilibrium I does not exist, in general.

Proposition 2 is easily proved with the help of figure 2 that illustrates various scenarios
for m = 3 in which a short-run ecosystem does not exist. Consider first the demand and
supply curves in the panels I-IV of figure 2 that are drawn as solid lines. Clearly, the prices
(78, 78, 75) and (m§, 7%, 75)) determine a (unique) equilibrium if the resource endowment
is 72 and 79, respectively. The equilibrium with superscript a (equilibrium a, for short)
differs from equilibrium b in that the resource is abundant in equilibrium b but scarce in
a.® Suppose now the graph of the aggregate supply function n;Y'(7) is not given by the
solid line in panel II of figure 2 but rather by the dashed line. Then an equilibrium fails to

exist in case of either resource endowment, g or g, since for ¢ = a,b
m Y (75) > np X' (my) for all m; > 0.

The reason for that ’structural’ excess supply is the boundedness (or satiation) of demand
X'(my) for all 7y € [0, ¢5]. Figure 2 illustrates another failure of an equilibrium to exist. As
a point of departure consider again the solidly drawn lines and the prices (7§, 72, 75,). We
know that this is an equilibrium scenario. But if the aggregate supply function nyY? ()
in panel IV (solid line) is replaced by the dashed line we end up with an excess supply on

the market for biomass of species 2. Again, an equilibrium cannot be established.

As drawn in figure 2 it is the predation risk constraint (3) that is responsible for the
bounds on demand. But in general, demand satiation (at zero price) is of course implied
by many functional forms B’ even if (3) would not apply. Moreover, demand satiation
must be considered a realistic feature in ecosystem analysis, since all organisms’ capacity
of taking in and digest food is limited in the short-run period (which applies to humans as
well). Therefore demand satiation combined with the equality (!) (5b) poses a persistent
existence problem. Even if an equilibrium can be shown to exist in a given period, it may

not exist in some future period depending on how species populations grow or shrink.

These considerations suggest that in order to provide a general proof of equilibrium

without abandoning the constraints (3) entirely one needs two ingredients. First, in the

8We note in passing that in figure 1 we assigned 75 = c¢;, but all prices (72, 7%, 74,) with 78 € [0, ¢1]

constitute an equilibrium, too, each of which exhibiting the same equilibrium allocation.

10



myys nlxo,fo,
i)
ny X Yo ¥,
n,y, > n;X,
n3X,

Figure 2: The existence problem

absence of (3) demand satiation at prices tending to zero must be ruled out?, and sec-
ond, though positive ¢; render demands bounded at low prices, the parameters ¢; must be

determined endogenously to allow for more flexibility of demands and supplies at low prices.

To make progress, we base our subsequent analysis on net biomass functions yielding

demand and supply functions with the following properties:

Assumption 1: Denote by XX and Y the demand and supply function of organism

i in the absence of constraint (3).

9A non-satiation assumption of this type is needed in existence proofs in all Debreu-type general equi-
librium models (Debreu 1959).
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(i) Xi7' <0 and lim X" Y(m_4) =o0 fori=1,...,m.

mTi—1—0

(ii) There is 7t;_1 > 0 such that fﬁf(wi_l) <0 for all mi_y > Tt;_q.

Assumption 1 is a mild restriction only. It is satisfied, e.g., by net biomass functions of
Cobb-Douglas type. The signs of the partials of the functions X' ! and Y depend on
the signs of the income and substitution effect. Suppose the income effect is positive with
respect to ;1 and negative with respect to y; (which would be considered the typical case
in consumer theory). It follows then unambiguously that Xi~' < 0. Y7 is still indeterminate
in sign because the negative income effect is accompanied by a positive substitution effect.
Following again the prevailing proposition in consumer theory that the labor supply curve
is upward sloping we assume here that the negative income effect does not overcompensate

the positive substitution effect. Hence Y7 < 0.

Prior to checking whether the existence problem of proposition 2 can be overcome by

Assumption 1 and the parameters ¢; it is necessary to modify the equilibrium definition as

follows:

Equilibrium definition II: For any giwven yo > 0, p,, > 0 and n; > 0 for i =
1,...,m an ecosystem allocation of transactions (xj, ..., x5 _1,yt,...,y%), prices (po, ...,
Pm-—1) and parameters (cq,...,c¢n) is said to constitute a short-run ecosystem equilibrium
11, of

(i) (xf 1, yF) solves (4) for alli=1,...,m,
(ii) (5a) and (5b) hold.
Proposition 3. (Ezistence and properties of equilibrium II)

Let 4o > 0, ¢ > 0, pp, > 0 and n; > 0 for v = 1,...,m be given and suppose that
Assumption 1 holds.

