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describes both finite-state Markov sunspot solutions, satisfying a
resonant frequency condition, and autoregressive solutions
depending on an arbitrary martingale difference sequence. We
clarify the relationships between these solutions and show that the
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representation used by agents in the learning process. Only the
finite-state Markov sunspot solutions can be stable under learning.

Keywords: Indeterminacy, representations of  solutions,
learnability, expectational stability, endogenous fluctuations.

JEL Classification: C62, D83 D84, E31, E32.

George W. Evans Seppo Honkapohja
Department of Economics University of Helsinki
University of Oregon P.0.Box 54
FIN-00014 Helsinki
Eugene, OR 97403-1285 Finland

USA Seppo.honkapohja@helsinki.fi



Expectational Stability of Resonant
Frequency Sunspot Equilibria*

George W. Evans Seppo Honkapohja
University of Oregon University of Helsinki

April 9, 2001

Abstract

We consider the stability under adaptive learning of the complete
set of solutions to the model z; = BEfx;;1 when || > 1. In addition
to the fundamentals solution, the literature describes both finite-state
Markov sunspot solutions, satisfying a resonant frequency condition,
and autoregressive solutions depending on an arbitrary martingale dif-
ference sequence. We clarify the relationships between these solutions
and show that the stability properties of equilibria may depend cru-
cially on the representation used by agents in the learning process.
Only the finite-state Markov sunspot solutions can be stable under
learning.
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1 Introduction
We consider a univariate linear model of the form

Ty = ﬁE:xt+17 (1)

*Financial support from the US National Science Foundation, Academy of Finland,
Yrjo Jahnsson Foundation and Nokia Group is gratefully acknowledged.




both under rational expectations and under the assumption that economic
agents follow certain natural adaptive learning rules. Here E}z,.; denotes
the expectations held by agents, assumed homogeneous. Under rational ex-
pectations

= BET4, (2)

where Fy;z;,1 denotes the true conditional expectation given the information
set at time t. We are interested in whether rational expectations solutions de-
pending on extraneous exogenous random variables (sunspots) can be stable
under adaptive learning.

The model (1) does not include intrinsic random shocks, and has been
centered, so that there is a steady state at the origin. Both of these assump-
tions are made for simplicity and could be relaxed. Throughout the paper
we will assume that 3 # 0 and (3 # 1.

The steady state z; = 0 is a rational expectations (RE) solution (and
indeed satisfies perfect foresight). This solution is often called the “funda-
mentals” solution. As is well known, there are other rational expectations
solutions to (1), taking the form

x = B w g + ey, (3)

where ¢, is an arbitrary martingale difference sequence, i.e. a stochastic
process satisfying Fie;,1 = 0. It is easily verified that a process of the form
(3) is indeed a RE solution to (1). Conversely, any RE solution to (1) can
be written in the form (3), as can be seen by defining ;1 = z411 — Epxyy.
We will refer to (3) as the AR(1) representation of the solution, as we now
explain.

When || < 1 the solution z; = 0 is the unique nonexplosive solution, see
(Gourieroux, Laffont, and Monfort 1982). The other rational expectations
solutions of the form (3) have conditional expectations that, in absolute value,
tend to infinity. In the “irregular” case |/3| > 1 there are multiple stationary
solutions. In particular, if €; is an éid process with mean 0 and constant
variance (i.e. “white noise”), then (3) is a stationary first-order autoregressive
(or AR(1)) process." When ¢, takes a different form the process need not be

LTf the system begins at ¢t = 0 then the solution (3) also requires an initial condition.
For an appropriate initial condition the process is stochastically stationary. For other
initial conditions there is a transient nonstationarity, but the process is asymptotically
stationary.



stationary, but for convenience we will continue to refer to (3) as the AR(1)
representation of the solution.

Considerable attention is given in the literature to finite-state Markov
solutions, i.e. solutions taking the form

xy =T; when sy =i, fori=1,... K, (4)

where s; € {1,..., K} follows a finite-state Markov process with fixed transi-
tion probabilities 7;; = P(s;+1 = j | s, = 7). Again, the exogenous stationary
process s; is usually called a “sunspot” process and the solutions are called
finite-state Markov stationary sunspot equilibria (SSEs).

Much of this literature considers such solutions more generally in the con-
text of possibly nonlinear models, i.e. in models of the form z; = E; F'(x4,1).
For example, the existence question is discussed at length in (Guesnerie and
Woodford 1992) and (Chiappori, Geoffard, and Guesnerie 1992). However,
it can easily be established that this type of SSE exists in the linear model
when |3] > 1. Clearly, such solutions must have an equivalent representation
in the AR(1) form (3).

