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Stochastic Intertemporal Optimization in Discrete Time

Wendd| H. Heming and Jerome L. Stein

1. The Need for a Paradigm of Risk Management of Short-term Foreign Currency
Denominated Debt

Data on the credit rating of bonds issued in the first haf of the 1990s suggest that
investors in emerging market securities paid little attention to credit risk, or that they were
comfortable with the high level of credit risk thet they were incurring'. The compression of the
interest rate yield spread prior to? and the subsequent turmoail in emerging markets have raised
doubts about the ability of investors to appropriately assess and price risk.

Moody's indicated that there was a need for a"paradigm shift” that involves grester
andytic emphasis on the risks associated with the reliance on short-term debt for otherwise
creditworthy borrowers.

The literature in internationd finance concerning inter-tempord optimization in discrete
time makes assumptions that implies to certainty equivaence®. These assumptions assume away
the need for risk management, and fail to address the questions of how should one optimize
under uncertainty, or evaluate what debt is likely to lead to default. We develop a paradigm for
risk management: intertempora optimization under uncertainty, with the condraint that there be
no default on short- term foreign currency denominated debt in a finite horizon discrete time

context.

2. A Discrete Time Finite Horizon Modd, Risk and Risk Averson

! This section relies on International Monetary Fund, International Capital Markets, Washington DC (1999),
and International Monetary Fund, Anticipating Balance of Payments Crises, Occasional Paper #186, (1999).
2 The market expectations as embodied in interest rates did not widen significantly prior to the Mexican
crisis. Inthe Asian crises, spreads hardly increased in the months prior to the floatation of the Bhat. The
credit rating agencies and the market analysts all failed to signal the Asian crisesin advance. They
downgraded these countries only after the crises.

% See the reference to Obstfeld and Rogoff below. Similarly, the use of the Maximum Principle in continuous
time assumes perfect certainty. Neither approach is useful in aworld of risk and uncertainty. By contrast,
Infante and Stein (1973) used dynamic programming to solve for intertemporal optimizationin an
environkment where there is not perfect knowledge. The derived suboptimal feedback control drivesthe
economy to the unknown perfect certainty optimal path.



The contribution of our paper is as follows. In an earlier paper®, we solved the problem
of the optima consumption, capital and foreign debt in continuous time over an infinite horizon,
where the productivity of cgpital and the interest rate have Brownian motion components, which
are correlated. Thereby we reated the externa shocks to the vulnerability of the banking sector.
The technique of anadyssis dynamic programming. Here, we andyze and solve amodification
of the standard, well-known, mode! of intertempora optimization. By consdering this type of
model, we achieve several objectives.

First: we show how to solve the intertempora optimization problems without assuming
away the risk by making assumptions that imply certainty equivalence, asis donein the
literature®. Second by considering the standard two period version of modd, the discrete period
case can be solved by caculus, whereas the infinite horizon case discussed in our earlier paper
employed the dynamic programming method with the technicd mathematica difficulties
encountered in the theory of continuous time stochastic control. Third: we do not assume that
the disturbances are Brownian motion. The effects of different ways of describing the
uncertainty, upon the optima consumption, investment, the current account deficit and debt, are
explicitly consdered. Fourth: we focus upon the role of short- term debt, which must be repaid
at the end of the second period. Thisisthe "no bankruptcy™” condraint. Fifth: The object isto
select consumption and investment - and the resulting short term debt - in the first period to
maximize the expected present vaue of consumption over both periods.

The condraint is that, regardless of the state of nature in the second period, there will be
no default on the debt. Thereby we derive benchmarks for optimal foreign debt, which will not
be defaulted. We do not claim that the optimal debt is the same as the actual debt incurred.
Witness the defaults and debt crises. Insofar as the actual debt exceeds the benchmark, the risk
of default isincreased. The main reason for adeviation between the actua debt and the optimal

* Fleming and Stein, CESifo Working paper #204 (1999).

® The intertemporal optimization analysisin Obstfeld and Rogoff (1996: 60-87) makes assumptions that imply
certainty equivalence. Hence risk is not considered in their resulting optimal consumption, investment and
debt They are aware of this deficiency, and write (p.81) the following: "...consumption is determined
according to the certainty equivalent principle. People make decisions under uncertainty by acting asif
future stochastic variables were sure to turn out equal to their conditional means. Certainty equivalenceis
rarely arational basisfor decisions."



debt isthat the borrower is overly optimistic about the distribution function of the return to
investment.