(i) There exists an ecosystem equilibrium II.
(ii) In equilibrium the resource is abundant if and only if ny < §o/ X' (cy1).

(7ii) If the resource is abundant in an equilibrium then all species are abundant in the sense

that the price vector (py = 0,p1 = 0,...,pm_1 = 0) along with the cost parameters'

G = X' | X! (cz)] fori=1,...,m— 1 constitute an equilibrium.

(iv) If the resource is not abundant in an equilibrium all species are scarce in the sense that

all equilibrium prices are positive.

10X7 denotes the inverse of the demand function X (¢i11). For more details we refer to the proof of

proposition 3 in the Appendix.

12



As the proof of proposition 3 in the Appendix shows the parameters ¢; are endogenously
chosen in such a way that in figure 2 the points A and B coincide and the line segment 0C'
becomes equal to 0D. Drawing an appropriately modified diagram, one can easily check
that under these conditions (and with Assumption 1) the existence of an equilibrium is
secured. It turns out that depending on the abundance or scarcity of the resource the entire
ecosystem is either abundant (proposition 3 iii) or scarce (proposition 3 iv). Scarcity of the
resource and the species is reflected in all relative equilibrium prices being strictly positive
(proposition 3 iv). On the other hand, abundance can be associated with all prices being
zero (proposition 3 iii). It is important to note, however, that arbitrary prices m; €]0, ¢;41]
for: =0,1,...,m — 1 are also compatible with an equilibrium of an abundant ecosystem.

So long as the resource is abundant, prices do not guide the ecosystem allocation.

2.3 Comparative statics of short-run ecosystem equilibria

In this subsection we explore how ecosystem equilibria are affected by changes in environ-
mental parameters. To be concrete, we restrict our attention to an ecosystem in which the

resource is scarce, and we suppose that Assumption 1, i.e.

Ti—1 = Xi_l <7Ti—1> and Y; = Y/Z (71'1‘_1) 1= 1, e,y (6)

7’0

is satisfied.

It is easy to see that the system of equations (5a) and (5b) can be solved buttom up:
Yo = x determines 7; and yi, y; = x] implies 77 and gives us y;, and finally y5 = z3 is
attained for my = 7. The observation that the equilibrium can be determined stepwise
from species 0 to species m is clearly due to our modeling the ecosystem as a unidirectional
food chain whose principal attribute is dependence rather than interdependence. As a
consequence, shocks (i.e. parameter changes) in this ecosystem induce repercussions bottom
up but not top down. To make this feature more precise and to show, at the same time, the
richness in implications of our model of short-run ecosystem equilibrium we now proceed
with a comparative static analysis. Without loss of generality we simplify the exposition

by setting!! m = 3 and hence we start out with an initial short-run ecosystem equilibrium

"Tn unidirectional food chains three types of species need to be distinguished: the species 0 (buttom),
the species m (top) and all other species in between. All species i between are clearly alike in the sense
that they prey on species i — 1 and are preyed upon by species i + 1. In case of m = 3 species 2 is the only
non-boundary species but it is clearly representative for all intermediate species in food chains longer than

m = 3.
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that is fully characterized by the equations

Yo = N1To, MiY1 = NaT1, TNalYs = N3la,

i1 =X"Ym_y) and gy, =Yi(m_y) i=1,2,3.

(7)

We now introduce parametric changes (shocks), one at a time, in the parameters o, nq,
ny and n3 and determine the changes induced in the endogenous variables 7y, 7, 72, T,
1, Ta2, Y1, Yo, Y3, b1, by and b3. As shown in the appendix, total differentiation of the set
of equations (7) yields the results summarized in table I where "hats" above letters denote

relative changes (e.g. # = dz/x). The signs in brackets indicate the special case Y = 0.

fo m R & G| @ G2 | &2 s | b by bs
Yo>0|—  — — |+ +] + + + + |7 (+) 7,0 7,0
m>01+ 2(=) 20— =% () 2(0)]70) 20 ]7(=) 2 H) 2(0)
ne>010 + 2,00 0] - — |7 0 0 2(=) 7 (+)
n3>01 0 0 + |0 0 0 0 — — 0 0 7, (=)

Table I: Comparative statics of the short-run ecosystem equilibrium

Leaving out some details and special features of table I the principal results of the

exercise in comparative statics are:

(i) If the resource endowment of the ecosystem (alias the ’supply of biomass of species
0’) increases, then all species’ terms of trade improve!? and all market transactions

expand.
(ii) If the population of species i increases, then organism i

e faces worse terms of trade, while the other species’ terms of trade tend to be

non-deteriorating;
e reduces its market transactions;

e reduces its offspring, while the offspring of the other species tend to be non-

decreasing.

