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This paper presents a new approach to study the optimal rotation policy with amenity
valuation under uncertainty. We first postulate the stochastic forest value and assume
plausibly that monetary value of amenities is a continuous and non-negative function of forest
value thus presenting the trade-off between timber revenues and amenity values. Second,
instead of using a dynamic programming approach, we derive a recursive representation of
the total forest value and solve the optimal rotation threshold by applying ordinary non-linear
programming techniques. Third, we characterize under certain set of conditions how the
properties of both the expected cumulative value and the expected marginal cumulative value,
accrued from amenity services, depend on the precise nature of the monetary valuation of
amenities and what is the impact of volatility on these concepts. Finally, we illustrate our
results explicitly in models based on logistic growth by focusing on the role of amenity
valuation and volatility of forest value in the determination of Wicksellian and Faustmannian
thresholds. Our theoretical and numerical findings emphasize the crucial importance of the
nature of amenity valuation for the impact of higher volatility of forest value on the rotation
thresholds.
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1 Introduction

In the usual Faustmann approach to the optimal forest rotation forest owners are as-
sumed to maximize the present value of net harvesting revenue. See e.g. Reed 1986 for
a survey. It may be the case, however, that forest owners are interested not only in the
present value of net harvesting revenue, but also in the amenity services provided by
forest stands. Binkley 1981 as well as Kuuluvainen and Tahvonen 1999 among others
provide in various ways some indirect empirical evidence in favor of this hypothesis (see
also a survey of theoretical and empirical research about timber supply by Wear and
Parks 1994). This raises the following question: How does the amenity valuation affect
the privately optimal rotation in the ongoing rotations framework? The first analytical
treatment to include amenity service values is the stand-level model by Hartman 1976,
who shows that if amenity services are increasing with the age, then the optimal ro-
tation age for the stand will exceed the Faustmann rotation age thereby delaying the
harvest (see also Strang 1983, Bowes and Krutilla 1985 and Snyder and Bhattacharyya
1990, where the maintenance of provision costs necessary to realize a quality flow of
recreational services is explicitly included). Koskela and Ollikainen 2001, 2002, have
studied in the Hartman framework the impact of various types of forest taxes on the
rotation age and the optimal design of forest taxes, respectively. The original Hart-
man model and most of its extensions, however, are deterministic so that future timber
revenue and amenity values are known, which is of course a heroic assumption to be
relaxed.

To our knowledge allowing for uncertainty in the framework of the Hartman model
has been theoretically analyzed only in Reed 1993 and in Reed and Ye 1994, respec-
tively. Reed 1993 assumes that both future amenity values and future timber values are
uncertain and that there is a possibility of catastrophic risk e.g. via forest fire, which is
modelled as a Poisson process. When both future amenity values and timber revenue
are assumed to follow geometric, possibly correlated, Brownian motion processes, Reed
1993 shows that in the case of risk-neutral forest owners the forest stand is harvested if
the ratio of current timber value to current amenity services exceeds a certain threshold
level, which reflects the option value associated with uncertainties, i.e. the certainty-
equivalence theorem does not hold. In terms of comparative statics, the rotation age is
shown to become longer as the expected growth rate of timber revenue and the uncer-
tainty of both timber value and amenity services will increase, while the rotation age
becomes shorter as the expected growth rate of amenity services, the interest rate, the
covariance between timber and amenity value uncertainties as well as the probability
of forest fire will increase. The model assumptions in Reed and Ye 1994 are identical
to those in Reed 1993 with one exception. Instead of postulating geometric Brownian
motion processes for timber revenue and amenity value, Reed and Ye 1994 assume that
changes in valuations of amenity services and in timber prices occur in discrete jumps
at random times as geometric jump processes. Under this specification the ratio of the
value of amenity services relative to timber values can be monotone (nondecreasing or
non-increasing), while still stochastic implying that there is no option value associated
with the decision to harvest, even though there is uncertainty in future timber and
amenity values. Hence according to their findings the cause of option values seems to
be not so much uncertainty per se, but rather the possibility of reversals in the direc-
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tion of the ratio between the value of amenity services and timber revenues. Conrad
(2000) has applied option theory to the decision to extract resources and/or develop
a wilderness area and thereby amenity dividend. He also assume both amenity values
and value of resources to follow different geometric Brownian motion processes.

As for empirical applications, Conrad 1997 has presented a model where a stand
of old-growth forest has a known stumpage value, and where future amenity value is
uncertain and follows geometric Brownian motion. He has applied it to the Headwaters
Forest, a stand of old-growth coast redwood in Northern California. Bulte et al 2002
have applied the same model to the humid Atlantic zone of Costa Rica. The main
idea of these papers is to try empirically outline the impact of uncertainty about forest
conservation benefits on the incentive to harvest or conserve old-growth forests.

In the papers mentioned above the authors have assumed different stochastic for-
mulations for timber revenues and amenity values in terms of the mean growth rate
(drift) and uncertainty (variance) parameters. What we do in this paper is first to pos-
tulate stochastic forest stand value and assume that monetary value of amenities is a
continuous and non-negative function of the forest value thus emphasizing the trade-off
between timber revenues and amenity values. Second and importantly, instead of rely-
ing on the standard dynamic programming approach, this paper follows the approach
introduced in Alvarez 2001b, 2001c. The key idea is to derive an associated functional
from which the optimal rotation threshold and its value can be explicitly solved in
terms of exogenous quantities by solely relying on standard non-linear programming
techniques. Third, we characterize under certain set of conditions how the properties
of both the expected cumulative value and the expected marginal cumulative value, ac-
crued from amenity services, depend on the precise nature of the monetary valuation of
amenities and how increased volatility will affect these concepts. Finally, we illustrate
our results explicitly in deterministic and stochastic models based on logistic growth.
Our theoretical and numerical findings emphasize the crucial importance of the nature
of amenity valuation for the impact of higher volatility of forest value on the optimal
rotation thresholds.

We proceed as follows. In section 2 a general characterization of the optimal rotation
problem with amenity valuation under uncertainty is done. Section 3 provides the so-
lution to the optimal ongoing rotation problem and characterizes its various properties.
The Wicksellian single rotation problem and its relationship with the Faustmannian
ongoing rotation problem is presented in section 4. Our results are explicitly illustrated
in section 5 in a model based on logistic growth both in the deterministic and stochastic
case. Finally, there is a brief concluding section.

2 A New Characterization of the Faustmannian

Optimal Rotation Problem with Amenity Valua-

tion

In this section we characterize the optimal rotation problem when forest owners are
interested both in the expected cumulative harvest revenue and in the amenity services
of forest stand under the circumstances when the forest stand value and thereby the
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amenity services as a non-negative function of forest value are stochastic processes.
More precisely we proceed as follows: First, we specify the dynamics of the system
and define the optimal ongoing rotations problem (i.e. a stochastic impulse control
problem). Second, under certain natural assumptions we end up with two linearly
independent fundamental solutions and in terms of these solutions we can express the
Green function of the diffusion of the forest stand value in terms of these solutions.
This, interestingly, makes it possible to study the optimal rotation problem by relying
on standard non-linear programming techniques.

