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1 Introduction

Divisions within a �rm are frequently responsible for both operating and investment deci-

sions. Accordingly, the most common divisional performance measures are based on both

operating results and asset values, e.g., Return on Investment, Residual Income, and Cash

Flow Return on Investment. There has been considerable debate in recent years about the

relative e�ectiveness of these alternative performance measures. Which performance mea-

sures are more e�ective in aligning the interests of owners and managers, and what impact

does the adoption of these performance measures have on �rms' stock prices?1

It appears that the residual income measure (and several variants thereof) has received

particular attention in recent years.2 Residual income is calculated as accounting income

minus an interest charge on the capital used by a division. To implement this performance

measure, �rm have to decide on the capital charge rates that should apply to individual di-

visions. In addition, �rms have to choose asset valuation rules, i.e., the rules for depreciating

the assets acquired by a division. While such asset valuation rules are generally viewed as

given for external �nancial reporting purposes, they are commonly treated as design variables

for the purpose of managerial performance evaluation.3

This paper examines the issues of depreciation and capital charge rates in a multiperiod

principal-agent model. Agents are assumed to manage the divisions of a �rm. In this capac-

ity, managers have superior information regarding the pro�tability of investment projects

available to their divisions. In addition, a manager's e�ort choice is assumed to a�ect the

periodic operating results of his division. Our results show that residual income is capable

of generating both optimal investment and e�ort incentives, provided assets are depreciated

so as to match periodic project cash 
ows with a share of the initial investment cost. At the

same time, the capital charge rate imposed on a division must re
ect not only the principal's

1See, for example, Stewart (1994), Biddle, Bowen and Wallace (1997), and Balachandran (2000).
2In particular, Stern Stewart and Co. has successfully advocated the Economic Value Added concept, see,

for example, Stewart (1991, 1994), Ehrbar (1998), and Ehrbar and Stewart (1999). Very similar concepts
have been promoted by other management consulting �rms. Ittner and Larcker (1998) provide an overview
of di�erent \value based" performance measures used in practice.

3For instance, Stern-Stewart propose up to 164 \adjustments" to generally accepted accounting rules.
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cost of capital but also the underlying agency problem.

Our analysis builds on earlier work which has studied managerial incentives in the capital

budgeting process. For instance, Antle and Eppen (1985) argue that an optimal incentive

mechanism will induce underinvestment, i.e., the principal will forego marginally pro�table

investments, if the agent has better information about the investment opportunity. The

argument for underinvestment, which is familiar from the adverse selection literature, is that

the better informed agent earns informational rents. In order to balance the return from

investment with the required compensation payments to the agent, the principal �nds it

desirable to curtail investment.4

In a di�erent branch of the literature on investment incentives, Ramakrishnan (1988),

Rogerson (1997) and Reichelstein (1997) have examined how a principal can create goal

congruence, that is, induce a better informed agent to accept all projects with positive net

present value, and only those.5 In contrast to the one-period model of Antle and Eppen

(1985), the later papers on goal congruence allow for the project cash 
ows to be received

over several periods. Goal congruence can be obtained by an intertemporal cost allocation

scheme which subtracts from the periodic operating cash 
ow a suitable "share" of the

initial investment cost. The resulting performance measure is identical to residual income

for a particular depreciation schedule, which Rogerson (1997) refers to as the relative bene�t

depreciation schedule. To create �rst-best investment incentives, it is furthermore essential

that the capital charge rate be equal to the principal's cost of capital.

One drawback of the above mentioned papers on goal congruence is the absence of a hid-

den action problem. E�ectively, there is no con
ict of interest between principal and agent,

as evidenced by the fact that the compensation payments to the agent remain indeterminate.

An immediate concern then is whether the insights about goal congruent performance mea-

4See also Bernardo, Honglin, and Luo (2000). In contrast, Harris and Raviv (1996, 1998) demonstrate
that an optimal capital budgeting mechanism can result in either under- or overinvestment. The possibility
of overinvestment derives from the fact that in their model the manager has an intrinsic preference for
investing in the project.

5Extending the earlier analysis of Antle and Eppen (1985), Antle and Fellingham (1990) consider repeated
investment decisions. They �nd that even if projects are independent, it becomes desirable to connect them
through a long-term contract with the agent.
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sures and intertemporal cost allocations remain viable once the model is extended to include

hidden action, and the desired incentives are derived from a uni�ed optimization program.

Our results integrate the earlier results on capital budgeting and on goal congruence. In

our model, the periodic operating cash 
ows re
ect the agent's unobservable e�ort as well as

the pro�tability of the investment. Since the principal cannot separate these two components,

the hidden information and hidden action problems become intertwined. As a consequence,

the optimal investment policy entails underinvestment, like the ones in the capital budgeting

literature. Nonetheless, residual income based on the relative bene�t depreciation schedule

remains an optimal performance measure in this setting, provided the principal imposes a

suitable capital charge rate. Speci�cally, the remaining book value of the asset should be

burdened with an interest rate that is equal to the �rm's hurdle rate, the critical internal

rate of return below which the principal would not want to fund the project. This hurdle

rate incorporates the compensation cost for the better informed agent and therefore exceeds

the principal's cost of capital.

Our results suggest that the earlier characterizations of goal congruent performance mea-

sures apply to a signi�cant extent also in a second-best contract setting. By allocating an

appropriate share of the initial investment in each subsequent period, the principal ensures

that a pro�table project makes a positive contribution to the agent's performance measure

in every period. As a consequence, the underlying moral hazard problem and the required

bonus coe�cients in each period have no bearing on the agent's investment decision. Fur-

thermore, the performance measure, i.e., residual income, and the depreciation rules depend

on the underlying agency problem only through the optimal capital charge rate.

A common characteristic of the capital budgeting process in many �rms appears to be

that divisions compete for scarce investment funds.6 We �nd that our solution obtained

in a single agent setting carries over to competitive situations with minor modi�cations.

Speci�cally, residual income based on the relative bene�t depreciation schedules remains an

optimal performance measure. To ensure e�cient resource allocation, however, the capital

charge rate needs to be adjusted upward to a competitive hurdle rate, which is the lowest

6See, for example, Taggart (1987), and Harris and Raviv (1996, 1998).
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internal rate of return at which a division's project would still be funded, given the rates of

return available to other divisions. We show that managers will have a dominant strategy

incentive to report their internal rates of return truthfully, if they anticipate that their

division's investment will be subsequently charged at the competitive hurdle rate.

While most of our analysis focuses on risk neutral parties, we do address the impact of

risky projects and managerial risk aversion. For analytical tractability, we con�ne attention

to a multiperiod version of the so-called len model: Linear contracts, Exponential Utility

and Normally distributed noise. This framework is convenient for identifying the agency

cost associated with the adoption of risky projects. This additional agency cost increases

the principal's hurdle rate beyond that in the risk neutral case. While residual income based

on the relative bene�t depreciation rules continues to be an optimal performance measure

in the risk-averse setting, we �nd that the capital charge rate must be set below the risk

adjusted hurdle rate. Otherwise, a risk averse manager would have a tendency to underinvest

in risky projects.

The remainder of the paper is organized as follows. Section 2 presents the model. The op-

timal revelation mechanism is derived in Section 3. In Section 4, we establish the optimality

of delegation schemes for which the agent's compensation is based on residual income. Sec-

tion 5 analyzes a setting in which multiple divisions are competing for funding of their own

projects. Uncertain cash 
ows and the adoption of risky projects by a risk averse manager

are analyzed in Section 6. We conclude in Section 7.

2 Model Description

We study a multiperiod agency problem with both hidden action and hidden information.

