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Abstract

Though a lot of work has been done on the distribution of job tenures, we are
still uncertain about its main determinants. In this paper, we stress random
shocks to match productivity after the start of an employment relation. The
specificity of investment makes hiring and separation decisions irreversible.
These decisions therefore have an option value. Assumptions on risk
neutrality, efficient bargaining, and the efficient resolution of hold up
problems allow investment and separation decisions to be analyzed
separately from wage setting. The tenure profiles in wages implied by the
model fit the observed pattern quite well. The model yields a hump shaped
pattern in separation rates, similar to learning models, but with a slower
decline after the peak. Estimation results using job tenure data from the
NLSY support this humped shaped pattern and favor this model above the
learning model. We develop a methodology to analyze the decomposition of
shocks to match productivity into idiosyncratic and macro-level shocks.
When assuming a Last-In-First-Out (LIFO) separation rule, this model of
individualemployment relations is embedded in a model of firm level
employment, that satisfies Gibrat’s law. The LIFO rule is interpreted as an
institution protecting the property rights on specific investments of incumbent
workers against hiring new workers by the firm.
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1 Introduction

Though a lot of work has been done on the analysis of the job tenure distribution, we are still
uncertain about the nature of the process triggering job separation. The literature provides a
number of explanations, where search and learning models are two prominent lines of
thought. The present paper focuses on the unpredictable evolution of future match
productivity after the date of job start. A job start requires specific investments. When the
match productivity evolves unfavorably, these investments lose their value and separation
becomes the efficient alternative. We refer to this model as the random growth model. The
model is easily embedded in a firm-level model of employment, when random shocks to
future productivity are interpreted as shocks in the firm’s demand curve.

For a better understanding of the relation of the random growth model to other strands of the
literature in this field, it is useful to contrast the type of stochastic processes triggering
separation, in search model on the hand and learning models on the other hand. In search models
(e.g. Jovanovic (1979b), Burdett and Mortensen (1998)), a worker receives alternative job offers
every now and then. Usually, the arrival of new job offers is modeled as a Poisson process.
Offers are drawn randomly from an offer distribution. When the value of a newly arrived offer
exceeds the value of the present job, there is separation. Two types of stochastic shocks
contribute to the separation decision: first, the arrival process of new offers, and second,
conditional on arrival, the value of that offer. A critical feature of these shocks is that the effect
of both types of shocks is transitory. The arrival of a job offer today does not affect the
probability of the arrival of an offer tomorrow, neither does the value of this job offer affects the
value of the next offer. A major achievement of search models is that they provide a simple
explanation for the empirical regularity that separation rates decline with the accumulation of
experience. The longer a worker has been around on the labor market, the more job offers she
has received. Where the present job offer is the best of these offers, this maximum will –in
expectation- move up with experience. Hence, the probability of receiving an even better job
declines over time.

In learning models, the workers and the firm have only imperfect information about the
quality of their match (Jovanovic, 1979a; Miller, 1984). Each period, the match produces a
random output with a constant mean. The better match quality, the higher is the expected
value of output. The worker and the firm gradually learn about match quality by observing
realizations of this random output. They separate whenever the match quality they infer from
all past realizations of output is below a certain threshold. The (Bayesian) implication is that
the better the worker and the firm are informed about match quality, the smaller will be the
impact of new information. Beyond a certain point in time, new information has hardly any
impact on beliefs and future separation becomes increasingly unlikely. The separation rate
converges to zero rapidly. Unlike the search model, random shocks to output have a
permanent effect on the probability of future separation, since beliefs about the expected
value of output are a function of all past realizations.

The learning model generates a hump shaped rate. Directly after the start of an employment
relation, the worker and firm have not yet collected sufficient information to form an accurate
belief about match quality. In the second stage, beliefs become more accurate and bad
matches are eliminated. Finally, beliefs are almost exact, but all bad matches have been
eliminated previously, so that the separation rate drops to zero. The analyses of Lancaster,
Imbens, and Dolton (1987) and Miller (1984) indicate that there is indeed a hump shape, but
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that the learning model predicts the separation rates to decline more quickly than is observed
empirically.

The information assumptions in the random growth model considered in this paper are the
mirror image of those in the learning model. The worker and the firm are perfectly informed
about today’s match productivity, but they do not know its future evolution. Future
productivity is supposed to follow a geometric random walk. When the productivity of the
match falls below a threshold, separation becomes the efficient alternative. Hence, shocks to
productivity have a permanent effect on future separations: a downward shock today moves
productivity in the direction of the separation threshold, increasing the probability of
separation at some time in the future. The uncertainty about future productivity relates the
model to the literature on firm’s labor demand under uncertainty, see Bentolila and Bertola
(1990). The stochastic process underlying the random growth model fits in the strand of
learning models, in the sense that stochastic shocks have a cumulative effect on future
separations.1 However, unlike the learning model, the effect of new shocks does not decline
in the course of time.

Like the learning model, this model yields a hump shaped separation rate. At first, the
separation rate is low. Players would not have made the specific investment if match
productivity were close to the separation threshold. In due time, some matches have
accumulated negative shocks, leading to an increase in the separation rate. Eventually,
separation rates decline again, since matches with accumulated negative shocks will have
been eliminated previously. However, contrary to the learning model, the effect of new
shocks does not diminish over time. Hence, the separation rate declines more slowly than in
learning models. When the drift of the Brownian is negative, the separation rate does not
even converge to zero.

Workers and firms are required to make specific investments at the start of the match. These
investments can either be hiring cost, or firm-specific formal training programs, or more
generally, the time that is needed to get acquainted to the type of work that the firm expects
the worker to do. We do not take a stance on the weights of these components. These
investments lose their value upon separation. This sets our model apart from the literature on
temporary lay-offs, where workers expect to be rehired by their previous employer, see for
example Feldstein (1976).

Our model is formally equivalent to that of Dixit (1989). Since specific investments are
required, hiring and separation decisions are irreversible. Hence, these investments have an
option value. We make three assumptions. First, we assume efficient bargaining on the
distribution of surpluses from specific investment, so that separation decisions are always
efficient. Second, we assume risk neutrality, so that the allocation of the uncertainty about the
future evolution of productivity is irrelevant. These assumptions allow us to analyze
separation decisions and wage setting separately. Finally, we assume holdup problems to be
resolved efficiently, so that the surplus value of a job is equal to the cost of investment at job
start.

For most of the paper, we benefit from the option to analyze wage and separation decisions
separately, by ignoring wages. However, we do explore the implications for the tenure

                                                
1 Keane and Wolpin (1997) offer a model with randomness in productivity after job start that is driven by transitory shocks.
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profile. For this purpose, we consider the implications of a simple Nash bargaining rule.
Tenure profiles in wages emerge naturally from our probability law for the path of
productivity. Even when there is no deterministic trend in the within-job-productivity of the
worker relative to her outside market option, the model generates a simple rationale for a
tenure profile. Random walks, which develop unfavorable, are eliminated from the stock
ongoing matches. The remaining stock is therefore a selective sample of random walks. This
selection mechanism generates a tenure profile in wages, which is consistent with what is
reported by for example Topel (1991).

We consider two versions of the model, a general version where both the outside option of
the worker and the productivity in the firm follow a geometric Brownian and a more
restricted version, where the outside option is deterministic. We consider the latter to be a
limiting case, following the evidence of Davis and Haltiwanger (1992) that aggregate shocks
to productivity (affecting the outside options) have a much smaller variance than firm
specific shocks (affecting the productivity of a match). The restricted version of the model is
applied to the tenure distribution of individual employment relations, using the NLSY. From
this distribution, we can identify all structural parameters up to the variance of shocks in
productivity. For the identification of this final parameter, we apply the first order condition
for the optimal hours of on-the-job training. On-the–job training is just one of the
components of the specific investments required at the start of a match. Workers and firms set
their level of investment for each component as such that the marginal cost of this component
is equal to the increase in the value of job.  Since hours of training are observed and since
their effect on the value of the job can be estimated, the first order condition for this
component provides an additional constraint that can be applied for the identification of the
final parameter.

The empirical analysis of the tenure distribution in Section 3 shows that the model describes
the data well. The hump shape pattern predicted by both the learning and the random growth
model is indeed observed in the data, but the random growth model does a much better job in
explaining the separation rates at higher tenures. However, we would like to have more direct
evidence on the crucial issue that separations are driven by accumulated past negative shocks
to productivity, not by the most recent shock, as follows from search models. Here, we face
the problem that we do not directly observe the surplus of match productivity above the
separation threshold most of the time. We only know that productivity must be equal to this
threshold at the date of separation. However, the value of productivity at the separation date
is obviously a highly selective sample from all conceivable evolutions of productivity from
the start of the job till the moment of separation.  Hence, we cannot apply standard techniques
to analyze these data.

