LEARNING STABILITY IN ECONOMIES WITH
HETEROGENOUS AGENTS

SEPPO HONKAPOHJA
KAUSHIK MITRA

CESIFO WORKING PAPER NO. 772
CATEGORY 6: MONETARY POLICY AND INTERNATIONAL FINANCE
SEPTEMBER 2002

An electronic version of the paper may be downloaded
e from the SSRN website: www.SSRN.com
o from the CESifo website: ~ www.CESifo.de


http://www.ssrn.com/
http://www.cesifo.de/

CESifo Working Paper No. 772

LEARNING STABILITY IN ECONOMIES WITH
HETEROGENOUS AGENTS

Abstract

An economy exhibits structural heterogeneity when the forecasts of different
agents have different effects on the determination of aggregate variables. Various
forms of structural heterogeneity can arise and we study the important case of
economies in which agents' behavior depends on forecasts of aggregate variables
and show how different forms of heterogeneity in structure, forecasts, and
adaptive learning rules affect the conditions for convergence of adaptive learning
towards rational expectations equilibrium. Results are applied to the market model
with supply lags and a New Keynesian model of interest rate setting.

JEL Classification: D83, C62, E30.

Keywords: adaptive learning, expectations formation, stability of equilibrium,
market model, monetary policy.

Seppo Honkapohja Kaushik Mitra
Department of Economics Department of Economics
P.O. Box 54 Royal Holloway College
FIN-00014 University of Helsinki University of London
Finland Egham Surrey, TW20 OEX

seppo.honkapohja@helsinki.fi United Kingdom



1 Introduction

There has been a large amount of research into the implications of adaptive learning
behavior in expectations formation for economic dynamics.! Paralleling general macroe-
conomics, most of the research that uses adaptive learning has been carried out in models
with representative agents, i.e. in economies with structural homogeneity. In studies of
adaptive learning the assumption of a representative agent is usually interpreted to mean
that expectations and learning rules are also identical. These kinds of assumptions are
made mostly for analytical convenience rather than for their realism. In this paper we
reconsider stability of REE under adaptive learning when the economy exhibits a par-
ticular type of structural heterogeneity, in which the basic characteristics differ across
consumers (and firms) and they thus respond to expectations of economy-wide aggregate
variables in different ways. (This terminology is introduced in Chapter 2 of (Evans and
Honkapohja 2001).)

In this kind of setting it is natural to assume that expectations of different agents
can also differ. We will make the further distinction that heterogeneity in expectations
can be due to different initial beliefs or the use of different learning algorithms by the
agents. In contrast, structurally homogenous economies can exhibit heterogenous expec-
tations (and this possibility is permitted in some studies, see the references below), but
different agents respond to expectations in the same way in economies with structural
homogeneity.

Our goal is to consider the stability of REE when both structural and expectational
heterogeneity is present. The basic framework will be a multivariate linear model with
two classes of agents. While the assumption of linearity is directly postulated for some
models in the literature, it can be observed that most applied studies are in any case
based on linearization.? The restriction to two classes of agents in the main analysis
is done only for simplicity of exposition, and we will also state the stability conditions
for economies with any finite number of different classes of agents. As already noted,
heterogenous expectations can arise because of different initial beliefs or because the
learning rules of the agents differ and we will analyze both possibilities.> We also take
up the case in which one class of agents has continually RE while others are learning as
this case occasionally appears in the literature.

The economy may be purely forward looking or it may also include lags of endoge-
nous variables. Though we will work out the details in the forward looking framework,

"'While different approaches to adaptive learning exist, probably the largest concentration of research
has used what is called the statistical or econometric learning. Parameter updating is then assumed to
be done using standard econometric methods such as recursive least squares estimation. (Evans and
Honkapohja 2001) is a recent treatise on the subject. For overviews and surveys see e.g. (Evans and
Honkapohja 1999), (Marimon 1997), (Sargent 1993) and (Sargent 1999).

2(Evans and Honkapohja 1995) and (Honkapohja and Mitra 2002a) show how learning stability in
the linearized model implies stability in the original nonlinear model with sufficiently small shocks that
are 7id or a finite Markov chain, respectively.

3In independent work (Giannitsarou 2001) considers similar forms of heterogeneity under the restric-
tive assumption of structural homogeneity, so that the economy depends only on the average expecta-
tions of the agents.



the main results and the key analytical modifications for economies with lags will also
be developed. We will use the general stability conditions in two economic applications:
Muth’s market model and a New Keynesian model of monetary policy. Our analysis is
focused on models where different agents need to forecast a common vector of aggregate
variables, which often arises in the literature. In other words, we will assume that infor-
mation is symmetric between the agents. This is done for simplicity and brevity, though
we conjecture that the approach can be generalized to models with informational asym-
metries once the concept of equilibrium is suitably modified. Informational asymmetries
are obviously a further source for heterogeneity in expectations (see e.g. (Evans and
Honkapohja 2001), Chapter 13 and (Honkapohja and Mitra 2002b), Section 5 and also
an early paper (Marcet and Sargent 1989a)). Naturally, further forms of heterogeneity
can also be thought of. For example, some agents may be only concerned about ”local”
variables and the relevant local variables can differ across agents. Our analysis does not
cover such cases, but the framework is still useful as testified by the applications.

In the earlier literature, the bulk of the work on econometric learning has assumed
homogeneity in both expectations and structure, though there exist several studies that
permit heterogenous expectations in a homogenous structure, see e.g. (Bray and Savin
1986), (Evans and Honkapohja 1997), (Evans, Honkapohja, and Marimon 2001) and
(Giannitsarou 2001). In a non-stochastic setting (Grandmont 1998), Remark 2.3 suggests
the use of average expectations in models with heterogenous expectations and structure.
Heterogenous expectations are also present in some of the other approaches to adaptive
learning.? Structural heterogeneity is permitted for a class of models in (Marcet and
Sargent 1989a). Expectations are heterogenous in the Marcet and Sargent setup, but this
arises solely from informational differences as different agents are assumed to use versions
of recursive least squares (RLS) estimation as their learning algorithms. Moreover,
Marcet and Sargent do not provide explicit stability conditions in terms of the structural
parameters of the economy.’

2 The Framework

We consider a class of multivariate linear models where there are two types of agents (1
and 2) with different forecasts and with structural heterogeneity. The formal model is

*Other approaches to adaptive learning include the use of computational intelligence (see e.g.
(Arifovic 1998)), models of discrete predictor choice (see e.g. (Brock and Hommes 1997) and (Brock
and de Fontnouvelle 2000)) and eductive learning (see (Guesnerie 2002)). In addition, adaptive learning
is usually a part of the so-called agent based models, see e.g. (LeBaron 2001).

5They employ a restrictive version of the stochastic approximation methodology by using the so-
called projection facility. Its use has been criticized especially in connection with heterogenous expecta-
tions and differential information, see (Grandmont and Laroque 1991), (Grandmont 1998) and (Moreno
and Walker 1994). Ways to avoid a projection facility are discussed in (Evans and Honkapohja 1998)
and Chapter 6 of (Evans and Honkapohja 2001).



given by

Yy = o+ AlEtlyt+1 + AQEfyt+1 + Buwy, (1)
wy = Fwt_l + &;. (2)

Here y; is n x 1 vector of endogenous variables and w, is k dimensional vector of exogenous
variables that is assumed to follow a stationary VAR, so that g; is white noise. F' is a
diagonal matrix with all eigenvalues inside the unit circle.® For simplicity, it is assumed
that F' is known to the agents (if not, it could be estimated). Let lim; o, Ew,w; = M,,,
which is assumed to be positive definite. As for the matrices, A; isn X n, Ay isn xn
while B is n X k.

We let E,fytﬂ,z’ = 1,2, denote the (in general non-rational) expectations by agent
1 of the endogenous variables in the economy. Expectations without ”~” refer to RE.
Naturally, some of the endogenous variables may not be of interest to an agent 7 and in
this case the relevant entries in the matrix A; would be zero.

A key feature of model (1) is that both agents’ characteristics and forecasts differ.
If either agents or forecasts are identical, so that A; = Ay or EA’tlyt+1 = Efyt+1, the
model can be aggregated. In the former case the evolution of y; depends only on average
expectations, which has been analyzed in the earlier literature. In the latter case only
the aggregate characteristics A; + A, matter and the model becomes homogenous.

In our analysis we will keep track of individual expectations as they will be stacked
into vectors (instead of defining average expectations as suggested in (Grandmont 1998),
Remark 2.3.) We prefer the method of stacking since the general framework is both mul-
tivariate and stochastic, and agents can have different types of algorithms for parameter
updating. Our approach still allows us to relate the central results to the structure of
the ”average economy” as well as different schemes in parameter updating.

We will focus attention on the learnability of the fundamental or minimal state
variable (MSV) solution to the class of models (1)-(2).” This REE takes the form

Yy = a + bwy, (3)

where the n vector a and n X k£ matrix b are to be computed in terms of the structural
parameters of the model. We will show a bit later that the MSV solution is generically
unique and it can be obtained by solving the following system of linear equations

a = a+ (A + A)a
b = (A, + A)bF + B,

6Diagonality of F is usually without loss of generality since a non-diagonal matrix can very often
be diagonalized. In that case the shocks w; would be some linear transformations of the original
fundamental shocks. Sometimes we will explicitly assume further that F' is both diagonal and positive.

"As is well known, under certain conditions, known as indeterminacy of REE, there also exist other
well behaved REE in forward looking models and these could also be studied for learnability. See e.g.
(Evans and Honkapohja 2001), Part III for a discussion of the homogenous expectations case. The
techniques developed in our paper can be extended to the study of learnability of the other types of
REE under structural heterogeneity.



where the latter equation can be vectorized to yield a system of linear equations.