Initially, we consider a setting with one agent (manager) who contributes unobservable pro-

ductive e�ort in each of T periods. In addition, the agent is assumed to have superior

information regarding the pro�tability of an investment project. Though the agent is intrin-

sically indi�erent about accepting or rejecting this project, he must be given appropriate

investment incentives due to lack of separability in the periodic operating results. Speci�-
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cally, the principal is assumed to observe only the total operating cash 
ow in each period

without being able to identify the components related to the project and those related to

the agent's periodic e�ort.

The investment project will be represented by the (T + 2)-tuple:

P = (b; x1; : : : ; xT ; y) :

Here, b denotes the initial cash investment at date 0. The project generates operating cash


ow in the amount of xt � y at T subsequent dates. We interpret y as a \pro�tability"

parameter which represents the agent's superior information. In contrast, both parties are

assumed to know the intertemporal distribution of the project's operating cash 
ows, as

represented by the distributional parameters ~x � (x1; : : : ; xT ), with
PT

t=1 xt = 1.7 For any

given y, the project's net present value will be denoted by:

NPV (y) �
TX
t=1

y � xt � 

t � b ;

where 
 � (1+r)�1 and r denotes the cost of capital. For contracting purposes, the principal

can rely on the operating cash 
ows received in periods 1 through T as well as the investment

cash 
ow in period 0, provided the project is undertaken. Speci�cally, the operating cash


ows are given by

ct = �t � at + xt � y � I (1)

for 1 � t � T , where at denotes the agent's productive e�ort and I 2 f0; 1g is an indicator

variable which re
ects whether the project was accepted at date 0.

While the structure of the operating cash 
ows in (1) suggests that the hidden information

and the hidden action problem are separable, these two problems are in fact intertwined.

7The principal may be able to rely on a corporate controller in order to verify the intertemporal distri-
bution of project cash 
ows, (x1; : : : ; xT ). For instance, if the project concerns a new factory, xt may refer
to the physical capacity available in period t, while y represents the contribution margin attainable per unit
of capacity. Capacity may vary over time possibly because of a \ramp-up" phase in earlier periods and
increased time for maintenance and repairs in later periods. The premise then is that the controller, who
acts as a steward for the principal, can assess capacity available in future years, but the manager is better
informed about the contribution margin attainable.
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Without hidden action, the investment problem would have a trivial solution since a �xed

compensation payment would provide the manager with (weak) incentives to make �rst-best

investment decisions. Conversely, with a risk neutral manager the moral hazard problem

would have a straightforward solution in the absence of a hidden information. For the

structure of operating cash 
ows in (1), however, the basic issue is that for a relatively

pro�table project, i.e., when y assumes a high value, the agent will be able to achieve given

operating results with less productive e�ort. Thus, the availability of the project enables the

manager to earn informational rents.8 As explained in Section 4 below, our results can be

extended in several ways beyond the structure of operating cash 
ows speci�ed in (1).

When the parties enter into the contract at date 0, the agent is assumed to know the

pro�tability parameter y, i.e., the agent has pre-contract private information.9 The timeline

in Figure 1 summarizes the sequence of events in our model:

-

y

observed
contract
signed

I 2 f0; 1g c2 ...c1 cT

Figure 1

The agent chooses his e�ort at from the interval [0,1] at a personal cost of vt(at). Initially,

we assume that the agent is risk neutral, and that his utility payo� is given by:

U =
TX
t=1

[st � vt(at)] � 

t;

where st denotes the agent's compensation payment in period t. Clearly, it is only the

present value of the compensation payments that matters provided both parties can commit

to a T -period contract. By the Revelation Principle we may focus on revelation mechanisms

8Harris and Raviv (1996, 1998), Arya, Baldenius and Glover (1999) and Lambert (2000) consider set-
tings in which the manager has an intrinsic preference for undertaking the project, i.e., the manager has a
preference for \empire building". In contrast, investment is assumed to be personally costly in Wagenhofer
(1999).

9Alternatively, the agent may learn the parameter y after entering the contract with the principal, but
he cannot be prevented from quitting his job if his participation constraint is not satis�ed.

6



which induce the agent to reveal his information truthfully. In our setting, a revelation

mechanism speci�es an investment decision rule I(~y) 2 f0; 1g, as well as required cash 
ows

~c(~y) � (c1(~y); : : : ; cT (~y)) and compensation payments ~s(~y) � (s1(~y); : : : ; sT (~y)), contingent

on the agent's report ~y. For any such mechanism, f~c(~y); ~s(~y); I(~y)g, the agent's utility payo�

contingent on the true pro�tability parameter y and the reported ~y becomes:

U(~y; y) �
TX
t=1

[st(~y)� vt(at(~y; y))] � 

t ;

where

at(~y; y) � minfat j �t � at + xt � y � I(~y) � ct(~y)g :

The principal's beliefs regarding y are represented by a density function f(y) on the

interval
�
y; y

�
. The principal certainly does not want to accept the project if y is below the

�rst best cut-o� level y0, given by the condition NPV (y0) = 0: To avoid a trivial investment

problem we assume that y0 2 (y; y). The principal's optimization program then becomes:

P0 : max
(~s(y);~c(y);I(y))

Z y

y

f
TX
t=1

[ct(y)�st(y)] � 

t�b�I(y)gf(y)dy (2)

subject to:

(i) U(y; y) � U(~y; y) for all y and ~y,

(ii) U(y; y) � 0 for all y.

The optimization program in (2) is a standard adverse selection problem. The �rst

constraint ensures that truthful reporting is in the manager's best interest, while the second

constraint ensures that the manager has no reason to quit (without loss of generality his

external market alternative is normalized to zero). 10

10Consistent with the interpretation in Antle and Eppen (1985), one may think of st as a \budget" that
the manager receives in period t for covering the costs of certain tasks. The unveri�able cost associated with
these tasks is vt(at(~y; ~y)), and the manager gets to spend the \slack", i.e., st�vt(at(�)), on managerial perks.
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3 Optimal Incentive Schemes

The manager will generally earn informational rents on account of his private information

since he can underreport y and at the same time reduce his e�ort. Therefore his utility

payo� U(y; y) will generally exceed the minimum payo� of zero. The basic tradeo� for the

principal is that the agent's informational rent will be increasing both in the induced e�ort

level of e�ort, at, as well as in the set of states in which the project is undertaken. It is well

known from the adverse selection literature that the agent's informational rent is determined

by the derivative of his cost of e�ort function vt(�) with respect to the unknown parameter

y. Since at =
1
�t
� (ct � xt � y � I), the informational rent becomes:

U(y; y) =

Z y

y

TX
t=1

v0t(at(u; u))

�t
� xt � 


t � I(u) du ; (3)

for all y 2
�
y; �y

�
. The characterization in (3) is based on the \local" incentive compati-

bility conditions, i.e., the agent's utility payo� must be at a stationary point if he reports

truthfully.11 The expression in (3) illustrates the basic trade-o� mentioned above: the prin-

cipal can reduce the agent's informational rent either by creating \lower powered" action

incentives (there will be no rents if at = 0) or, alternatively, by curtailing the set of states y

in which the project is undertaken.

In our analysis below, we focus on a setting in which the marginal cost of e�ort is

su�ciently small so that the principal always �nds it worthwhile to induce maximum e�ort,

i.e., at = 1, in every period. The cost of e�ort vt(�) as well as the marginal cost of e�ort v0t(�)

are assumed to be increasing and convex, with v0t(0) = 0. Inducing the maximum e�ort level

will indeed be optimal provided v0t(1) is su�ciently small relative to the other parameters

of the model. For brevity, we denote v0t � v0t(1). We use the expression in (3), evaluated at

at = 1, to solve the compensation payments st(y) in P0. The principal's problem can then

be restated as:

11Standard references include Myerson (1981), Baron and Myerson (1982) and La�ont and Tirole (1986).
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P1 : max
I(y)

Z y

y

f
TX
t=1

[�t � vt(1)] � 

t + [(NPV (y)� k �H(y)] � I(y)gf(y)dy;

where

k �
TX
t=1

v0t
�t
� xt � 


t ; (4)

andH(y) denotes the inverse hazard rate, i.e.,H(y) = 1�F (y)
f(y)

. The reduced objective function

in P1 re
ects that the expected value of the agent's informational rent (as given by (3)) is

equal to the expected value of k �H(y) � I(y); for details the reader is referred to the proof

of Lemma 1 in the Appendix.12

The following condition formalizes the notion that the marginal cost of managerial e�ort

is su�ciently small (relative to the bene�t �t) so as to make it desirable to induce maximum

e�ort at = 1 in every period:

�t � v0t(1)�H(y0) �
v00t (1)

�t
� xt > 0 : (5)

We recall that y0 is the level of y at which the project breaks even, i.e., NPV (y0) = 0.