Part 2.1 isadiscusson of the structure of a modification of the standard modd. The
mathematica solution in part 2.2 shows how the intertempora optimization model can be solved
without making the assumptions that imply certainty equivalence. Part 3 concernsthe
optimization with finite risk averson. A condraint is that there be no defaullt.

Thereis no sure way to know what is the distribution of the stochastic varigble, in our
case it isthe productivity of capitd. Insofar as the resulting debt exceeds the derived optima
debt, the probability of default isincreased. Part 4 consders an extremely prudent approach to
intertempora optimization by an agent who has infinite risk averson. Thiswould be the case if
the lenders were inditutiona investors who are infinitely risk averse and will only lend for
projects which are dmogt sure things. We derive optimal investment and debt in this most

prudent case.

2.1 Modification of the Standard Model

Our horizon is a series of two period models with short-term borrowing, with initid and
terminal conditions on debt and capital®. At the beginning of period t =1, capita K(1) > 0 and
foreign debt L(1) = 0. The contrals are consumption C(1) > 0 and investment 1(1) > 0
expenditures selected in period t =1. The excess of domestic investment over saving is the
current account deficit, which is financed through short-term debt denoted L(2) that is due at the
beginning of period t = 3. The debt is denominated in US dallars; hence C(1), 1(1) and GDP
denoted by Y (1) are dso measured in US dollars. The condraints are that: (i) Consumption is
positive. (ii) Thereis no default. At the beginning of the third period the dollar denominated debt
plusinterest must be repaid. Our debt congraint isthat: L(3) = L(1) = 0. That iswhy we refer
to the debt as "short-term” deb.

A two period modd aso requires acongraint on the capitd at the beginning of period
three: K(3). We could require that K(3) be amultiple of the initid K(1). Here we select the

® Otherwise, the Fleming-Stein (1999) infinite horizon model should be used. But in that case, thereis no
short- term debt: the debt need never be repaid, but must always be serviced.



multiple equa to unity, so that K(3) = K(1). Thismeansthet (iii) the initid capitd must be
returned: K(3) = K(1), whichimpliesthat 1(1) + 1(2) = 0, so that the process of short-term
debt financing can be repeated in the third period’.

The uncertainty concerns the productivity of capita and invesment, which determine the
dollar value of GDP equd to net value added, denoted Y (2), and consumption C(2) in the
second period. The productivity of capital and investment is b(2), discussed below.

The criterion function is equation (1): the maximization, over the sat of controls and the
congtraints (i)-(iii) above, of the expectation [E] of the present vaue [J] of the utility of
consumption. The discount factor® b isthe ratio of future/present utility. The expectation is
discussed below. Thereisrisk averson: finite or infinite. The utility function a each period is
HARA, U(C(t)) = (1/g)C®, where positive (1 - g) > 0 isrisk aversion. Thisis a concave
positively doped function, with an infinite dope a a zero leve of consumption. When g< 0,
utility has an upper bound at zero. Three cases are consdered. Thefirst two assume that (1-g)
> Qisfinite. The case where g = 0 impliesthat U(C(t)) = In C(t). Thethird case, discussed in
part 4, is very important and lesswell known. It involves a very conservative approach to risk
management. It is called the Large Deviations [LD] approach to risk. There are three partsto

the LD approach. Firdt: isthat thereisinfiniterisk averson, g=> - ¥, or (1- g) => ¥. Second,
the probability of the bad case (1-p) is negligible: that is the good case isamost a“sure thing'”.
Thisismodeled as (1-p) = €2*9, a > 0. Third (1-p)**? = €® =B, where1>B > 0. The
meaning of the very consarvative LD approach is discussed below.
(D) E[J] = Max {U(C(1)) + b E ey [U(C(2)]}, C(1) >0, 1(1) > 0.

The dollar denominated debt L (2) that exists at the beginning of period t=2, equetion
(2), isthe current account deficit in period t=1, equd to consumption C(1) plus investment I(1)
less the GDP denoted Y (1).
@QL@=C)+1(1)-Y(Q.