(iii) If for ¢ = 2,3 species i experiences a change in its population, species j < i is not
at all affected by this change: its terms of trade, its transactions and its net biomass

remain unchanged.

120bserve that m;_; = p;—1/p; < 0 implies that species i is able to purchase more biomass of prey species
i—1.
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The last observation (iii) is intriguing, if not counterintuitive, but only to the extent that we
let our intuition rely on partial equilibrium arguments. To see that, consider an equilibrium

of the market for biomass of species 2 given by

77135(2 <p2,p3) = n25~/2 (pQ,pl) ) (8)

where p, po and p3 are assumed to be general equilibrium prices. Suppose now, nj is slightly
increased to n} > ng while everything else is kept constant except the price py. Clearly, the
new market equilibrium is then characterized by an increase in p; and an increase in both
n9ys and nhxe implying that the predator species 3 does have an impact on species 2. But
this conclusion depends on our partial analysis assumption of keeping p; and ps constant.
Yet our general equilibrium analysis shows that the market prices change as well so that
the new equilibrium on the market under consideration is reached by keeping m; = p1/py

unchanged and by an increase in w3 = p,/ps which reduces x5 to x}, such that nzxe = njzs,.

3 Population dynamics

3.1 Some general observations

At the end of the short-run period, each organism acquired a positive or negative amount
of net biomass B [X* 1(n),Y*(n)] where n is the vector of populations. If positive, the net
biomass generated by the representative organism can be identified as offspring. If negative,
the net biomass indicates the organism’s chance to survive the period. We normalize each
organism as consisting of one unit of (own) biomass and can therefore write

) dn;
T

It is interesting to further specify the differential equations of population growth. Some

=n;B' [ X" (n),Y"(n)] fori=1,...,m. (9)

general useful insight is provided by

Proposition 4. (Population growth)

(i) If the resource is abundant, then the population growth takes the functional form

hl = nlé,

hg = n2E2 (nl, 712) s

. . (10)
n, = mE (ny,ng,...,n),

hm - nmEm (n17n27"'7nm—1anm)7
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where € is a constant and E : ]RfF — R.

(i1) If the resource is scarce, then the population growth takes the functional form

’hl = 7’L1F1 (nl) s

7;L2 = n2F2 (nl,ng),

. - (11)
ng = ni " (ny,ng, ... n),

Nm = Ny F™ (nlanQa---anm—lanm)-

where F' - ]Rj_ — R

The functional form of the population growth reflects our modelling of the ecosystem as a
unidirectional food chain. The population growth of species 7 is affected by all populations

of species j with j < 7, but it is independent of all populations of species k with k > 1.

3.2 Analytical population dynamics (Cobb-Douglas)

To obtain additional information on the characteristics of population growth we proceed by
introducing a parametric net biomass function, namely the Cobb-Douglas function. Our
aim is rather to clarify the potential of our approach as compared to the models of the
Verhulst-Pearl type (growth of a single species) and of the Lotka-Volterra type (growth
in a predator-prey context). To further simplify we restrict our attention to food chains

consisting of a resource and three species.

Consider now the net biomass function
B (zi_1,y:) = 25| - (s — yz‘)ﬁi — Yis (12)

where 0 < a; < 1,0 < 3; < 1 and 7; > 0. To investigate how the ecosystem develops over
time, it is convenient to start with an abundant resource to see if and how the ecosystem
becomes crowded. Then according to proposition 1 (i) biomass demands and supplies are
given by

QY
a; + B

Q;Y;
(c; + Bi)e

Ti—1 = and Y; = 1= ]_, 2, 3. (13)

Equilibrating demand and supply for biomass of species 1 and 2 yields parameters (cs, ¢3)
satisfying

nzas(ase + [2)7s
naa(as + f3)7s

noa (a1 + £1) 72
niay (e + B2)71

Cy = and c¢3 =

(14)
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The associated equilibrium demands and supplies are:

(a1 + B)er o1+ By

nia1y; Q22
g = —and Yy = , 15b
' na(an + i) T+ B (15b)

N0y Q3Y3
€T = —_— — . ]_5C
’ nz(ag + () v ag + fs (15c)

Combining (15), (12) and (9) yields the differential equations of population growth

o= ny gt —ml, (16a)

e = my [(%“2> v 72} , (16b)
ol ]

B Bo B3
o _aih [ B\ o oafr [ By |2 . _a2f> [ _B3ys |3
where Mo = (a1 +51)e <a1+ﬂ1) y U2 1= a1 +51 <a2+ﬂ2) y M3 = az+f2 ((13+,33 .