Condition (5) says that even if the project were to be accepted for all y � y0, the marginal

return from e�ort, �t; is still su�ciently large for the principal to prefer high e�ort despite

the corresponding increase in the agent's expected informational rent.

Lemma 1 Given (5), the agent will be given an incentive to choose high e�ort, i.e., at = 1,

in each period. Furthermore, the optimal incentive scheme results in underinvestment, that

is, the project is undertaken if and only if y exceeds some cut-o� level y� which satis�es

y0 < y� < y and solves the equation:

NPV (y�)�H(y�) � k = 0 : (6)

12Like in most of the adverse selection literature, we make the assumption that the inverse hazard rate,
H(y), is decreasing in y.
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Proof: See Appendix.

The equation for the optimal cut-o� level y� re
ects that the principal is willing to

forego marginally pro�table projects in order to reduce the agent's informational rent. In

the terminology of Myerson (1981) and Baron and Myerson (1982), a project is pro�table

only if it yields a positive virtual NPV, which equals the actual NPV minus the (expected)

incremental agency cost H(y) � k.13

To develop the results of this paper, it will be convenient to consider an indirect revelation

mechanism in which the agent is asked to report the project's internal rate of return r(y);

that is, the interest rate r(y) for which NPV (y j r(y)) � 0. The project receives funding if

and only if r(y) exceeds some critical level r�. Clearly, such a mechanism becomes equivalent

to the optimal direct revelation mechanism if r� is set equal to the internal rate of return

corresponding to y� in equation (6). We refer to r� as the hurdle rate. It is the minimal

internal rate of return required to make the project attractive for the principal given the

agency costs imposed by asymmetric information. We note that r� exceeds the principal's

cost of capital r. At the same time, r� � r(y) since H(y) = 0 and therefore the di�erence

between the virtual and actual NPV goes to zero as y approaches y.

4 Hurdle Rates and Intertemporal Cost Allocations

We now consider incentive mechanisms in which the investment decision is delegated to the

manager and investment incentives are created through an intertemporal allocation of the

initial investment cost. This perspective is motivated by the widespread practice of charging

organizational units with allocated costs that correspond to investment expenditures incurred

in the past. Given our characterization in Lemma 1, we ask whether the following class of

13Lemma 1 can readily be extended to settings in which the optimal e�ort levels are interior in the interval
[0; 1]. The induced levels of e�ort will depend on the agent's report, since the principal can achieve a
further separation of types by making at(y) increasing in y. The resulting investment policy will again
entail underinvestment, with the optimal cut-o� level given by (6) after substituting v0t(at(y)) for v

0

t(1) in
the expression for k.
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performance measures is compatible with optimal incentive contracting:

�t = ct � zt � b : (7)

Here, zt is the \share" of the initial investment expenditure that is charged against the

operating cash 
ow in period t. We refer to (z1; : : : ; zT ) as an intertemporal cost allocation

rule. In principle, the cost charges zt may depend on all the parameters of the underlying

project and the underlying agency problem. An intertemporal cost allocation rule is said to

generate an optimal performance measure if there exist coe�cients fht; ktg
T
t=1 such that the

linear compensation scheme:

st(�t) = ht + kt � �t ; (8)

for 1 � t � T , achieves the same expected payo� for the principal as the optimal revelation

mechanism identi�ed in Lemma 1.

Rogerson (1997) suggests the following intertemporal cost allocation rule:

zt(~x; r̂) =
xtPT

i=1 xi � 
̂
i
; (9)

which he terms the relative bene�t cost allocation rule, since the cost charge in period t is

proportional to the relative magnitude of the bene�t parameter xt. We note that for any

generic interest r̂ (with 
̂ � (1+ r̂)�1), the present value of the cost allocation charges in (9)

is equal to one. To illustrate the implications of this cost allocation rule, it is useful to note

that the project's NPV relative to the generic interest r̂ is:

NPV (y j r̂) �
TX
t=1

xt � y � 
̂
t � b :

Under the relative bene�t rule, a project then makes the following contribution to the agent's

performance measure in period t:

xt � y �
xtPT

i=1 xi � 
̂
i
� b =

xtPT
i=1 xi � 
̂

i
�NPV (y j r̂) : (10)

Thus, the relative bene�t cost allocation rule e�ectively \annuitizes" the project in the sense

that the performance measure increases by a share of the project's NPV (relative to r̂) in

11



every period. If the principal were to set r̂ = r and impose the relative bene�t cost allocation

rule, the agent would invest if and only if the project has a positive NPV, i.e., whenever

y � y0. By increasing r̂ to r�, the principal e�ectively calibrates the agent's investment

incentives, since the latter will only accept projects with rates of return greater than the

hurdle rate r�.

Proposition 1 The relative bene�t cost allocation rule corresponding to the hurdle rate r�

generates an optimal performance measure.

Proof: The principal chooses the compensation coe�cients fkt; htg
T
t=1 such that kt =

v0t
�t

and ht = vt � v0t for all 1 � t � T . The choice of bonus coe�cients ensures that at = 1,

and the �xed payments, ht, ensure that the participation constraint is satis�ed. Since r� is

chosen such that NPV (y� j r�) = 0, the agent will accept the project if and only if y � y�.

Thus, the delegation mechanism induces the same actions and investment decisions as the

optimal revelation mechanism. The Revenue Equivalence Theorem then implies that the

payments to the agent must coincide with those of the optimal revelation mechanism.14

2

The intertemporal cost allocation charges of the form in (9) cannot be interpreted as de-

preciation charges because conventional accrual accounting requires the undiscounted sum of

the depreciation charges to be equal to the cost of the investment. However, any performance

measure generated by an intertemporal cost allocation rule is identical to residual income

for a corresponding depreciation schedule. Denoting the depreciation charges by fdtg
T
t=1,

residual income is de�ned as accounting income minus an interest charge on the remaining

14The Revenue Equivalence Theorem says that any two incentive mechanism which yield the same allo-
cations and satisfy both incentive compatibility and the participation constraints must also yield the same
expected payo� for the principal; see, for instance, Myerson (1981). To check this claim explicitly, we note
that the agent's informational rent under the delegation mechanism becomes:

TX
t=1

v0t
�t

� 
t �

"
xtPT

t=1 xt � (1 + r�)�t
[NPV (y j r�)�NPV (y� j r�)]

#
=

TX
t=1

v0t
�t

� xt � 

t � [y � y�] = k � (y � y�) ;

which is the informational rent given in (3).
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book value of the original investment cost. Thus:

RIt = (ct � dt � b)� r̂ �Bt�1; (11)

where Bt = (1 �
Pt

i=1 di) � b denotes book value at the end of period t. For the residual

income performance measure the relationship between intertemporal cost allocation rules

and depreciation schedules is therefore given by:

zt = dt + r̂ �
�
1�

t�1X
i=1

di
�
: (12)

It is well known that for any capital charge rate, r̂, the mapping given by (12) generates a one-

to-one correspondence between intertemporal cost allocations, for which the present value

of the cost charges is one, and depreciation schedules, for which the sum of the depreciation

charges is equal to one.15 We shall refer to the relative bene�t depreciation schedule as

the one that maps to the relative bene�t cost allocation rule in (12). Earlier literature

has observed that when the project cash 
ows are uniform, i.e. x1 = x2 = � � � = xT , the

relative bene�t depreciation rule coincides with the familiar annuity depreciation method.16

Stewart (1994) and Ehrbar and Stewart (1999) refer to the annuity depreciation method as

the "sinking fund" depreciation method and advocate it as an alternative to straight line

depreciation.