"1tis quite easy to use the constraints: L(1) = a, L(3) = b, K(1) = ¢> 0 and K(3) = eK (1), wheree > 0. We have
selecteda=b=0,ande=1.

8 In our model the two stages are viewed as part of a cycle, which repeats forever. If future cycles are given
weight equal to theinitial cycle, it makes most sense to think of discount factor b = 1.



Initid capital isK(1) > 0, and investment 1(1) > 0. The capitd at the beginning of period
t=2 denoted K(2) is equation (3). The investment in period t=2 is1(2) = -1(1), Snce we require
that K(3) = K(1), to restart the process of short term borrowing.

(3) K(2) = K(1) + 1(2).

The uncertainty concerns consumption in period two C(2), described by equation (4).
Consumption, debt and capital are measured in red $US. It isthe GDP plus capitd, Y (2) +
K(2), less the repayment of the debt plusinterest 9.(2) = (1+r)L(2) lessthe return of the initial
capita K(1), to restart the process.

(4) C(2) =Y(2) +K(2)- (1+r)L(2) - K(2)

The uncertainty involves the GDP in period t=2, denoted Y (2). The production function
isY(t) = b(t)K(t): thereis afixed proportion between GDP and capitd K(t). The limiting factor
is adways capital®. The productivity of capital or investment b(2) = Y (2)/K(2) in period t=2 is
unknown when the investment decison is made at t=1. The productivity of invesment b(2) is
gochastic for the following reason. Dollars are borrowed at interest rate r to purchase capita
and produce an output, which is sold in the world market. The dollar vaue of the output
depends upon severd factors: the terms of trade (export/import prices), the red exchange rate
of the country and the productivity of the investment, measured in domestic currency. If the
terms of trade deteriorate, the investment isill advised or the red exchange rate depreciates, the
productivity of the investment b(2) declines. Then the repayment of the dollar denominated debt
ismore costly. Instead of viewing the effect of exchange rate uncertainty upon the interest
payments denominated in foreign currency, we view everything via the productivity of
invesment™.

° The production function is: Y (t) = min[b(t)K (t), at)W(t)] = b(t)K(t), where W= other inputs.

19| n this paper, the short term rate of interest is known, but the productivity of capital b(2) isunknown. A
good example of the uncertainty, and our use of b(2) to describeit, concerns Mexico and Thailand. The firms
and the banks borrowed US dollars on the assumption that the exchange rate would continue to be fixed
relative to the US dollar. When the terms of trade declined, the return in domestic currency declined. The
firms had difficulty in repaying the banks that, in turn, had more non-performing loans. It then was difficult
for the banksto repay the foreign creditors, and the exchange rate depreciated. The depreciation aggravated
the decline in b(2) arising from the decline in the terms of trade. With a depreciated currency, the net value
added of the economy commanded fewer dollarsto repay the loans.



The uncertainty is described by the net return on investment is b(2) - r, the productivity
of capital lessthe interest rate. The range of b(2) isr + a2, a> 0. The vaues of the net return
b(2) - r are symmetrical around zero with arange a> 0, as described below, with probabilities
(p, 1-p), 1> p >0, in the good and bad case respectively. Thisis not Brownian motion, but a
ample and generd formulation that makes minima assumptions about the distribution function.

b(2) Pr(b)
b"(2)=r+a21>p>0 good case
b (2) =r—a2 (2-p)>0 bad case

Expected net return E[b(2)-r] = a(p - 1/2); range [b(2)-r] =a>0

Using the production function and nature of the uncertainty, we write the consumption in
period t=2 as equation (4.1), where Y (1) = b(1)K(1).

(4.1) C(2) = gb(1K(I) - C(D)] + [b(2) - r]I(1) + b(2K(D)

Consumption in period 2 has three components. The first term is the interest plus
principal on saving §b(1)K(1) - C(1)], which can be loaned or borrowed at rater. It is not
stochadtic and is known at t = 1. The second term isthe net return on investment 1(1), the
productivity of capita b(2) lessthe interest rate r. The productivity of capital b(2) lessthe
interest rate is the stochadtic variable that is unknown when investment decisions are made in
period t=1. The third term is the consumption C(2) that would be possibleif there is neither
saving nor investment in period t=1. It istheinitid capitd K(1) timesits productivity b(2), where
b(2) isunknown a t=1.