The learning question has also been considered for both forms of solu-
tion (3) and (4). In particular, for solutions in the AR(1) form, stability
under adaptive learning was considered in (Evans 1989) and discussed fur-
ther in Section 9.7 of Chapter 9 of (Evans and Honkapohja 2001b). Stability
under adaptive learning of Markov SSEs is discussed in (Woodford 1990),
(Evans 1989), (Evans and Honkapohja 1994) and Chapter 12 of (Evans and
Honkapohja 2001b).

There are some important gaps in this literature, even in the linear case.
The relationship between these two types of SSEs has not been explicitly
addressed, and existing adaptive learning results are incomplete. Indeed, the
adaptive learning results for the two set-ups appear to be at variance, as we
show below. In this paper we clarify the relationship between the different
solutions and then extend and reconcile the learning results by nesting the
two set-ups in a common framework.

2For a study of the eductive stability of 2-state Markov SSEs see (Desgranges and
Negroni 2000).



2 Resonant Frequency Sunspots

We now consider finite-state Markov SSEs. For convenience we focus on the
2-state case, which has a prominent role in the literature. Assuming solutions
to (2) of the form (4) implies

71 = B(rnT + mala),
Ty = [(maly + maaZa),
or
Iz = 8 'z, (5)

where II is the matrix with elements 7;; and Z’ = (Z1, ). In order for the
solution to constitute an SSE we must, of course, have Z; # Zy. It follows
that 3! must be an eigenvalue of IT with eigenvector Z. Since the eigenvalues
of IT are 1 and my; + o2 — 1 we obtain

-1 = 57} (6)
(1 — 7T22).T1 + (1 - 7'('11)@2 = 0. (7)

It is seen from (5) or (7) that there exists a one-dimensional continuum of
(Z1, o) for transition probabilities satisfying (6).>

We will refer to the sunspot variables that satisfy (6) as “resonant fre-
quency” sunspots, since only sunspots precisely satisfying the transition prob-
ability restriction (6) are capable of generating finite-state sunspot fluctua-
tions around the steady-state.

From Section 1 we know that it is also possible to represent such resonant
frequency stationary sunspot equilibria (RFSSE) in the form (3). Requiring
that the RFSSE (Z, Z2) is of the form (3), in which &, is a linear function of
s; and s;_1 and in which the transition probabilities for s; satisfy (6), implies
that the corresponding martingale difference sequence €, can be written as

g, = a+ [s; + §s;_1, where (8)

i’g—fl, g:(l—ﬂ'll—ﬂ'gg)(fg—fl) and (9)

= _(3 — 2w — 7T22)(Cf2 - Cfl)-

Ql KH|

3Corresponding results for the K-state SSEs are given in (Chiappori, Geoffard, and
Guesnerie 1992).



It can be verified that E;e;; = 0. Note, however, that &; is not an iid
process. Note also that the non-uniqueness of (71, Z2) corresponds to a degree
of freedom in the parameters @, f and g.

The RFSSE is obtained from the general representation (3) with this
choice of ;, provided the initial condition is Z; or Z,. For other choices of
initial condition, the process (3), with ¢; given by (8)-(9), is an asymptotically
stationary solution, tending in the limit to the RFSSE.

3 E-stability and Adaptive Learning

3.1 E-Stability of AR(1) Sunspot Equilibria

We now take up the question of the local stability under learning of SSEs.
Consider first the general representation for SSEs (3). Suppose agents believe
that x, follows an AR(1) process, but are not certain of the coefficients,
which they estimate and revise over time. More particularly, suppose u; is
an observable process that satisfies Fiu; 1 = 0. Suppose that agents believe
that x; follows the process

Ty = a+ by + cup + 1y,

where b and ¢ are unknown fixed parameters and 7, represents an unobserved
white noise disturbance that agents might believe to be present. In an SSE
a=0,b= "' n, =0 and cis arbitrary (in the earlier notation &, = cu;).
The fundamentals solution is given by a =b=c¢ =0 and n, = 0.

The standard way to formulate adaptive learning in this context is “least
squares learning,” in which agents at time ¢ estimate a, b and ¢ by a least-
squares regression of x; on x;_1, u; and an intercept, using datai =1,... ,t—
1. Note that estimates are updated each period. Assuming that the time ¢
information set is I; = {u, us 1,... , @4 1,4 9,. ..}, the forecasts Efzyyq are
obtained by taking the conditional expectation of zyy1 = a + b(a + bx; 1 +
cuy + 1) + cugy1 + 1. This yields

Efzi = a(l+b) + b%x,_ 1 + bewy, (10)

where a, b and ¢ are replaced by their current least-squares estimates ay, b,
and ¢;.