Corollary to Proposition 1: Residual income based on the hurdle rate r� and the

relative bene�t depreciation rule is an optimal performance measure.

This result speaks to the question as to what capital charge rate should be imposed on

a division if its performance is measured by residual income. With risk neutral parties and

no constraints on investment capital, the capital charge rate can be set equal to the critical

internal rate of return below which the principal would not want to undertake the project.

Furthermore, if the principal relies on residual income and the relative bene�t depreciation

15See Preinreich (1938) and also Anctil, Jordan, and Mukherji (1996) and Rogerson (1997).
16See, for example, Solomons (1966) and Ramakrishnan (1988).
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rule, then the capital charge rate must be equal to the hurdle rate r�. Any other capital

charge rate would necessarily distort the agent's investment incentives.

We note, however, that even within the class of delegation schemes given by (7){(8), the

solution identi�ed in Proposition 1 and its corollary is not unique.17 To illustrate, suppose

the principal relies on straight line depreciation which is commonly used for external �nancial

reporting purposes. The intertemporal cost charges are then given by:

z0t (r̂) =
1

T
+ r̂ � (1�

t� 1

T
) ; (13)

and the capital charge rate r̂ must be chosen so that the agent invests if and only if y exceeds

y�. Speci�cally, this requires:

TX
t=1

kt � [xt � y
� � z0t (r̂) � b] � 


t = 0 : (14)

Since the parameters kt are uniquely determined by the moral hazard problem, i.e., kt =
v0

t

�t
,

one needs to �nd a charge rate r̂ so that (14) holds. We note, however, that r̂ is merely a

\plug" variable which generally cannot be interpreted as an interest rate. As kt and xt vary,

the resulting r̂, which solves (14), may well become negative.

In contrast, the solution identi�ed in Proposition 1 and its corollary rely on the notion of

matching revenues and expenses in each period. As argued in (10), for any capital charge rate

r̂, and in particular for the hurdle rate r�, a positive (negative) NPV project makes a positive

(negative) contribution to the manager's performance measures in every period.18 We now

argue that this form of matching is indeed necessary if one insists that the capital charge

rate be equal to the hurdle rate r�. In the following analysis, we treat the parameters fv0tg
T
t=0

and f(�) of the problem as �xed, but allow the productivity parameters ~� � (�1; : : : ; �T ) to

vary in some open set � in R
T
+ . As ~� varies, the compensation parameters kt and ht are

17Mishra and Vaysman (2000) examine a model in which there is no scope for intertemporal matching
of project cash 
ows and investment cost. In the context of their model, they conclude that a variety of
accounting and cash 
ow based incentive schemes can generate optimal contracts.

18The analysis in Rogerson (1997) and Reichelstein (1997) formalizes the argument that if the agent dis-
counts future payo�s at a rate possibly higher than 
, the relative bene�t cost allocation becomes essentially
unique in order to align investment incentives.
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allowed to vary correspondingly, and we denote them by kt(~�) and ht(~�). At the same time,

the hurdle rate r�, as given by (6) will vary as well.

We say that an intertemporal cost allocation rule robustly generates an optimal per-

formance measure of the form in (7) if this performance measure is optimal for all ~� in

a neighborhood of ~�0, holding the capital charge rate �xed at the hurdle rate r�(~�), i.e.,

fst = ht(~�) + kt(~�) � [ct � zt(~x; r
�(~�)) � b]gTt=1 is an optimal incentive scheme.

Proposition 2 If r̂ = r�(~�), the relative bene�t cost allocation rule is the only intertemporal

cost allocation rule which robustly generates an optimal performance measure.

The robustness criterion introduced in Proposition 2 requires that variations in the pro-

ductivity parameters ~� = (�1; : : : ; �T ) must leave the performance measure unchanged when-

ever the optimal hurdle rate r� is una�ected by changes in ~�. At the same time, however, the

bonus coe�cients (k1; : : : ; kT ) must be adjusted to any changes in the productivity parame-

ters of ~�. The only way to preserve optimal investment incentives then is to ensure that the

relative magnitude of the bonus coe�cients has no bearing on the investment decision. The

relative bene�t allocation rule has precisely this property because a desirable (undesirable)

project makes a positive (negative) contribution to the performance measure in every period,

and therefore the incentive to invest is independent of the bonus parameters.19

Aside from robustness considerations, the relative bene�t cost allocation rule also emerges

as the unique solution if one imposes the additional requirement that the agent's utility be

non-negative in every period. Again, the moral hazard problem and the possibility that

the project may not be undertaken uniquely determine kt and ht at the values identi�ed in

Proposition 2. The non-negative utility constraint then becomes:

kt � [xt � y
� � zt(r̂) � b] � 0 (15)

19If performance measures are restricted to be linear combinations of current accounting variables, i.e.,
income and book value, one might expect that Proposition 2 can be extended to identify residual income
based on the relative bene�t depreciation rule as the only performance measure which generates optimal
incentives in a robust fashion. This can indeed be shown provided one imposes a somewhat more demanding
robustness requirement. See Dutta and Reichelstein (1999b)for details.
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for all 1 � t � T . In order for the incentive scheme to be optimal, (15) must hold as

an equality in each period. Furthermore, since y� satis�es NPV (y� j r�) = 0, we havePT
t=1 xt � (1 + r�)�t � y� = b, and thus zt must be the relative bene�t cost allocation rule in

(9) with r̂=r�.

We conclude this section by noting that our model can be extended in several directions

without a�ecting the validity of Proposition 1 and its corollary. First, the linearity of the

compensation scheme together with the assumed risk neutrality immediately imply that

Proposition 1 would be una�ected if the periodic operating cash 
ows were subject to additive

noise terms. Second, we have assumed that the agent provides \general purpose" e�ort, but

that his e�ort does not contribute speci�cally to the success of the project. Alternatively,

suppose the agent provides two-dimensional e�ort at = (a1t ; a
2
t ) 2 [0; 1]� [0; 1] such that:

ct = �1t � a
1
t + (�2t � a

2
t + xt � y) � I

and the total cost of e�ort is given by vt(a
1
t ; a

2
t ) = v1t (a

1
t )+ v2t (a

2
t ). If condition (5) continues

to hold with respect to a1t and v
20

t (1) � v1
0

t (1), it follows immediately that the above incentive

scheme will remain optimal once the �xed payments fhtg are adjusted to account for the

additional cost of e�ort.

Third, as noted in connection with Lemma 1, a more general formulation of our model

will involve interior e�ort assignments, at(y), which depend on the reported y. It is clear

that in such settings the delegation mechanisms considered in (7){(8) can no longer replicate

the optimal revelation mechanism. However, the principal can still create optimal incentives

through delegation schemes mechanism in which the agent �rst chooses from a menu of linear

compensation schemes fkt(y); ht(y)g
T
t=1 and subsequently makes the investment decision.

Furthermore, the capital charge rate can still be set equal to the hurdle rate r�.20 Our

focus on boundary solutions for the agent's e�ort has allowed us to bypass the need for

communication based mechanisms.

20With interior e�ort choices at(y) < 1, the characterization of the optimal y� and r� needs to be modi�ed
from that in (6).
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5 Capital Budgeting for Competing Projects

This section examines a setting in which two divisions (agents) are vying for scarce investment

capital. Speci�cally, we suppose that the �rm can fund at most one of two available projects.