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space, and assume that the dynam-
ics of the stochastic forest stand value growth are described up to extinction by the
generalized Itô-equation

Xν
t = x+

∫ t

0
µ(Xν

s )ds+

∫ t

0
σ(Xν

s )ds−
∑

τk≤t

ζk, t ≥ 0, (2.1)

where µ : R+ 7→ R and σ : R+ 7→ R are known to be sufficiently smooth (at least contin-
uous) mappings guaranteeing the existence of a solution for the stochastic differential
equation (2.1) (cf. Borodin and Salminen 1996, pp. 46–47). In line with most studies
considering population growth, we assume that the upper boundary ∞ of the state
space is natural for the controlled diffusion in the absence of interventions (cf. Borodin
and Salminen 1996, pp. 14–15), that limx↓0 µ(x) = 0 (i.e. that 0 is a steady-state of
the controlled system in the absence of stochastic fluctuations), that the percentage
growth rate µ(x)/x is non-increasing, and that µ(x) > 0 on (0, x̄), where x̄ > 0 is
known (may be infinite). For simplicity, we will also assume that the lower boundary 0
is unattainable for the controlled diffusion in the absence of harvesting. We would like
to emphasize that although this assumption rules out the cases subject to potentially
finite expiration, it is satisfied by most models applied in the literature on optimal forest
rotation (logistic dynamics subject to environmental stochasticity, geometric Brownian
motion, etc.).

An irreversible rotation policy − an impulse control − for the system (2.1) is a
possibly finite sequence

ν = (τ1, τ2, . . . , τk, . . . ; ζ1, ζ2, . . . , ζk, . . . )k≤N (N ≤ ∞),

where {τk}k≤N is an increasing sequence of Ft-stopping times (known as the rotation
dates) for which τ1 ≥ 0, and {ζk}k≤N denote a sequence of non-negative impulses (i.e.
ζk ≥ 0 for all k ≤ N) exerted at the corresponding rotation dates {τk}k≤N , respectively.
In line with standard models considering optimal rotation policies, we assume that the
process is always instantaneously driven to the exogenously given state x0 whenever the
irreversible harvesting policy is exerted. That is, we assume that if the boundary at
which the harvesting opportunity is exercised is given, then the size of the subsequent
rotation policy is always a known constant. We denote as V the class of admissible
rotation policies ν = (τ1, τ2, . . . , . . . ; ζ1, ζ2, . . . )k≤N and assume that τk → ∞ almost
surely for all ν ∈ V and x ∈ R+. As usually, we denote as

A =
1

2
σ2(x)

d2

dx2
+ µ(x)

d

dx

the differential operator associated with the controlled process Xν
t .
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Given the stochastic dynamics of forest stand value growth described in (2.1) and
our technical assumptions, we now define the the expected cumulative present value of
the net revenues (including harvesting and monetary value of amenity services) from
the present up to a potentially infinite future as

Jν(x) = Ex

[

N
∑

k=1

e−rτk(Xν
τk

− c) +

∫ ∞

0
e−rsπ(Xν

s )ds

]

, (2.2)

where c > 0 is the regeneration cost associated with harvesting and replanting and
π : R+ 7→ R+ is a given continuous and non-negative mapping measuring the revenues
accrued from amenity services. In line with the literature on optimal rotation, we will
assume that x0 < c. Given the definition of the expected cumulative present value of
the net revenues Jν(x) we consider the optimal rotation problem which is a stochastic
impulse control problem

V (x) = sup
ν∈V

Jν(x), x ∈ R+ (2.3)

and explore an admissible rotation policy ν∗ ∈ V for which

Jν
∗

(x) = V (x), x ∈ R+.

Denote now as Xt the considered diffusion describing the value of the forest stand
in the absence of harvesting. As usually, we denote as L1(R+) the class of cash flows
f(x) with finite expected cumulative present values and denote this present value as

(Rrf)(x) = Ex

∫ ∞

0
e−rsf(Xs)ds.

In order to guarantee the finiteness of the objective functional (2.2), we shall assume
throughout this study that the mapping θ(x) = π(x) + µ(x) − r(x − c) measuring the
expected growth rate of the total value of a forest stand has a finite expected cumulative
present value, that is, that θ ∈ L1(R+). Of course, in line with this assumption, we
shall also assume that the expected cumulative present value of the returns accrued
from amenity services is finite as well meaning that π ∈ L1(R+).

As it is known from the literature on linear diffusions, there are two linearly in-
dependent fundamental solutions, denoted as ψ(x) and ϕ(x), with ψ(x) monotonically
increasing and ϕ(x) monotonically decreasing which span the set of solutions of the
ordinary differential equation ((A− r)u)(x) = 0 (for a complete characterization of the
fundamental solutions and their boundary conditions see Borodin and Salminen 1996,
pp. 18 – 19). More specifically, the Green function Gr(x, y) of the diffusion Xt, de-
scribing the value of the forest stand, can be expressed in terms of these solutions as
(cf. Borodin and Salminen 1996, p. 19)

Gr(x, y) =

{

B−1ψ(x)ϕ(y), x < y

B−1ψ(y)ϕ(x), x ≥ y

where

B =
ψ′(x)

S′(x)
ϕ(x) −

ϕ′(x)

S′(x)
ψ(x) > 0
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denotes the constant Wronskian determinant of the fundamental solutions and

S′(x) = exp

(

−

∫

2µ(x)

σ2(x)
dx

)

denotes the density of the scale function of X. The functions ψ(x) and ϕ(x) are also
minimal in the sense that any non-trivial r-excessive mapping for X can be expressed
in terms of these mappings (more precisely, there exists an integral representation of
such mappings in terms of these solutions; cf. Borodin and Salminen 1996, p. 32).
Consequently, we find that if f ∈ L1(R+), then

(Rrf)(x) =

∫

(0,∞)
Gr(x, y)f(y)m′(y)dy,

where m′(x) = 2/(σ2(x)S′(x)) denotes the density of the speed measure m of the diffu-
sion X. After having ended up technically with two linearly independent fundamental
solutions and expressed the Green function of the diffusion in terms of these solutions
we now move on to study the optimal ongoing rotation problem.

3 Solution of the Stochastic Optimal Rotation

Problem with Amenity Valuation

In this section we solve the optimal ongoing rotations problem with amenity valuation
with our general framework and characterize its properties. To do that we follow the
approach introduced in Alvarez 2001b, 2001c. The key idea is to derive an associated
functional from which the optimal rotation threshold and its value can be explicitly
solved in term of exogenous variables by relying solely on standard non-linear program-
ming techniques. More precisely, we proceed as follows: First we define the auxiliary
Markovian functional, i.e. the value accrued from exercising the irreversible rotation
policy at a given predetermined threshold, and show how it can be expressed in terms
of the fundamental solutions ψ(x) and ϕ(x) presented in Section 2. Using this auxiliary
Markovian functional, we show how the optimal rotation problem can be expressed as
an ordinary non-linear programming problem. Second, we present a set of sufficient
conditions under which a unique optimal threshold exists and under which the associ-
ated Markovian functional constitutes the value of optimal rotation problem. Third, we
present a set of plausible sufficient conditions under which the cumulative present value
from amenity services is concave in terms of current state and negatively related to
increasing volatility of the system. We also state sufficient conditions for the negative
relationship between volatility and the value of the optimal rotation policy. Finally,
we characterize under certain set of conditions how the properties of both the expected
cumulative present value of the revenues accrued form amenity services and its marginal
value depend on the nature of the amenity valuation function and what is the impact
of volatility on these concepts.

In order to accomplish these tasks, we define for y ∈ (x0,∞) the Markovian func-
tional F : R+ 7→ R recursively as

F (x) = Ex

[

e−rτy(F (x0) +Xτy − c) +

∫ τy

0
e−rsπ(Xs)ds

]

, (3.1)
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where τy = inf{t ≥ 0 : Xt ≥ y}. Thus, F (x) can be interpreted as the value accrued from
exercising the irreversible rotation policy at a given potentially suboptimal threshold y.
After the rotation opportunity has been exercised, the diffusion Xt is instantaneously
driven to the state x0 at which it is restarted through replantation. It is clear, and
important to point out, that although the controlled process is not a diffusion because
of the jumps created by the lump-sum harvesting strategy, the process Xt behaves like a
diffusion between consecutive harvesting dates and, therefore, the standard techniques
apply within a rotation cycle.