Suppose now ny = Go/xg = (o + S1)c1%o/(a171) is reached and the resource gets

)

scarce. Then ecosystem prices are binding and according to proposition 1 (ii) biomass
demands and supplies are now given by:

QY
(o + Bi)Tia - a; + 5
A general short-run equilibrium of the ecosystem is attained at strictly positive prices

(pO: p1, p2) Satisfying

Ti—1 =

i=1,2,3. (17)

N1 Yy _ mgan(ar + 1) nzaz(as + B2)73

m=—— m = — and 1wy = —. 18
‘ (o1 + Br)yo ! niay (g + B2) 7 ? nac (a3 + B3) 7 (18)
The associated equilibrium demands and supplies are
Yo Q171
Ty = —, Y1 = , 19a
‘ nq P o+ B (19a)
nijoq Q22
T = —, Yo = , 19b
na (a1 + Br) ag + B (19b)
N9 Qo Q33
Ty = ————0, Y3 = , 19c¢
nz(az + B2) az + 33 (19¢)

and the populations grow according to the differential equations'® (16b), (16¢) and

o [

N
where 11 1= 7 <of1—f/131> o

131t should be noted that c; = w1, c3 = m2, (15b) coincides with (19b) and (15c¢) is equivalent to (19c).

These correspondences are caused by the constant supply functions, formally )N/C’ =Y =0 for all i.
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(16a) and (20), combined with (16b) and (16¢), completely describe the dynamics
of the three-species food chain. To compare these differential equations to the standard
Lotka-Volterra population equations we ignore species 1 and rewrite (16b) and (16¢) as

=, =23 @)

The corresponding Lotka-Volterra equations would read'*
Ny = 021M2 — 9273 and n3 = 031M9M3 — 03213, (22)

where the §’s are positive parameters. The comparison of (21) and (22) readily reveals a
substantial structural asymmetry between both models. In the present model, the popu-
lation growth of the two species is structurally the same and qualitatively similar to the
predator species 3’s growth in the Lotka-Volterra model. But the growth of the prey species
2 differs significantly in both models.!'®> We therefore conclude that we have suggested here
an explanation of predator-prey population dynamics that is incompatible - and hence com-
petes - with the standard Lotka-Volterra approach. It remains to be seen in future empirical

work how well our approach describes developments in real-world ecosystems.

Several interesting features'® of the growth dynamics can be derived from (16b), (16c¢)
and (20). Consider first (20). Differentiation with respect to ny yields
d?iny a —(1+a1)

dn, _
oy =M (o) ™ —yand g = an () oy <0

Clearly, ny from (20) is strictly concave in n;. Hence we calculate

) 1—ap) . 1
Ny = iy - and ny = | —
M 71

where 7y = arg max,, 7, and where n} solves (20) for n; = 0, i.e. the population of species

1 reaches a long-run equilibrium (steady state). Recall, however, that (20) is only valid for
Jo > m1xo which is equivalent to n; > (ay + £1)c1%0/(191). To determine how 7y depends
on n; over the entire domain of non-negative n; we need to combine (16a) and (20), as
illustrated in figure 3. The n,-function is inversely u-shaped with a linear segment over the

interval [0, (a; + f1)c190/(171)]. This linear segment notwithstanding the growth curve in

14 A textbook treatment of the Lotka-Volterra model can be found in Murray (1993).
15The first equation in (22) is implausible for ng since unbounded population growth is infeasible. Note

also that the parameters d21, 022, 031 and d32 are ad hoc whereas the parameters «;, v; and p; (i =
2, 3) describe testable properties of the individual organisms (with u; being composed of various other

parameters).
16 A rigorous characterization of the time path and the conditions for convergence are beyond the scope

of the present paper.
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figure 3 is essentially the Verhulst-Pearl growth curve giving rise to a logistic population
curve. Note, however that the Verhulst-Pearl curve is an ad hoc approach for a single
isolated species. In contrast, here the equations (16a) and (20) are derived rather than

assumed in a three-species model.!'”

n

tang = pg' —,

()

I \ ;
(o + By n, n \ 1

a’l.)jl
Figure 3: Population growth of species 1

With n; set constant in (16b) n, can be readily seen to depend on 7y in a similar
way as n, depends on ny. The same holds for n3 when ny is assumed to be constant.