One possible interpretation of this constraint is that in order to fund both projects the �rm

would have to borrow funds externally at a rate which is known to exceed the rate of return

available from either of the two potential projects.

With competing divisions, the principal could use an auction mechanism to allocate the

scarce capital resources. Consider, for instance, the following variant of a second-price auc-

tion mechanism, similar to the one suggested by La�ont and Tirole (1987)in a procurement

setting. Each agent is asked to report his internal rate of return ri(yi). Agent i's project

receives funding if and only if:

ri(yi) > maxfrj(yj); r
�
i g ;

where r�i is agent i's hurdle rate in a single agent setting. If agent i's project is funded, his

performance is measured by residual income combined with the relative bene�t deprecation

rule and a capital charge rate equal to maxfrj(yj); r
�
i g. Since neither agent's report a�ects

his own capital charge rate under this mechanism, each agent has a dominant strategy

incentive to report his internal rate of return truthfully. While this mechanism ensures the

selection of the project with the highest NPV, the principal's objective is to maximize the

overall virtual NPV that re
ects the underlying information asymmetry and the resulting

agency problem.21 In order to maximize the virtual NPV, the principal can employ a suitable

\calibration" function so as to make the two internal rates of return comparable.

To describe formally the incentive and resource allocation problem with two competing

agents, suppose that the environment for each agent is exactly the one described in Section

2. We use the subscript i, 1 � i � 2; to refer to agents, while the index t again refers to time

periods. Thus, cit denotes the cash 
ow delivered by Agent i in period t. The realization

of yi is agent i's private information. Both the principal and agent i initially view yi as a

21In other resource allocation contexts, this argument has been made in the earlier work of Myerson
(1981)and Harris, Kriebel and Raviv (1982).
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random variable with probability density fi(yi). In direct extension of program P0 in Section

3, the principal's optimization problem can now be stated as a direct revelation mechanism

in which agent i is asked to report yi. We again use the vector notation ~y � (y1; y2).

P2 : max
~c(~y);~s(~y);~I(~y)

Z y
1

y
1

Z y
2

y
2

� 2X
i=1

TX
t=1

[cit(~y)� sit(~y)] � 

t � b1 � I1(~y)� b2 � I2(~y)

�
f2(y2)f1(y1)dy2dy1

subject to:

(i) I1(y1; y2) + I2(y1; y2) � 1,

(ii)

Z yj

y
j

[Ui(yi; yj; yi)� Ui(~yi; yj; yi)] fj(yj) dyj � 0, for all yi and ~yi,

(iii)

Z yj

y
j

Ui(yi; yj; yi) fj(yj) dyj � 0, for all yi.

Here Ui(~yi; yj; yi) represents agent i's utility contingent on reports (~yi; yj) and his true

type yi. Speci�cally,

Ui(~yi; yj; yi) =
TX
t=1

[sit(~yi; yj)� vit(ait(~yi; yj; yi))] � 

t

where ait(~yi; yj; yi) represents the minimal e�ort agent i needs to exert in period t, when the

revelation mechanism requires him to deliver the cash 
ow cit(~yi; yj) and his true state is yi.

The incentive compatibility constraint in P2 requires that truthful reporting constitute a

Bayesian-Nash equilibrium. At the same time, the participation constraints are required to

hold in an interim sense, i.e., given his own type each agent must break even in expectation

over the other agent's possible types. By the same reasoning as in the single agent case,

one can use the local incentive compatibility conditions and the participation constraints

to transform P2 into an unconstrained optimization problem analogous to P1. As in the

single agent case, we simplify the moral hazard problem by assuming that inequality (5)
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holds for each agent and therefore the principal wants to induce ait = 1. It then follows that

the principal wants to fund agent i's project if its virtual NPV exceeds both zero and the

other project's virtual NPV. It will be convenient to denote the virtual NPV of agent i by

�i(yi) � NPVi(yi)� ki �Hi(yi), where ki �
PT

i=1
v0

it

�it
� xit � 


t.

Lemma 2 Given (5), the optimal capital budgeting rule is given by Ii(yi; yj) = 1 if and only

if:

�i(yi) > maxf�j(yj); 0g : (16)

The proof of this result is omitted since the arguments involved are similar to the ones used

in the proof of Lemma 1.

As in the single-agent case, the optimal capital budgeting policy can be implemented

through an indirect revelation mechanism in which each agent is asked to report his project's

internal rate of return ri(yi) and the project receives funding if and only if ri(yi) exceeds

some critical threshold. To identify the hurdle rates with competing projects, we denote

by ri � ri(yi) and ri � ri(yi) the lowest and highest possible internal rates of return. The

calibrating function �i : [ri; ri]! [rj; rj] is then de�ned by

�i(ri(yi)) = rj(yj)

where yj is such that �j(yj) = �i(yi).
22 We note that �i is well-de�ned since ri(�) and

�i(�) are monotone functions. In particular, it follows that �i(r
�
i ) = r�j , since, by de�nition,

ri(y
�
i ) � r�i and �1(y

�
1) = 0 = �2(y

�
2). The competitive hurdle rate for agent i can now be

de�ned as:

r�i (rj) = maxf�j(rj); r
�
i g : (17)

Figure 2 illustrates the function �1 and the optimal capital budgeting rules in (16).23

22If for given ri(yi), �j(yj) < �i(yi) for all yj , then �i(ri(yi))=rj . Conversely, �i(ri(yi))=rj if �j(yj) >

�i(yi) for all yj .
23We note that �2 is the inverse of �1(�) since for any �1(r1) 2 (r

2
; r2), �2(�1(r1)) = r1.
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Figure 2

Suppose now that each agent receives an incentive scheme of the form in (7){(8) based

on the relative bene�t cost allocation rule, and that the capital charge rate is determined ac-

cording to (17). It then becomes a dominant strategy for both agents to report their internal

rates of return truthfully since a project makes a positive contribution to the performance

measure if and only if ri(yi) > r�i (rj). We also note that the participation constraints hold

ex-post, i.e., for every realization of the other agent's type. The following proposition shows

that this mechanism is indeed optimal. Furthermore, even though the optimization program

in P2 is stated in terms of Bayesian incentive compatibility and interim participation con-

straints, the principal obtains dominant strategy incentives and ex-post satisfaction of the

participation constraints for \free".

Proposition 3 With competing projects, the relative bene�t cost allocation rule based on the

competitive hurdle rate r�i (rj) generates an optimal performance measure for each agent.
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Proof: See Appendix.

This result shows that our �nding in Proposition 1 extends naturally to a setting with

competing projects. Since residual income based on the relative bene�t depreciation rule

continues to generate an optimal performance measure, the e�ect of competition is captured

entirely by the use of the competitive hurdle rates r�i (rj) instead of the individual hurdle

rates r�i . The principal can still e�ectively delegate the investment decision since it will

be true that ri(yi) > r�i (rj) for one of the agents, and that agent will be better o� by not

investing. We also note that the �nding in Proposition 3 is consistent with the empirical

evidence in Poterba and Summers (1992), who document that �rms tend to impose internal

hurdle rates which signi�cantly exceed their \true" cost of capital. In our analysis the higher

competitive hurdle rates re
ect both the objective of limiting the manager's informational

rents and the objective of e�cient project selection.

To illustrate the impact of the capital investment constraint, suppose the two agents are

ex-ante identical, so that �1(y1) > �2(y2) is equivalent to both y1 > y2 and NPV1(y1) >

NPV2(y2). In this special case, it follows that r�1 = r�2 = r�, and furthermore the functions �i

reduce to the identity function. Competition between the two agents can now be shown to

entail two distinct advantages for the principal. First, the winning agent's informational rents

are reduced. As argued in (3), with one division the agent's informational rent is k � (y�y�).