In Section 4, we work out a simple methodology to deal with this problem. We apply this
methodology to one particular type of shocks, the aggregate shocks that underlie the
evolution of unemployment, using monthly state data. Obviously, the aggregate shocks
reflected in the unemployment rate are only a small fraction of all shocks that drive the
evolution of productivity in individual matches. Individual and firm specific shocks will
probably by more important, see Davis and Haltiwanger (1992).  The aggregate shocks
reflected in unemployment can therefore offer only a partial explanation. We estimate a
VAR(2) model to recover the innovations in these unemployment histories and use these
innovations to construct a Brownian, which we then apply to analyze the evolution of
productivity of individual matches. Our analysis shows a strong correlation between this
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constructed Brownian and the productivity as revealed at the moment of separations. This
offers strong evidence in favor of the random growth model. It is not a transitory shock -the
state of the business cycle at this point in time- that triggers separation. It is the accumulated
history of shocks during the course of the match that determines whether or not its
continuation is profitable.

In Section 5 we show how our model of individual employment relations is embedded in
Bentolila and Bertola’s (1990) model on the evolution of employment at the level of the firm.
The hiring cost in their model can be identified as the specific investments in our model.
Bentolila and Bertola assume an iso-elastic demand function evolving over time according to a
geometric Brownian. With these assumptions, there is a one-to-one correspondence between our
model of individual matches and the model of Bentolila and Bertola, if a Last-In-First-Out
(LIFO) separation rule applies. Kuhn (1988) provides a rationale for the use of LIFO lay-off
rules in the context of a unionized firm. We draw on this idea and argue that a LIFO lay-off rule
serves to protect the property rights of the specific investments of incumbent workers against the
claims of workers that are hired later on.

The analogy of our model of an individual match and a firm level model also provides a
rationale for the assumption that productivity evolves according to a geometric Brownian.
Bentolila and Bertola’s model implies firm size to evolve (almost) according to Gibrat’s law.
The excess productivity of matches above their separation threshold is shown to correspond to
the productivity of the intramarginal workers in the firm. With adequate data, we would be able
to analyze the share of firm level shocks in the total variance of the shocks that drive the
evolution of match productivity, using the methodology that has been set out in Section 4.

The set-up of the paper is as follows. The model is derived in Section 2.  Section 3 discusses the
estimation results for the tenure distribution. Section 4 sets out a method for analyzing the
decomposition of shocks to match productivity into, for example, idiosyncratic and macro-level
shocks. Estimation results on the impact of macro-level shocks are presented. In Section 5, we
analyze the relation of our model with that of Bentolila and Bertola (1990). Section 6 concludes.

2 The Model

2.1 Assumptions

Consider an economy with risk neutral workers and firms. In the market, workers can collect
their market value or outside option Rt per unit of time. This outside option is simply the
maximum of all alternatives that are available. Firms own vacancies. A filled vacancy (a job)
produces a particular type of output with market value Pt per unit of time. At a particular time t,
a firm can decide to hire a worker to fill the vacancy and to start producing output. At the start of
an employment relationship, relation specific investments Rt I have to be paid; I can be seen as
the physical amount of investment required and Rt as the price per unit of investment. The value
of the specific investments is therefore proportional to the outside option of the worker. As far as
these investments are made up of non-productive hours of the worker, Rt is obviously its
adequate price. However, also in the case that these investments require other, non-labor inputs,
Rt is reasonable proxy to their price, since Rt will be closely correlated to the general price level2.

                                                
2 Van der Ende (1997) allows for a mixture of investments at prices Pt and Rt.
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Specific investments will be lost upon separation between the worker and the firm. However, the
firm retains the property rights of the vacancy, that is, it holds the option to hire another worker
at a later date, for example when the market value of output improves. In that case, specific
investments have to be made again. All specific investments are made at the start of the
employment relationship. This assumption is obviously restrictive but it is a reasonable first
approximation. Both the worker and the firm are perfectly informed about the present value of Rt

and Pt. However, the future evolution of both variables is subject to uncertainty. Both Rt and Pt

follow a geometric Brownian.

Firms and workers are assumed to bargain efficiently. That is, as long as it is efficient to
continue the relationship, they reach agreement on the distribution of the surplus. Furthermore,
we assume that the firm and the worker are able to resolve potential hold-up problems and to
share future surpluses according to their share in specific investments. Together with the risk
neutrality, these assumptions imply that the pattern of job duration and specific investments can
be analyzed separately from the distribution of the surplus arising from these investments
between the worker and the firm. We shall discuss our model as if the firm pays for all
investments and accordingly receives the full surplus of the relationship, while the worker gets
her outside option. However, any other sharing rule is consistent with our results, as long as
investment cost and surpluses are shared in the same way. Since separation decisions are made
efficiently, there is no surplus left at that point in time and separation is therefore in the mutual
interest of both players. Hence, it does not make sense to distinguish between quits and lay-offs,
compare McLaughlin (1991). Clearly, the assumptions on risk neutrality, efficient bargaining
and the resolution of hold up problems are unlikely to be met completely in practice. For
example, the evidence presented Jacobson, LaLonde, and Sullivan (1993) supports the idea that
there are at least some gains of trade left at the date of separation. However, we feel that it is
better first to have an idea about the parameters that are consistent with first-best before entering
the fog of a second-best real world.

As discussed in Section 1, we consider a general model, where both Rt and Pt follow a geometric
Brownian, and a restricted model, where Rt is deterministic. The next subsection investigates the
general model and derives its implications for the tenure distribution. The restricted model will
be discussed in Section 2.5.  There, we derive the relation between the structural parameters and
the hiring and separation thresholds.

2.2 The General Model and its Implications for the Tenure Distribution

Using lower cases for logarithms, the law of motion for the market value of log output and the
log outside option of the worker between arbitrary dates s and t which are subject to permanent,
Normally distributed shocks is:

[pt - ps, rt - rs] ~ N [(t - s) [µp, µr], (t - s) Σ] (1)

The value of a vacancy, denoted V(Pt,Rt)  and a filled job, J(Pt,Rt), the latter net of the outside
option of the worker, both measured at date t are given by:
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where ρ denotes the interest rate, T is the efficient separation date, and X is the efficient hiring
date. Both T and X are random variables depending on the ’filter’ Pt, Rt, t ≤ X,T and where Et[.] is
the expectation operator for the filter Ps, Rs, s > t. The value of a vacancy is fully determined by
the option of filling the vacancy by making the specific investment RXI at some unknown future
date X. In return for this investment, the firm obtains the value of a filled job. In the second
equation, the value of filled job is made up of two parts. The first part is the option to fire the
worker at some unknown future date X. In that case, the firm holds the value of a vacancy. The
second part is the expected value of the productivity of the worker, net of what she would earn
on the outside market (her outside option Rt). At the moments of hiring and separation, when the
firm switches back and forth between the value of a job and a vacancy, the firm is indifferent
between the two alternatives. When switching from a vacancy to a filled job, we have to account
for the cost of specific investments. Hence, letting t=X and t=T respectively in equation (2):

J(PX,RX) = V(PX,RX) + RX I,
V(PT,RT) = J(PT,RT).

The stopping rules for hiring and separation depend only on Pt and Rt because the law of motion
formula (1) implies the strong Markov property for [Pt,Rt] and because the time horizon is
infinite, see McDonald and Siegel (1986, page 712-713). Since the law of motion for k⋅[Pt,Rt] is
equal to that of [Pt,Rt], it can be shown that the stopping rules depend only on the ratio of the
market value of output Pt to the outside option of the worker Rt at time t, defined as Bt. Its
logarithm bt is a Brownian with drift µp-µr and variance rate σ2 = σ2

p + σ2
r - 2σpr. The firm hires

a worker at the moment X when Bt hits an upper bound BX and the worker separates from the
firm at the moment T when this ratio hits a lower bound BT. Heuristically, Rt can be divided out
of both equations in formula (2) so that:

V(Pt,Rt) = RtV(Bt,1);
J(Pt,Rt) = RtJ(Bt,1).

An employment relation ends when the worker and the firm no longer consider its continuation
beneficial. This happens at the first time after the start of the job that bt is at the separation level
bT. Since the employment relation has started at time t such that bt is at the hiring level bX, the
duration until separation is determined by the time that is required for the random walk to travel
down the distance bX-bT. Whether this distance is large or small depends on the standard
deviation of shocks to bt per unit of time, σ. The probability of this distance being traveled
remains unaffected by a proportional variation of this distance, the drift and the standard
deviation. Distance and drift can therefore be normalized by the standard deviation. Define: ∆t ≡
(bt – bT)/σ, ∆ ≡ (bX – bT)/σ, and π≡(µp-µr)/σ. ∆t is the normalized distance between the actual log
productivity and the separation threshold, ∆ is the normalized distance between the hiring and
separation threshold, π is the normalized drift. At the moment of hiring ∆X = ∆, while at the
moment of separation ∆T = 0. Hence, the distribution of job tenures is fully determined by two
parameters, ∆ and π. Note that ∆ is not a structural parameter. It depends on the optimal hiring
and separation thresholds bX and bT, which will be determined in Section 2.5.