It should be noted that the framework is restrictive in that the model (1)-(2) is purely
forward-looking. This is done solely to simplify the presentation of the theoretical results.
In Section 6 we will extend the analysis to the case of lagged endogenous variables:

Yy = o+ A1Et1yt+1 + AQEtot—i-l + Dy + By, (4)

Wy = Fwt,1 + Et.
We also note that the corresponding static model

Y = o+ AlEA’tlflyt + AQEA’t{lyt + Buwy, (5)

wy = Fwi_1+&

can be analyzed in the same way and the formal results directly apply to this case.
Indeed, one of our economic applications will fit the form (5).
In the extension to S > 2 classes of agents the model becomes

s

v = a+ Y AFEy+ Bu, (6)
s=1

wt = Fwtfl + Et. (7)

We will summarize the convergence conditions for model (6)-(7) in of Section 4.3. We
also note that it is straightforward to extend the stability results in this paper to models
with proportions of agents of different types. In this setting the matrices in (1) would
have the form A; = s A; and Ay = 30 A, for 1, 9 > 0, 201+ 200 = 1. We do not provide
explicit results on this last case, since it does not arise in our economic applications.

2.1 Economic Applications

Here we outline two economic models that fit our general setup.

Example 1 (Market model with structural heterogeneity)® The demand function
for a single good is assumed to be linear and downward sloping, that is

dt :l—kpt+€t.
Here k, [ are positive parameters and ¢; is a demand shock that follows the AR(1) process
et = fero1 + vy,

where v; is white noise with variance o2 and |f| < 1.

8The classic analysis of this model under RE and homogenous supplies was presented by (Muth
1961). Adaptive learning in the (homogenous) Muth model was studied by (Bray and Savin 1986) and
(Fourgeaud, Gourieroux, and Pradel 1986). The model is sometimes called the cobweb model.



It is assumed that there are L classes of suppliers with different linear supply functions
that depend on expected market price due to a production lag. Formally,

where h;,n,; are positive parameters and Efflpt denotes the (in general non-rational)
expectation of producer ¢ about the market price. Expectations for period ¢ are formed
at the end of period t — 1 before the demand shock ¢; is realized. We make the technical
assumption that fk='n;+1>0foralli =1,..., L. From market clearing d; = Zle st
we obtain the reduced form

L L
P = k‘il(l — Z ]’Lz) — Z kilnif?z;lpt + k‘ilé‘t, (9)
i=1

i=1

which is of the form (5).

The analysis of this model will be completed in Section 5, where we show that the
model continues to be stable even under heterogenous learning. We will also extend
the model to a case of supply externalities and show that sufficiently strong positive
externalities can be a source of instability.

Example 2 (A model of monetary policy). Recent studies of monetary policy are
often based on a model with representative consumer, monopolistic competition in prod-
uct market and stickiness in price setting. In the literature both forward-looking and
partly backward-looking or inertial setups have been used and we allow for inertia in
both output and inflation. We thus consider the bivariate linear model suggested in
Section 6 of (Clarida, Gali, and Gertler 1999):

zZr = —¢(it — EtPWtH) + (1 — H)EtPZtH + 021 + g, (10)
mo= A+ (1— ¢)K3E,:P7Tt+1 +Ymi_1 4 g, (11)

where z; is the “output gap” i.e. the difference between actual and potential output, 7; is
the inflation rate, i.e. the proportional rate of change in the price level from ¢ —1 to ¢ and
1; 1s the nominal interest rate. E i and E 2111 denote private sector expectations of
inflation and output gap next period. The parameters 0 < v, 0 < 1 reflect inflation and
output inertia, respectively. All the parameters in (10) and (11) are positive. 0 < g < 1
is the discount rate of the representative firm.

uy; and g; denote observable shocks that follow first order autoregressive processes:

()= () Gn)+(5) ®
Gt 0 p gt—1 gt
where 0 < |u| < 1,0 < [p| < 1 and g, ~ 7d(0,07), 4, ~ iid(0,0%). g, represents shocks

to government purchases as well as shocks to potential GDP. u; represents any cost push
shocks to marginal costs other than those entering through z;.



The model is complete once an interest rate rule by the central bank, such as
i = Xo + Xa Bf Pesn + 0GB P 2+ X9t + Xty (13)

is postulated. This rule is forward looking, i.c. depends on forecasts ECPm 1, ECB 2
of inflation and output gap by the central bank. x, are parameters set by the central
bank and they indicate how the bank responds to the values of the endogenous and ex-
ogenous variables. Interest rate rules such as (13) can arise from implementing optimal
discretionary monetary policies (if § = ¢ = 0), nominal GDP targeting or as a postu-
lated Taylor-type instrument rule, see (Evans and Honkapohja 2002), (Mitra 2002) and
(Bullard and Mitra 2002), respectively. (These papers consider the case where private
and central bank forecasts are assumed to be identical.) Substituting (13) into (10) leads
to a bivariate model of the form (4), or (1) if § = ¢ = 0.

The above setting with private sector expectations and internal central bank forecasts
very naturally involves heterogeneity in both expectations and economic structure. We
will continue the analysis of this model in Sections 6.2 and 7.2.

3 Heterogenous Forecasts, E-Stability and RLS Learn-
ing

A mapping from the perceptions of the economic agents to the resulting temporary
equilibrium of the economy has turned out to be the key relationship in the study of
convergence of adaptive learning dynamics. In this section we develop the form of this
mapping in the framework with heterogenous expectations and structure and establish
the uniqueness of the MSV equilibrium.

It has been observed for a wide variety of different models that convergence of learning
to REE (under homogenous forecasts and learning) obtains if and only if the REE
satisfies certain stability conditions, known as E-stability conditions. In this section we
extend the E-stability conditions for heterogenous forecasts. We then show that the
same conditions govern convergence under actual real time learning as long as the two
agents use learning algorithms that are asymptotically identical in a sense defined later.

3.1 E-stability Conditions

We assume that the two types of agents have different forecast functions, though they
take the same parametric form. During the learning dynamics the agents have different
beliefs about the parameters they are estimating, and these beliefs are adjusted over
time. For given values of the parameters of the forecast function of each agent ¢, called
the perceived law of motion (PLM) of agent i, one computes the actual law of motion
(ALM) implied by the structure of the economy. E-stability is then determined by the
differential equation in which the PLM parameters adjust in the direction of the ALM
parameter values.



Define the vector of state variables z; = (1, w;)" and the matrix of parameters ¢} =
(ai, b;) with a; being an n dimensional vector and b; being an n X k matrix. Formally,
we assume that the two agents have PLMs

Yy = ar+bow = @z, (14)
Yo = ag+bywy = pyz, (15)

with corresponding forecast functions

A

Elyon = ap+ b Fuy, (16)
EXyi1 = ap+ byFuy. (17)

Note that the PLMs have the same form as the MSV solution (3), but in general a;,b;

are not at their RE values. Inserting these forecasts into the model (1), one obtains the
ALM

Yy = « -+ A1a1 + AQCLQ + [(Albl + AQbQ)F -+ B]U)t
1
= [Oz + A1a1 -+ AQGQ, (Albl + AQbQ)F + B] |: w :|
t
= T(e1,95) (18)

The explicit form of the T—map in (18) is

a, — o+ Ajay + Asas, (19)
ay — a+ Ajay + Asas, (20)
by — (A1b + Asby)F + B, (21)
by — (Aiby + Ashs)F + B. (22)

We look at stability of the REE where the two agents have homogenous forecast
functions, i.e., when a; = as = a and b; = b, = b. Before obtaining the E-stability
conditions, we first show that this symmetric MSV solution is unique.

Proposition 1 There exists a unique, symmetric equilibrium of the model (1)-(2) if the
matrices I, — Ay — As and I, — F' @ (A1 + Ay) are invertible.

Here and in the rest of the paper I,,, denotes the m—dimensional identity matrix.
The proof of Proposition 1 is given in Appendix A.1.
We next formulate the differential equation defining E-stability

de; .
o = T(he) —pii=12. (23)

The system involving a4, s is independent from the system for b, and 62, and it can be

written as
a \ [ A -1, A ap a
()= (" ) () (0) 21



The system for 51, 62 needs to be vectorized and it can be written as’

7)6051 | FF® A — Ly F'® A, veeb; n vecB (25)
vechy ) F'e A, F'® As — Ik vechs vecB |’

We can now state the following proposition:

Proposition 2 Consider the model (1)-(2) with the PLMs of the agents (14)-(15), their
forecasts (16)-(17) and the ALM (18). The E-stability conditions extended for heteroge-
nous expectations are the same as when the agents have homogenous forecasts. The sym-
metric equilibrium is E-stable if and only if the matrices Ay+As—1I and F'@(Ay1+Ag)—1
have eigenvalues with negative real parts.*

The Proof of Proposition 2 is in Appendix A.1. We remark that if F' is a positive,
diagonal matrix, the E-stability conditions simplify to condition that the eigenvalues of
A; + As — I, have negative real parts.

The next section will demonstrate that the stability of the system under certain forms
of heterogenous learning rules obtains if and only if the above E-stability conditions
are satisfied. In actual real time learning the two agents use versions of (generalized)
recursive least squares in their updating of estimates of parameters which are relevant to
their forecasting. However, the learning rules can start with different initial beliefs about
the parameters so that they differ along the path. The E-stability conditions, therefore,
govern convergence to REE even when we allow this (limited) form of heterogeneity in
learning. The analysis thus shows that the stability conditions for the homogenous case
are not as restrictive as they may seem - homogeneity in forecasting and learning is a
good first approximation.