Since the expected present value of the timber revenues satisfies the equation

Ex

[

e−rτy(Xτy − c)
]

= x− c+ Ex

∫ τy

0
e−rs[µ(Xs) − r(Xs − c)]ds,

we find that F (x) can be rewritten as

F (x) =

{

F (x0) + x− c x ≥ y

(x− c) + (Rrθ)(x) + (F (x0) − (Rrθ)(y))
ψ(x)
ψ(y) x < y,

(3.2)

where ψ(x) denotes the increasing fundamental solution defined in the previous section
2. Noticing that F (x) is continuous for any possible choice of y ∈ (x0,∞) means that
the auxiliary Markovian functional F (x) satisfies the value-matching condition for any
admissible harvesting threshold. It is now clear from (3.2) that letting x tend to x0

yields after a simple algebraic manipulation

F (x0) =
ψ(y)(x0 − c+ (Rrθ)(x0)) − ψ(x0)(Rrθ)(y)

ψ(y) − ψ(x0)
. (3.3)

This can be rewritten as

F (x0) =
Ex0

[

e−rτy(Xτy − c) +
∫ τy
0 e−rsπ(Xs)ds

]

1 − Ex0
[e−rτy ]

,

which describes the expected cumulative present value of future harvests and amenity
services accrued over a rotation cycle terminated whenever Xt becomes greater than y.
Inserting (3.3) into (3.2) then finally yields

F (x) =

{

(x0 − c) + (Rrθ)(x0) + u(y)ψ(x0) + x− c x ≥ y

(x− c) + (Rrθ)(x) + u(y)ψ(x) x < y
(3.4)

where

u(y) =
x0 − c+ (Rrθ)(x0) − (Rrθ)(y)

ψ(y) − ψ(x0)
. (3.5)

It is worth observing that the continuity of the functional (Rrθ)(x), the monotonicity
of the increasing fundamental solution ψ(x), and our assumption x0 < c imply that

lim
x↓x0

u(x) = −∞ and lim
x↑x0

u(x) = ∞
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which demonstrates that u(x) is discontinuous at the restarting state x0. Given the
auxiliary mapping u(y), consider now the following ordinary non-linear programming
problem

u(x∗) = sup
y∈[x0,∞)

u(y), (3.6)

where x∗ = argmaxy∈[x0,∞){u(y)}, and define the functional F ∗(x) as

F ∗(x) =

{

(x0 − c) + (Rrθ)(x0) + u(x∗)ψ(x0) + x− c x ≥ x∗

(x− c) + (Rrθ)(x) + u(x∗)ψ(x) x < x∗.
(3.7)

It is now clear that F ∗(x) represents the value of the stationary Faustmannian rotation
policy with amenity valuation which can be described as follows: there is a state x∗ ∈
(x0,∞) at which the controlled diffusion modelling the value of the forest stand is
instantaneously driven to the state x0 ∈ R+ where it is immediately restarted. Hence,
given the definition of the functional F ∗(x) and the admissibility but the (potential)
sub-optimality of the implemented policy, we find that V (x) ≥ F ∗(x) for all x ∈ R+.
Therefore, for the verification of the optimality of the proposed policy and its value it
is sufficient to establish conditions under which V (x) ≤ F ∗(x).

Given the continuous differentiability of u(y) on R+\{x0}, it is now clear that if
an interior optimal threshold x∗ ∈ (x0,∞) locally maximizing u(y) exists, then we
necessarily have u′(x∗) = 0 implying that

u(x∗) = −
(Rrθ)

′(x∗)

ψ′(x∗)
(3.8)

Now we can show the following

Lemma 3.1. Assume that an optimal threshold x∗ maximizing u(y) on the set (x0,∞)
exists. Then, F ∗(x) is continuously differentiable on R+ and twice continuously differ-
entiable on R+\{x

∗}. Moreover, F ∗(x) satisfies the boundary value problem

1

2
σ2(x)F ∗′′(x) + µ(x)F ∗′(x) − rF ∗(x) + π(x) = 0 x ∈ (0, x∗)

F ∗(x∗) = x∗ − c+ F ∗(x0), F ∗′(x∗) = 1.
(3.9)

Proof. See Appendix A.

Lemma 3.1 establishes that whenever the mapping u(x) attains a unique maximum
on (x0,∞), the (potentially suboptimal) value F ∗(x) is stochastically of class C2(R+)
(see Brekke and Øksendal 1994, 1996 for a precise definition) and satisfies on (0, x∗)
the ordinary second order differential equation ((A − r)F ∗)(x) + π(x) = 0 subject to
both the standard value-matching condition F ∗(x) = x∗ − c + F ∗(x0) (i.e. continuity
across the exercise boundary) and the smooth fit principle F ∗′(x∗) = 1 (i.e. continuous
differentiability across the exercise boundary). It is worth pointing out that the proof
of Lemma 3.1 actually establishes that the value function (3.4) is differentiable on its
domain R+ only if the threshold y satisfies the ordinary first order condition (3.8), that
is, only if the exercise threshold y is such that it maximizes the auxiliary mapping u(x).
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Given the findings of Lemma 3.1, let us now consider the behavior of the mapping
u′(x) more thoroughly in order to derive globally valid sufficient conditions guaranteeing
both the existence and uniqueness of an optimal threshold x∗ at which the irreversible
harvesting opportunity should be exercised. Ordinary differentiation now yields after a
simple algebraic simplification that u′(x) = ψ′(x)v(x)/(ψ(x) − ψ(x0))

2, where

v(x) = (Rrθ)(x) − (ψ(x) − ψ(x0))I(x) − (Rrθ)(x0) + c− x0, (3.10)

and the mapping I : R+ 7→ R is defined as I(x) = (Rrθ)
′(x)/ψ′(x). It is now clear that

(3.10) can also be rewritten as

v(x) = J(x) − J(x0) + ψ(x0)(I(x) − I(x0)) + (c− x0), (3.11)

where J(x) = (Rrθ)(x) − I(x)ψ(x). We can now prove the following

Lemma 3.2. Assume that limx↓0 θ(x) ≥ 0 > limx→∞ θ(x), and that there is a threshold
x̃ = argmax{θ(x)} ∈ R+ such that θ(x) is increasing on (0, x̃) and decreasing on (x̃,∞).
Then, there is a unique threshold x̂ = argmin{I(x)} = argmax{J(x)} satisfying the first
order condition

∫ x̂

0

ψ′(y)

S′(y)
θ′(y)dy = 0.

In particular, x̂ ∈ (x̃, θ−1(0)) and J ′(x) = −ψ(x)I ′(x) T 0 when x S x̂.

Proof. See Appendix B.

Lemma 3.2 states a set of typically satisfied conditions under which the auxiliary
mapping I(x) attains a unique global minimum so that J(x) attains a unique global
maximum on R+. Given the results of Lemma 3.2 and equation (3.10) we can now
establish the following key result needed in the subsequent verification of the optimality
of the proposed harvesting policy.

Lemma 3.3. Assume that the conditions of Lemma 3.2 are met and that x0 < x̂.
Then, there is a unique exercise threshold x∗ = argmax{u(x)} > x̂ satisfying the first
order necessary condition (3.8), and F ∗(x) satisfies the boundary value problem (3.9).
Moreover, ((A− r)F ∗)(x) + π(x) ≤ 0 on (x∗,∞).

Proof. See Appendix C.