Stability of a rational expectations equilibrium under least-squares learn-
ing is defined in terms of the dynamic system given by the exogenous sunspot



process u; and by (1), where Ef 1 = ay(1+b;) +b2w,_1+bicyuy and (ag, by, ¢;)
are updated by least squares. If (ay, by, ¢;) — (0,0,0) then the fundamentals
solution is said to be stable, while if (a;, b, ¢;) — (0,3, ¢) for some ¢ then
the class of SSEs is said to be stable. Here local stability is the relevant con-
cept and we omit precise definitions of the appropriate notions of stochastic
convergence. For details see (Evans and Honkapohja 2001b).

For a wide range of economic models it has been shown that stability un-
der least-squares learning is governed by expectational stability (E-stability),
and in this paper we therefore focus on determining the conditions for the var-
ious solutions to be E-stable. E-stability is defined in terms of the mapping
from the Perceived Law of Motion (PLM), parameterized here by (a,b, ¢),
to the implied parameters T'(a,b,c) of the Actual Law of Motion (ALM).
The ALM parameters, corresponding to a given PLM, are here obtained by
inserting the corresponding expectation rule (10) into the model (1), yielding

T'(a,b,c) = (Ba(l + ), ﬁbQ, Bbe).

Note that the fixed points of the T map correspond to the fundamentals
solution (0,0, 0) and to the continua of SSEs (0,57, ¢).
E-stability of an REE (or a set of REE) is determined by local stability

of the REE (or a set of REE) under the ordinary differential equation

d

E(a, b,c) =T(a,b,c) — (a,b,c),
where 7 denotes notional or virtual time. Since the Jacobian of the right-hand
side, evaluated at (0,0,0) has one eigenvalue of 5 — 1 and two eigenvalues
of —1, it follows that the fundamentals solution is E-stable provided § < 1.
On the other hand the set of SSEs are not E-stable. This can be seen from
the differential equation for b, which is given by db/dr = 3b* — b and which
is always locally unstable at b = 7', If 8 > 1, none of the solutions are
E-stable. We summarize these observations in the following:

Proposition 1 The set of SSEs of the form (3) is not E-stable. The funda-
mental solution is E-stable if 3 < 1 and is not E-stable if 3 > 1.4

This way of looking at the full set of rational expectations solutions to
(1) thus clearly favors the fundamentals solution. Provided < 1, the fun-
damentals solution is E-stable, and hence locally stable under least-squares

4These results were first obtained in (Evans 1989).

6



learning, while the set of AR(1) SSEs is never E-stable and hence is locally
unstable under least-squares learning.

3.2 E-stability of Resonant Frequency Sunspot Solu-
tions

We turn now to the stability of RFSSEs, i.e. to the 2-state Markov sunspot
equilibria given by (6)-(7). The exogenous sunspot variable s; is assumed to
be observable at ¢, with known transition probabilities 711, m92. We assume
that agents do not know the values Z;,Zo, taken in the RFSSE, and that
they therefore estimate their values. A simple and natural adaptive learning
rule is state contingent averaging, i.e. Z;, j = 1,2, is estimated to be the
average of the values for z; obtained when s; = 5.5

(Evans and Honkapohja 1994) and Chapter 12 of (Evans and Honkapohja
2001b) shows how E-stability governs local convergence of adaptive learning
to finite-state SSEs. Following the E-stability principle we look at the map-
ping from the PLM to the ALM. The PLM is now

ry=x;+mn if s, =7, for j =1,2,

where in an RFSSE z; = z; and n, = 0. In state s; = 1 the expectation
corresponding to this PLM is Efx;, 1 = 71121+ (1 —711)29 and in state s; = 2
we have Efziy1 = (1 — mag)x1 + mooxo. Inserting these into (1) yields

ry = pPrpxy + B(1— 7))z if sp =1, and
Ty = 5(1 — 71'22).’131 -+ 57'('22.'132 1f St = 2

The corresponding map from PLM x = (z1, z5)" to ALM T'(z) is given by
T (z) = Bz or T (z) = (w11 + 70 — 1)z,

where we have used the condition (6). The E-stability condition is given by
local stability of the set of equilibria of dx/dr = T'(x) — z. The fixed points
of T, i.e. the equilibria of the differential equation, are given by (7). This set
forms a 1-dimensional continuum. The eigenvalues of (711 + 7oy — 1) 71T — T
are given by 0 and (my; + 79y — 1)7! — 1. Tt follows that the continuum is

This formulation was suggested in (Evans and Honkapohja 1994). An alternative and
essentially equivalent prodedure (see the following section) would be for agents to estimate
a least squares regression of x; on s; and an intercept.