3.2 RLS Learning with Different Initial Beliefs

We now consider learning by agents in real time when they use versions of (general-
ized) recursive least squares in the updating of parameter estimates relevant to their
forecasting. Assume that the perceived laws of motion (PLM) of agents 1 and 2 are,
respectively,

Yy = ayg+byw = 90/1,t2ta (26)
Ye = Qop+ boswy = %0/2,tztu (27)

where we note that the estimates of parameters, ¢}, and 5 ;, are now time dependent.
The corresponding forecast functions are

E’tlym = ai;+ by Fwy, (28)
EtolH»l = ag,t + bg,tF/LUt. (29)

9See (Evans and Honkapohja 2001), Chapter 10 for stability analysis of matrix valued systems
requiring vectorization and computation of matrix differentials.

0Throughout the paper we ignore the non-generic cases where one or more relevant eigenvalues has
a zero real part.



In this formulation the parameter estimates are assumed to depend on data up tot —1,
but current observation on exogenous variables are allowed to be used in the forecasts.
(This is typically done in the learning literature.) Using these forecasts, the ALM of v
is then given (as before) by

Yo = T(gpll,tv 80/27,5)2157 (30)

where T is the map appearing in (18).

We assume in this section that both types of agents use versions of recursive least
squares (RLS) but they can have different initial beliefs of the parameter estimates.!!
More specifically, agents 1 and 2 use the following learning algorithms
/

10 = P11 F Rz 11 — @ 171)

)

(

Ri;y = Rij1+ 71,t(Zt—1Z£_1 — Ri11), (
Cor = $ar 1+ Ve Rotz1(Y—1 — @1y 12-1)s (33

(

)

/
R2,t = R2,t—1 + 72,t(zt*1zt71 - RZ,tfl)'

In the system (31)-(34) the matrices R;¢,7 = 1,2, are matrices of second moments of the
state vector, which are needed to write down the estimation of parameters ¢, ;,i = 1,2
when versions of least squares are employed.

Different initial beliefs can be accommodated by different initial conditions for the
dynamics. The gain parameters 7,, > 0 indicate responsiveness of the change in pa-
rameter estimates to forecast errors and new data. They satisfy lim; .. 7v,; = 0 and
> %« = oo. RLS is the case where v, = t=1. We allow for Y1t # V2. for the gain
parameters of the learning rules and make the following assumption:

Assumption A: There exists a non-increasing positive sequence 7, with properties:
(i) v < Ky, for some constant K; > 0,

(i) > v, = 00 and > 4¥ < oo for some p > 2, and

(i) limsup(1/y,4 — 1/7,) < o0.

We remark that these conditions on «, are commonly assumed in the literature.!? As-
sumption A can allow various weighting schemes for data in later periods relative to
early ones, see e.g. (Ljung and Soderstrom 1983) and (Marcet and Sargent 1989b).

However, we assume that asymptotically the gain sequences converge at the same
rate, that is,

Condition 1: vl,ﬁt_l — 6 and 727,57[1 — 6 ast — oo.

With these assumptions we have the following result:

See Chapter 2 of (Evans and Honkapohja 2001) for an introductory discussion of RLS algorithms.

12\We note that one can assume K; < 1 without loss of generality. If v, satisfies Assumption A
for K; > 1, then one can construct another sequence ¥, satisfying assumption A with the constant
K; <1,Vi.

10



Theorem 3 Consider the model (1)-(2) with the PLMs (26)-(27), the forecasts (28)-
(29), the learning algorithms (31)-(34), and the ALM (30). Assume furthermore that
Assumption A and Condition 1 hold. If the symmetric equilibrium is E-stable, then the
learning algorithms converge almost surely to this equilibrium from any initial condi-
tions.'

This result is in fact a special case of Theorem 4, see Section 4.1.

We remark that the initial conditions ¢,,7 = 1,2 can take any value, but for the
moment matrices initial conditions should naturally be non-negative semidefinite matri-
ces with positive diagonal elements.!* We also note that under some (mild) regularity
conditions, the RLS algorithm will converge to an E-unstable symmetric (MSV) solution
with probability zero, see (Evans and Honkapohja 2001) for the details. The conclusion
of this section is thus that convergence with some forms of heterogeneity in learning
continues to be governed by the standard E-stability conditions.

As a technical remark we note that this kind of convergence and non-convergence
results are formally established by deriving the so-called associated ordinary differential
equation (ODE) of the stochastic recursive algorithm governing convergence and non-
convergence of learning (see e.g. Chapters 6 and 7 of (Evans and Honkapohja 2001) or
(Evans and Honkapohja 1998)). Moreover, above the ODE defining E-stability is directly
linked to the associated ODE of the algorithm. More generally, the relationship between
stability or instability in the associated ODE and the convergence or non-convergence
of the algorithm also applies to other settings below and we will in part conduct our
discussion using the ODEs. Moreover, below we will only state stability and convergence
results, but it should be kept in mind that corresponding instability /nonconvergence
results also exist.

4 Heterogeneity in Learning Algorithms

4.1 RLS Learning with Different Gain Sequences

We now analyze asymptotic heterogeneity in gain sequences in the learning algorithms.

The formulation includes and generalizes the heterogeneities in the weights considered

in the preceding section. Our formulation includes inertia in updating of forecast rules

and independent random fluctuations in adaption speeds. Otherwise, we assume that

the algorithms of the two agents are of the RLS type, i.e. they are given by (31)-(34).
The individual gain sequences are assumed to satisfy:

13While the theorem is a global result, it should be borne in mind that in specific applications the
model may be a linearization around a steady state, and the study of learning is necessarily local in
such settings.

YMIf at any time the resulting value of some moment matrix is singular (which almost surely can
happen only a finite number of times), the algorithm must be modified accordingly, see (Evans and
Honkapohja 2001), Chapter 6, Sections 6 and 7.

11



Condition 2: ~,; = ¥,,,,;, where the random gains ¥, , are positive, independent of
past information and across agents, and §;; is a Bernoulli random variable equal to 0
with probability p,, € [0,1) and equal to 1 with probability 1 — p;,. &;, is independent
of past information and 4;,. In addition, lim; .. E(§;,7;:/7:) = 6; > 0, where the
deterministic sequence v, satisfies Assumption A in the preceding section.

This condition allows for significant amounts of heterogeneity, including both inertia
and random variation across agents, in the adaption speeds of the different agents.
Heterogeneity in the formation of expectations is observed in experimental data, see for
instance (Marimon and Sunder 1993) and (Evans, Honkapohja, and Marimon 2001).
Possible randomness across agents in the degree of adaption is captured by 4, ;. Inertia
is indicated by ¢, which can be either 0 or 1 for any agent in any time period. A
similar formulation of heterogeneity in learning was suggested in (Evans, Honkapohja,
and Marimon 2001). Effectively, the above condition means that the gain sequences
can differ a lot between the agents and they converge (in mean) at different rates even
asymptotically.

Formally, the dynamics continues to be given by the system (31)-(34), except that
the gain sequences now have different properties. The technical analysis of the algorithm
is outlined in Appendix A.1 and in this case the associated ODE is

dp,/dT = M (T (90 aSO) ©1), (35)
dSl/dT = 61(M Sl),

dp,/dr = 6255 ' M.(T(&, 05) — o),

dSa/dr = 63(M, — Sa),

where the 7" map continues to be given by (18) and

) 1 0
limi—ooFEz 12, 1= M, = ( 0 M, ) . (36)

(The existence of the limit follows from the assumption made in Section 2.) Note that
M,, is a diagonal, positive definite matrix, since F' in (2) was assumed to be diagonal.
Since S; — M, and Sy, — M, stability is governed by the smaller differential equation

dpy/dr = 6:1(T (¢}, 5) —¢1), (37)
d‘PQ/dT = 62(T(90/1>‘P/2)/_902)- (38)

We first note that if §; = 65 then the stability conditions obtained from (37)-(38) would
be identical to the E-stability conditions, which proves Theorem 3.
Returning to the general case and rearranging (37)-(38), we get

o1 = [6i(a+ Arag + Asas — a1),61 (A0 F + Asbo F + B — by)],
90/2 = [62(0& + A1a1 + AQGQ — GQ), (52(14161[7 -+ AQbQF -+ B — bg)]

12



We look at stability of the symmetric equilibrium where a; = a; = a and by = by = b.
The system for a; and @y can be written as

dl . 61 (Al — In) (SIAQ aq + (5104
éLQ o 62141 62(142 — In) a9 6204
. 61[n 0 Al — In AQ aq 6104
N ( 0 62[n ) ( Al AQ - In ) ( a9 ) + ( 6204 ) (39)
EDlA(a1>+<6la).
a9 6204

where (39) defines the diagonal matrix D; and the matrix A. For stability we need the
matrix DA to have eigenvalues with negative real parts.

The system for b; and by needs to be vectorized as before to yield (ignoring constant
terms)

vech, B F'& 61 A; — 611, F'® 6, A vech;

vechy a F' & 6,4, F' ® 69A9 — 691,y) vech,
- 61]n1€ 0 F/ (24 A1 — Ink F/ X AQ vecbl
o 0 62]n1€ F/ X A1 F/ & A2 — Ink vecbg

_ DR, ( vecby ) (40)

vecbs

where F} is defined as in (81). The eigenvalues of DyF; must have negative real parts
for stability of the above system. We have thus obtained the following result:

Theorem 4 Consider the model (1)-(2) under modified recursive least squares learning,
given by (31)-(34), and assume Condition 2. If the matrices DA and Do F, given in
(39) and (40), have eigenvalues with negative real parts, then the learning algorithms
(almost surely) converge globally to the symmetric equilibrium.

This theorem shows how the stability conditions are affected by 6; and 65 and the
structure of the economy (matrices A;, Ay and F'). In some cases it is possible to
provide sufficient conditions for stability that do not depend on 6; and 5. For this we
need the notion of D-stability.!” A matrix A is said to be D-stable if the matrix DA
has all eigenvalues with negative real parts for any positive diagonal matrix D. Using
this concept one has the following corollary:

Corollary 5 Consider the model (1)-(2) under RLS learning, given by (31)-(34), and
assume Condition 2. If the matrices A and Fy, given in (80) and (81), are D-stable, then
the learning algorithms (almost surely) converge globally to the symmetric equilibrium.