Lemma 3.3 states a set of very general and, thus, typically satisfied conditions under
which a unique optimal exercise threshold x∗ maximizing the value of u(x) exists and
under which the Markovian functional F ∗(x) is r-superharmonic for the controlled pro-
cess Xt (cf. Øksendal 1998, chapter 10). But unfortunately, this is not yet sufficient for
establishing that F ∗(x) would coincide with the value of the optimal harvesting policy
and, therefore, more analysis is needed. Our first set of general sufficient conditions
under which we always have this equality (i.e. V (x) = F ∗(x)) are now summarized in
the following

Theorem 3.4. Assume that the conditions of Lemma 3.2 are met, that x0 < x̂, and that
F ∗(x) ≥ (x−c)+F ∗(x0) on (0, x0). Then, F ∗(x) = V (x) and the optimal rotation policy
is described as follows. If x ≥ x∗, then τ1 = 0, ζ1 = x−x0, τi+1 = inf{t ≥ τi : Xν

t ≥ x∗},
and ζi+1 = x∗ − x0, i ≥ 1. If x < x∗, then τi+1 = inf{t ≥ τi : Xν

t ≥ x∗} (∞ = 0) and
ζi+1 = x∗ − x0, for all i ≥ 0.
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Proof. See Appendix D.

Theorem 3.4 states a set of sufficient conditions under which the associated Marko-
vian functional F ∗(x) constitutes the value of the optimal rotation problem (2.3) and
under which the optimal rotation threshold is x∗. Next we characterize the properties
of the present value of amenity services in

Theorem 3.5. Assume that the mappings µ(x), σ(x) are continuously differentiable
with Lipschitz-continuous derivatives, σ′(x) satisfies the standard Novikov-condition

Ex

[

exp

(

1

2

∫ t

0
σ′

2
(Xs)ds

)]

<∞, (t, x) ∈ R2
+,

the drift µ(x) is concave, and the flow of revenues π(x) is non-decreasing and con-
cave. Then, the expected cumulative present value accrued from amenity services is
non-decreasing and concave, that is, (Rrπ)′(x) ≥ 0 and (Rrπ)′′(x) ≤ 0 for all x ∈ R+

and increased volatility decreases the expected cumulative present value (Rrπ)(x). More-
over, the expected value of timber revenues over a single rotation cycle of length t

u(t, x) = Ex[e
−rt(Xt − c)]

is increasing and concave in x, that is, ux(t, x) ≥ 0 and uxx(t, x) ≤ 0 for all (t, x) ∈ R2
+,

and the mapping

v(t, x) = Ex

[

e−rt(Xt − c) +

∫ t

0
e−rsπ(Xs)ds

]

is increasing and concave in x, that is, vx(t, x) ≥ 0 and vxx(t, x) ≤ 0 for all (t, x) ∈ R2
+.

Finally, increased volatility decreases both u(t, x) and v(t, x).

Proof. See Appendix E.

According to Theorem 3.5 under a set of typically satisfied conditions the expected
cumulative present value of the revenues accrued from amenity services is concave as a
function of the current state x and that the sign of the relationship between volatility
and (Rrπ)(x) is unambiguously negative. Moreover, we also find that the expected
revenues accrued over a single rotation cycle are concave as a function of the current
state x and, therefore, negatively dependent on the volatility of the process Xt.

The precise nature of the amenity valuation function – which turns out to be impor-
tant later on – depends on the nature of amenity services like timber and deer, timber
and water, wild life diversity and visual aesthetics which might differ depending on the
specific situation (see e.g. Calish et. al 1978)). Therefore, we next characterize under
certain set of conditions how the properties of both the expected cumulative value and
the expected marginal cumulative value, accrued from amenity services, depend on the
precise nature of the monetary valuation of amenities. Moreover, and importantly, we
also demonstrate the impact of increased volatility on these factors. First, we present
the following

Theorem 3.6. Assume that σ(x) = σx, where σ > 0 is a known constant, and that
the mapping µ(x) is concave and continuously differentiable with Lipschitz-continuous
derivatives. Assume also that µ′(x) is convex, that the flow of revenues π(x) is non-
increasing and convex, and that π′(x) is concave. Then,

9



(i) the expected cumulative present value accrued from amenity services (Rrπ)(x) is
non-increasing and convex, and increased volatility increases its value (Rrπ)(x),

(ii) the marginal expected cumulative present value accrued from amenity services
(Rrπ)′(x) is non-decreasing and concave, and increased volatility decreases its
value. Moreover, increased volatility decreases the value (Rrπ)(x) − (Rrπ)(x0)
for all x ∈ [x0,∞).

Proof. See Appendix F.

Theorem 3.6 states a set of conditions under which increased volatility unambigu-
ously increases the expected cumulative present value of the returns accrued from
amenity services but simultaneously decreases its marginal value. This result is of
interest since it demonstrates that even when the sign of the relationship between in-
creased volatility and the expected cumulative revenues may be positive, the impact
on the difference (Rrπ)(x) − (Rrπ)(x0) determining the nature of the optimal ongoing
rotation policy, may be negative. Thus, the properties of the optimal ongoing rotation
policy may be opposite to the ones of an optimal single rotation strategy. This result
emphasizes the impact of the sequentiality of the ongoing rotation policies on their com-
parative static properties. Since the opportunity to harvest later in the future is lost
in the single rotation case immediately after the irreversible decision has been made,
the decision maker cannot pursue a policy where the value process would be sustained
at a level where the flow of returns accrued from amenity services is high. Since the
decision maker can, however, implement such a policy in the ongoing rotation case, we
immediately observe that the impact of increased volatility on the optimal policy is very
different in cases where volatility affects the expected cumulative present value of the
returns accrued from amenity services in an opposite way it affects its marginal value.
A second associated result is now established in the following

Theorem 3.7. Assume that σ(x) = σx, where σ > 0 is a known constant, and that
the mapping µ(x) is concave and continuously differentiable with Lipschitz-continuous
derivatives. Assume also that µ′(x) is convex, that the flow of revenues π(x) is non-
decreasing and concave, and that π′(x) is convex. Then,

(i) the expected cumulative present value accrued from amenity services (Rrπ)(x) is
non-decreasing and concave, and increased volatility decreases its value (Rrπ)(x),

(ii) the marginal expected cumulative present value accrued from amenity services
(Rrπ)′(x) is non-increasing and convex, and increased volatility increases its value.
Moreover, increased volatility increases the value (Rrπ)(x) − (Rrπ)(x0) for all
x ∈ [x0,∞).

Proof. The proof is analogous with the proof of Theorem 3.6.

In contrast to Theorem 3.6, Theorem 3.7 states a set of conditions under which
increased volatility unambiguously decreases the expected cumulative present value of
the returns accrued from amenity services but simultaneously increases its marginal
value. The interpretation of this result is analogous to Theorem 3.6. Finally, in the
ongoing rotation framework with amenity valuation we show the following.
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Theorem 3.8. If the value function F (x) is concave, then increased volatility decreases
the value of the optimal rotation policy.

Proof. See Appendix G.

Notice, however, that Theorem 3.8 does not characterize the relationship between
volatility and the optimal rotation threshold x∗. As we will see in an explicit example
later, the relationship between volatility and the optimal rotation threshold x∗ depends
heavily on nature of the amenity valuation function and the boundary behavior of the
diffusion process modelling the value of the forest stand.

4 Wicksellian stochastic single rotation problem

with amenity valuation

The analysis of the previous section has been devoted to the Faustmannian ongoing
rotation problem with amenity valuation. A closely related problem arising in the liter-
ature of optimal forest rotation is the so-called Wicksellian single rotation problem.

In this section we explicitly characterize in the presence of amenity valuation an
associated Wicksellian single rotation problem in terms of optimal exercise threshold,
optimal rotation date and the resulting value function and compare the value function
with the one from the Faustmannian ongoing rotation problem. The objective of the
forest owner is now to determine the rotation date τ for which the maximum

V̂ (x) = sup
τ<∞

Ex

[

e−rτ (Xτ − c) +

∫ τ

0
e−rsπ(Xs)ds

]

(4.1)

is attained. The strong Markov property of diffusions now implies that problem (4.1)
can be re-expressed as

V̂ (x) = (Rrπ)(x) + sup
τ<∞

Ex[e
−rτ (Xτ − c− (Rrπ)(Xτ ))].