The distribution of ∆t - ∆ conditional on the hiring time X is N[(t-X)π,(t-X)σ]. When ∆t < 0,
separation has occurred at some time X < T < t. However, not all realizations of ∆t > 0
correspond to an ongoing employment relation. It might be the case that ∆s < 0 for some s, X < s
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< t, but that ∆t traveled back to a positive value since then. However, since the separation
decision is irreversible, these realizations do not correspond to ongoing employment relations.
The probability that no endogenous separation occurs before time t is the probability that ∆s > 0
for all X ≤ s < t. This conditional density can be calculated from the reflection principle. This
principle is illustrated in Figure 1. There is a one-to-one correspondence between the trajectories
starting at ∆ and ending at ∆t but having crossed the line ∆s = 0 at least once on the one hand,
and the trajectories starting from -∆ and ending in ∆t on the other hand. Hence, these trajectories
should be subtracted when calculating the density of all trajectories that never crossed the line
∆s  = 0. Hence, the density of ∆t and the relationship still going on (that is: T > t) conditional on
the starting time of the job, X=0, and the moment of observation t is:
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where Θ = e-2∆π. The parameter Θ accounts for the effect of the drift π. It cancels when π = 0.3

The distribution function of completed job tenures follows from integrating out ∆t:

−+ ΘΦΦ≡= tt - = F(t) - 1Xtt > T ]0,|Pr[

where Φt
i = Φ(xt

i),  xt
+ = (∆+πt)/√t and xt

- = (-∆+πt)/√t. Other authors have applied this statistical
model for the description of duration data before. The first paper that we are aware of is that by
Lancaster (1972), who applies the model to the duration of strikes, with considerable success.

The economic model discussed above is not the only model that yields this distribution for
completed job tenures characterized by ∆ and π. For example, a model where productivity
follows a Brownian instead of a geometric Brownian, leads to exactly the same statistical model
for completed job tenures. Hence, the fact that observed tenure distribution matches the
predicted distribution closely does not necessarily imply that the random growth model is the
only model that can explain the data.

The exit rate from employment is given by λ(t) ≡ f(t)/(1-F(t)). The pattern of this exit rate has
the following characteristics4:

i) λ(0) = 0 and increases from then on;
ii) λ(t) reaches a peak at t0, where 0 < t0 < 2/3∆2;
iii) after t0, λ(t) declines monotonically to:

for π > 0: λ(∞) = 0;
for π < 0: λ(∞) = -½ π2.

Stated roughly, ∆ locates the peak of λ(t) in time and π determines its final level. There is a
clear intuition for this pattern. The firm only hires a worker when the productivity of the job
is way above the outside option of the worker, since it will have to pay this outside option to

                                                
3 The intuition for Θ is that Pr[∆s=0, ∆t|∆0=∆, s,t,s<t] = Θ Pr[ ∆s=0, ∆t|∆0= - ∆, s,t,s<t]. Note that the factor Θ is independent
of s.
4 The proposition of the peak follows from inserting λ’ = 0 into λ" < 0.
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the worker. Hence, initially, the chance that this surplus is dissipated by random shocks is
negligible. After some time, a sufficient number of shocks have been accumulated, pushing
up the separation rate. Later on, the separation rate declines by a selection mechanism.
Trajectories of the Brownian that started with a large number of negative shocks have been
eliminated by previous separation, so the probability mass of remaining jobs shifts upward.
When the drift is positive, the drift (increasing linearly with time) will dominate the random
shocks (depending with the standard deviation of the Brownian, which increases with the
square root of time) in the long run. When the drift is negative, there will be a constant force
pressing the surviving jobs towards the separation threshold. The hump-shaped pattern is
indeed a feature of empirically observed job-exit rates, see Farber (1994). We shall return to
the issue of the shape of the hazard rate when discussing the estimation results.

2.3 A Comparison with the Learning Model

Learning models (Jovanovic (1979a), Lancaster, Imbens, and Dolton (1987) and Miller (1984))
yield the same hump shaped pattern in separation rates as the random growth model. However,
the random growth model generate much higher separation rates at longer tenures. For the sake
of comparison, we offer a short discussion of a simplified version of the learning model, using a
notation that highlights its similarity with the random growth model. Match productivity x0 is a
match specific constant, which is however unknown to the firm and the worker. The distribution
of x0 across jobs is normal with mean b0 and variance σ0

2. Actual output in period t, xt is equal to
x0 plus normally distributed white noise εt with variance σ2. Unlike the random growth model,
the model is in discrete time, but we can approximate a continuous time model arbitrarily close
by choosing an ever-shorter unit of time and decreasing the value of σ2 proportionally. The firm
and the worker have to infer match productivity x0 from realizations of output xt. They form
beliefs bt about match productivity by Bayes’ rule:
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where δ ≡ σ0
2/σ2. Beliefs are a weighted average of expected match productivity and past

realizations of output. In this simplified version, separation occurs the first time that the belief bt

is below a certain threshold, bT. In the full model, the separation threshold is time dependent
since the variance of the beliefs bt decreases over time. The smaller the variance, the lower
the option value of continuing the employment relation. Hence, the separation threshold
increases over time. However, this effect is strongly non-linear and cannot be characterized
analytically, see Lancaster, Imbens, and Dolton (1987).5 We shall therefore ignore this effect
in the subsequent analysis. The simplified version of the learning model can be respecified in
terms of two parameters, ∆ ≡ (b0 – bT)/σ0 and δ. The first is an analogue of the parameter ∆ in
the random growth model. By ignoring the upward trend in the separation threshold we have
implicitly set the drift equal to zero. Like in the random growth model, separation occurs
whenever standardized beliefs ∆t ≡ (bt-b0)/σ0 have traveled down the distance ∆.

                                                
5 Hence, contrary to the optimal separation rule in the random growth model, the optimal separation rule in the
learning model does not have a complete analytical characterization. This complicates a precise comparison
between both models.
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The crucial difference between the random growth model and the learning model comes to
surface when comparing the evolution of the variance of ∆ in both models. For the learning
model, we have:

[ ]
t

t
Var t δ

δ
+

=∆
1

while the random growth model yields Var[∆t] = t. Hence, the accumulation of shocks leading to
the gradual evolution of ∆t proceeds in a time scale in the learning model that is transformed
compared to the time scale that applies in the random growth model. Eventually, for t → ∞, the
variance of beliefs in the learning model converge to: Var[bt-b0] = Var[x0-b0] = σ0

2, since beliefs
converge to actual match productivity x0.

When we set: ∆learning = δ ∆random growth, the accumulation of shocks relative to the size of the
initial surplus, starts at the same rate per unit of time in both models. Hence, the hazard rates at t
→ 0 are equal in both models. After a while, the accumulation of shocks in the learning model
starts lagging behind that in the random growth model, and so does the hazard rate. The variance
of accumulated shocks in the learning model will never get above the value that is achieved at t
= δ-1 in the random growth model. The lower δ, the longer it takes before the hazard rate in the
learning model starts lagging behind that of the zero-drift random growth model. The pattern of
separation rates of a zero-drift random growth model is therefore a special case of the pattern
generated by the simplified version of the learning model for δ = 0.

This previous thought experiment aims at setting equal the hazard rates of both models at t →  0.
One can also choose to set equal the hazard rate at later points in time. In each case, the hazard
rate of the learning model will decline relative to that of the random growth model from that
time onwards. This is illustrated in Figure 2. The thin line represents the separation rate for a
random growth model with ∆random growth = 4, while the fat line represents the separation rate for a

learning model with ∆learning/ δ  = 3.8 and δ = 0.01, implying that the variance of transitory
shocks in productivity per unit of time is equal to 100 times the variance of x0 around b0. The
parameters of the learning model are set as such that the location of the peak is similar in both
models. At that point in time both models have produced about the same number of separations.
Even for this low value of δ, the random growth model produces a substantially higher number
of separations than the learning model for t > 30. For higher values of δ the difference between
both models is even more pronounced.