The proof of this corollary is immediate from (39)-(40). Evidently, the requirement
of D-stability is restrictive and, indeed, the monetary model of Example 2 does not
satisfy this definition. However, the matrices in Example 1 do satisfy D-stability, as will
be shown later in Section 5.

15This concept has been used earlier in the literature on Walrasian tatonnement dynamics, see (Arrow
and McManus 1958), (Enthoven and Arrow 1956), and (Johnson 1974).
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4.2 RLS Learning and SG Learning

We now consider the case when the agents are using quite different algorithms in their
updating schemes. The broad aim is to consider settings where one class of agents is
using a learning algorithm that is either more or less sophisticated than the algorithm
used by the other class of agents. Specifically, we assume that there are two possible
types of learning algorithms, the RLS and the stochastic gradient (SG) algorithms that
the agents might use. The RLS algorithm is more commonly employed than SG in the
literature. (SG algorithm is also called the least mean squares algorithm in the technical
literature.)

The SG algorithm is computationally much simpler than the RLS algorithm; however
the latter is more efficient from an econometric viewpoint since it uses information on the
second moments of the variables. For parameter estimation of fixed exogenous stochastic
processes, both the RLS and SG algorithms yield consistent estimates of parameters
but the RLS, in addition, possesses some optimality properties. For instance, if the
underlying shock process is 7id normal, then the RLS estimator is minimum variance
unbiased (see (Evans and Honkapohja 2001), Section 3.5 for a discussion and references
to SG learning).

Formally, we assume that agent 1 updates the parameter estimates using an RLS
algorithm while agent 2 updates using a stochastic gradient (SG) type algorithm. The
SG algorithm is simpler than RLS as it does not make use of the matrix of second
moments, see Chapter 3 of (Evans and Honkapohja 2001) for further discussion.

For agent 1 the algorithm is given by

10 = P11 v DR (e — W 1ze1) (41)
Ry = Ria+ ’Yt(’yl,tf)/t_l)(zt—lzzfl — Ri1), (42)

while for agent 2 it is given by

a1 = 201+ V(277 ) 2-1 (Yem1 — Pl12-1) (43)
In addition, we assume
Condition 3: lim_o(y,,77 ") — 1 and limy_oo (75,77 ") — 1.

The technical analysis of the algorithm (41), (42) and (43) is given in Appendix A.1.
Stability is determined entirely by the small ODE

dey/dr = (T(¢1,¢5) — 1),
dpy/dr = M.(T(#),¢3)" = ¢s)-
This immediately shows that the E-stability conditions are no longer sufficient for con-

vergence of learning dynamics although they continue to be necessary. In particular, the
moment matrix M, affects the stability conditions.
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By usual arguments,

¢ = |a+ Ajar + Asay — ay, (A1by + Asby) F + B — by, (44)
QOIQ == [Oé + A1a1 + AQCLQ — a9, (Albl + AQbQ)F + B — bQ]MZ
= [CK + A1a1 + AQCLQ — Qa, {(A1b1 -+ AQbQ)F + B — bQ}Mw]

For a1, ay the equations are the same as (24) in the analysis of E-stability, while the
system for b; and by needs to be vectorized, which yields (ignoring constant terms)

vech; B F'® Ay — Iy F"® A, vechy

vechs B M F'® A M)F® Ay — M, &I, vecby
. Ink 0 F’ X Al — Ink F’ X AQ 1)€Cb1
N 0 Mw X In F/ X A1 F/ (24 AQ — Ink 1)60[)2

D, ( veeb; ) ’ (45)

vechy

where D,, is the diagonal matrix in the second line of (45). We can then prove the
following theorem:

Theorem 6 Consider the model (1)-(2) where agent 1 uses recursive least squares
(RLS) learning given by (41)-(42) and agent 2 uses the stochastic gradient algorithm
(43). Assume, furthermore, Condition 3. If the matrices A = Ay + As and D, F; have
eigenvalues with negative real parts, then the learning dynamics (almost surely) converges
globally to the symmetric equilibrium.

We can also obtain a result analogous to Corollary 5 in Section 4.1. Since M, is a
diagonal, positive definite matrix, we have the analogy of Corollary 5:

Corollary 7 Consider the model (1)-(2) where agent 1 uses recursive least squares
(RLS) learning given by (41)-(42), agent 2 uses the stochastic gradient algorithm (43),
and assume Condition 3. If A is stable (i.e. has eigenvalues with negative real parts)
and Fy is D—stable, then the learning dynamics (almost surely) converges globally to the
symmetric equilibrium.'o

A common theme emerges from Corollaries 5 and 7. If both A (= A; + As) and F}
are D— stable, then the learning rules converge globally to the symmetric equilibrium
irrespective of whether they are characterized by differential gains asymptotically, as in
Section 4.1, or are of different types as in this section.

16We note that that if the matrix M, is not diagonal, then F; would need to be S—stable, see (Arrow
and McManus 1958) for the definition of S—stability.
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4.3 Remarks on the Model with S > 2 Classes of Agents

Here we note some extensions of the results to economies with more than two classes of
agents and to global convergence of learning. Consider the model (6)-(7) with S classes
of agents. The E-stability condition is that the eigenvalues of the matrices

S S
YA -Liand F'®Y A, — Ly
s=1 s=1

have negative real parts. This is also the convergence condition in the case of heteroge-
nous initial beliefs but identical learning rules. If agents’ learning rules have different
gain sequences 7, ,, the stability condition is that the matrices

&1L, -+ 0 A —1I, -+ Ag

DA = : . : : : and (46)
0 - ébsl, A e Ag—1,
Ol <o 0 Flreo A — Ly - F'® Ag

DoFy = : : : : (47)
0 -+ b5l F'® Ay oo FP®@ Ag — I

have eigenvalues with negative real parts, where 6, = lim;_.o E(7,,/7;). D-stability of
A and F; continues to be a sufficient condition for stability. In the case where some
agents use RLS rules and others SG rules the stability condition is that the real parts
of the eigenvalues of the matrices

S
Z A, — I, and
s=1

@ --- 0 FFreoA —Iy - F'® Ag
QF = I : :
0 -+ Qs F'® A oo FP® Ag — L
are negative, where Qs = I, or M,, ® I, if agent s is using RLS or SG, respectively. Sta-

bility of matrix A and D-stability of matrix F} are a sufficient condition for convergence
in this case.

5 Application to the Market Model

We now apply our results to the market model in Example 1. Note that the market
model is of the form (5) with A, = —k~'n,, s=1,... L.
Assume that the suppliers have PLMs of the form

A

E} \pr = as + bse 1.
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Substituting these into the ALM (9) we get the reduced form

L L
pro= k=) hy) =Y E'ng(a, + beeror) + ke
s=1

s=1
L L L
= k_l(l - Z hs — Z”/SGS) - k_l(z ngbs — f)er—1 + kg
s=1 s=1 s=1

The implied forecasts are (i = 1,2)

L L L
EZ—lpt = k_l(l - Z hs - Znsas) - k_l(z nsbs - f)gtfl
s=1 s=1 s=1

and the T" map is then

s=1 s=1
L

b — =k (D nds— f).
s=1

The fixed points of the 7' map above give us the REE solution and it is easy to show
that the symmetric solution (where a; = ... =ay; =@ and by = ... = by, = b) is unique.

5.1 E-Stability of the REE

We now consider E-stability of this symmetric equilibrium. Dropping constant terms,
for E-stability we can consider the differential equations

d aq ny -+ Ny aq aq

- : = —k! Do . : — :

d’]’ . . . . . . Y (48)
ar, ny --- ng ar, ar,
by ny .- ng by by

dr : - : . . . . :
by ny .- ng br, b

The eigenvalues of

ny .-+ ng
o~
ny -+ ng
are obviously 0 and —k~ (3%, n,). This proves the following result.
Proposition 8 The symmetric equilibrium of the market model (9) under heterogenous

forecasts is E-stable.

17



5.2 Heterogenous Learning in the Market Model

Consider now the case when the suppliers have algorithms of the form (31)-(34) with the
gain sequences satisfying Condition 2, i.e. they have differential gains asymptotically.
The key matrices (46) and (47) for stability in this case are

—61(]67177/1 + ].) —61167177/2 R —61167177/[/
—6216717’1,1 —62(1437177/2 + ].) R —62167177/[/
—6Lk_177,1 —6Lk‘_177,2 s —6L(k‘_17’LL + 1)
and
—(51 (fk_lnl + 1) —61fk‘_177,2 s —61fk_1nL
—62fk_1n1 —62(fk_1n2 + 1) oo —62fk_1nL
—6LF1€71N1 —6LF]€7177/2 R —6L(Fk:’1nL + ].)

We can apply Corollary 5, since the matrices A and Fj in (46) and (47) reduce to

—(k7'ny + 1) —k™'ny _ —k~ng
_k—:lnl _(k—liw + 1) —k_:lnL | (50)
—k;lnl —k;1n2 . —(kflﬁL +1)

—(fktni +1) —fk™ny e —fkIng
—fk:1n1 —(fk1:n2 +1) —szlnL (51)
_fk._lnl —fk._1”2 " —(fk_l‘”L +1)

Both of these matrices clearly have negative diagonals. Moreover, for column 7 of, say,
the latter matrix (51) we compute the expression

| Fa| — Z’i |1 ji| = (‘fkilnz' + 1‘ —(L-1)k|f|k'n;) >0
i

for some k > 0 sufficiently small, which shows that matrices A and F; for the market
model are quasi-dominant diagonal. (For the first matrix (50) set f = 1 in this argu-
ment.) The matrices are, therefore, totally stable and consequently D—stable (see e.g.
pp.165-168 of (Quirk and Saposnik 1968) for these auxiliary concepts and results).