When there are two (ex-ante identical) agents, and yi > maxfyj; y
�g, the winning agent's

informational rent is reduced to k � (yi � maxfyj; y
�g). Second, the principal achieves a

decrease in the probability of underinvestment. In the single agent setting, positive NPV

projects are foregone whenever y0 < y � y�, where NPV (y0jr) � 0. Thus the probability

of underinvestment with one agent is F (y�)� F (y0), while the addition of the second agent

lowers this probability to [F (y�)� F (y0)]2.

We conclude this section by examining how the optimal capital budgeting policy varies

with the relative severity of the two divisions' agency problems. Intuitively, an agent's

competitive hurdle rate should increase as this agent's moral hazard problem become more

severe. Similarly, one would expect a higher competitive hurdle rate for an agent who is

subject to greater information asymmetry. In our model, the severity of the moral hazard
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problem is captured by the parameter

ki �
TX
t=1

v0it
�it

� xit � 

t :

In the following analysis, it will be convenient to assume that each yi is normally dis-

tributed with mean yi and variance �2i .
24 The variance �2i then represents the degree of

information asymmetry since for a normally distributed random variable the inverse hazard

rate, Hi(yi), is increasing in �2i for any given yi. For comparative statics purposes, we view

the competitive hurdle rate r�i (rjj�) as parameterized by k1; k2; �
2
1 and �22.

Proposition 4 The competitive hurdle rate r�i (rjjk1; k2; �
2
1; �

2
2) is uniformly increasing in

both ki and �2i , and uniformly decreasing in both kj and �2j .

Proof: See Appendix.

The calibrating function �i allows the principal to \handicap" a division which is subject

to a more severe agency problem. To illustrate the use of Proposition 4, suppose NPV1(y) =

NPV2(y) for all y. If k1 = k2 and �21 = �22 , then the two agents are ex-ante identical and �i

is the identity function. For k1 > k2 and �21 > �22, however, the principal faces a more severe

moral hazard problem and greater informational asymmetry with agent 1. It then follows

that r�1 > r�2 and furthermore the function �1(r1) will always be below the diagonal in the

space of internal rates of return; see Figure 2. In this sense, agent 1's bid for the project will

e�ectively be \handicapped".

6 Risk Aversion and the Adoption of Risky Projects

This section examines optimal incentive schemes when projects are risky and managers are

risk averse. To begin with, we focus on a single agent setting. The question then becomes

whether residual income remains an optimal performance measure and whether the capital

charge rate and the depreciation rules are a�ected by the agent's attitude towards risk.

24We note that the internal rate of return ri(yi) is not de�ned for negative values of yi. Without loss of
generality, however, we may set ri(yi) = ri(y

0

i ) for all yi < y0i , where y
0

i is the �rst-best cut-o� level, i.e.,
NPV (y0i jr) � 0.
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To include risk in the model, suppose that the investment project generates cash in
ows

in the amount of xt � y + ~�t in period t, where ~�t is a zero-mean random variable. For

contracting purposes, the principal can rely on the investment cash 
ow in period 0 as well

as the operating cash 
ows

ct = �t � at + (xt � y + �t) � I + "t (18)

where ~"t is an unbiased noise term. The random variables f~�tg
T
t=1 can be interpreted as

\project risk" since they a�ect the operating cash 
ows only if the investment project is

undertaken.

For the purpose of analytical tractability, we con�ne attention to a multiperiod len

model: Linear contracts, Exponential Utility and Normally distributed noise terms.25 There-

fore both ~"t and ~�t are assumed to be normally distributed with mean zero and respective

variances of �2t and �2t . In our context, the linearity requirement restricts the agent's com-

pensation scheme to be linear in the observed operating cash 
ows:

s1(c1; ~y) = h1(~y) + k11(~y) � c1
... (19)

st(c1; : : : ; ct; ~y) = ht(~y) + kt1(~y) � c1 + � � �+ ktt(~y) � ct :

Here, ht(~y) denotes a payment the agent is to receive at date t contingent on his report ~y,

but independent of the history of actual operating cash 
ows. The bonus coe�cient kti(~y),

determines the share the agent is to receive in period t for a dollar of cash 
ow delivered in

period i, where t� i. Again, these bonus coe�cients can depend on the agent's report ~y.

For the risk-averse agent, we assume that his intertemporal preferences can be described

by an additively separable utility function of the form

U0 = �
1X
t=1


t � expf�� � (wt � vt(at))g � 

t : (20)

25Earlier papers which have relied on the len framework in single period models include Holmstrom and
Milgrom (1991) and Meyer and Vickers (1997).
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The agent trades o� monetary consumption wt against the cost of e�ort vt(at) in each

period. The parameter � represents the agent's degree of risk aversion. We assume that the

agent has access to third party banking at the common interest rate r.26 If Wt denotes the

agent's savings at the end of period t, his consumption is given by wt = st+(1+r)�Wt�1�Wt.

At the time of contracting, the agent's expected utility depends on the true pro�tability

parameter y, the agent's report ~y, and the future action choices (a1; : : : ; aT ). The parties

are assumed to commit to a contract that extends over T periods. The agent accepts some

alternative employment after date T . For simplicity, his market alternative in each period

is normalized to zero, i.e., in every period the agent could have earned a �xed wage of

zero in return for low e�ort (at = 0), externally. Similarly, there is no loss of generality

in normalizing the agent's initial wealth to zero. The len framework permits the following

characterization of the agent's expected utility.

Lemma 3 Given the len framework, the certainty equivalent of the agent's expected utility

at date 0 takes the following mean-variance form:

CE(~y; y) =
TX
t=1

�
ht(~y) + kt(~y) � (�t � at + xt � y � I(~y))� vt(at)

� 1
2
� � � (1� 
) � (kt(y))

2 � (�2t + �2t � I(~y))

�
� 
t

(21)

where kt(~y) �
TX
i=t


i�t � kit(~y) :

The proof of Lemma 2 is omitted since its steps closely follow the arguments in Dutta

and Reichelstein (1999a). According to (21), the certainty equivalent of the agent's expected

utility is given by the present value of the mean-variance expressions corresponding to the

agent's compensation scheme in each period.27 The coe�cient kt(~y) in (21) is the e�ective

26The signi�cance of third party banking is that the compensation scheme does not need to re
ect the
agent's desire to smooth consumption over time. For any sequence of compensation payments, the agent
will adjust his savings decisions so as to achieve a smooth consumption stream. See Fudenberg, Holmstrom,
and Milgrom (1990) for further discussion of this assumption.

27We note, however, that the e�ective coe�cient of risk aversion, � � (1 � 
), is less than the nominal
coe�cient � because the agent can spread the e�ect of an income shock in any given period over an in�nite
horizon.
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bonus coe�cient associated with the operating cash 
ow, ct, since kt(~y) is equal to the present

value of the payments the agent receives for a dollar of cash 
ow delivered in period t.

Given Lemma 2 the agent's preferences over linear incentive schemes can be represented

by CE(~y; y), and therefore the principal's optimization problem can be written as follows:

P3 : max
fkt(y);ht(y)g;I(y)

Z y

y

f
TX
t=1

[�t � at(kt(y)) � (1� kt(y))� ht(y)] � 

t

+ (NPV (y)� y � k(y)) � I(y))g f(y)dy

subject to:

(i) at(kt(y)) 2
argmax

at f�t � kt(y) � at � vt(at)g,

(ii) CE(y; y) � 0 for all y,

(iii) CE(y; y) � CE(~y; y) for all y; ~y

(iv) k(y) �
TX
t=1

kt(y) � xt � 

t.