2.2 Mathematica Technique and Solution

We solve our modification of the stlandard model by taking explicit account of the
uncertainty, rather than by using the certainty-equivaence approach in the literature, and by
explicitly usng the "no bankruptcy” congraint . Consumption C(2) is astochadtic varidble.
When the productivity of capita takes on the good vaue b*(2) = r + a2, with probability p,
then consumption C*(2) is equation (5); and when the productivity of capita takes on the bad
value b(2) =r - a2, with probability (1-p), consumption is C(2) in equation (6).
(5) C'(2) = (1+n[b(K (1) - C(1)] + (@2)1(1) + (r + &2)K(1)



(6) C(2) = (A+n[b()K(D) - C(1)] - @2)1(1) +(r-a2)K(1)

If thereis optima risk management in period t=1, the country would sdlect the controls C(1) >
0, 1(1) > 0to maximize the expectation of the present vaue of utility of consumption, E[J],
which is grictly concave, on the four-sided convex polygon G defined by the controls and
condraints: C(1) >0, C*(2) >0, C(2) >0, I(1) > 0. Thereis no default: L(3) = 0, the debt
plus interest must be repaid. The capita inherited K(1) must be repaid at the beginning of the

third period: K(3) = K(1), so that the process can be repeated™.

(7) max E[J] = MAX ¢ { (L/g)CY1) + b(Lg)[p C"(2) °+ (1-p)C (D °]},

over the controls and congtraints G. The crucid partid derivatives, to be used in the solution,
are equations (5.1) - (5.2) in the good case, and (6.1)-(6.2) in the bad case.

Probability p>0 Probability (1-p) >0
(5.1) dC*(2)/dC(1) = -s = -(1+1); (6.1) dC(2)/dC(1 = -s=-(1+r)
(5.2) dC*(2)/dI(1) = + a/2; (6.2) dC(2)/dI(1D) =- a/2

Since E[J] is gtrictly concave over G, the maximum isa a unique C*(1), I*(2), which is
ether interior to G or on the boundary 1(1) = 0.When the maximization isinterior to G, it is
found by setting the partid derivatives of E[J] with respect to C(1) and I(1) equa to zero. This
gives equations (8) and (9):

meximizetion
(8) CTH(1) =bs{p[C*(2)] ** + (1-P)IC (2] *7}

(9 b{ pIC*(2)]** (a/2) - (1-p)[C(2)]** (a/2)} =0

Variables C(2) and C(2) are defined in (5) and (6), respectively. We solve (8) and (9)
viaatransformation (10.1)-(10.2). The consumption in the second period is a proportion of that
inthefirg period.

(101 [C']¢" =A"[C(D)] "
(102) [C(1¢* =AT[C(1)]**

! See the earlier footnote how we can also use the assumption that K (3) = eK (1) > 0, without specifying that
el



We determine the values of A™ and A™ by subdtituting (10.1) and (10.2) into the
maximizing relations (8) and (9), and obtain (11) and (12). The latter two equations concern the
maximization with respect to control variables C(1) > 0 and I(1) > 0, and we solve for the
vauesof A" and A",

(11) pA* + (1-p)A = 1/bs

(12) pA* - (1-p)A = 0.

Consider the case where 1(1) > 0, and equation (12) is an equdlity. The resulting values of A*
and A" are equations (13.1)-(13.2).

(13.1) A" = 1/2pbs

(13.2) A" =1/2(1-p)bs

Using (13.1) and (13.2) in (10.1) and (10.2), we obtain the values of consumption C(2) in
period two relative to the optimal control C(1), equations (16.1) and (16.2).

(14.1) C*(2) = (2pb9)*™C(1)

(14.2) C(2) = (2(1-p)bs)¥* 9 C(1)

Now, we can solve for the optima controls C(1) and I(1). Substitute equation (14.1),
the consumption that resultsin the good case, in eguation (5) to obtain equation (15). Smilarly
substitute equation (14.2), the consumption that resultsin the bad case, in equation (6), to
obtain equation (16). These two equations permit us to solve for the optima contrals, ¢(1) =
C(D)/K(2) andi(2) = 1(1)/K(2), asafraction of theinitid capita K(1), when there is uncertainty
about the future productivity of capital. These equations are graphed in figure 1. The crucid
parameters S;, S;, and N are defined in table 1 below.