The same argument applies in the case of RLS and SG learning by the different types
of agents. Thus we can state:

Proposition 9 The symmetric equilibrium of the market model (9) is globally stable
under learning

18



(i) when the agents use RLS learning with differential gains (i.e. algorithm (31)-(34)
under Condition 2);

or

(ii) when some suppliers use RLS and other suppliers use the SG algorithm.

These results show that stability of the symmetric REE in the standard market model
under the assumption of homogenous forecasts and learning rules is not at all restrictive.
This model continues to be stable in the presence of the use of heterogenous learning
rules by different heterogenous suppliers of the good.!”

5.3 The Market Model with Externalities

Before concluding this section, we consider an extension of the market model to incor-
porate externalities.'® Suppose that individual supply functions (8) take the form

L
si=hi+mE p+r;y shi=1,... L,
i=1
where the parameter r; measures the size (and sign) of the externality from aggregate
to individual supply. Straightforward calculations show that the reduced form (9) with
externalities is

L L
po=kt(1=Y k)= > kBl p+ ke,
1 i=1

where h; = h;(1 — Zle r;)t and 7; = ng(1 — ZZ.LZI r;) "t for each i.

Proposition 10 If the aggregate externality r = ZZ.LZI r; 1s positive and sufficiently
strong (r > 1), the REE of the market model can become unstable under learning, while
stability continues to prevail when the externality is weak or negative (r < 1).

To show this result, we note that if the aggregate externality r is negative or only
weakly positive (so that 1 — r > 0) the signs of each n; is the same as those of n; and
the earlier argument can be employed. In contrast, if the externality is positive and
sufficiently strong (so that k + n; < 0 for some i), then some diagonal elements of the
matrix (50) become positive. In this case the matrix (50) fails a necessary condition
for D—stability, see p.166 of (Quirk and Saposnik 1968). Thus, there may exist values
for asymptotic individual gain parameters 6; defined in Condition 2 in Section 4.1, such
with these §; the market model is not stable under learning. In fact, it is easy to check
that with S = 2, if k +n; < 0 and k + ny > 0, then the market model is unstable for
any positive 01, 5.

1"We remark that the (Lucas 1973) Aggregate Supply model, discussed e.g. in Chapter 2 of (Evans
and Honkapohja 2001), can also be shown to be stable when different suppliers use heterogenous learning
rules.

18This model has been studied by (Evans and Guesnerie 1993), Section 5, using an eductive approach
to learning.
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6 Lagged Endogenous Variables

6.1 General Analysis

The analysis discussed in the previous sections can be extended to cover models with
lagged endogenous variables. There are two important differences to the case of purely
forward looking model: (i) there can easily exist multiple REE that are of the MSV
form and some of them may not be stationary, and (ii) the sense of convergence is only
local. We develop the formal analysis only briefly since it goes through with only minor
changes to what was done in the previous sections.

Consider the class of models (4) of Section 2. The MSV solutions are now of the
form

Yy = a+ bw + cy; 1. (52)

It should be noted that such a solution may or may not be stationary and we will keep
track of this issue.
Agents forecast using the PLMs

Y = a1 +bw + iy = 80/12t
Yo = Qg+ bowy + oy 1 = Py
where z; = (1,wy,y;_,)" and ¢} = (a;,b;,¢;) for ¢ = 1,2 in this section. (We have kept
the same general notation z; and ¢ for the state variable and parameters. This should
not cause any confusion.) The corresponding forecast functions are
Efyt+1 = a;+ b Fw + CiEZyt
= a; + ¢a; + cfyt_l + (sz + cibi)wt, (53)
where we have assumed that the contemporaneous y; is not available in the information

set of the agents. (This assumption is often used in the literature.)
Inserting the forecasts (53) into the model (4), one obtains the ALM

¥y = a4+ Ai(ar + craq) + As(as + coas) + (Alc% + Azc§ + D)yi—1 +
[A1 (b1 F + c1b1) + Ag(boF' + cobs) + Blwy
= T(Solla 90/2)'%’

where the 7" map is now given by

a; — a+ Ai(a; + cray) + As(as + coaz), (54)
bi — Al(blF + Clbl) + AQ(bQF + Czbg) + B, (55)
c; — Alcg + AQC% + D. (56)

First, we consider the REE (a,b,¢) that are symmetric fixed points of the T map.
From (56) is seen that ¢ satisfies a quadratic matrix equation and thus multiple REE
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of the form (52) can easily arise. Given a value for ¢, equation for the REE value b is
obtained from a linear equation (55) with ¢; = ¢y = ¢. This equation has often a unique
solution. Likewise, the equation (54) determining a with ¢; = ¢y = ¢ is also linear.

When learning, if agents use versions of RLS, their algorithms continue to be given
by (31)-(34) and we assume that the gain sequences furthermore satisfy Condition 2.
As before, local stability of learning dynamics is governed by the associated ordinary
differential equation

dipy/dr = 8157 M. (1, 02) (T, %) — 1),
dSi/dr = 61(M:(py,05) — S1),
ngQ/dT = 6252 Mz((pla 902)( (9017 (102) - )7
dSo/dr = b5(M. (1, 02) — S2).
The key difference from earlier analysis is that convergence of learning is only local
and the attention must be restricted at stationary REE of the form (52)." In the formal
analysis the difference to Section 4.1 is that the moment matrix M, (p;, ¢,) now depends

on ¢, and ¢,. Nevertheless, it can be shown that local stability is finally governed by
the smaller system

d‘pl/dT = 61 (T(QOID 90/2)/ - ‘101)a (57)
dpgfdr = 62(T (¢, ¥5) — o). (58)

When 6; = 62 = 1 as in standard RLS, stability would be governed solely by the E-
stability equations. In general, however, 6; and 6 affect stability.

One can also consider the case when agent 1 uses RLS and agent 2 the SG algorithm
in their estimation, i.e., the learning algorithms are given by (41), (42), and (43). Repli-
cating the arguments in Section 4.2, one can show that local stability is governed by the
following system:

dpy/dr = (T(¥), ) — ¢1), (59)
dSDQ/dT = Mz(@luwz)(T(@/h@/Q)/_@Q)- (60)

We collect these considerations in the following:

Theorem 11 In the model () a stationary REE (a,b,¢) of the form (52) is locally stable
under learning if it is a locally asymptotically stable equilibrium point of the differential
equations

(1) (57)-(58) when agents have different gains,

or

(it) (59)-(60) when agent 1 uses RLS and agent 2 uses SG algorithm.

Since the model is linear, the stability conditions can be written explicitly in terms
of the coefficient matrices. We will illustrate this in the next section.

19See Theorems 6.4 and 6.5 of (Evans and Honkapohja 2001) for the precise notions of local con-
vergence. We note that the use of a ”projection facility” would not be appropriate with heterogenous
agents, see also footnote 6. We also remark that nonstationary cases can in principle be studied if the
learning algorithms are based on suitably transformed analysis.
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6.2 Application to the Model of Monetary Policy

We now apply Theorem 11 to obtain some new results for the model of monetary policy,
Example 2 in Section 2.1. The companion paper (Honkapohja and Mitra 2002b) presents
a systematic study of the stability conditions for the purely forward looking version of
the model. Our interest here is to see whether inertia in output or inflation can affect
the stability constraints for monetary policy.

To simplify the algebra we assume that the instrument rule for interest rate setting
is the forward looking Taylor-type rule, (13). We assume that y, > 0 and x, > 0. The
model can be written in the matrix form

Zt . —QZS 1-46 ¢ Eth
( m ) N ( —A¢ )X” ( M1 —0) (1—¢)5+A¢> ( Bfme ) "
_¢Xz _¢X7r EtCBZt—i-l
( Sy, —AbXs ) ( ECPr,., ) + (61)
(9 0>(zt1>+<1—¢x9 — X, )(m)
M v )\ Ml=x,) 1-2ox, ) \w )
We write this system in the general form

Yy = a+ APEtht-i-l + ACBEtCByt+1 + Dy;—1 + Buwy, (62)

w; = Fw_q1+ v

where y; = (2¢, 7)), wy = (ug, g;)' and AP, A°B D B denote the right hand matrices in
(61), and F' is the (diagonal) matrix appearing in (12), namely

~(51)

For brevity, we focus only on the case where the private sector and the central bank
have different gain sequences 6p, 6o but use versions of RLS learning. The PLMs take
the form y; = a; + byw; + ¢;y: 1,7 = P,CB. Dropping constants, the coefficient matrices
for the linearized version of the small ODE (57)-(58) for the parameters {ap,acp},
{vecbp,vecbcp} and {veccp,veccop} take the form

( 6p(AT (Is+ ép) — 1) §pA“B(Iy + eop) )
bcpAr (I + cp) 6cpA“P(Iy + o) — o) )

op(F'® Ap + I, ® Apcp — 1) Sp(F'® Acp + I, ® AcpCep)
bcp(F' @ Ap+ I, ® Apcp)  bcp(F' @ Acp + 1o ® Acplep — 1n) )’

op(Cp @ Ap + I, ® Apcp — 1) Op(Crp ® Acp + 1o ® Acpten)
Scp(Cp @ Ap+ 1 ® Apcp)  bcp(Cop @ Acp + 1o ® Acpéep — 1h) )
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Stability under learning requires that all eigenvalues of these matrices have negative real
parts.

When applying these conditions to the model of monetary policy (61), it is evident
that theoretical results are not obtainable. However, the convergence conditions can
still be applied in numerically calibrated models. We thus employ a calibration of the
model ¢ = 1/0.157, A = 0.024, § = 0.99 suggested by (Woodford 1999), to which we
append the following values for the policy parameters x, = 0, x, = 1.1. With these
parameter values, the purely forward looking model (6 = ¢ = 0) with private sector and
central bank forecasting is known to be stable, provided 6¢p/6, > 0.87, see the results
in (Honkapohja and Mitra 2002b). We are interested in the effects of inertia in either
output or inflation on the stability of the uniquely stationary solution. To do this we
vary either 6 or ¢ from 0 to 1, keeping the other inertia parameter at 0.