Differentiation of (16b) and (16¢), respectively, yields

on; o . ’

Ok o)™ (= o) o™ = =23

82 v ] — ; .

87:; = — (niflﬂi)pZ c Q- (1 - Ozi) "N, (1+ai) <0 1=2,3,
1

which shows that 7n; is a strictly concave function of n;. For any given n;_; the maximum

is

1\«
n; (ni1) =mni1- ;- <—> 1=2,3.

Clearly, the carrying capacity of species i is proportional to the population of species 7 — 1.

17"Pethig and Tschirhart (2001) also derive a population growth curve of a single species shaped exactly
as that in figure 3. But in their one-species model the allocation is driven by congestion rather than by

prices.
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3.3 Numerical population dynamics (Cobb-Douglas)

Now we turn to three numerical examples which are calculated with the help of the computer
program Mathematica.!® In these examples the parameters are chosen as follows: ¢; = 1,
7o = 20000000, 41 = 100, o =10, g3 =1, a; = f; = 0.5 for all e = 1,2,3, v, = 10, vy = 17
and v3 = 2.

Example 1: We set the initial population stocks at n;(0) = 100, n5(0) = 10 and n3(0) =

1. Since n; < W = 400000 the resource is abundant and the population growth is
given by
7;L1 = 40711, (23&)
[ 0.5
. ny
ng = mny [15.8114 (—) — 17] , (23b)
N9
[ no\ 09
hy = ns |1.58114 (—2> — 2] . (23¢)
ns

The left panels of figures 4-6 illustrate the growth during the time interval [0,0.20735].
Initially all populations grow slowly and then we observe an approximately exponential
rapid growth. From t = 0 to £ = 0.20735 the population of species 1 has increased from 100
to 400000. Since ny; = 400000 is a boundary point of the regime at which the resource is
abundant, prices take over the control of ecosystem allocation shifting the ecosystem from
abundance to scarcity. It is interesting to observe that in our example 1 the populations of

species 1 and 2 grow faster than the population of species 3. At t = ¢ we have:

ny (t) = 400000 > ny () =30802.1 > nj(f) = 54.1504.

n1(t) n1(t)

110
175000

150000
9 10
125000
100000

75000

50000

25000

Figure 4: Population growth of species 1 in example 1

18The program for simulations is available from the authors upon request.

20



15000

10000

5000

Figure 5: Population growth of species 2 in example 1

s s (1)

50
40
80 3 10

20 2 10

10 116

Figure 6: Population growth of species 3 in example 1

When the ecosystem is scarce, the population of species 1 grows according to the

differential equation

iy =y [31622.8 <i>0'5 - 10] . (24)

ny
For the other species the differential equations (23b) and (23c) still apply.

The right panels of figures 4 through 6 illustrate the continuing growth of the popu-
lations of all species in the state of scarcity and they show the populations converging to

their steady state levels
nt=1-10" > n}=8.65052-10° > n} = 5.40657-10°

Conceptually the left and right panels of figure 4 are segments of a single diagram and the
same is true for the two diagrams contained in figures 5 and 6. The reason for presenting
that single diagram in two parts is to employ different scales on both axes for improving the
illustration of the single diagram’s curvature. But even without putting the parts together
it is easy to see that our growth curves in example 1 are logistic curves quite similar to
the curve implied by the generalized Verhulst-Pearl equation in a one-species-model (Rosen

1984) and all curves together represent the case of coexistence.
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0. 002

0. 00§

Figure 7: Changes of the parameters ¢, and c3
o) (1)

24
22

20 0. 04

18 0.02

Figure 8: Changes of the terms of trade my, m; and 7y

Associated to the growth scenarios of the figures 4 through 6 are the figures 7 and
8 that provide information about the change in time of the endogenous parameters cs, c3
and the terms of trade mg, 7, mo, respectively, which can be interpreted as measuring the
predation risk (see above). Formally the predation risk variables are specified as

nq N9 d ns
= M = Cy = an Mg = C3 = .
400000 ' 2T 10m, 277 7 10n,

(25)

o

It is interesting to observe that both ¢y and c¢3 are decreasing in time implying that the
population of species 1 grows more rapidly than the population of species 2 which in turn
grows more rapidly than the population of species 3. When the resource is scarce the
terms of trade reflect scarcity and abundance of species biomass. Figure 8 shows that all
terms of trade increase progressively at first, then they grow at declining rates until they
eventually reach their steady state levels. Comparing figure 7 and 8 in combination with

(25) we conclude that the speed of population growth depends on whether the ecosystem is
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abundant or scarce. In case the resource is scarce the population of species 3 grows faster
then the population of species 2 which in turn grows more rapidly than the population of

species 1.