In solvingP3, the principal faces the same trade-o� as in the risk neutral setting. Stronger

incentive provisions, i.e., higher bonus coe�cients, kt(y), results in larger informational rents

as the agent captures a larger share of the surplus in favorable states. Again, the expected

value of the informational rent is given by the expected value of H(y) � k(y). Analogous to

condition (5), we consider parameter settings such that it is desirable to induce maximum

e�ort at = 1 in every period:

�t � v0t �
1
2
� � � (1� 
) �

�v0t
�t

�2
(�2t + �2t )�H(y0)

�v00t
�t

�
� xt > 0 : (22)

As before, (22) implies that the principal will optimally choose kt(y) =
v0t
�t

and invest if,

and only if, the pro�tability parameter is above a threshold level y��, which is given by the

solution to the equation

NPV (y��)�H(y��) � k �R = 0; (23)

with R �
TX
t=1

�
1

2
� � (1� 
) �

� v0t
�t

�2
� �2t

�
� 
t ;
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and k is given by (4). The above condition states that the principal will optimally invest

only if the project is su�ciently pro�table to cover the direct investment cost as well as

the associated agency cost which now has two components: the (expected) informational

rent, H(y��) � k, and compensation for the incremental project risk, R. Put di�erently, a

pro�table project requires a positive virtual NPV, which now also includes the risk premium

R. Therefore, risk aversion increases the principal's required cut-o� level y�� beyond y�.28.

We denote by r�� the risk-adjusted hurdle rate which solves

NPV (y��jr��) = 0 :

Clearly, this risk-adjusted hurdle rate r�� exceeds r�, the hurdle rate in the risk-neutral

setting.

We note that the risk adjustment to the optimal investment policy depends only on the

variances of f�tg, but not on variances of the f"tg. If there were no incremental project

risk (i.e., if R = 0) then the agent's risk aversion would have no impact on the optimal

investment policy. The principal could use the same hurdle rate as in the risk neutral

setting. Furthermore, the relative bene�t cost allocation with a capital charge rate set equal

to the hurdle rate r� would generate optimal incentives.29

With incremental project risk, i.e., when R > 0, the principal would have to pay the

incremental risk premium even if she knew the pro�tability parameter y. We denote by y0R

the corresponding cut-o� level, i.e., y0R solves

NPV (y0R)� R = 0 :

Clearly, y0R > y0 for any R > 0. We assume that y0R < y, to avoid the trivial case in which

a project that would never be undertaken due to its high risk. Delegation mechanisms of the

form in (8) will remain optimal in this setting, if the following condition on the magnitude

28Lambert (1983) arrives at a similar conclusion in a one-period model in which the agent also must be
compensated for project risk.

29This observation suggests that the len framework is not overly restrictive, if the agent's degree of risk
aversion is su�ciently \small". To see this, note that the above incentive scheme approaches the one derived
in Proposition 1 for a risk neutral agent. Yet, for a risk-neutral agent the linearity of the compensation
scheme was derived endogenously rather than being imposed exogenously.
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of project risk is satis�ed:

y0R � b +
R

k
: (24)

We note that (24) will be satis�ed if the variances �2t of the noise terms �t are \su�ciently

small". The inequality in (24) will then hold because y0R > b.30

Proposition 5 Given (22)and (24), there exists a capital charge rate r̂ such that the relative

bene�t cost allocation rule corresponding to r̂ generates an optimal performance measure.

This capital charge rate r̂ is smaller than the risk adjusted hurdle rate r��.

To see why the capital charge rate has to be set below the risk-adjusted hurdle rate,

suppose the two rates were identical. By de�nition of the relative bene�t cost allocation

scheme, it then follows that at the cut-o� level y�� the cost charge in each period would be

exactly equal to the expected cash 
ow from investment in the project. Therefore, a risk-

neutral agent would be indi�erent between investing and not investing at y = y��, but a

risk-averse agent would reject the project at y = y��, and hence the investment incentives

would be biased. To restore the desired incentives, and compensate the agent adequately

for project risk, the capital charge rate needs to be lowered below r��.31 Depending on the

parameters of the problem, the capital charge rate may even have to be reduced below the

principal's true cost of capital r.32

30This claim follows from the inequalities:

0 < NPV (y0R) �
TX
t=1

xt � y
0

R � b = y0R � b:

31Christensen, Feltham, and Wu (2000) also examine the capital charge to be imposed on a risk-averse
agent. In a symmetric information setting, they show that the optimal capital charge rate must be set below
the riskless interest rate in order to induce the agent to take risky projects. They also consider a setting
in which the agent receives perfect information regarding the project payo�s after contracting, but before
making the investment decision. In such a setting, the principal wants to induce underinvestment, and he
does so by setting the capital charge rate above the riskless interest rate.

32For su�ciently risky projects, i.e., when (24) fails to hold, there may not exist a positive capital charge
rate which adequately compensates the agent for the investment risk. Yet, the delegation schemes can still
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Within the len framework one can also address the e�ects of both competition and risk

aversion on the nature of optimal incentive schemes. With two risk averse agents, it can be

shown that the risk adjusted competitive hurdle rate for agent i is given by maxf�R
j (rj); r

��
i g.

Here, �R
j (�) is essentially the same calibrating function as in Section 5, except that the virtual

NPV's now also re
ect the constant risk premia, R1 and R2. Like in the risk neutral setting,

competition therefore has the e�ect of increasing an agent's hurdle rate.

It is then straightforward to extend our implementation results in Proposition 3 and

Proposition 5 to settings with competing risk-averse setting. Analogous to the �nding in

Proposition 5, it can be shown that there exists a capital charge rate for each agent such that

residual income based on the relative bene�t depreciation rule is an optimal performance

measure, and each agent has a dominant strategy incentive to report his internal rate of

return truthfully. As in Proposition 5, proper compensation for the incremental project risk

requires that each agent be charged a cost of capital lower than his risk adjusted competitive

hurdle rate, i.e., maxf�R
j (rj); r

��
i g.

7 Conclusion

In the context of a multiperiod agency model, we have analyzed managerial incentives for

investment decisions in a multiperiod agency setting. Due to asymmetric information the

principal applies a hurdle rate which is higher than her true cost of capital. Linear incentive

schemes based on residual income can generate optimal investment and e�ort incentives

provided the capital charge rate is set equal to the hurdle rate and the �rm uses a depreciation

method that achieves proper matching of investment costs and project cash 
ow. The bonus

coe�cients attached to residual income can then be freely adjusted to address the underlying

moral hazard problem without altering the investment incentives. Such 
exibility is desirable

in order for a performance measure to accommodate an entire range of agency problems.

The incentive schemes we identify can accommodate both competition for project funding

provide optimal incentives if the compensation schemes can be made contingent on the investment decision.
Speci�cally, the compensation scheme fst = ht+ gt � I + kt � �tg provides optimal incentives if �t is based on

the relative bene�t cost allocation rule (corresponding to r��) and
PT

t=1 

t � gt = R:
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and managerial risk aversion towards uncertain project cash 
ows. In both scenarios, the

optimal incentive scheme can remain unchanged except for the capital charge rate. With

competing risk-neutral agents, the principal wants to adjust the capital charge rate upwards

to the competitive hurdle rate, which exceeds the hurdle rate in world without investment

constraints. Managerial risk aversion also has a tendency to increase the applicable hurdle

rate, yet in order to provide proper incentives for a risk averse manager, the capital charge

rate must be set below the risk adjusted hurdle rate.