Where the pattern of separation rates of a zero-drift random growth model is a special case of the
simplified version of the learning model, this correspondence does not extend to the random
growth model with a negative drift. This follows from a simple argument. In the random growth
model, a negative drift implies that eventually all matches will be broken up, since λ(∞) = -½ π2

> 0. In the learning model, there is always some fraction of the matches that survive forever,
since learning the match quality x0 makes sense only if there is some fraction for which
productivity is above the separation threshold. These matches survive forever, or more precisely,
end only for reasons that are exogenous to the model. Note that this argument does not rely on
our simplification of the learning model, by disregarding the non-linear negative drift. Hence,
the pattern of separation rates of a random growth model with negative drift can never be
generated by a pure learning model.
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2.4 Tenure Profiles in Wages

Simple cross section wage regressions tend to show substantial returns to tenure. There is an
extensive literature on the measurement of these tenure profiles, see for example Abraham and
Farber (1987), Altonji and Shakotko (1987) and Topel (1991). This literature takes into account
all kind of biases introduced by the self-selection of workers into particular types of jobs. The
question asked by this literature can be summarized as: do high wages cause long tenures, or is it
the other way around? In this subsection, we address the potential implications of the random
growth model for observed tenure profiles. For this purpose, we extend the model with a simple
sharing rule for the distribution between the worker and the firm of surpluses from specific
investments. Let wt be the log wage of the worker. Our sharing rule simply distributes
instantaneous surpluses proportional to the worker and the firm6:

wt  = rt + ln{ 1 + β[exp( bt) – 1] } ≅  rt + β bt = rt + βσ∆t (4)

where β, 0 < β < 1, is the worker's share in specific investments. This sharing rule is consistent
with the previous assumption that hold up problems are resolved efficiently if workers’ share in
the specific investments is equal to β.  By letting the worker and the firm share the instantaneous
surplus in this way, the random growth model generates a natural explanation for the positive
correlation of job-tenure and wages that is observed in cross section data, even when the
normalized drift π is negative. To see this, consider the expected value of ∆t for ongoing
employment relations. This expectation can be calculated from the density of ∆t conditional on
survival at X < t < T and the date of job start X, see equation (3):
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For the second equality, we use ϕt
+ = Θ ϕt

-. The slope of the tenure profile in a cross-section
regression on log wages is equal to σβ × the derivative of this expectation with respect to t. The
latter reads:
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For a positive drift, this derivative is always positive, leading to a tenure profile. The interesting
case is that of a negative drift, π < 0, which we discuss below. The derivative consists of two
terms. The first term measures the direct effect of the drift, which is negative. The second term
measures the effect of the elimination of unfavorable trajectories of the Brownian by separations
prior to time t. In the short run, the first term dominates, because there is not yet much selection
going on, see the discussion on the initial value of λ(t). For t = 0, the second term even vanishes

                                                
6 In using this sharing rule we apply a pragmatic approach compared to what is most common in the literature, where wage
setting is done not by sharing the instantaneous surplus but by sharing the return on the expected discounted value of future
surpluses, yielding: wt = rt + ln{ 1 + ρβ(Vt – Jt) }.
The second approximation in equation (4) follows from a first order Taylor expansion that applies for small values of pt. For larger
values of pt, wt converges to pt + lnβ. The advantage of this first order expansion of a sharing rule based on the instantenaous
surplus is its linearity in ∆t.
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due to the factor φt
+. In the long run, the selection effect and the effect of the drift cancel, as

follows from taking limit for t → ∞ of equation (5)7:
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Since the conditional expectation of ∆t is equal to ∆ for t = 0 and is equal to -2/π for t → ∞, its
slope has to be positive in the intermediate run if: -2/π > ∆. In that case, the selection effect
dominates the drift, so that observed wages exhibit a tenure profile even when there is no
inherent job specific productivity gain. We shall apply these formulas when discussing the
implications of our estimation results.

The previous analysis is useful for cross section data, where we observe the starting date X but
not the stopping time T. However, in panel data, we also observe T for completed spells. The
random growth model with Nash bargaining implies that wt-rt follows a Brownian with drift.
Topel (1991), Topel and Ward (1992) and Dustman and Meghir (2001) find indeed strong
evidence that log wages within a job follow a Brownian, although their evidence regards wt, and
not wt-rt. Then, a simple cross-section regression would overestimate the drift, since log wages
in surviving jobs are a selective sample of jobs, where wages are above workers’ separation
threshold. The eventual tenure captures the information that at the moment of separation, the
wage rate is equal to workers’ separation threshold, while it is above this threshold before the
moment of separation. Hence, the model implies that the growth in wt-rt should be lower just
before separation. This prediction gets support in Topel and Ward (1992, Table VI, model (v)),
but not in Topel (1991, Table 4). However, their evidence regards wt, and not wt-rt. This
difference matters in particular when worker’s human capital is not fully job specific so that the
productivity in the job will be correlated positively to the value of the outside option. Jacobson,
LaLonde, and Sullivan (1993) find strong support for a declining profile in wt-rt in the period
before separation, though their evidence suggests that there are still substantial gains from trade
at the moment of separation. However, their evidence refers to lay-offs only, not to quits. If our
model is correct, there is no such thing as 'the' earnings loss or 'the' tenure profile in wages.
Tenure profiles depend on the evolution of a match.8

2.5 The Restricted Version of the Model and the Level of Specific Investments

In the restricted version of the model, the outside option is deterministic and hence the
covariance matrix Σ has only a single non-zero element, which is equal to σ2 by previous
definitions. Since the efficient hiring and separation dates are given in terms of Bt, it is
convenient to normalize the value functions by dividing through Rt and using Bt as the only
argument. By applying Ito’s lemma, these value functions are defined by two Bellman
equations, see Dixit (1989):
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7 We use: limx→-∞ Φ(x) = -(1-x--2) x-1 φ(x) + O(x-4) and: ϕt

+ = Θ ϕt
-

8 This observation puts into question much of the literature on the estimation of the tenure profile, see e.g. Altonji and
Shakotko (1987), which tries to estimate a tenure profile that is independent of the future perspectives of the job. Our model
also offers a natural explanation why the variance of the error term in a wage equation increases with tenure.
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where RtV(Bt) ≡ V(Bt,1), RtJ(Bt) ≡ J(Bt,1), and ρr ≡ ρ - µr; ρr can be interpreted as a modified
discount rate, accounting for the drift in the outside option µr. The first term on right hand side
of both equations takes care of the drift in Bt. The second term accounts for the non-vanishing
second order effect of shocks to Bt. The final terms in the second equation measure the current
output of a filled job, net of the outside option of the worker, which equals unity due to the
normalization by Rt. The hiring threshold BX and the normalized distance between the hiring and
firing threshold ∆ are implicitly defined by the following relations, see the Appendix for their
derivation:
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where D ≡ e∆, α1 ≡ - π + √(π2+2ρr), and α2 ≡ - π - √(π2+2ρr). The value of a job is finite if and
only if ρp ≡ ρr - π σ - ½ σ2 > 0 and ρr > 0, which we assume in the sequel; ρp can be interpreted
as a modified discount rate for the flow of payoffs from the match, accounting for the
deterministic and stochastic drift in pt. Equation (7) implies that bX is positive and bT  is negative.
Immediately after the hiring decision, the productivity in the job PX exceeds the outside option
RX by at least the interest payments on the specific investment, ρ RX I. If not, the firm would be
able to increase its profits by postponing the investment. At the moment of separation, PT is
below RT. When the productivity is just slightly below the outside option, it is better to retain the
worker since separation decisions are irreversible. The worker and the firm can only benefit
from the opportunity that productivity might pick up later on as long as they have not separated,
for otherwise they would have to incur the cost of specific investment again.

The drift parameters µr and µp, and the discount rate ρ do not appear independently of π and ρr

in equation (7). We can therefore respecify the model in terms of the latter two parameters and
eliminate µr, µp, and ρ. With this reparametrization, the restricted model has four parameters: π,
σ, ρr, and I. We assume exogenous information on the modified discount rate ρr to be available;
10 % per year seems to be a reasonable value. The distribution of job tenures is determined by
two (composite) parameters, see Section 2.2: π and ∆. These parameters can therefore be
estimated from tenure data. The first of the pair of equations (7) provides an implicit relationship
between the composite parameter ∆ and the underlying structural parameters, in particular the
level of investment, I. Hence, till so far, the model is identified up to a single parameter, the
standard deviation of shocks per unit of time, σ. This final parameter will be identified from the
contribution of the marginal hour of investment in job-specific training, H, to the total of specific
investments, I. Time spent on specific training is only one of the components of job specific
investments. There are other components, for example the time of experienced workers spent on
the training of their colleagues, and hiring cost. All these components contribute to total
investment, RX I. However, the interesting feature of the time spent on training is that our model
generates its marginal price. The cost of a marginal time unit of training is equal to PX. This cost
exceeds the opportunity cost of untrained workers (RX<PX), since intramarginal specific
investments have already been made, which raise the productivity of the worker above her
outside market option. Workers and/or firms will set marginal cost equal to the marginal
revenues of specific training. Since I is equal to the expected discounted value of a job, we have:
RX dI/dH = PX. Variation in the actual amount of on job specific training can be related to the
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observed tenure distribution, which allows us to estimate d∆/dH. I is a (non-linear) function of
∆, denoted I(∆), see equation (7). Hence:

I’(∆) d∆/dH = BX (8)

Expressions for BX and I’(∆) can be obtained from equation (7). Given the availability of
estimates of d∆/dH, this equation can be solved numerically for its only unknown parameter, σ.