We consider two cases: (i) 6,/0cp is set at level for which the forward looking model
is stable and (ii) 6,/6¢p is such that the forward looking model is unstable. The two
tables below report whether stability or instability (S or U, respectively) prevails with
different values of the inertia parameter.

Table 1. Inertia with a stable forward looking model
0 or Y 0101]02]03]|04
z inertiaonly | S|U |U | S |S
7 inertiaonly | S| U |S | S |S

Table 2. Inertia with an unstable forward looking model
0 or v 0 102]04]06]0.8
zinertia | U | U | U | S S
my inertia | U | U | S S S

These numerical results suggest that (i) if the forward looking model is stable, then
inertia in output or inflation can de-stabilize the economy and that (ii) sufficient inertia
can yield stability when the purely forward looking model is unstable under learning.
Table 1 uses 6¢p/6, = .87 and the uniquely stationary solution appears to be stable for
values of (either) output or inflation inertia more than 0.4. Table 2 uses 6¢p/6, = .8 and
again the uniquely stationary solution appears to be stable for values of (either) output
or inflation inertia more than 0.8. Thus the influence of output and inflation inertia on
stability is not straightforward and different possibilities can arise.

7 Case with Rational and Learning Agents

For brevity we conduct the analysis for the class of forward looking models (1)-(2)
in Section 2 with two types of agents. We now assume that one type of agent has
rational expectations (RE) while the other type of agent is learning. Such situations
have occasionally been considered in the previous literature; for example (Sargent 1999),
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(Cho, Williams, and Sargent 2002) and (Carlstrom and Fuerst 2001) assume that private
agents have RE and the Central Bank is learning .2° We first provide general conditions
for stability in this case and then apply them to the economic examples.

Consider the class of models (1)-(2) and assume now that agent of type 1 is learning
via RLS, while agent of type 2 has RE at every point of time (even outside the equi-
librium). Obviously, the MSV solutions continue to take the same form as before and
we examine stability of this class of solutions. Assume that the agent of type 1 has the
PLM and corresponding forecast

v = a1+ bw = @iz, (63)
Elyi1 = a1+ b Fu,.

Agent 2 has RE and knows that agent 1 is learning and the influence of the learning on
the actual outcome of the economy. He makes use of this knowledge in forming his own
forecasts. Given the forecast of agent 1, the ALM of the economy is

ye = a + Ajay + Abi Fw; + Ay E?yy1 + Buy,

W~

where we no longer use the symbol for agent 2’s forecast since he has RE. Agent 2
knows the above ALM and makes use of this to form his own forecast.
Guessing that the MSV solution for y; takes the same form as before, his forecast is

E?yi 1 = ay + by Fwy (64)
and plugging this into the ALM yields
Yy = o+ Ajay + Asas + (A1b1 F + Asbo F' + B)uwy.
The rational forecast for agent 2, given this ALM is,
EXyiy1 = a+ Ajay + Agay + (A0 F + AghyF + B)Fuy, (65)

Given ay, and by, we require agent 2 to have always RE at every point of time. This will
be so if the coefficients in (64) and (65) are equal, i.e. if

a; = o+ A1a1 + AQCLQ, (66)
by = A0 F + AsbyF + B. (67)

One can then solve for as and by from (66)-(67) after vectorizing the latter equation.
This yields

Ay = (I — Ag)il(a + Alal), (68)
vechy = (I — F' ® Ay) ' (F' ® Ayvech, + vecB). (69)

20(Evans, Honkapohja, and Sargent 1993) analysed the structure of equilibria with rational and
boundedly rational agents in the standard overlapping generations model. See (Bomfim 2001) for refer-
ences on other models of economies with heterogenous agents in terms of sophistication in forecasting.
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Note that (68)-(69) determine the RE values of ay and by as functions of a; and b;.
Solving (68)-(69) with a; = as and vech; = vecbs just gives the symmetric RE value for
ay, b1 .

The right-hand sides of (68)-(69) lead to the T'—mapping

ar — As(l — Ay) o+ Aray) + a+ Ajay,
vech; — (F'® Ay)(I — F' @ Ay) H(F' ® Ayvech; + vecB) + (F' @ A;)vech, + vecB.

For E-stability, we proceed as before. Given the PLM of agent 1, stability of learning
dynamics is governed by the ODE for a4, i.e.

dl = [Al -+ AQ(I — AQ)_lAl - I]a1 +a+ AQ(I - Ag)_la (70)
and that for b; given by

vechy = [F'@ A+ (F'® Ay)(I — F' @ Ay)"Y(F' ® Ay) — Ivech; + (71)
[(F'® A2)(I — F' ® Ay)™" + IJvecB.

The symmetric equilibrium will be globally stable under learning iff the differential
equations (70)-(71) are globally asymptotically stable at the point, which proves the
following proposition:

Proposition 12 Consider the class of models (1)-(2), where agent 1 uses RLS learning
and agent 2 has RE. The symmetric equilibrium of this model is globally stable under
learning iff the eigenvalues of the matrices

Ay + As(1 — AQ)_1A1 -1,
F'@ A+ (F' @ A)(I — F' @ Ap) " (F' ® Ay) — I,

have negative real parts.

7.1 Application to the Market Model

As first application of Proposition 12 consider Example 1, the market model with two

agents, for which A; = —k~'n,,i = 1,2. Suppose that agent 2 has rational expectations.
In this case the stability conditions of Proposition 12 reduce to
—k1 —fk1
mo g IEm g,

1+kng 14 fkIny
Thus we have:
Proposition 13 When one class has rational expectations and the other uses RLS learn-

ing the market model with two classes of heterogenous supplies is globally stable under
learning if fk (niyne) + 1> 0.

We remark that the requirement fk !(ni,ns) + 1 > 0 is stronger than what was
assumed before. However, it is still not very restrictive. For example, it is satisfied in
the plausible case f > 0.
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7.2 Application to Monetary Policy

We now apply Proposition 12 to our Example 2 on monetary policy when there is no
inertia (6 = 1 = 0). Appending the interest rule (13) to equations (10) and (11), the
reduced form of the model takes the form

v = a+APEly. + APECPy, . + Buw,, (72)

wy = Fwi_q1+ v
where
AP — ( 1 ¢ ) ACB :( _¢Xz _¢X7r )
A B+Ao )7 —AOX, —AOX, )

which is the same as (61) or (62) with § = ¢ =0, i.e. D = 0.

7.2.1 Central Bank Has RE While Private Sector is Learning

When the central bank has RE and the private sector is learning, the two matrices in
Proposition 12 reduce to

AP+ A9B(I — A9BY1AP — ] (73)
= (19X +2¢xx) ( A —[(1 = B)(L+ dx.) + Ad(xy — 1)])
and
FroA' + (FFo APYI - F @ APy W(F'o AP -1 = ( % 13 ) (74)
where
B, = [1+p(dx. + Adx,)] (75)
( —[1 = p+ pod(x, + Axx)] pd(1 — Bpx,) )
Ap —[1=pBp+(1=Bp)pdx. + Apd(xr —1)] )’

and B, takes the same form as B, with p replacing p. The trace and determinant of
(73) are, respectively,

—(1+ X, + Aoxr) ML= B+ (2 — B)dx. + Ad(2x, — 1)),
(14 dx, + Aox,) T (1= B)x, + Ax, — 1))

It is easy to check that the determinant is positive iff (1 — )y, + A(x, — 1) > 0 and
this also suffices to make the trace negative. As for the matrix (74), we note that it is
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block diagonal so that its eigenvalues are those of B, and B, and since the latter two
matrices are, respectively, symmetric in p, p it suffices to look only at B, for stability.
The trace and determinant of (75) are respectively

—[1+ p(dx. + M) M2 = p(1+ B) + pd{(2 — Bp)x. + M2xx — 1)},
[L+ p(dx, + Aox)] (L= p) (1= Bp) + pd{(1 — Bp)x. + Mz — 1)}

It is easy to check that (1 —/3)x, +A(x, —1) > 0 implies that the trace above is negative
and determinant positive for (75). This proves the following corollary.

Corollary 14 Assume that for the model (72), the private sector is learning via RLS
while the central bank always has RE. The dynamics of the economy is then stable if and

only if (1= B)x, + AMx, —1) > 0.

Condition (1—/)x,+A(x,—1) > 01is precisely the Taylor principle that characterized
learnability in (Bullard and Mitra 2002), where both the central bank and the private
sector were learning via RLS with identical learning rules. The same principle determines
stability also when only the private sector is learning as above. Since the central bank
has now so much more information than the private sector, it is able to neutralize the
destabilizing influence of the latter (which arises since A" has an eigenvalue more than
1) by subscribing to the Taylor principle in its interest rule. See (Honkapohja and
Mitra 2002b) for more on the intuition behind the stabilizing influence from the central
bank and the de-stabilizing effect arising from the behavior of the private agents.

7.2.2 Central Bank is Learning While Private Sector Has RE

Consider now the situation when the central bank is learning while the private agents
always have RE in the sense defined above. In this case we have

ACB+AP(I—AP)_1ACB —J = ( )‘_1(1 _ﬁ)Xz -1 )‘_1(1 _ﬂ)Xﬂ' )
Xz X7r_]-

The determinant and trace of the above matrix equal, respectively,

A1 = B)xe + A — 1)),
AT = B)x. + A — D] - 1.

The determinant is positive if and only if (1 — 3)x, + A(x, — 1) < 0 and this also makes
the trace negative. Therefore, a necessary condition for the equilibrium to be stable is
that the Taylor principle be wviolated.