Example 2 and 3: In example 1 all populations turned out to be strictly increasing
on their path towards the steady state. It seems natural to ask whether this feature is
generic for the model at hand. Intuitively, one might expect a predator population to be
stressed and hence to decline, over some time interval, at least whenever its prey population
is sufficiently small. To explore this conjecture we provide two more examples that differ
from eaxample 1 in that (i) the ecosystem is already scarce in the initial situation (which
serves only to simplify the exposition) and that (ii) one or both predator species have large

populations relative to their preys.

In example 2 the populations at t = 0 are set n;(0) = 400000, ny(0) = 10000 and
n3(0) = 100000. Obviously the population of species 2 is very small in comparison to those
of species 1 and 3. Owing to its small population, species 2 will supply only little biomass
in the aggregate while the demand of species 3 is high due to its large population. As
a consequence the equilibrium price py is high and the ecosystem attains an equilibrium
at which little biomass of species 2 is traded. Figures 9-11 illustrate the implications
on the population dynamics. While the populations of species 1 and 2 exhibit a logistic
growth, as in example 1, the population of species 3 drops sharply from n3(0) = 400000
to n3(0.05) = 95824.1 but it recovers after ¢ = 0.05. The biomass of species 2 has become
less scarce and the representative organism of species 3 can afford to demand more biomass
of species 2 due to a lower price p; with the consequence that the population of species 3

increases for ¢ > 0.05.
n1(t)

1 10
9 10
8 10

7 10

/ 0.5 1 1.5 2 t

Figure 9: Population growth of species 1 in example 2

In our final example the population of species 1 is relatively low as compared to the
populations of species 2 and 3. We have set n;(0) = 400000, n,(0) = 4000000 and n3(0) =
3000000. Induced by biomass demands and supplies responding to the appropriate price
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Figure 10: Population growth of species 2 in example 2
ns(t) ns(t)

104000
102000
100000

98000 116

Figure 11: Population growth of species 3 in example 2

signals, the small population of species 1 triggers downward adjustments of the populations
of species 2 and 3 as illustrated in the left panels of figures 13 and 14. The population of
species 2 recovers after t = 0.1 and the population of species 3 also recovers, with some

time delay, after ¢ = 0.3.

/ 0.5 1 1.5 2 t

Figure 12: Population growth of species 1 in example 3

To sum up, examples 2 and 3 confirmed our conjecture that predator populations may
decline (temporarily) when little prey biomass is available for feeding. In example 2 we
observed that the predator species 3 takes a dip owing to the sparse supply of prey biomass
(species 2). But the great appetite of the populous species 3 doesn’t result in overharvesting
its prey species 2. The latter exhibits monotonous population growth. Example 3 is different
in that species 2 is under stress of a small supply of prey biomass (species 1) which results

in a temporary decline of population 2. As a result of this decline, species 3’s population
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Figure 13: Population growth of species 2 in example 3
ns(t) ns(t)
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Figure 14: Population growth of species 3 in example 3

also shrinks with a small time lag and exhibits positive growth rates again after recovery
of its prey species 2. The time lag gives a clear indication regarding cause and effect. The
decline of prey species 2 induces species 3 to shrink. The reverse causation can be rejected:
The prey species 2 is not overharvested in an effort of species 3 to prevent the decline of

its own population.

4 Concluding remarks

This paper provides a microfoundation of intertemporal predator-prey relations in a food
chain. Changes in species populations over time are modeled through a sequence of
short-run ecosystem equilibria where endogenous scarcity indicators equilibrate demands
of biomass by predators and the preys’ demand of own biomass. In a parametric version
of the model (Cobb-Douglas) we are able to completely derive the population dynamics.
Although the time path of interacting populations, convergence and stability are not fully
characterized analytically, our three numerical examples are very informative. All of them
exhibit convergence to a unique steady state, in stark contrast to the oszillations typical of
the standard Lotka-Volterra model. The main reason for the divergent dynamic behavior
of both systems are structurally different prey species’ growth equations in both models

(which are ad hoc in the Lotka-Volterra model but derived from more basic assumptions
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in the present approach). In our model the population growth of each species turns out
to have a positive impact on the population of its predator but no prey population is neg-
atively affected by the population of its predator species as in the Lotka-Volterra model.
This property is not a special feature of the parametrization chosen but is generic for all
food chains. We conjecture, though, that this property doesn’t carry over to more complex
food webs. Being confronted with competing incompatible explanatory approaches, future
empirical research is needed to investigate the merits of the present approach as compared
to the Lotka-Volterra model and its refinements. But notwithstanding empirical testing yet
to be undertaken, we have shown that the microfoundation suggested here cannot serve
as a theoretical basis for generating the Lotka-Volterra population growth functions. It
remains an open question whether there is at all a model capable to serve as a theoretical

underpinning of these functions.