3 The Empirical Implementation

3.1 Specification and Likelihood

A full structural estimation of the model would require us to specify the likelihood directly in
terms of the three structural parameters to be estimated, π, σ, and I.  We pursue a simpler, semi-
structural approach, where we specify the likelihood in terms of (composite) parameters ∆, π,
and d∆/dH, and then use the equations (7) and (8) to recover the structural parameters. We apply
the following specification for ∆ and π:

u + x = 

u +  x =

iijij

iijij

ππβπ
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where xij denotes the characteristics of job j for worker i. Since our estimation is based on a
panel for workers, random worker effects are included in both ∆ij and πij. We refrain from
including random job effects, because we observe each job only once, so its identification would
rely strongly on the functional forms.9 Since ∆ > 0 for all jobs, we impose the constraint u∆i > -δi

where δi ≡ minj[xijβ∆].10 We assume that u∆i and uπi are independent and normally distributed.
Hence, the log likelihood reads:
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where dij = 1 if a job is uncensored and dij = 0 otherwise and where j1 is the number of jobs of
individual i. We programmed both first and second derivatives of the likelihood. Convergence
was quick, requiring only a few iterations. The same estimates were achieved for different
starting values.

3.2 The Data

The data were taken from the National Longitudinal Surveys of Youth (NLSY), provided by the
U.S. Center of Human Resource Research. We apply 14 waves in the period 1979-1992. All
respondents were interviewed in 1979 and were then aged 14 through 22. We selected full-time
jobs of white males since the start of the career. We discarded jobs with missing occupations.
The career of the respondent is said to have started at the beginning of the first paid full-time job

                                                
9 See Van der Ende (1997) for estimation results including a random job effect.
10 The alternative would be to use an exponential specification for ∆: ∆ = exp.(xβ∆+ uδi) However, the disadvantage of this
specification is that the additive structure ∆t= xβ∆+t xβπ is lost.
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with a known occupation (occupation is missing for jobs lasting less than 8 weeks that were
uncensored at the first interview in which the job is recorded). Furthermore, the respondent must
have been working for at least 22 weeks and at least 440 hours in the next three consecutive
years. A paid full-time job is any job for which at least 30 hours per week is recorded at a
positive wage rate. We end up with a dataset of 8,339 jobs held by 2,352 workers.

The data are summarized in Table 1. Tenure increases with calendar time as long as the
respondent reports himself associated with the same employer. When an individual is rehired by
the previous employer without himself reporting still associated to this employer in the
intermediate period, we reset tenure to zero.11 The NLSY has the advantage of low attrition and
accurately measured tenures, in weeks. This is a crucial feature since aggregation over time
tends to hide the hump shape in the hazard rate, which plays a central role in the model.  We
shall use a week as the unit of time when reporting our empirical results. All explanatory
variables are measured at the start of a job. We shall use deviations from their means over the
selected jobs. Experience is the sum of working and non-working experience since the start of a
career.12 It is defined as the calendar time since the start of the career, regardless of the
employment status. Prior unemployment includes spells in which the respondent held only
part-time or military jobs.

On-the-job-training is defined as the first non-governmental program that is attended parallel to
a job. Later on-the-job training programs do not fit the assumptions of the random growth
model, where all specific investments are decided upon at the start of the job. Happily, these
programs are infrequent and little harm will be done in excluding them from the analysis. The
total hours of a program are the hours per week from the first record of the program, times the
duration of the program in weeks.13 The last column gives the number of programs that survive
the associated jobs by at least one and a half weeks. This would contradict our interpretation of
these training programs as being job specific; 93 % of the 1,089 training programs are
completed before the end of the job for which they are started. We censor surviving training
programs at the recorded end date of a job. Thirteen percent of the jobs take a training program.
Table 2 presents some statistics.

3.3 Estimation Results

Table 3 gives the Maximum Likelihood estimates of (9). We included dummies for 30
occupations (see Van der Ende (1997) for their classification) in the equation for ∆.  Recall from
Section 2 that ∆ situates the peak of the job exit rates, and that in the limit exit rates depend on
the normalized drift π only. Because highly specialized jobs, like that of a lawyer, typically start
at the end of our young-worker survey, their effects on the drift π are weakly identified. Hence,
we exclude the occupational effects of the drift. The occupation with the highest value of ∆ is
medical specialists, and the lowest is that of agriculture workers, which squares with our

                                                
11 As pointed out by a referee, this causes some problems for the interpretation of the results in the case of rehiring since part
of the specific investment do not have to be re-incurred in that case, compare Feldstein’s (1976) discussion on temporary lay-
offs. Hence our estimate of I is some mixture of the cost in the case of permanent separation and the much lower cost in the
case of temporary lay-off.
12 This excludes most of the holiday jobs.

13 A complication is that the question regarding training programs in the NLSY has been changed half way the period of
observation, see Parent (1999, 301). Before 1988, the question asked for training programs beyond military and government
sponsored programs lasting longer than one month. This restriction to programs longer than a month was lifted afterwards.
Like Parent (1999), we are therefore mixing data with and without a minimum duration requirement.
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intuition. For the drift, the standard deviation of the random worker effect is large relative to the
systematic component. For the distance, the standard deviation relative to the intercept is much
smaller. This implies that truncation implied by the minimum condition to avoid negative
distances has a limited impact on the estimation results, see Section 3.1.

Since all explanatory variables are measured in deviation of their mean, the intercept can be
interpreted as an ’average’ value for ∆. Loosely speaking, the estimated value of 6.6 for ∆ implies
that the initial surplus job productivity over the outside option is equal to 6.6 times the standard
deviation of a weekly shock, or equivalently, 0.9 times the standard deviation of a yearly shock
(since √52 = 7.2). The peak in the hazard rate is somewhere between the job start and 29 weeks.
The negative intercept of the drift provides strong evidence against a pure learning model, see
the argument in Section 2.3. The size of the drift, -0.036, implies that, abstracting from the effect
of random shocks, the initial surplus will dissipate in 6.6/0.036 = 183 weeks = 3.5 years. The
models of Aghion and Howitt (1992) or Caballero and Hammour (1994) allow an interesting
interpretation of this negative drift. New technologies are embodied in the specific investments
required for new jobs. The application of the latest technology therefore requires a switch to a
newly created job. The market alternative consists of with new jobs equipped with the newest
technology while existing jobs have a zero drift. It is tempting to interpret the effect of living in
central city as evidence in favor of this explanation. Big cities, with their large and therefore
highly specialized labor markets, probably allow a faster diffusion of new technologies than
small communities.

Figure 3 and 4 plot the observed (solid lines) and predicted (dashed lines) sample job exit rates
for the first three jobs of each worker (two thirds of all jobs in the sample) for the first year and
for the whole 14 year period. The plots indicate a good overall prediction of the random growth
model. Taking into account that (conditional on the explanatory variables) only two parameters
are used to fit the distribution, this is strong evidence in favor of the random growth model. As
discussed in Section 2.3, the pattern of exit rates of a zero-drift random growth model can be
generated by a pure learning model for extremely low values of δ only. The learning model can
never match the hazard rates of a random growth model with negative drift. Our finding of a
negative drift is therefore evidence against pure learning model. However, the random growth
model somewhat underpredicts the peak, as can be seen most clearly from figure 3. Hence, a
mix of both models might yield an even better description of the data.

Table 4 presents the values for the level of specific investment I (in weeks) and the hiring and
firing threshold BX and BT, calculated from equation (7) and (8). We use the estimated intercept
values for ∆ and π, a value for ρr of 10 % per year, and a range of values of σ, from 0.005 to
0.075 per week, or equivalently, 4-60 % per year. For this sample of young workers at the
beginning of their career, the value of specific investments ranges from the wage equivalent of a
couple of days to four weeks of work, depending on the value of σ. The hiring threshold exceeds
the firing threshold by a range varying from 3 % to 100 %.

The value of σ can established by the methodology outlined in Section 2.5, using the estimated
dummies for the training programs as a proxy for d∆/dH. The dummies for the training
programs are all positive and significant, suggesting that all categories of programs are at least
partly job specific. A similar result has been reported by Parent (1999). However, the
identification strategy outlined in Subsection 2.5 requires that a program is fully specific, since
only then we can calculate the value of the additional specific investment that is embodied in the
training program and relate that to the estimated effect on ∆. Parent (1999: 302) argues that
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seminars are the most fruitful candidate for this purpose. The estimations results suggest this
intuition to be correct, since seminars have the lowest hours per course and nevertheless the
largest effect on ∆. We focus therefore on this category in the subsequent argument.