This demonstrates how the value of the optimal policy can be decomposed into the
returns accrued from keeping the forest unharvested (the monetary value of the return
accrued from amenity services) and the expected returns accrued from exercising the
harvesting opportunity later in the future. Our main result on this problem is summa-
rized in the following

Theorem 4.1. Assume that the mapping θ(x) = π(x) +µ(x)− r(x− c), measuring the
expected growth rate of the total value of a forest stand, satisfies the condition θ(x) T 0

for x S ŷ, where ŷ ∈ R+ is a known threshold. Then, there is a unique optimal exercise

threshold x∗W = argmax
{

x−c−(Rrπ)(x)
ψ(x)

}

= argmin
{

(Rrθ)(x)
ψ(x)

}

satisfying the ordinary

first order necessary condition

∫ x∗
W

0
ψ(y)θ(y)m′(y)dy = 0.
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Moreover, τ ∗W = inf{t ≥ 0 : X(t) ≥ x∗W } is the optimal rotation date and the value
function reads as

V (x) =

{

x− c, x ≥ x∗W
x− c+ (Rrθ)(x) − (Rrθ)(x

∗
W ) ψ(x)

ψ(x∗
W

) , x < x∗W .
(4.2)

Proof. The alleged result follows directly from part (A) of Theorem 4 in Alvarez 2001d.

Theorem 4.1 states a set of sufficient conditions under which the Wicksellian single
rotation problem can be solved explicitly. It is worth emphasizing that the conditions
of Theorem 4.1 are significantly weaker than the conditions of Theorem 3.4 for the
Faustmannian problem. Unfortunately, it is not easy (if possible at all) to extend the
results of Theorem 4.1 to the ongoing rotation case, although we know that these values
are closely related to each other. An important consequence of our Theorem 3.4 is now
presented in the following

Corollary 4.2. Assume that the conditions of Theorem 3.4 are met. Then, V (x) ≥
V̂ (x) for all x ∈ R+.

Proof. See Appendix H.

Corollary 4.2 proves that the value of the Faustmannian ongoing rotation problem
dominates the value of the Wicksellian single rotation problem in the presence of amenity
valuation as well.

5 Some Numerical Illustrations

After having characterized the value of both the Faustmannian ongoing rotation prob-
lem and the Wicksellian single rotation problem in the presence of amenity valuation, we
now explicitly illustrate our results both in deterministic and stochastic models based
on a logistic growth of the forest value. More precisely, we focus the role of amenity
valuation function, interest rate and growth and volatility of forest value under much
more general assumptions than in the earlier literature about the relationship between
the forest value and the monetary value of amenity services.

5.1 Deterministic Logistic Growth

We now assume that the dynamics of the controlled process modelling the value of the
forest stand read as

X ′
t = µXt(1 − γXt), X0 = x, (5.1)

where µ denoting the intrinsic growth rate at low densities and γ−1 denoting the carrying
capacity of the value of the forest stand are exogenously given constants. The amenity
revenues are, in turn, assumed to be of the form π(x) = axb, where a > 0 and b ∈ R are
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exogenously given constants. Consequently, the auxiliary mapping θ(x), characterized
in section 2, now reads as

θ(x) = axb + µx(1 − γx) − r(x− c).

Our assumptions imply that the mapping θ(x) is strictly concave and attains a unique
maximum at the point x̃ satisfying the ordinary first order necessary condition

abx̃b−1 + µ− r = 2µγx̃.

It is now a simple exercise in ordinary analysis to establish that for any f ∈ Cb((0, 1/γ])
(Cb(A) denotes the collection of continuous and bounded mappings on A) and x ∈
(0, 1/γ) we have that

(Rrf)(x) =
1

µ

(

x

1 − γx

)r/µ ∫ 1/γ

x
f (y) y−r/µ−1(1 − γy)r/µ−1dy.

Thus, the cumulative present value of the future revenues accrued from amenity services
can be expressed as

(Rrπ)(x) =
a

µ

(

x

1 − γx

)r/µ ∫ 1/γ

x
yb−r/µ−1(1 − γy)r/µ−1dy.

For example, if r = µ and b 6= 1 then

(Rrπ)(x) =
a

µ

(

x

1 − γx

)

1

b− 1

[

γ1−b − xb−1
]

. (5.2)

It is now clear that in the present case, the associated Wicksellian rotation problem
reads as

V̂ (x) = sup
t≥0

[
∫ t

0
e−rsaXb

sds+ e−rt(Xt − c)

]

= (x− c) + sup
t≥0

∫ t

0
e−rsθ(Xs)ds.

Since the conditions of our Theorem 4.1 are now satisfied, we find that the optimal
(Wicksell) threshold x∗W at which the forest should optimally be rotated constitutes
the unique interior root of the ordinary first order condition θ(x∗W ) = 0, that is, of the
condition

ax∗W
b + µx∗W (1 − γx∗W ) = r(x∗W − c). (5.3)

On the other hand, the optimal (Faustmann) threshold x∗ is the unique interior root of
the ordinary first order condition

(

x∗

1 − γx∗

)r/µ

[θ(x∗) − r(Rrπ)(x0)] =

(

x0

1 − γx0

)r/µ

[θ(x∗) − r(Rrθ)(x
∗)] . (5.4)

Unfortunately, solving the optimal thresholds x∗W and x∗ explicitly from these optimality
conditions is typically impossible. Therefore, we illustrate numerically our results in the
following under the assumptions that a = 1%, µ = r = 4%, γ = 0.2, c = 2, and x0 = 1.
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b −1.1 −0.5 0.5 1.1

x∗ 2.93 2.95 3.10 3.40
x∗W 3.22 3.27 3.51 3.96

x∗W − x∗ 0.29 0.32 0.41 0.56

Table 1

The results of Table 1 can be characterized as follows. First, the Faustmannian threshold
value, x∗, falls short of the Wicksellian one, x∗W , independent of the precise specifica-
tion of the amenity valuation function π(x). This is natural because it means that the
optimal rotation age in the Faustmann case is shorter than in the Wicksell case for nat-
ural reasons, elaborated in the literature. Second, the threshold difference will increase,
when the marginal amenity valuation of the forest stand becomes higher. This is sim-
ply because an increasing amenity valuation of the forest stand lengthens the optimal
threshold more in the Faustmannian case than in the Wicksellian case.

Next, we illustrate numerically our results in the case when a = 1%, µ = r = 8%,
γ = 0.2, c = 2, and x0 = 1.

b −1.1 −0.5 0.5 1.1

x∗ 2.96 2.98 3.05 3.18
x∗W 3.19 3.22 3.34 3.54

x∗W − x∗ 0.23 0.24 0.29 0.35

Table 2

The numerics of Table 2 provide an answer to the following question: What is the
relationship between the Faustmannian and Wicksellian rotation thresholds when the
interest rate (= the opportunity cost of not harvesting) will be higher than in Table
1. Naturally, the result presented earlier holds; there is still a difference, but a smaller
one, i.e. in the case of higher interest rate, the difference between the thresholds x∗ and
x∗W , will be smaller.

In order to illustrate the role of the flow of returns accrued from amenity services,
measured by parameter a, we illustrate in Table 3 the optimal policies in the case when
a = 5%, µ = r = 4%, γ = 0.2, c = 2, and x0 = 1.

b −1.1 −0.5 0.5 0.8 1.1

x∗ 2.65 2.77 3.57 4.46 5
x∗W 3.41 3.64 4.88 5 5

x∗W − x∗ 0.76 0.87 1.31 0.54 0

Table 3

A higher flow of returns increases the difference between the threshold values if the
elasticity of the cash flow accrued from amenity services, measured by parameter b, is
low enough. But when the elasticity increases then the difference between the threshold
values starts to decrease and finally we end up with a corner solution in both cases. In
fact, a sufficiently high increase in the elasticity shifts the optimal thresholds towards
the carrying capacity of the value of the forest stand γ−1 thus implying that harvesting
is never optimal independent of the time horizon as the monetary value of amenity
services dominates the returns from harvesting at all states.