As the preceding analysis has demmonstrated our modeling of ecosystem transactions
and equilibrium is quite involved. But it is simple enough, on the other hand, to serve as a
framework for tackling a wide range of relevant issues. Among other things, deviations from
unidirectional food chains could be studied and alternative property rights of the resource
may be assumed including schemes where all species own shares of the resource. The most
promising extension is probably to link a (standard perfectly competitive) economy with the
ecosystem to analyze the impacts of human activities on the ecosystem and its repercussions

on the economy.
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Appendix A: Proofs
Proof of proposition 1: The Lagrangean associated to the optimization problem (4) for
1=1,...,mis given by

L1, Yi, Miy Aei) = B (w51, yi) + Ni (piyi — Di1@i 1) + Aei (Yi — cizi 1)

and the corresponding Kuhn-Tucker conditions are

L, = Bl—\pi1— Aac; <0, zi 1L, =0, (26a)
Ly, = Bi+ pi+Xra <0,  yly, =0, (26b)
53 = Pi¥Y% — Pi—1Zi—1 = 0, )\iﬁii =0, (26¢)
Ly, = gi—cmi1>0, AL, =0. (26d)

(a) Suppose p; 1 = p; = 0. Then z; ; > 0, since B > 0 evaluated at z; ; = 0. Due to
(3) zi—1 > 0 implies y; > 0. Therefore — (B/B}) = ¢; follows from (26a) and (26b)

which is satisfied iff x;_4y = x§_;.

(b) Suppose next p; > 0 and p;_; = 0. As in point (a) above, x;_; > 0 and y; > 0. With
pi > 0 and p; 1 = 0 (2) becomes p;y; — p;i 12,1 = p;y; > 0. Hence \; = 0. The

implication 27 ; = x¢ , follows as in point (a).

(¢) Suppose p; >0, p;_1 > 0 and m;_1 := p;_1/p; < ¢;. Then for all Z;_; > 0 it is true that
Ti1%i_1 < ¢;T;_1. Hence all (x;_1,y;) satisfying (3) imply y; > m;_12,_1 and therefore
Ai = 0. Again, — (B./B) = ¢; follows from (26a) and (26b) yielding ] ; = £ ;.

(d) If p; > 0, pi—1 > 0 and m;_1 = ¢; both constraints (2) and (3) coincide, and therefore

* — Cc
Li1 = Tiq-

(e) Suppose p; > 0, p; 1 > 0 and m; 1 > ¢;. Then m; 1%; 1 > ¢;&; ¢ for all 7, 1 > 0.
Hence all (z;_1,y;) satisfying (2) imply y; > ¢;z; 1 and therefore A\, = 0. Therefore
— (Bi/Bj) = m;_1 follows from (26a) and (26b) which is satisfied iff z;_y =27 ;. ®

Proof of proposition 3: In the market for the resource (i = 0) an equilibrium exists
for any ¢; > 0. Hence ¢; can be fixed autonomously. For the markets ¢ = 1,...,m — 1 the
equations n;Y(¢c;) = ni 11 X" (¢;y1) or nic; X7 (e;) = niy1 X(ciyq) for i = 1,...,m — 1 are
sufficient to prevent an excess supply on market 7. Due to Assumption 1 it is possible to

establish these equations by a suitable choice of ¢; ;1 for any given ¢; > 0.

We denote by X’ the inverse function to X and solve for ¢;,:

Cipt = X [%Xi_l(ci)} i=1,...,m—1. (27)



Since ¢; can be choosen freely the equations (27) uniquely determine all ¢; fori =2,...,m—
1. Moreover, on the market for the resource (i = 0) a unique bounded equilibrium
price 7§ > 0 always exist. If the parameter ¢y is chosen as determined in (27) then
there is 7} > 0 such that nyc; XO(n) = nyX'(7}) because the definition of ¢y implies
noX'(cy) > nyc; X%(mp) for all my > 0 and because Assumption 1 secures that for any
2 €]0,n1¢:X%c1)[ one can find 71 > 0 such that ny X!(7;) = 2. The same argument applies

to all subsequent markets : = 2,...,m — 1. [ |

Proof of proposition 4: The first-order conditions of the optimization problem (4)
are either —B}/B} = ¢;, y; = ¢;wi_y or —B./B; = m_1, y; = Ti_14;-1 which imply demand

and supply functions
wio=X""e),yi =Y () or mig=X""(mi),y =Y (mi1). (28)