There is one important caveat. The dummy for seminars might be a proxy for job heterogeneity.
Though the inclusion of 30 occupational dummies offers a partial remedy for this problem, some
unobserved job heterogeneity will persist. The standard deviation of the effect of unobserved
worker characteristics on ∆ shows that the impact of unobserved heterogeneity might well be
substantial: the difference between the occupation with the lowest and the highest ∆ is about
twice the standard deviation of these unobserved characteristics. We do not have a proper
instrument to account for this endogeneity bias. The estimated coefficient is therefore likely to
be an upperbound of d∆/dH, since it picks up some unobserved heterogeneity. Using the median
hours for a seminar, 24 hours or 0.6 week, an estimated upper bound for d∆/dH is 6.19/0.6 =
10.3. Hence, an estimated lower bound for σ is 0.005 per week or 4 % per year. Topel and Ward
(1992, Table VI) estimate the yearly standard deviation of innovations in wt to be 13 % per year
or 0.018 per week. When workers’ share in the surplus β is equal to 0.30 (see e.g. Holmlund and
Zetterberg (1991), Abowd and Lemieux (1993)), this yields a standard deviation for pt of
����������������	�
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is correlated positively with rt when worker’s human capital is not fully job specific. Hence:
�������� ������	�

Table 5 presents some calculations of the tenure profile in wages unconditional on the separation
date of the employment relation. We applied the benchmark parameter estimates for ∆, π, and
ρr, and we set σ at its upperbound, to calculate the expected surplus σ∆t conditional on T>t and
the implied tenure profile βσ(∆t-∆), using equation (8). The calculations show that there is a
rapid increase in the first 5 years. Later on, the profile flattens. We get close to the tenure profile
that are obtained from simple OLS regressions on cross-section CPS data (numbers taken from
Teulings and Hartog (1998: 37): 12 percent after 4 years, 18 percent after 8 years. It is
encouraging that this simple structure can explain the tenure profile in wages.

4 Relating the Evolution of  Match Productivity to Observed Shocks

4.1 Methodology

The previous analysis yields two empirical regularities contributing to the credibility of the
random growth model: the humped-shaped pattern in separation rates and (compared to the
predictions of the learning model) the high separation rates beyond the hump. However, both
pieces of evidence offer only indirect support. It is always possible to specify some strange
pattern of duration dependence to make any model fit the observed pattern of exit rates. It would
be more convincing if we were able to show that shocks to the productivity of individual
employment relations are correlated with observed shocks. We can think of many variables that
can be expected to be related to the evolution of pt or rt, like for example, changes in log output
prices or log employment either at the industry or the firm level. We can then test directly the
main feature of the random growth model, that separations are driven by the accumulated
random shocks to productivity running from the start of the job till the moment of separation,
and not by the latest shock, as is suggested by search models. In this section, we work out a
methodology for this type of analysis.
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The main problem is that we do not observe the excess log productivity of a worker in his
present job above her outside option, bt = σ∆t. The only information that is available is that ∆t

must be equal to zero at the moment of separation, t = T. Given the initial value ∆ at the start of
the job, we can infer that the random shocks must have accumulated to -∆ in the time period
spanned by the job tenure. We have to rely on this cumulative information. However, the
problem is that the realizations of ∆t at the moment of separation are obviously a highly selective
sample of all conceivable of trajectories of the underlying Brownian motion.

In order to deal with this selectivity problem, we consider the case of a single observed shock
variable. Suppose that the Brownians rt-rs and pt-ps can be decomposed in an observed
Brownian component ast and two unobserved Brownian components er

st and ep
st in the following

way:

rt-rs = γrast + er
st,

pt-ps = γpast + ep
st,

where ast ~ N[0,σa
2(t-s)] and where the unobserved components er

st and ep
st are uncorrelated to

ast. The assumption of the drift of ast being equal to zero is made for the sake of convenience and
does not imply a loss of generality, since the observed variable ast can be easily detrended.  From
the above assumptions we have:

bt-bs = σ∆t = γ ast + est,

where γ = γp-γr and est = ep
st-e

r
st. Since the distribution of ∆t and ast have been specified

previously, the distribution of est  is fully determined:

est  ~ N[πσ(t-s), (σ2-γ2 σa
2) (t-s)].

Hence, it must hold that: γ2 σa
2 < σ2. The parameters γr and γp can be expected to have the same

sign. If a particular shock affects the productivity of a particular worker in the present job, the
market option (being the max of all alternatives) will probably change in the same direction.
However, this brings us no clue regarding the sign of γ, as this sign depends on which of the two
is most sensitive to the observable shocks, rt or pt.

We want to relate the observed values of ast to realized patterns of pt and rt. However, as long as
we do not observe productivity directly, we have no information regarding the magnitude of bt-
bs for a particular employment relation at a particular point in time. However, we do know that
bT-bX has to be equal to -σ∆ at the moment of separation. This provides a basis for empirical
inference. Clearly, running a regression where ∆ is the left-hand variable and aXT the explanatory
variable fails since our model implies that bT-bX is equal to -∆ only at the moment of separation,
and greater than -∆ before. This is a highly selective sample from all possible trajectories bT-bX,
violating the standard assumptions of regression analysis.

Our solution to the selectivity problem in the observations of ∆t benefits from the fact that the
distribution of the observed component aXT is normal. Hence, in an aselect sample, σ∆t is the
sum of two independent normal variates, γast and est. The distribution of one of these variates,
conditional on separation (that is: on their sum being equal to σ∆), is again a normal variate with
parameters:
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[aXT|γaXT + eXT=σ∆] ~ N[-γ2σa
2 σ-1(∆-π T), (σ2-γ2σa

2) σa
2 σ-2T]

where we normalize X to zero, so that T measures job tenure. Hence, the stochast eXT
* ≡ [aXT +

γ2σa
2 σ-1(∆-π T)]/√T has zero mean and constant variance and is orthogonal to ∆ and T. We can

therefore specify the following regression model:

aXT/√T = δ0 + δ1 T + δ2 √T + δ3 π √T + δ4 ∆/√T + eXT
* (10)

From the distribution of aXT, we have the following equalities:

δ0 = δ1 = δ2 = 0,
δ3 = -δ4 = γ2σa

2/σ,
V[eXT

*] = (σ2-γ2σa
2) σa

2 /σ2

The estimation results from Section 3 can be used for calculation of ∆ and π. Because γ is the
only unknown parameter (since ast is observed, σa

2 can be inferred from the data), we have five
over-identifying restrictions, which can be applied for testing.

4.2 Recovering the Brownian from Unemployment Data

The next issue is what variable can serve for aXT. The productivity of individual matches is
affected by a multitude of shocks. Most of these shocks are idiosyncratic (either industry or firm
or even individual specific), see Davis and Haltiwanger (1992). However, part of them will be
aggregate shocks. The methodology set out above can be applied to both types of shocks.
However, here we use data on aggregate shocks only. Our plan is to use monthly unemployment
data at the state level. Obviously, unemployment is not a Brownian. Random shocks push the
unemployment rate up and down every now and then, but Smith’s invisible hand pushes it back
to its natural rate in a properly functioning market economy. This suggests the evolution of
unemployment to be an auto-regressive process. So, although the unemployment rate itself is not
a Brownian, the underlying process may very well be.

We have data available for 50 states and Washington DC, running from January 1978 through
January 1996 (215 months). We use these data to reconstruct this underlying process by
estimating a VAR(2) model, allowing for lagged interstate effects. Per state, we therefore
estimate 2 lags x 51 states + 1 intercept = 103 coefficients. Unemployment is stationary in all but
two states. The restriction of all interstate effects being equal to zero is rejected. A VAR(1)
model is rejected against the VAR(2) model. Data limitations do not allow the estimation of a
full VAR(3) model, but without interstate effects, the third lag is insignificant in all but 2 states.
Observations for ast for each state are calculated by adding up minus the residuals of this model
from s to t; ast is therefore constructed to be a Brownian with zero drift. These data will be
applied for the estimation of equation (10).

4.3 Estimation Results for the Effect of Aggregate Shocks

The estimation results for the standard version of equation (10) suggest that aggregate shocks do
not affect the trajectory of bt. None of the coefficients is significant. However, the sensitivity of
employment to aggregate shocks is likely to vary strongly between industries. For example, in
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construction, employment goes up and down with every recovery and slowdown, while in retail
trade employment might even be countercyclical. Hence, workers quit from retail trade and stay
in construction during the upswing while they are laid off from construction and stay in retail
trade in the downswing, and vice versa. This might explain why we do not find any effect on
separations when we enter aggregate shocks with the same coefficient for all jobs. We
investigate this issue by adding cross effects of aX-1,X with π and ∆:

aXT/√T = δ0 + δ1 T + δ2 √T + δ3 π √T + δ4 ∆/√T +
δ21 aX-1,X √T + δ31 aX-1,X π √T + δ41 aX-1,X ∆/√T + eXT

* (11)

aX-1,X  measures the state of the business cycle at the moment that the employment relation starts.
By using aX-1,X  instead of aX,X+1, spurious correlation with the endogenous variable is avoided.

The estimation results presented in Table 6 strongly support the notion that jobs that started at a
trough will likely end when the economy recovers and jobs that started at a peak will likely end
when the economy gets into a recession. A downward shock to the economy raises bt for jobs
that started at a trough. This seems counter-intuitive. However, bt = pt-rt. The downward shock
is expected to have a negative impact on both the productivity in the present match and on the
outside option. When the negative effect on the latter exceeds that on the former (γr>γp), the
relative productivity bt moves up. In that case, workers stay in their present job, not because its
productivity is so high, but because the alternatives are even worse. Aggregate shocks account,
on average, for 9 percent of the variance. This is an amazingly large number. In a world so
diversified and specialized as a modern economy, where the impact of each technological
innovation differs strongly between job types or industries, we had not expected so large a
contribution of a single indicator. We also tested specifications where we used somewhat
different indicators for the state of the labor market at the moment of job start, e.g. aX-2,X-1 and
aX-3,X. These specifications all yielded similar results.