Our analysis provides a rationale for the widespread practice of charging divisions with

costs that correspond to investment expenditures incurred in the past. In particular, our

results provide theoretical support for the recent wave of adoptions of residual income as a

divisional performance measure. Furthermore, the results of this paper provide theoretical

guidance regarding the appropriate capital charge rate and the choice of intertemporal cost

allocation schemes for the purpose of managerial performance evaluation.
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Appendix

Proof of Lemma 1:

For any ct satisfying (1), the agent's cost of delivering ct in state y is:

Dt(ct; y; I) = vt(�
�1
t � (ct � xt � y � I)) :

The participation constraint U(y; y) � 0 will hold with equality for the lowest type y. This

boundary condition combined with the \local" incentive compatibility conditions implies

that for any policy fI(y);~c(y)g the agent will earn the following informational rents:

U(y; y) =
TX
t=1


t �

Z y

y

�
@

@y
Dt(ct(u); u; I(u))du ; (25)

where U(y; y) �

TX
t=1

[st(y) � Dt(ct(y); y; I(y))] � 

t. The expected informational rent then

becomes: Z y

y

U(y; y) � f(y)dy =
TX
t=1


t �

Z y

y

f�H(y) �
@

@y
Dt(ct(y); y; I(y))gf(y)dy (26)

Since
@

@y
Dt(ct(y); y; I(y)) = �vt (�

�1
t � ( ct(y)� xt � y � I(y)) �

xt

�t
� I(y):

we can substitute (25) and (26) into the principal's objective in P0 to obtain:

max
fI(y);~c(y)g

Z y

y

(
TX
t=1

(ct(y)� y � I(y) � xt � vt(�
�1
t � (ct(y)� xt � y � I(y)) � 


t

+
�
NPV (y)�

TX
t=1

H(y)� v0t(�
�1
t � (ct(y)� xt � y � I(y)) �

xt

�t
)
�
I(y)

)
f(y)dy:

(27)

The objective in (25) can be maximized pointwise, subject to the boundary conditions

xt � y � I(y) � ct(y) � xt � y � I(y)+ �t. Clearly, I(y) = 0 if y � y0. For any y > y0 for which

I(y) = 1, the principal seeks to maximize:

�t � at � vt(at) +NPV (y)�H(y) �
v0t(at)

�t
� xt � 


t ;
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with regard to at: Since H(y) is increasing in y, condition (5) implies that it is optimal to

choose at = 1; or ct(y) = �t + xt � y whenever y � y0 and I(y) = 1. As a consequence, the

optimal cut-o�, y�, is given by (6).

To complete the proof, we note that the resulting scheme is indeed globally incentive

compatible. As shown by Mirrlees (1986), a mechanism is incentive compatible provided it

is locally incentive compatible, and @
@y
U(~y; y) is (weakly) increasing in ~y.

For the above mechanism:

@

@y
U(~y; y) =

TX
t=1

v0t(at(~y; y)) � 

t � I(~y) ;

which is increasing in ~y since v0t(�) is increasing, at(~y; y)) is increasing in ~y and the optimal

I(�) is an upper-tail investment policy. 2

Proof of Proposition 2: Optimality requires that kt =
v0

t

�t
. With smaller bonus coe�-

cients the agent would not have an incentive to exert the optimal e�ort at = 1. Conversely,

kt >
v0

t

�t
would give the agent additional and unnecessary rents.

Given ~�0, we de�ne

�0 � f~� j
TX
t=1

xt �
vt

�t
� 
t =

TX
t=1

xt �
vt

�0t
� 
tg : (28)

It follows directly from (28) that y�(~�) = y�(~�0), and hence r�(~�) = r�(~�0), for all ~� 2 �0.

In order for the agent to have the optimal investment incentives, it must be that

TX
t=1


t �
vt

�t
� [xt � y

�(~�)� zt(~x; r
�(~�)) � b] = 0 : (29)

By de�nition of �0, the terms:

�t � xt � y
�(~�)� zt(~x; r

�(~�)) � b

are constant for all ~� 2 �0. The requirement in (29) then becomes:

TX
t=1

v0t
�t
� 
t ��t = 0 (30)
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for all ~� 2 �0. Assuming that x0 6= 0 (without loss of generality), we solve for the variable

�0 in (28) to obtain:

�0 =

(
~� j

v00
�0


 =
v00
�00
� 
 +

TX
t=1

xt

x1
�

�
vt

�t
�

vt

�0t

�
� 
t

)
:

Substitution into (30) yields"
v00
�00
� 
 +

TX
t=1

xt

x1
�

�
vt

�t
�

vt

�0t

�
� 
t

#
��1 +

TX
t=1

v0t
�t
� 
t ��t = 0

for all (�1; : : : ; �T ) in a neighborhood of (�01; : : : ; �
0
T ). The only way to satisfy this require-

ment is to have �t = 0 for 1 � t � T . We recall that the hurdle rate is given by

NPV (y� j r�) =
TX
t=1

xt � (1 + r�)�t � y� � b = 0 :

Therefore �t = 0 implies:

zt(~x; r
�) =

xtPT
i=1xi � (1 + r�)�i

:

2

Proof of Proposition 3: We recall that �i(yi) � NPVi(yi) � ki � Hi(yi) denotes

the virtual NPV of the project at yi. Since �i(�) is strictly increasing, it follows that

the conditions �2(y2) � maxf�1(y1); 0g and �1(y1) � maxf�2(y2); 0g are equivalent to

r2 � maxf�1(r1); r
�
2)g and r1 � maxf�2(r2); r

�
1g, respectively. Thus, the competitive hur-

dle rate mechanism implements the same investment decisions as the optimal revelation

mechanism. The choice of bonus coe�cients fkitg ensures that ait = 1.

If we let Ui(~ri; ri; rj) denote the agent i's utility contingent on his report ~ri and true

IRR's (ri; rj), then

Ui(~ri; ri; rj) = ki � (yi �maxfy�i ; yjg) � I
�
i (~yi; yj) (31)

where I�i (�; �) denotes the optimal investment decision rules.
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It is clear from (31) that the agent i's participation constraint holds for each yj, and each

agent has (dominant strategy) incentives to report his IRR truthfully. Furthermore, the

payments resulting from (31) coincide with those of the optimal revelation mechanism.

2

Proof of Proposition 4: If yi � N(yi; �
2
i ), then

Hi(yi j �
2
i ) =

R1
yi

e�(u�y2i )
2=2�2i � du

e�(yi�y2i )
2=2�2i

:

Di�erentiating with respect to �2i reveals that the inverse hazard rate function Hi(yi j �
2
i ) is

uniformly increasing in �2i . Since the virtual NPV is given by

�i(yi j ki; �
2
i ) = NPV (yi)� ki �Hi(yi j �

2
i ) ;

it follows that the virtual NPV is uniformly decreasing in ki and �
2
i . This immediately implies

that �i(ri j k1; k2; �
2
1; �

2
2) is uniformly decreasing in ki and �2i and uniformly increasing in kj

and �2j . The result follows since r
�
i is increasing in ki and �2i . 2

Proof of Proposition 5. Suppose the principal chooses the compensation coe�cients

fht; ktg such that kt =
v0

t

�t
and

TX
t=1


t � [ht �
1
2
� � � (1� 
) �

� v0t
�t

�2
� �2t ] = 0 :

This ensures that at = 1 and the participation constraint is satis�ed. The agent will accept

the project if and only if y � y�� provided:

TX
t=1

(xt � y
�� � zt � b) �

� v0t
�t

�
� 
t � R = 0 : (32)

Let 
̂ denote the solution to the following equation:

�
y�� �

R

k

�
�

TX
t=1


̂t � xt � b = 0 : (33)
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If condition (24) holds, i.e., y0R � b + R
k
, there exists a unique 
̂ 2 [0; 1], which solves (33).

To see this, note that y��� R
k
> y0R�

R
k
� b. Therefore, the left hand side of (33) is positive

when evaluated at 
̂ = 1 and negative at 
̂ = 0.

It is readily veri�ed that (32) holds if zt is chosen to be the relative cost allocation rule

corresponding to r̂, i.e.,

zt(x; r̂) =
xtPT

i=1 
̂
i � xi

:

Following the argument in the proof of Proposition 1, the Revenue Equivalence Theorem

then implies that the payments to the agent coincide with those of the optimal revelation

mechanism. 2
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