As before, it can be shown that the matrix corresponding to (74) (after inter-changing
the roles of AZ and A? there) is block diagonal with the diagonal matrices being

21 This and the next proposition are not stated as global results, since the model of monetary policy
is often thought to be a linearization of a nonlinear model.
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symmetric in g and p. The eigenvalues of the diagonal matrix corresponding to p are
given by —1 and

—[(1 = @) (1 = Bp) = ] (1 = ) (1 = Bp) + po{(1 = Bu)x. + Alx — D} > 0
provided (1 — p)(1 — Bu) — pA¢ # 0. This enables us to prove the following corollary.

Corollary 15 Assume that for the model (72), the private sector always has RE while
the central bank is learning via RLS. The necessary and sufficient conditions for the
symmetric equilibrium to be stable are

(I-08)x, +Alx, — 1) <0,
(L= p)(1 = Bu) — pA] (1 — ) (1 = Bu) + po{(1 — Bu)x. + A(xr — 1)}] >0,
(1= p)(1 = Bp) — pAd] (1 — p)(1 = Bp) + pp{(1 — Bp)x. + Alxr — 1)}] > 0.

The result in (Bullard and Mitra 2002) and in the previous section has now been
turned on its head by this extreme assumption of rationality of the private sector wvis-a-
vis the central bank. We note that, in general, violation of the Taylor principle is not
sufficient for stability of the equilibrium. This is because the latter two conditions in
Corollary 15 depend also on p and p. In fact it can be checked numerically for plausible
values of parameters used in (Woodford 1999) that equilibrium may be either stable or
unstable even when (1 — 3)x, + A(x, — 1) <0.

A case of stability arises when the policy does not react at all to forecasts, i.e.
X, = X» = 0. This is natural, since by assumption the private economy has already
converged to the MSV REE and so the choice of the interest rate instrument rule need
not then be based on considerations of stability under learning. However, we note that
interest rate rules that react only to exogenous observables are problematic, as they lead
to indeterminacy (and also instability under learning if in fact private agents do not
have RE).

Generally, the results in this section show that the conclusions on stability under
learning in the model of monetary policy are quite sensitive to the degree of rationality
in the forecasting by private agents and the central bank. The assumption that one
party has RE is often not an innocent simplification.

8 Concluding Remarks

Most macroeconomic models are based on the assumption of structural homogeneity, i.e.
of the representative agent, and in the literature on learning this assumption is usually
extended to include the learning rules of the agents. In this paper we have considered
the significance of this assumption for stability of learning dynamics by studying the
implications of structural heterogeneity, which is captured by the differential effect of
the expectations of the different agents on the economy. The class of models we consider
includes forward looking models with or without lags. Several cases of structural and
expectational heterogeneity were analyzed.
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We started by showing that introducing heterogeneity only in beliefs but not in
learning rules has no significant consequences, as the convergence conditions are the
same as in the corresponding model with homogenous expectations. This result was
then reconsidered by analyzing the implications of heterogeneity in learning rules (and
not only forecasts) when agents are boundedly rational and are learning about key
parameters of the economy. We also briefly considered the case, where some agents have
RE continuously while other agents are learning.

In general, the stability conditions for learning are affected by this kind of hetero-
geneity, but this is not always the case. Some standard models, which have been found
to converge to REE under homogenous expectations and learning, continue to do so
in the presence of heterogenous expectations and learning rules. This shows that the
assumption of homogenous expectations and learning rules is not always as restrictive
as it may seem at first sight.

There are, of course, models for which heterogenous learning affects the conditions
for convergence of learning. An important case is the basic forward looking model of
monetary policy commonly considered in the New Keynesian literature. In this paper
we considered this model for two cases. The first illustration focused on the significance
of inertia in output or inflation and the second considered the situation in which one
class of agents has RE while the other is learning. The companion paper (Honkapohja
and Mitra 2002b) provides a thorough analysis of the purely forward looking version
of the model and examines to what extent heterogeneity can affect the desirability of
different interest rate rules advocated in the literature.

The analysis and the results in this paper are based on the assumption of symmetric
information, so that agents observe and make forecasts on the same set of “macro”
variables in the economy. This setting is natural in many models, but extensions to our
analysis are going to be needed for some specific settings. For example, we have not
considered the learnability of non-MSV REE. Perhaps more importantly, we stress that
adaptive learning in economies with asymmetric information or when different agents
are concerned with different local variables should be considered further as the existing
literature is far from comprehensive.

29



References

Arrtrovic, J. (1998): “Stability of Equilibria under Genetic Algorithm Adaption: an
Analysis,” Macroeconomic Dynamics, 2, 1-21.

Arrow, K. J., axpD M. McMANUS (1958): “A Note on Dynamic Stability,” Econo-
metrica, 26, 448-454.

BArRNETT, W., B. CORNET, C. D’ASPREMONT, J. GABSZEWICZ, AND A. MAs-
CoLELL (eds.) (1991): Equilibrium Theory and Applications, Proceedings of the
Siath International Symposium in Economic Theory and Econometrics. Cambridge
University Press, Cambridge.

BoMmFim, A. (2001): “Heterogenous Forecasts and Aggregate Dynamics,” Journal of
Monetary Economics, 47, 145-161.

BrAYy, M., anp N. SAVIN (1986): “Rational Expectations Equilibria, Learning, and
Model Specification,” Econometrica, 54, 1129-1160.

Brock, W. A.; anp P. DE FONTNOUVELLE (2000): “Expectational Diversity in Mon-
etary Economies,” Journal of Economic Dynamics and Control, 24, 725-759.

Brock, W. A., anp C. H. HomMES (1997): “A Rational Route to Randomness,”
Econometrica, 65, 1059-1095.

BULLARD, J., axD K. MITRA (2002): “Learning About Monetary Policy Rules,” Jour-
nal of Monetary Economics, forthcoming.

CarLsTrOM, C. T., axp T. S. FUERST (2001): “Learning and the Central Bank,”
mimeo, Bowling Green State University.

Cuo, I.-K., N. WiLriams, anp T. J. SARGENT (2002): “Escaping Nash Inflation,”
Review of Economic Studies, 69, 1-40.

CrARIDA, R., J. GALI, AND M. GERTLER (1999): “The Science of Monetary Policy:
A New Keynesian Perspective,” Journal of Economic Literature, 37, 1661-1707.

ENTHOVEN, A. C., anDp K. J. ARROW (1956): “A Theorem on Expectations and the
Stability of Equilibrium,” Econometrica, 24, 288-293.

Evans, G. W., axD R. GUESNERIE (1993): “Rationalizability, Strong Rationality, and
Expectational Stability,” Games and Economic Behaviour, 5, 632—646.

Evans, G. W., axp S. HONKAPOHJA (1995): “Local Convergence of Recursive Learn-

ing to Steady States and Cycles in Stochastic Nonlinear Models,” Econometrica, 63,
195-206.

30



(1997): “Least Squares Learning with Heterogeneous Expectations,” Economic
Letters, 52, 197-201.

(1998): “Economic Dynamics with Learning: New Stability Results,” Review
of Economic Studies, 65, 23-44.

(1999): “Learning Dynamics,” in (Taylor and Woodford 1999), chap. 7, pp.
449-542.

(2001): Learning and Ezpectations in Macroeconomics. Princeton University
Press, Princeton, New Jersey.

(2002): “Expectations and the Stability Problem for Optimal Monetary Poli-
cies,” Review of Economic Studies, forthcoming.

Evans, G. W., S. HONKAPOHJA, AND R. MARIMON (2001): “Convergence in Mone-

tary Inflation Models with Heterogeneous Learning Rules,” Macroeconomic Dynamics,
5, 1-31.

Evans, G. W., S. HONKAPOHJA, AND T. J. SARGENT (1993): “On the Preservation of
Deterministic Cycles When Some Agents Perceive Them to be Random Fluctuations,”
Journal of Economic Dynamics and Control, 17, 7T05-721.

FOUurGEAUD, C., C. GOURIEROUX, AND J. PRADEL (1986): “Learning Procedures and
Convergence to Rationality,” Econometrica, 54, 845-868.

GIANNITSAROU, C. (2001): “Stability Analysis of Heterogenous Learning in Self-
Referential Linear Stochastic Models,” mimeo, London Business School.

GRANDMONT, J.-M. (1998): “Expectations Formation and Stability of Large Socioeco-
nomic Systems,” FEconometrica, 66, 741-781.

GRANDMONT, J.-M., AND G. LAROQUE (1991): “Economic Dynamics with Learning:
Some Instability Examples,” in (Barnett, Cornet, D’Aspremont, Gabszewicz, and
Mas-Colell 1991), chap. 11, pp. 247-273.

GUESNERIE, R. (2002): “Anchoring Economic Predictions in Common Knowledge,”
Econometrica, 70, 439-480.

HonkApPOHJA, S., axp K. MiTrA (2002a): “Learning in Nonlinear Stochastic
Economies: A New Stability Result,” manuscript.

(2002b): “Performance of Monetary Policy with Internal Central Bank Fore-
casting,” manuscript, www.valt.helsinki.fi/RAKA /seppo.hmtl.

Jounson, C. R. (1974): “Sufficient Conditions for D-Stability,” Journal of Economic
Theory, 9, 53-62.

31



KrEPS, D., AND K. WALLIS (eds.) (1997): Advances in Economics and Econometrics:
Theory and Applications, Volume I. Cambridge University Press, Cambridge.

LEBARON, B. (2001): “Evolution and Time Horizons in an Agent-Based Model,”
Macroeconomic Dynamics, 5, 225-254.

Liung, L., anp T. SODERSTROM (1983): Theory and Practice of Recursive Identifica-
tion. MIT Press, Cambridge Mass.