14



5.2 Stochastic Logistic Growth

In order to consider the impact of stochastic fluctuations of the value of the forest stand
on the optimal rotation policy and its value, we now assume that the controlled diffusion
evolves according to a stochastic logistic growth model described by the stochastic
differential equation

dXt = µXt(1 − γXt)dt+ σXtdWt, X0 = x, (5.5)

where µ, γ, and σ are exogenously given positive constants. In order to get an explicit
solution, we also assume that π(x) = π̄/x. Applying now Itô’s theorem to the mapping
Yt = 1/Xt yields

dYt = (µγ − (µ− σ2)Yt)dt− σYtdWt, Y0 =
1

x
.

Consequently, we find that

Ex

[

1

Xt

]

=
µγ

µ− σ2
+ e−(µ−σ2)t

[

1

x
−

µγ

µ− σ2

]

which, provided that the absence of speculative bubbles condition r+µ > σ2 is satisfied,
implies

(Rrπ)(x) =
π̄

(r + µ− σ2)x
+

µγπ̄

r(r + µ− σ2)
. (5.6)

It is worth noticing that

∂(Rrπ)(x)

∂σ
=

[ π̄

x
+
µγπ̄

r

] 2σ

(r + µ− σ2)2
> 0 (5.7)

and

∂(Rrπ)′(x)

∂σ
= −

π̄

x2

2σ

(r + µ− σ2)2
< 0. (5.8)

This means, as was proved in Theorem 3.6, that increased volatility increases the ex-
pected cumulative present value of the returns accrued from amenity services, but simul-
taneously decreases its marginal value. Moreover, in line with the findings of Theorem
3.6 we also find that increased volatility decreases the difference (Rrπ)(x) − (Rrπ)(x0)
and, therefore, increases the incentives to harvest.

It is clear from the analysis above that the auxiliary mapping u(x) now reads as

u(x) =
(r + µ− σ2)x0x(x− c) + π̄(x− x0)

(r + µ− σ2)x0x(ψ(x) − ψ(x0))
, (5.9)

where ψ(x) = xδM(δ, 2δ + 2µ
σ2 ,

2µγ
σ2 x), δ = 1

2 − µ
σ2 +

√

(1
2 − µ

σ2 )2 + 2r
σ2 , and M is the

confluent hypergeometric function (cf. Alvarez and Shepp 1998 and Willasen 1998). In
this example, the optimal Wicksellian threshold x∗W is the threshold maximizing the
functional

uW (x) =
r(r + µ− σ2)x(x− c) − rπ̄ + µγπ̄x

r(r + µ− σ2)x1+δM(δ, 2δ + 2µ
σ2 ,

2µγ
σ2 x)

(5.10)
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The optimal rotation threshold x∗ and the Wicksellian threshold x∗W are illustrated as
functions of the volatility coefficient σ in the following table in the case when γ = 0.2,
r = µ = 4%, c = 2, π̄ = 1 and x0 = 1.

σ 0.05 0.1 0.15 0.2 0.25

x∗ 1.33 1.32 1.29 1.23 1.15
x∗W 7.06 8.29 10.05 13.02 21.56

x∗W − x∗ 5.73 6.97 8.76 11.79 20.41

Table 4

According to the findings presented in Table 4, higher volatility increases the Wick-
sellian threshold while, interestingly, decreases the Faustmannian threshold. This can
be interpreted as follows. As we established in (5.7) increased volatility increases the
expected cumulative revenues accrued from amenity services and, therefore, increases
the incentives to postpone the harvesting decision in the Wicksellian case. In contrast,
in (5.8) we found that increased volatility decreases the marginal value of the expected
cumulative revenues accrued from amenity services and, therefore, increases the incen-
tives to harvest by decreasing the expected marginal returns associated to the amenity
services. We would like to point out that this new finding is the main qualitative dif-
ference between the Wicksellian and Faustmannian rotation policies in the presence of
amenity services showing that the precise nature of the monetary value of amenities has
an important qualitative effect as well.

6 Concluding Remarks

This paper has provided a new and more general approach to study the optimal rotation
policy with amenity valuation under uncertainty when the underlying dynamics of the
forest value is described by a linear and time homogenous diffusion process. In the
small existing literature the authors have assumed different stochastic formulations
for forest values and amenity values without an explicit justification. We have first
postulated stochastic forest value and assumed that monetary value of amenities is a
continuous and non-negative function of the forest value thus emphasizing the trade-off
between timber revenues and amenity values. Second, and importantly, instead of using
dynamic programming, we have derived an associated functional form from which the
optimal rotation threshold and its value can be explicitly solved in terms of exogenous
parameters by solely relying on ordinary non-linear programming techniques. Third,
we have characterized under certain set of conditions how the properties of both the
expected cumulative present value and the expected marginal cumulative present value,
accrued form amenity services, depend on the precise nature of the amenity valuation
function and how the volatility of the forest value affects these concepts. Finally, we
have illustrated our results numerically both in deterministic and stochastic models
based on logistic growth with the emphasis on the role of the properties of amenity
valuation function, interest rate and both the growth and volatility of forest value for
the determination of Wicksellian and Faustmanian thresholds.

According to our numerical results the difference between the Wicksellian and the
Faustmanian threshold values is positively related to the flow of returns provided that
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the elasticity of the cash flow accrued from amenity services is low enough. When
the elasticity increases sufficiently, then the difference between the thresholds decreases
and finally ends up to a corner solution in both cases. Under certain specification of
the amenity valuation function and the nature of the growth rate of the forest value, a
higher volatility was shown to increase the Wicksellian threshold while it simultaneously
decreases the Faustmannian threshold. This is because increased volatility increases the
expected cumulative revenues accrued from amenity services and, therefore, increases
the incentives to postpone the harvesting decision in the Wicksellian case while de-
creases the marginal value of the expected cumulative revenues accrued from amenity
services, which is relevant for the Faustmannian threshold and, therefore, decreases the
incentives to postpone the harvesting decision in the Faustmannian case.
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A Proof of Lemma 3.1

Proof. It is clear from the definition (3.7) that F ∗(x) is twice continuously differentiable
on R+\{x

∗}. Thus, it is sufficient to consider the behavior of F ∗(x) and F ∗′(x) on the
exercise boundary x∗. The continuity of F ∗(x) is a direct consequence of the continuity
of F (x) for any admissible harvesting threshold y. Standard differentiation now yields
that

F ∗′(x) =

{

1 x ≥ x∗

1 + (Rrθ)
′(x) + u(x∗)ψ′(x) x < x∗.

Letting x ↑ x∗ and invoking the necessary condition (3.8) then proves that F ∗(x) is con-
tinuously differentiable on R+. Finally, since (Rrθ)(x) = (Rrπ)(x) + (Rrρ)(x) satisfies
the ordinary differential equation ((A− r)(Rrθ))(x) + θ(x) = 0, we find that F ∗(x) is a
solution of the boundary value problem (3.9), thus completing the proof.

B Proof of Lemma 3.2

Proof. Since J ′(x) = −ψ(x)I ′(x) and the increasing fundamental solution ψ(x) is posi-
tive, we find that J(x) is increasing on the set where I(x) is decreasing and vice versa so
that it is enough to establish the alleged result only for one of these mappings. Consider
now the mapping I(x). Since ((A− r)(Rrθ))(x) + θ(x) = 0 and ((A− r)ψ)(x) = 0, we
find by ordinary differentiation of I(x) that

I ′(x) =
2S′(x)

σ2(x)ψ′2(x)

[

r

∫ x

0
ψ(y)θ(y)m′(y)dy − θ(x)

ψ′(x)

S′(x)

]

.