The test statistic for the F-test δ0 = δ1 = δ2 = δ21=0, δ3= -δ4, δ31= - δ41 is 3.35, which exceeds the
critical value at 1 percent (2.82). When we drop the final restriction, the others are acceptable.
This final restriction refers to the proportionality of the effect of the initial surplus ∆ and the drift
π. For longer lasting jobs, their ratio as estimated from Section 3 gets distorted, which might be
due to a non-linearity in the drift. The restriction becomes almost acceptable when we drop jobs
with long tenures from the sample. For the 5,616 jobs with tenures less than 250 weeks, the F-
statistic is 2.85. This lower F-statistic is not due to the lower precision in the estimation by the
reduction in the number of observations, since when we estimate the model only for the
observations above 250 weeks of tenure the F-statistic goes up to 3.68. When we account for the
effect of unobserved characteristics on ∆, see Van der Ende (1997), the restrictions are
acceptable. The random growth model therefore fits the data well, as long as we consider jobs
that last less than 5 years. This evidence offers support for the notion that separations of matches
are triggered by the accumulated shocks over their total duration, not by the last shock, as is
predicted by search models.

Can this evidence be explained by learning models of the type of Jovanovic (1979a)? In our
view, this is hard to believe. Remember from Section 2.3 that in the learning model the expected
value of the output of a match is match specific, but constant over time. Present realizations of
output provide worker and firm information on this match specific expected value, but they do
not affect the expected value itself. Hence, the only way in which aggregate shocks can lead to
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separations in a learning model is when workers and firms erroneously take the aggregate shock
to be match specific.

5 From Individual Matches to a Model of Firm Level Employment

5.1 The General Model

Hitherto, the literature on individual matches has not been well connected to that on firm level
employment. An important advantage of the random growth model is that it can be easily
embedded in Bentolila and Bertola’s (1990) model of the evolution of firm level employment
when there is uncertainty about future labor demand. This requires only one additional
assumption, which moreover has an interesting economic interpretation. In the model of
Bentolila and Bertola (1990), a profit-maximizing firm faces a demand curve with constant
elasticity η>1:

qt = -η(pt 
* + zt)

where qt and pt
*  are log output and log price respectively, and where log market index zt is a

Brownian with drift. For simplicity, the log outside option of workers rt is normalized to zero, so
that pt = bt. Furthermore, productivity per worker is normalized to unity, so that output is equal
to employment. Consider the case where firms make all specific investments and reap their full
surplus (β = 0). In the model of Bentolila and Bertola, firms pay hiring and firing costs
proportional to the number of workers they hire and fire respectively. Since our model does not
have firing cost (though their introduction would be rather simple), we set firing cost to zero.
The per worker hiring cost are identified as the specific investment I.

Bentolila and Bertola show that under these assumptions the firm hires workers when pt
* reaches

an upper bound p+ > 0 and fires workers when pt
* reaches a lower bound p- < 0. Our claim is that

the model of Bentolila and Bertola yields the same pattern of job durations of individual workers
as the model in Section 2, if we supplement their model with a particular rule for the order in
which workers are laid off. Firms have to fire the workers first that are hired last
(Last-In-First-Out). A simple way to model this is to attribute to every worker a seniority index
q, which is conveniently defined as the log employment level qt at the moment that the worker is
hired. If the firm wants to fire workers it is obliged to fire the workers with the highest seniority
index, which are by construction the workers which are hired last. Kuhn (1988) and Kuhn and
Roberts (1989) offer a rationalization for this type of agreement, which will be discussed in
Section 5.2.

The situation is depicted in the graph form in Figure 5. The horizontal lines at p+ and p-

represent the hiring and firing thresholds. Suppose that at time s, employment is equal to q* and
output prices are equal to p+. Hence, the firm is at its hiring threshold. A further upward shift in
product demand due to an increase of zs will lead to an increase in employment. A downward
shift will have no immediate effect on employment because the output price ends up between the
hiring and firing threshold. Whatever, the future evolutio of  zt, worker q* will be fired at the first
moment t, t>s, that zt= zs + p- - p+, that is, the first moment that the random walk has traveled
down the distance p+ - p-. This is exactly the same process as described in Section 2. The
distance p+ - p- is equivalent to σ∆ in Section 2.
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The analogy can even be extended to the nature of the optimization process itself. Consider the
log marginal value of product of the q-th worker conditional on the state of demand, zt, denoted
mr(q,zt). This log marginal value can be calculated by considering the case that the firm does not
hire any workers workers beyond the seniority index q. Then, log total revenue for all workers
up to q would be equal to η-1/η  q + zt and hence the log marginal revenue of worker q equals:14

mr(q,zt) = -1/η q + zt + ln(η-1/η).

Since zt follows a random walk, the log marginal revenue also follows a random walk. When
this log marginal revenue is set equal to the variable bt as in applied in Section 2, the optimal
hiring and firing thresholds of the firm are exactly equal to those derived in Section 2. In fact,
every worker is attributed her marginal product of labor as if no further workers were hired. The
additional revenues that are collected by hiring extra workers are attributed to these extra
workers. In this way, the hiring and firing decision of a worker indexed q can be decoupled from
the hiring and firing decisions of workers with a higher or a lower seniority rank. As long as the
rank-order of hiring and firing is preserved, the only relevant information for the hiring and
firing decision of a particular worker is the marginal productivity given her seniority index (that
is: ignoring the output of all workers with a higher seniority index).

When hiring and firing cost in the model of Bentolila and Bertola (1990) converges to zero the
interval between the upper bound p+ and lower bound p- converges to zero, too. Then, pt

* is a
constant and hence qt = -η zt. Log employment follows a random walk, which is known as
Gibrat’s law. This law offers a quite accurate description for the evolution of firm size, provided
that it is above a certain minimum threshold, see Jovanovic (1982) and the references cited
there. The model for individual job durations set out in Section 2 is therefore closely related to
this empirical law. This equivalence suggests a simple test of this model of the relation between
individual employment relations and the evolution of firm level employment. Consider the
empirical testing procedure set out in Section 4.1. Instead of aggregate shocks one can use the
evolution of log employment of the firm as explanatory variable. The separation process of
individual matches would be closely related to the evolution of the firm’s employment level.

5.2 Hold Up and LIFO

The LIFO lay-off rule provides a device for decoupling the hiring and separation decisions of
different workers within the same company. This decoupling gets practical importance, as soon
as workers pay for some share β of the specific investments I, 0 < β < 1. Workers are
compensated for these investments by awarding them a share β of the surplus of log productivity
above their outside option, mr(q,zt):

w(q,zt)= β mr(q,zt) (12)

where we use the linear Taylor expansion that is also applied in equation (4). Since mr(q,zt)
plays the same role as bt in the model of Section 2.5, this set up relates the wage setting in this

                                                
14 mr(q,zt)  is below the log market price at output level q by a constant term ln(η-1/η), since it takes account of the
negative effect of hiring an additional worker on the price obtained for the output of the intramarginal workers.
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firm level model to the discussion on tenure profiles in Section 2.4. The expected discounted
value of the tenure profile is equal to the worker’s share in specific investment. However, the
actual return depends on the evolution of firm’s demand curve, that is, on future realizations of
zt.

The implication of this set up is that workers who differ by their degree of seniority q, but who
are otherwise homogeneous, receive different wages. The problem with this set up is that senior
worker’s wages are vulnerable to the firm hiring new workers, since these are perfect substitutes
for incumbents. The firm could negotiate a lower wage today to these new hires by promising
them parts of the returns on specific investments that would otherwise go to incumbents. This
threat of the firm introduces a hold-up problem. Workers invest less because they know that they
will not be able to appropriate their full expected share in future surpluses. One possible strategy
for incumbents is to oppose any further hiring, because this endangers their claims on the
surplus. This is the extreme insider-outsider theory. The drawback of this strategy is that gains of
trade remain unexploited. A more efficient solution therefore is to protect the claims of
incumbents by a LIFO lay-off rule, which prevents the firm to replace expensive incumbents by
cheap new hires. A LIFO lay-off rule can therefore be viewed as a device to deal with the hold-
up problem in firms with otherwise homogeneous workers who bear part of the cost of specific
investments and therefore share in subsequent surpluses.15

This model of wage setting has direct empirical implications. The firm sets employment qt as
such that mr(qt,zt)=σ∆, or:

qt  = η[zt + ln(η-1/η) - σ∆].

Hence, exp[q-qt] = exp[ησ∆-ηmr(qt,zt)] is a rank index of the seniority of a worker q within the
firm’s seniority hierarchy. The index takes value 0 for the most senior worker and value 1 for the
least senior worker. It then follows immediately that wages are a function of this seniority rank
index, compare equation (12). So, if this model is correct, the tenure variable showing up in a
cross section log earnings regression is in fact a proxy for a tenure rank index. With proper data
on this seniority index exp[q-qt], the prevalence of this index above tenure as an explanatory
variable in a wage regression could be tested.