Lucas, Jr., R. E. (1973): “Some International Evidence on Output-Inflation Trade-
offs,” American Economic Review, 63, 326-334.

MARCET, A.; AND T. J. SARGENT (1989a): “Convergence of Least-Squares Learning

in Environments with Hidden State Variables and Private Information,” Journal of
Political Economy, 97, 1306-1322.

(1989b):  “Convergence of Least-Squares Learning Mechanisms in Self-
Referential Linear Stochastic Models,” Journal of Economic Theory, 48, 337-368.

MARIMON, R. (1997): “Learning from Learning in Economics,” in (Kreps and Wallis
1997), chap. 9, pp. 278-315.

MARIMON, R., AND S. SUNDER (1993): “Indeterminacy of Equilibria in a Hyperinfla-
tionary World: Experimental Evidence,” Econometrica, 61, 1073—-1107.

MiTrA, K. (2002): “Desirability of Nominal GDP Targeting Under Adaptive Learning,”
Journal of Money, Credit, and Banking, forthcoming.

MORENO, D., AND M. WALKER (1994): “Two Problems in Applying Ljung’s "Projec-
tion Algorithms" to the Analysis of Decentralized Learning,” Journal of Economic
Theory, 62, 420-427.

MutH, J. F. (1961): “Rational Expectations and the Theory of Price Movements,”
Econometrica, 29, 315-335.

QUIRK, J., AND R. SAPOSNIK (1968): Introduction to General Equilibrium Theory and
Welfare Economics. McGraw-Hill, New York.

SARGENT, T. J. (1993): Bounded Rationality in Macroeconomics. Oxford University
Press, Oxford.

(1999): The Conquest of American Inflation. Princeton University Press,
Princeton NJ.

TAYLOR, J., AND M. WOODFORD (eds.) (1999): Handbook of Macroeconomics, Volume
1. Elsevier, Amsterdam.

WOODFORD, M. (1999): “Optimal Monetary Policy Inertia,” Working paper, NBER
No. 7261.

32



A Appendix

A.1 Proofs and Technical Details

We provide here some proofs of results in the main text.

Proof of Proposition 1: It is clear that equations (19)-(20) are symmetric in (a;, as)
and equations (21)-(22) are symmetric in (by, bs), respectively. Thus a; = ay = a and
by = by = b provided there exists a unique solution. For the a;, as system the solution is
evidently unique if I — A; — A, is invertible.

The b;, by system needs to be vectorized??

vechy = (F' ® Ap)vech; + (F' @ Ag)vecbs + vecB,
vechy = (F' ® Aq)vech; + (F' ® Ag)vechy + vecB.

The vectorized system can be rewritten as
Li.—F A —F'® A, vechy \ [ vecB
—F'w A,  Lj—F ®A vecbs |\ wecB )’
which has a unique solution provided the left hand matrix is invertible. The determinant

of this matrix is easily seen to be non-zero if and only if the matrix I — F' ® (A; + As)
is invertible. Q.E.D.

Proof of Proposition 2: The differential equations defining E-stability have the ex-
plicit form:

a = a+ (A —Iay + Asas,
by = AL F —b + AbyF + B,
s = o+ Aja; + (A — Ias,
by = AbiF + AsboF — by + B.

(76)-(79) are locally stable at the symmetric equilibrium if and only if the eigenvalues
of the matrices on the right hand sides of (24) and (25) have negative real parts. To

shorten notation, define
Al - In AZ
(n L) )

2 F'® Ay — Ly F' Ay
L= F"® Ay FreoAy—1ILy )

A

(81)

22Here F’ denotes the transpose. As F is assumed to be diagonal, this notation is not really necessary.
We have kept the transposes as the same formulae then hold for a nonsymmetric F matrix as well.
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The determinant for computing the eigenvalues of (80), |A — mls,|, may be simplified
as follows:

A= mb| = A Ay — I,(1 +m) '
| —L(1+m) I,(14+m)
| —L(1+m) 0
o Al A1+A2—In(1+m)

= (—(14+m)"|A1 + Ay — I, (1 +m)]|.

The computation shows that A has n eigenvalues equal to —1 and the remaining eigen-
values are those of A; + A; — I,,. Hence, A has eigenvalues with negative real parts if
and only if A; + Ay — I, has the same property.

Analogously, the determinant for computing the eigenvalue of the coefficient matrix
Fy in (81) can be written as (after subtracting the second row from the first)

F'® A F'® Ay — (1 4+ m) Iy

= {~(L+m)}" |[F'@ (A1 + Az) — (1+m) L] .

so that F} has nk eigenvalues equal to —1 and the rest are the eigenvalues of F’ ® (A; +
Ay) — I,x. Consequently, F; will have eigenvalues with negative real parts if and only if
F' ® (A1 + Ay) — Iy, has so.

Finally, the result follows since when Ely,.1 = E?y;.1 = Fyys41, the matrix in front

of the common expectations Etyt+1 in (1) becomes A1+ As, which is the homogenous
case. Q.E.D.

We next develop the technical details concerning convergence of the RLS and SG
algorithms of Sections 4.1 and 4.2. We will work out the details in the case where one
agents uses RLS and the other SG learning and then indicate the necessary modifications
for the case of different gain sequences.

Details for Theorem 6: We begin by rewriting (41), (42), and (43) as a stochastic
recursive algorithm after making a timing change in (41) and (42) by defining S;_; =
R;.23 These algorithms start from the general form

0, =001 +vH(O,1,X;)+ prt(gtfla Xt) (82)

where 6; is a vector of parameter estimates and X, is the state vector. In our case we
have 6 = (¢, ph, vec(Sy)) and Xi = (1,wj, w;_y).
Since the T'—map continues to be given by (18), we substitute (30) into (41) and get
1t = Pri-1t %St_—llzt—l(T(‘Pll,t—h 90/2,t—1)zt—1 - Qpll,t—lzt—l)/
+(71,t - fyt)S;llzt,l(T(go'l,FI, 90/2,1:71)2%1 - Soll,tflztfl)/-

ZSee Chapters 7 and 8 of (Evans and Honkapohja 2001) for an exposition of the technique.
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This gives us the ¢; components of the function H(0; 1, X;) in (82), which we denote
by Hi(zt-1,%14-15%24-1,51)- In other words,

Hi(z 1, P11 P2.4-1> Si1) = Stf—11zt7122—1(T(90/1,t—1> 90/2,t—1)/ - 901,t71)' (83)
Regarding the second order in «y, term in (82), we have

Y1t = Vi oo
) = 42 St}lzt,l(T(go’l,til, 90/2,1:71)2%1 - Soll,tflztfl)
t

!/
Y

P%t(gtfb Xy

and the validity of the method requires that this be bounded in ¢. This is easily estab-
lished as by Assumption A (with K; <1 without loss of generality) we have v, ,/v, <1

:>'71t/’7t§ 1+ Kry, for any K >0 = % <1.
, t
For (42) we can write

St = Sie1+ (22 — Sim1) + (Vi1 — V) (22 — Sie1)

Y -7
= St lmd = Sea) + () — S

t

Thus the S components of the function H(6;_1, X;) are given by
Hs(z,8:1) = 202, — Si 1 (84)
while the second order in 7, term

Y -7
pss(0i-1,X;) = <%)<ztzz —Si1)
t

is bounded in ¢ since

Yit41 — Ve V141 (’YtH)Q 1 1 < 1 1

’7% Vi1 YVt Vi1 Ve o Vg1 Vi

by Assumption A.

Finally, in a similar manner we get the ¢, components of the function H(6; 1, X})
in (43), which for future use we denote by Ha(t, z; 1,141, P21, St 1)-

Now

Lim EHi(21,¢1,95,5) = ST M.(T(¢1,¢5) — ¢1).
where M, is defined in (36). Similarly
tlim EHg(z 1,5,t) =M, —S.

and

lim BHy (21,1, 2, 8,) = Mo(T (¢}, 05)" = ).
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The associated differential equation is then defined by
d&/dT = h,(g) = hm t—»ooEH(ty 91},1, Xt)
and in our case it boils down to

doy/dr = STIM(T(¢), ¢h) — ¢1),
dS/dr = M, — S,

d‘Pz/dT = MZ(T(SO/1>90/2)/_902)-

Since the second set of equations is globally stable with S — M, from any starting
point, stability is determined entirely by the smaller dimensional system

doy/dr = (T(¢],¢5) —¢1),
d‘Pz/dT = MZ(T(SO/1>90/2)/_902)-

The analysis of the stability conditions for this ODE is given in the main text, from
equations (44). To prove that convergence is in fact global and takes place almost
surely, we first note that the associated ODE is linear and globally stable.?* Second, it
is easy to verify that the conditions of Theorem 6.10 in (Evans and Honkapohja 2001)
or Theorem 2 in (Evans and Honkapohja 1998) are satisfied, so that almost sure global
convergence obtains.

Details for Theorem 4: In this case, one proceeds for both agents as above for agent
1, but one can write the gain sequence as v, , = ’yt(ﬁi7t’?17t’y{1) and treat 52-7,;3/17{@1 as
an additional state variable that evolves exogenously from the rest of the system. With
random gain sequences in (83) and (84) we get for agent 1

lim EH (& 71070 ' 21, P10 02, S) = 6157 M(T (1, 5)' = 1)
and

tli{go EHS(é-i,t’}/l,t’}/;17 Zt—1, Su t) = 61(Mz - S)

since limy_ E(7,,77 ") = 61. Doing the same for agent 2 we arrive at the associated
ODE for this, given as (35) in the main text. The rest of the argument is the same as
in the preceding proof.

24The algorithm must be modified if the value of some moment matrix is singular, see (Evans and
Honkapohja 2001), Chapter 6, Sections 6 and 7 for a discussion. The treatment there is for the multi-
variate Muth model but it can be applied also to the present context.
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