However, since 0 was assumed to be unattainable, we know that (cf. Borodin and
Salminen 1996, p. 18)

ψ′(x)

S′(x)
= r

∫ x

0
ψ(y)m′(y)dy

implying that I ′(x) can be rewritten as

I ′(x) =
2rS′(x)

σ2(x)ψ′2(x)

∫ x

0
ψ(y)(θ(y) − θ(x))m′(y)dy = −

2S′(x)

σ2(x)ψ′2(x)

∫ x

0

ψ′(y)

S′(y)
θ′(y)dy.

Define now the functional G : R+ 7→ R as

G(x) = r

∫ x

0
ψ(y)θ(y)m′(y)dy − θ(x)

ψ′(x)

S′(x)
.

It is now clear that our monotonicity assumptions on the mapping θ(x) imply that the
equation θ(x) = 0 has a unique root θ−1(0) > x̃ and that θ(x) > 0 on x ∈ (0, θ−1(0)).
Thus, limx↓0G(x) ≤ 0,

G(x̃) ≤ rθ(x̃)

∫ x̃

0
ψ(y)m′(y)dy − θ(x̃)

ψ′(x̃)

S′(x̃)
= −θ(x̃)

ψ′(0)

S′(0)
≤ 0,

and

G(θ−1(0)) = r

∫ θ−1(0)

0
ψ(y)θ(y)m′(y)dy > 0.
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These findings prove that equation G(x) = 0 has a root x̂ ∈ (x̃, θ−1(0)) and, therefore,
that

∫ x̂

0

ψ′(y)

S′(y)
θ′(y)dy = 0.

However, since G(x) is increasing (decreasing) on the set where θ(x) is decreasing (in-
creasing) we find that this root is indeed unique and that G(x) S 0 when x S x̂ (cf.
Alvarez 2001a). Consequently, we find that x̂ = argmin{I(x)} = argmax{J(x)} and
our proof is complete.

C Proof of Lemma 3.3

Proof. Utilizing (3.10) gives

v′(x) = −(ψ(x) − ψ(x0))I
′(x).

Therefore, Lemma 3.2 and the monotonicity of the increasing fundamental solution ψ(x)
imply that v(x) is decreasing on (0, x0) ∪ (x̂,∞) and increasing on (x0, x̂). However,
since v(x0) = (c− x0) > 0 we find that v(x) > 0 on (0, x̂). Hence, if equation v(x) = 0
has a root, it must be on (x̂,∞). Assume now that x > x̂. Then it is a simple exercise
in ordinary analysis to establish that

v(x) = v(x̂) + (I(x̂) − I(x))(ψ(x̂) − ψ(x0)) +

∫ x

x̂
ψ′(y)(I(y) − I(x))dy

= v(x̂) + (I(x̂) − I(x))(ψ(x̂) − ψ(x0)) + (I(ξ) − I(x))(ψ(x) − ψ(x̂)),

where ξ ∈ (x̂, x). Now letting x → ∞ yields that limx→∞ v(x) = −∞, since ψ(x)
is monotonically increasing and satisfies the condition limx→∞ ψ(x) = ∞. Thus, the
continuous mapping v(x) changes sign and, therefore, has at least one root x∗ on the set
(x̂,∞). Since v(x) is monotonic on (x̂,∞) we find that this root is unique. Moreover,
v(x) T 0 on x S x∗ proving that x∗ = argmax{u(x)}. The result that F ∗ ∈ C1(R+) ∩

C2(R+\{x
∗}) and satisfies the boundary value problem (3.9) follows from Lemma 3.1.

It remains to establish that F ∗(x) satisfies the variational inequality ((A− r)F ∗)(x) +
π(x) ≤ 0 on (x∗,∞). To prove that this is indeed the case, we first notice that for all
x ∈ (x∗,∞) we have

((A− r)F ∗)(x) + π(x) = θ(x) − rJ(x0) + rψ(x0)(I(x
∗) − I(x0)) + r(c− x0).

Since J(x0) − ψ(x0)(I(x
∗) − I(x0)) − (c − x0) = J(x∗) (follows from the optimality

condition v(x∗) = 0), we find that for all x ∈ (x∗,∞) we have ((A− r)F ∗)(x) + π(x) =
θ(x) − rJ(x∗). However, since

I ′(x) =
d

dx

[

(Rrθ)
′(x)

ψ′(x)

]

=
2

σ2(x)ψ′(x)
[rJ(x) − θ(x)] ,

we find by invoking the monotonicity of the mappings I(x) and J(x) on (x∗,∞) that
((A − r)F ∗)(x) + π(x) ≤ r(J(x) − J(x∗)) ≤ 0, thus completing the proof of Lemma
3.3.
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D Proof of Theorem 3.4

Proof. As was established in Lemma 3.3, given the conditions of our theorem, the
value F ∗(x) is stochastically of class C2 and satisfies the variational inequality ((A −
r)F ∗)(x) + π(x) = 0 on R+. Similarly, since the state-space of Xν

t is bounded under
the proposed policy, we find that

lim
t→∞

Ex[e
−r(t∧τν(0))F ∗(Xν

t∧τν(0))] = 0

for all x ∈ R+. Consider now the mapping ∆ : R+ 7→ R defined as

∆(x) = F ∗(x) − (x− c) − F ∗(x0) =

{

0 x ≥ x∗

(ψ(x) − ψ(x0))[u(x
∗) − u(x)] x < x∗

(D.1)

It is clear from this expression that ∆(x) ≥ 0 as long as x ≥ x0. Thus, our assumption
F ∗(x) ≥ (x−c)+F ∗(x0) on (0, x0) guarantees that F ∗(x) ≥ (x−c)+F ∗(x0) is satisfied
on the entire R+. Thus, we find that the proposed value function satisfies the conditions
of part (a) of Theorem 2.1 in Øksendal 1999 and, therefore, that V (x) ≤ F ∗(x) for all
x ∈ R+, thus completing the proof.

E Proof of Theorem 3.5

Proof. Assume that our conditions are satisfied and denote as Xx
t the (flow of the)

solution of the stochastic differential equation

Xx
t = x+

∫ t

0
µ(Xx

s )ds+

∫ t

0
σ(Xx

s )dWs.

Given our smoothness-assumptions on the drift µ(x) and the infinitesimal diffusion

coefficient σ(x) imply that the process Y 1
t =

∂Xx
t

∂x constitutes the strong solution of the
stochastic differential equation (cf. Øksendal, 1998, pp. 66–70)

Y 1
t = 1 +

∫ t

0
µ′(Xx

s )Y 1
s ds+

∫ t

0
σ′(Xx

s )Y 1
s dWs

and can, therefore, be expressed as

Y 1
t = exp

(
∫ t

0
µ′(Xx

s )ds

)

Mt,

where

Mt = exp

(
∫ t

0
σ′(Xx

s )dWs −
1

2

∫ t

0
σ′

2
(Xx

s )ds

)

is a positive martingale. Consequently, the assumed concavity of the drift µ(x), the
positivity of the martingale Mt, and the monotonicity of the solution Xx

t as a function
of the initial state x then imply that Xx

t is concave in terms of x. Define the convex
combination x̂ as x̂ = λx+ (1 − λ)y, where x, y ∈ R+ and λ ∈ [0, 1]. The concavity of
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Xx
t as a function of x and the monotonicity and concavity of the mapping π(x) imply

that

π(X x̂
t ) ≥ π(λXx

t + (1 − λ)Xy
t ) ≥ λπ(Xx

t ) + (1 − λ)π(Xy
t )

which finally proves the alleged concavity of the expected cumulative present value
(Rrπ)(x). The linearity of the payoff x − c implies that u(t, x) is non-decreasing and
concave as a function of x. The monotonicity and concavity of v(t, x) as a function of
the current state x follows then from the analogous properties for (Rrπ)(x) and u(t, x).