6 Concluding Remark

In this paper, we present some pieces evidence for the relevance of the random growth model of
the job tenure distribution. The hump shaped pattern of separations rates predicted by the model
fits the pattern observed empirically quite closely. In particular, where the learning model
predicts separation rates to converge to zero quickly, the random growth model generates the fat
tail in separations observed empirically. The evidence on the impact of shocks suggest that
separations are driven by the accumulated history of shocks running from the start of the job up
till the moment of separation, contrary to what is predicted by search model, where only the last
shock matters. The results in the paper provide therefore for evidence in favour of the random
growth model. However, it seems unlikely that either random growth, or learning or search can
explain exclusively the empirical evidence. A realistic model should probably include all three

                                                
15 A similar argument can be found in Kuhn (1988), who considers a world where first workers set wages and then the firm sets
employment.
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ingredients. The more relevant question would then be their relative importance in explaining
the data.

The evidence on the importance of accumulated shocks above presented in Section 4 favors the
random growth model above the search model. However, the observed aggregate shocks explain
only 10 % of the variance of innovations in job productivity. Nothing guarantees that there is no
transitory component in the remaining 90 %. The merit of the search model is that it offers a
natural explanation for the negative correlation between separation rates and the experience at
the date of job-start. Search selects good draws from the offer distribution. The more
experienced the worker, the longer this selection process has been going on and the less likely it
is that a new offer yields a further improvement. However, search is not the only explanation for
the fall in separation rates in the course of the worker’s career. When the optimal level of
specific investments is complementary to the worker’s experience, this leads to a similar
experience related pattern in separation rates. In our model, this implies a positive correlation
between the initial surplus and experience at the date of job-start, as we observe empirically, see
Section 3. Alternatively, one can assume that experienced workers are more efficient in the
accumulation of job-specific experience, leading to an upward drift in job productivity, or
equivalently, that they are less efficient in the accumulation of general experience, leading to a
downward drift in the outside option. In the random growth model, both mechanisms lead to a
positive correlation between the drift and experience, again as is observed empirically. Hence, a
more complete evaluation of the importance of search vis-à-vis the random growth model
requires further implications to be incorporated in the model.
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Appendix: Derivation of the Investment Equation

The derivation follows Dixit and Pindyck (1993), Section 7.1. It starts from Bellman
equations (3) in the text:
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where:
V ≡ V(Bt),
J ≡ J(Bt),
and where V’ and J’ are the first and V' and J' the second derivatives of V and J.  We leave
out the subscript t of B for the sake of convenience. These are two second order differential
equations. A particular solution to the second equation is:

ρr J = B/ρp – 1/ρr

The characteristic roots of the homogeneous part of both differential equations read:
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For our application it is often more convenient to work with the parameter α = σβ. Hence:

rρππα 22
2,1 +±−=

The solution to the Bellman equations can now be written as:
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The first term in both equations is the option values. The option value of a vacancy is
increasing in B for a vacancy (the option increases in value when the prospect of filling
becomes closer) and converges to zero for low values of B. The option value of a job is
decreasing in B (separation becomes more realistic when productivity goes down) and
converges to zero for high values of B. Hence, we apply the positive and negative root  of β
in both equations respectively. The value equivalence conditions (V = J for separation;
V = J – I for hiring) and the smooth pasting conditions (V’ = J’, both for separation and
hiring) read:
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Usually this system is solved for A1, A2, BT, and BX. In our case, we want to have a solution
for I, given our estimate of ∆. Since e∆ = [BX /BT]σ ≡ D, we use this relation to substitute for
BT and solve the system for the remaining unknowns. This procedure yields the system of
equation (5) in subsection 2.3.
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Table 1 Means of selected variables

Variable Mean

% jobs observed to end 73.6

tenure (in weeks) 100.3

grade/10 1.28

local unemployment rate (in %) 8.7

experience at job start/100 (in weeks) 2.10

unemployment spell prior to job start/100  (in weeks) .15

spouse present .34

central city .12

goverment job .07

union .14

Table 2 Job training in 8,339 jobs

type Observati-
ons

Hours
Known

Median
Hours

Mean
Hours

Survives
Job Exit

on-job-training  159  115  107  400   12

vocational/technical  112   64  144  782   23

business college   23   18   35  149    5

corres. course  405  328   44  171   14

seminars  299  262   24   63    4

other   91   75   80  313   15

total 1,089  862   40  226   73
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Table 3 ML estimates of (9)

Parameter π t-value ∆ t-value

intercept -.036 14.23  6.642 55.28

grade/10  .039  5.54 -1.118  3.56

unemployment (%)  .008  1.85 - 3.33  2.03

experience/100  .010  7.69  .018  0.48

prior unempl./100 -.015  3.81 -.491  3.93

spouse present  .017  4.66  .229  1.63

central city -.015  2.83  .136  0.69

government job  .032  5.17 -.851  3.62

union  .031  7.01 -.067  0.39

dummies:

on job training

voc/technical

business college

corresponding course

seminar

other programs

26 occupation dummies

  -

  -

  -

  -

  -

  -

  no

  -

  -

  -

  -

  -

  -

  -

5.014

4.726

3.917

4.925

6.194

2.985

yes

 7.69

 8.63

 2.72

13.37

13.63

 4.54

 -

sdev. worker chars.  .045 16.10 1.897 34.13
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Table 3 (cont’d) with occupational effects. Skilled craft workers are the reference group
Occupation Distance |t-value| Nr. Jobs

early jobs
waiter  0.014  0.03     72
unskilled craft -0.258 -0.99   300
food, household  0.139  0.61   451
nurse aid, maid  0.400  1.61   359
communication worker  0.320  0.55     60
agriculture worker -0.297 -1.25   334

middle class jobs 5,174
sales worker 0.584  2.47    513
medium skilled craft 1,495
guard, packer 0.388  0.97    142
medical assistant 1.880  1.70      27
low skilled craft 0.564  0.98 1,093
restaurant manager      79
secretary 0.708  0.76      30
teacher nonsecondary 1.549  2.83    105
clerk 1.291  4.89    450
skilled craft 1,335
technician 1.151  2.67    162

specialized jobs
specialized craft 0.871  1.64    106
protective services 1.908  2.14      53
manager and related 1.249  3.41    241
sales representative 2.226  3.33      92
medical specialist, pilot 1.453  1.19      25
medical skilled 3.566  2.64      28
manager n.e.c. 1.980  5.63    370
computer operator 1.933  2.23      51
public servant, scientist 2.393  5.94    228
leisure service 1.392  1.15      24
specialist, lawyer 2.509  5.70    192

Table 4  Standard deviation of shocks, investment, (both in
weeks), and separation tresholds

π=-0.036, ∆ = 6.66
σ I BT B dI/d∆ ∂∆/∂H
0.005 0.235 0.985 1.018 0.106 9.649
0.010 0.471 0.970 1.036 0.211 4.902
0.015 0.707 0.956 1.055 0.318 3.320
0.020 0.943 0.941 1.074 0.425 2.529
0.025 1.181 0.927 1.093 0.532 2.056
0.030 1.418 0.912 1.112 0.639 1.740
0.035 1.656 0.898 1.132 0.747 1.515
0.040 1.895 0.884 1.152 0.855 1.347
0.045 2.134 0.871 1.172 0.964 1.216
0.050 2.373 0.857 1.192 1.072 1.111
0.055 2.612 0.843 1.212 1.181 1.026
0.060 2.852 0.830 1.233 1.291 0.955
0.065 3.092 0.817 1.254 1.400 0.896
0.070 3.333 0.803 1.275 1.510 0.845
0.075 3.573 0.790 1.297 1.620 0.801
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Table 5     Tenure profile for σ = 0.060, π =
-0.036, ∆ = 6.66

years σ∆t 0.30 σ(∆t-∆)
0 0.400   0.000
1 month 0.388 - 0.002
3
months

0.403   0.002

1 1.022   0.188
2 1.322   0.278
3 1.523   0.338
5 1.795   0.420
10 2.175   0.534
15 2.389   0.598
20 2.531   0.641

Table 6      Extended estimates of (10) for
������������������ � T= 0.
Dependent variable: a1T

(monthly aggregated
unemployment residuals).

Variable OLS |t-value|
intercept   .0000     .0
T (in
weeks)

 -.0000     .1

!T  -.0001     .2
a01 ��  .0023   2.2
!T  .0008     .4

a01� �� -.0180   1.0
 /�� -.0005     .4

a01�  /�� -.0560 17.9
2
aσ  .0012

R2  .091



33

Figure 1: The reflection principle
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Figure 2: A comparison of the learning and random growth model (∆random growth = 4,

∆learning / δ  = 3.8, δ = 0.01).
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Figure 3: Weekly job exit percentage for the first year

Figure 4: Monthly job exit percentage for the first fourteen years
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Figure 5: The relation between the individual and the firm level
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