7



Figure 1: E-stable continuum when 717 4+ 795 < 1

E-stable if w17 + 792 < 1 and not E-stable if my; + 722 > 1. In terms of the
model parameter § we can thus state:

Proposition 2 The set of RFSSEs is E-stable if § < —1 and it is not E-
stable if 3 > 1.

The accompanying Figure illustrates E-stability for the case § < —1. The
result that an RFSSE is not E-stable when 3 > 1 was previously given in
(Evans and Honkapohja 1994), but E-stability of the set of RFSSEs when
[ < —1 has not been previously noted.

4 E-stability in a General Framework

The preceding section appears at first sight to provide incompatible results
concerning the adaptive stability of RFSSEs. Section 3.1 shows the lack of



stability under learning of all sunspot equilibria, while 3.2 shows the stability
under learning of certain resonant frequency sunspot equilibria. To under-
stand the relation between these results, we now examine a class of PLMs
that nests the RFSSEs in a way that includes AR(1) representations.

Thus, consider the class of PLMs taking the form

xy=a+bxi_1+ fsi+ gsi—1 + 1y,

where 7, is assumed to be white noise. Under rational expectations n, = 0
and the coefficients a, b, f, g satisfy certain restrictions. We do not yet make
the assumption that the sunspot process s; satisfies the resonant frequency
condition (6). We also do not yet impose any condition on 3, other than

B#0.
For this PLM the corresponding E;z;.; is obtained from

T = a+b(a+bxi_1 + fs; 4+ gsi—1 +1,) + fSe41 + 95t + 14
by taking conditional expectations. This yields
Efzeg =a(l+b) + bz, + fEseq + (bf + g)se + bgs,_1.
Expressing E;s;y1 as a linear function of s;, we have
Eispy1 = (3 — 2wy — o) + (11 + a2 — 1)s4.
Inserting these into (1) yields the following map from PLM to ALM:

T(a,b, f,g)
= (ﬂa(l + b) + ﬁf(?) — 271'11 — 7T22), ﬂbz, ﬁf(ﬂ'n -+ oo — 1 -+ b) -+ ﬂg, ﬁbg) .

Rational expectations solutions are given by the fixed points of this map
(together with n, = 0). There are three classes of solutions as specified by
the following proposition:

Proposition 3 The rational expectations solutions can be divided into three
classes:

(I)a=b= f=g=0. This is the “fundamentals” solution.

(II) When (6) holds, there are solutions of the form b = g = 0, with f
arbitrary and a = 32122 f - For f =L 0 we obtain the RFSSEs.S

T11+m2—2

6 f =0 yields the fundamentals solution as a special case.

9



(III) Setting b = B, f arbitrary, g = — (w11 + mos — 1) f and a = —(3 —
2711 — moo) f yields the set of AR(1) solutions generated by choices of £ as a
linear combination of s;, s;_1 and an intercept.”

Consider now E-stability for these three sets of rational expectations so-
lutions. For E-stability we require local stability of the solution set under
the differential equation

d/dT(CL?b?fag) - T(a7baf7g) - (aab7fag)'

The relevant condition is that all roots of the Jacobian DT — I have negative
real parts. For the fundamentals solution (I) this leads to the conditions
B < 1and B(m; +mea — 1) < 1. These conditions are never satisfied if § > 1,
are always satisfied if || < 1 and may be satisfied if < —1. (However, note
that they will not be satisfied if 5 < —1 and (6) holds). Next, we consider
the AR(1) solution set (III). The differential equation for b is autonomous
and is always unstable at b = $7'. Thus this solution set is never E-stable.

Lastly, consider the solution set (II). These exist only when || > 1
and the resonant frequency condition (6) holds. The subsystem in b,¢ is
autonomous and b = g = 0 is always locally stable. It can then be verified
that the condition for local stability condition of this solution set is that is
that 8 < 1. Thus the set of RFSSEs is not E-stable if 3 > 1 but is E-stable
if < —1.

We collect these arguments in the following proposition:

Proposition 4 (a) The fundamental solution (I) is E-stable if 3 < 1 and
B(m11 + mea — 1) < 1 and is not E-stable if 3 > 1 or B(m1 + mag — 1) > 1.
(b) The solution set (II) of RFSSEs, which exists only when |3| > 1 and (6)
holds, is E-stable if 3 < —1 and it is not E-stable if 3 > 1.