It remains to establish that increased volatility decreases these values. To accomplish
this task, denote now the expected cumulative present value of the revenue flow π(x)
in the presence of the more volatile process as (R̃rπ)(x) and the differential operator
associated to the more volatile process, X̃t, as

Ã =
1

2
σ̃2(x)

d2

dx2
+ µ(x)

d

dx
.

Since (Rrπ)(x) satisfies the ordinary second order differential equation

1

2
σ2(x)(Rrπ)′′(x) + µ(x)(Rrπ)′(x) − r(Rrπ)(x) + π(x) = 0,

we find by the concavity of (Rrπ)(x) that

(Ã(Rrπ))(x) − r(Rrπ)(x) + π(x) =
1

2
(σ̃2(x) − σ2(x))(Rrπ)′′(x) ≤ 0.

Consequently, we have

0 ≤ Ex

[

e−rTn(Rrπ)(X̃Tn
)
]

= (Rrπ)(x) + Ex

∫ Tn

0
e−rs[(Ã(Rrπ))(X̃s) − r(Rrπ)(X̃s)]ds

≤ (Rrπ)(x) − Ex

∫ Tn

0
e−rsπ(X̃s)ds,

where Tn = n ∧ inf{t ≥ 0 : X̃t 6∈ (n−1, n)}, n ∈ N, is an almost surely finite stopping
time. Letting n→ ∞ and invoking monotone convergence then implies that (Rrπ)(x) ≥
(R̃rπ)(x), so that increased volatility decreases the expected cumulative present value
accrued from amenity services. To establish that increased volatility decreases u(t, x)
we first denote as ũ(t, x) the value in the presence of the more volatile process X̃t. It
is now a direct consequence of the Feynman-Kač-theorem that u(t, x) is the solution of
the boundary value problem (cf. Øksendal 1998, p. 135)

(Au)(t, x) − ru(t, x) =
∂u

∂t
(t, x), (t, x) ∈ R2

+,

u(0, x) = x− c, x ∈ R+.

The concavity of u(t, x) now implies that

(Au)(t, x) − ru(t, x) − ut(t, x) =
1

2
(σ̃2(x) − σ2(x))uxx(t, x) ≤ 0.
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Applying Itô’s theorem on the functional e−rsu(t − s, X̃s) and invoking the boundary
condition u(0, x) = x− c then yields

E[e−rt(X̃t − c)] = u(t, x) + E

∫ t

0
e−rs

(

(Ãu)(t− s, X̃s) − ru(t− s, X̃s) − us(t− s, X̃s)
)

ds

≤ u(t, x) = E[e−rt(Xt − c)],

proving the alleged negativity of the sign of the relationship between volatility and
u(t, x). Proving that increased volatility decreases v(t, x) is analogous.

F Proof of Theorem 3.6

Proof. Under the assumptions of our theorem the stochastic differential equation de-
scribing the dynamics of the value of a forest stand read as

dXx
t = µ(Xx

t )dt+ σXx
t dWt, Xx

0 = x. (F.1)

Multiplying this equation with the (integrating) factor Yt = e
1

2
σ2t−σWt implies that

(F.1) can be re-expressed as

YtX
x
t = x+

∫ t

0
Ysµ(Xx

s )ds, X0 = x.

Standard differentiation then yields that

∂Xx
t

∂x
= e

∫ t

0
µ′(Xx

s )dsMt,

where Mt = Y −1
t = e−

1

2
σ2t+σWt is a positive exponential martingale. Combining this

result with the concavity of the drift implies that Xx
t is increasing and concave as a

mapping of its initial state x. Hence, the assumed monotonicity and convexity properties
of the revenue flow π(x) imply that π(Xx

t ) is decreasing and convex as a function of the
initial state x and that (Rrπ)(x) is decreasing and convex as a function of the initial
state x as well. The positivity of the sign of the relationship between increased volatility
and the expected cumulative present value, accrued from amenity services, can now be
established by relying on analogous arguments with the ones presented in the proof of
Theorem 3.5.

Consider now the marginal expected cumulative revenues accrued from amenity
services. Standard differentiation now yields

(Rrπ)′(x) = E

∫ ∞

0
e−

∫ s

0
(r−µ′(Xx

t ))dtπ′(Xx
s )Msds.

Defining the equivalent measure Q with the likelihood ratio dQ/dP = Mt then implies
that the marginal expected cumulative revenues accrued from amenity services can be
re-expressed as

(Rrπ)′(x) = E

∫ ∞

0
e−

∫ s

0
(r−µ′(X̄x

t ))dtπ′(X̄x
s )ds,
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where X̄x
t evolves under P (by the strong uniqueness of solutions) according to the

dynamics described by the stochastic differential equation

dX̄x
t = (µ(X̄x

t ) + σ2X̄x
t )dt+ σX̄x

t dWt, X̄x
0 = x.

It is now a straightforward consequence of the analysis above that the assumed concav-
ity of the drift µ(x) implies that µ(x)+σ2x is concave as well and, therefore, that X̄x

t is
increasing and concave as a mapping of its initial state x. This finding together with the

assumed monotonicity and convexity of the factor µ′(x) now implies that e
∫ t

0
µ′(X̄s)ds is

decreasing and convex as a function of the initial state x. Similarly, the assumed mono-
tonicity and concavity of π′(x) implies that the factor π′(X̄t) is increasing and concave
in x. Combining these two observations then finally imply that the mapping (Rrπ)′(x)
is non-decreasing and concave in x. The negativity of the sign of the relationship be-
tween increased volatility and the marginal value (Rrπ)′(x) follows from the proof of
Theorem 3.5. It remains to establish that increased volatility decreases the difference
(Rrπ)(x) − (Rrπ)(x0). The fundamental theorem of integral calculus implies that

(Rrπ)(x) − (Rrπ)(x0) =

∫ x

x0

(Rrπ)′(y)dy

from which the result follows by the negativity of the sign of the relationship between
increased volatility and the marginal value (Rrπ)′(x).

G Proof of Theorem 3.8

Proof. Denote as F̃ (x) the value of the optimal rotation policy in the presence of greater
volatility σ̃(x). If F (x) is concave, then

(ÃF )(x) − rF (x) + π(x) ≤
1

2
[σ̃2(x) − σ2(x)]F ′′(x) ≤ 0

for all x ∈ R+. Moreover, F (x) satisfies the inequality F (x) ≥ F (x0) + (x − c) for
all x ∈ R+ as well and, consequently, satisfies the sufficient variational inequalities
guaranteeing that F (x) ≥ F̃ (x) (cf. Øksendal, 1999).

H Proof of Corollary 4.2

Proof. As was established in Theorem 3.4, the value V (x) satisfies the inequalities
((A − r)V )(x) + π(x) ≤ 0 and V (x) ≥ (x − c) + V (x0) ≥ (x − c) for all x ∈ R+.
Consequently, we find that for any x ∈ R+ we have

Ex[e
−rτn(Xτn − c)] ≤ Ex[e

−rτnV (Xτn)] = V (x) + Ex

∫ τn

0
e−rs((A− r)V )(Xs)ds

≤ V (x) − Ex

∫ τn

0
e−rsπ(Xs)ds,

where τn = n ∧ inf{t ≥ 0 : Xt ≥ n} ∧ τ , n ∈ N, is an almost surely finite stopping time.
Letting n→ ∞ and invoking Fatou’s theorem and monotone convergence then yields

V (x) ≥ Ex

[

e−rτ (Xτ − c) + Ex

∫ τ

0
e−rsπ(Xs)ds

]
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completing the proof.
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