Let us first consider the case of an abundant resource. c¢; can be choosen freely and the
equilibrium conditions (5b) can be solved bottom up and the equilibrating parameters have

the functional form
ci=C"(ng,...,n) i=2,...,m, (29)
which in turn yields equilibrium demands and supplies

To = XO(Cl),?Jl:YI (c1) (30a)
i, = X1 [C’i (nl,...,ni)] Ly =Y! [Ci (nl,...,ni)} i=2,...,m. (30b)

Now we turn to an ecosystem with a scarce resource. The equilibrium conditions (5a) with
equality and (5b) can be solved bottom up with the consequence that the equilibrium terms

of trade have the functional form
Ti—1 :Hi_l (nl,...,ni) 2:1,,m (31)

Inserting the equilibrium terms of trade (31) into the demand and supply functions (28) we

obtain
= X1 [Hiil (ng,..., nl)} and Yy =Y? [Hiil (ny,..., nl)} ) (32)

Finally plugging (30a)-(30b) and (32), respectively, into the net biomass function (1) which

in turn is inserted into (9) establishes proposition 4. |
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Appendix B: The comparative statics

Before we turn to the differentiation of the equilibrium equations

Yo = N1,
nYy: = MNaly,
nN2Y2 = MN3T2,

(33a)
(33h)
(33¢)

it is convenient to define the following terms used below to avoid clutter:

i1 1 ) 1
» Tl Yimiy i Bz . By
ni,1:?<0,5i: Y/'Z §0,(5b$: Bi >O7(5by_7<0'

Differentiation of (33a) - (33c) yields:'?

gO = m +I07
n+y1 = No+ T,
Ng + Yo = N3+ To.

Next we differentiate z;_; = X! (m,_1) and 3 = Y (m;_1) to obtain:
Ti1 = M1 and Ui = EiTi—1-

It is easy to show that (35) for ¢ = 1 and (34a) result in:

. Jo ™
g = — — —.
o Tlo
Next, we combine (34b), (35) for i = 1,2 and (36) to derive:
A €1 -~ Mo — €1 Ty
™ = —Yo ny ——.
Mo Mo T
We now insert (35) for i = 2,3 combined with 7; from (37) into (34c) to get:
R €91 4 € —&q) . — &9 . n
= 261 o+ 2(770 1)n1_|_771 2n2——3.
2o T2 o M2Th 2
The next step is to insert (36) - (38) into (35) to derive:
Ty = Yo — M,
~ &1~ — &1, ~
Ty = —I?JO‘F% 17711—7712,
Mo o
R €981 . € —é&1) . — &9, .
- 2 1y0+ 2(770 1)n1+771 2n2—n3,
Mo Mo T
N €1~ €1,
N = —Yo— —Ni,
"o o
. €9€1 . € —&1) . €g
Y2 = 2 1y0+ 2 (T 1)711——2”2,
Mo Mo T
s = €3€281 Go + €382 (10 — 61)7%1 n ez (m — 52)ﬁ2 . @753.
121170 2170 21 2

d
19Tn what follows we denote by a := % the marginal relative changes of all variables a.
a
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(34a)
(34b)
(34c)

(35)

(36)



We now complete the comparative statics by differentiating b; = B*(z;_1,y;) fori = 1,2, 3:

IA)l — 5,}$Lf0+5;ygjl,

bg — 5,?$£1+5ng2,
b3 = (ngifg—F(sgygg,

and then plugging (39a) - (39f) into (40a) - (40c) establishes:

6;1770 + 51}y81 ~

Opalo + Op,E1

2 2
(5,”77161 + 5by6281 -

Yo —

Mo

€2&1

3 3
bel2 t 5by€3 N
= "R,

Mo

M2M "o

2

5(?.’,8772 + 51?3/53 ~

Mo

ni,

G + Opy €2

G + Opy€a

Yo+ (o — €1)

Yo + €2(no — €2)

6(?.’,6772 + 51?3/53 N
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"o

2T No

ny —

T

Ny + (M — €2)

N,

52937']2 + 5%53 A

M2

(40a)
(40Db)
(40c¢)

(41c)
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