(¢) The solution set (III) is never E-stable whether or not condition (6) holds.

To summarize, when |3| < 1, stationary sunspot equilibria do not exist.
The fundamentals solution is E-stable, and therefore stable under adaptive
learning.® There exist explosive sunspot equilibria, taking the AR(1) form,

"Imposing (6) and an appropriate initial condition gives the AR(1) representation of
the RFSSEs.

8We remark that the conditions in part (a) of the proposition are “strong E-stability”
conditions for the fundamental solution, i.e. the stability conditions required when the
PLM allows for the presense of sunspots. The weaker condition § < 1 is sufficient for E-
stability of the fundamental solution when the PLM does not include a possible dependence
on a sunspot.

10



but these are not E-stable. When 3 > 1 SSEs (stationary sunspot equilibria)
do exist, but no solution or solution set is E-stable. When § < —1 but
the resonant frequency condition does not hold, SSEs and asymptotically
stationary sunspot equilibria do exist, taking the AR(1) from, but they are
not E-stable. Finally, when § < —1 and the resonant frequency condition
(6) holds, RFSSEs exist and are E-stable. There are two ways to represent
the same solution, but the AR(1) representation is not E-stable. Adaptive
learning will, however, locally converge to the RFSSE if the conditions 3 <
—1 and 7y; + 7o — 1 = /! are satisfied.

We conclude by noting that the RFSSEs are a kind of “common factor”
solution similar to those discussed in (Evans and Honkapohja 1986). Solu-
tions of type (III) are of the form

ry=—(3—2m —ma)f + B w g+ fsi — (11 + maa — 1) fs1_1.
Under the resonant frequency condition (6) we obtain
(1—p'L)r, = —f(3—2my — 7o) + f(1 — B7'L)sy,

where L is the lag operator defined by Lz; = z;_1. The two sides of this
equation have the lag polynomial 1 — 37 'L as a common factor. For an
appropriate initial condition on z; the stochastic process is stationary and
we can multiply through by (1 — 3 'L)~! to cancel this common factor and
obtain

—f(S — 27'('11 — 71'22)
1-p7"

which is indeed the form of the RFSSE.

It has been observed in previous work, for example see Chapters 8 and
9 of (Evans and Honkapohja 2001b) and the references cited in (Evans and
Honkapohja 1999), that common factor solutions can have different stability
properties under adaptive learning from those of the larger set of solutions
in which they are located. From this viewpoint the apparently contradictory
results of the previous section are not surprising. Convergence to an RFSSE
can arise only when the PLM is parameterized in such a way that it includes
the common factor representation of the RFSSE.

+f5t7

Ty =

11



5 Conclusion

We’ve considered the simplest dynamic expectations model which permit
stationary sunspot equilibria. In the linear one-step forward looking model
zy = BEfx;11, SSEs exist when |3| > 1. These can take the form of AR(1)
solutions or of finite-state Markov processes. The latter must satisfy a “res-
onant frequency” restriction on the transition probabilities. In line with the
previous literature we have found that none of these SSEs are stable under
adaptive learning when g > 1. However, when § < —1, two-state Markov
SSEs are stable under adaptive learning, even though the whole class of SSEs
taking the AR(1) form is not. Our two main conclusions are thus that sta-
bility under adaptive learning of SSEs requires § < —1, and that in this
case only a subset of the SSEs, namely the resonant frequency sunspots, are
stable.

One might wonder how sensitive are the results to the assumed linearity
of the model. In a companion paper (Evans and Honkapohja 2001a) we
show how our results carry over to the corresponding nonlinear model z; =
E;F(x41) in a neighborhood of a steady state Z. In particular, if F'(z) > 1
there are no nearby E-stable SSEs. In contrast, if F'(Z) < —1 there exist
E-stable SSEs in every neighborhood of the steady state.

The linear and nonlinear models do differ in the following respect. In
the linear case two-state Markov SSEs must satisfy exactly the resonant fre-
quency condition ﬁ’l = 7y + ™o — 1 and they then form a continuum in
the states of the SSE. In the nonlinear model there is again a continuum of
two-state Markov SSEs near the steady state and these exist provided the
transition probabilities are sufficiently close to satisfying the resonant fre-
quency condition. Within a neighborhood of the steady state this continuum
is indexed by the deviation from the resonant frequency condition, with the
states of the SSE uniquely determined once transition probabilities are given.
Therefore, when properly interpreted, our results for an approximating linear
model provide a satisfactory guide to the local results on E-stable SSEs in
the corresponding nonlinear model.
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