(15 S () - (@2 i(1) =N

(16) S, c(1) + (@2) i(1) =N - a

The condition for an interior maximum is that the solution to (15), (16) satisfy ¢(1) >0, i(1) > 0.
Thisisequivdent to S;(N-a) > S;N. See formula (18) bdow. When S;(N-a) < S;N, the

maximum occurs on the boundary i(1) = 0.

These two equations are quite different from the equations in the literature which assume
certainty equivaence, because we explicitly consder the nature of the uncertainty. The
maximization procedure gives us the relaion between ¢(1) and i(1) in the good case (equation
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15), and in the bad case (equation 16). In each case, there isa condraint that thereisno
default. In the good case, the net return on investment is positive; so both ¢(1) and i(1) can
increase without adversdly affecting C(2). Thisimplies the positively doped curve, equation
(15). In the bad case, the net return is negetive. Higher investment i(1) must lower consumption
C(2), unless (1) islower, which produces the negatively doped curve equation 16. The
controls c¢(1) and i(1) in thefirst period must be chosen before we know whether there will be a
good or a bad outcome. Consequently, the optima controls are given by the intersection of the
curves of equations (15)-(16). Optima consumption/capital c(1) = C(1)/K(2) is equation (17).
Optimd investment/capitd i(1) = 1(1)/K(1) is equation (18). Optima debt/capitd f(2) =
L(2)/K (1) isequation (19). These are generd results.

There are three cases, based upon the attitude towards risk, which determine the basic

parametersin table 1. In part 3, we consider the case of generd risk averson ,whereg< 1. The

specific specid logarithmic case g = 0 produces asmple solution, discussed in part 3. The large
devidions [LD] case, discussed in part 4, is an extremely conservetive attitude to risk. Thereis
infiniterisk averson g=>- ¥, but the only investments that are undertaken are those where the
probability of the bad event, is negligible.

3. Risk Management: Risk and Finite risk averson

Table 1 and equations (17)-(19) contain our solution to the risk management in the
discrete time model where there is a short-term debt that must be repaid at the beginning of the
third period. In this part, we discuss the case of finite risk averson. In part 4, we discuss the
"large deviations' [LD] approach, where there isinfinite risk averson. The optimal foreign debt
f(2) = L(2)/K(1) incurred during the first period, equation (19), is Ssmply the trade deficit. It is
equd to optima consumption plus optima investment less GDP, which is equd to optimd
investment less optima saving dl per unit of capitd: f(2) = i(1) - [by - ¢(2)]. Thisdifferenceis
equa to optima new borrowing. We examine the various components; investment i(1) and

sving (1) =[b(2) - c(1)] .
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3.1 Optima Consumption and Saving

Optima consumption/capital c(1) = C(1)/K(1) isequation (17), table 1, in the genera
case. The vdue of the numerator (2N - a) isthe samein dl three cases, but the vaue of the
denominator (S; + S; ) is based upon the particular casesin table 1. In the text, we explicitly
consider two cases: theg= 0 hereand the LD case in part 4.

The numerator in equation (17) can be expressed in familiar terms. Suppose that current
capital and itsincome K(1) + Y (1) = (1 + b(1))K(1) were loaned out at the known short term
interest rate r. The assumption that K(3) = K(1) meansthat K(1) must be returned, that is1(2)
=-1(2). With certainty, the resources available in period t=2 would be [5(1 + b(1))- 1]K(2).
Hence the present vaue of the net resources per unit of capital K(1) that would be available
from ariskless postionis Y*, defined in equation (20). This quantity is known with certainty.
Refer to Y* as"safe wedth". Therefore the optimal consumption/capital equation (17) can be
written as (17a).

(20) Y* =[s(1 + b(1))- 1]/s "SAFE WEALTH".
(178) (1) = 2sY* /(S + S,)

The denominator, asis seen in the columns of table 1, variesin the three cases. In the
fird columnwhere1>g> ¥, but g* 0, the denominator (S, + S, ) involves uncertainty or risk.
It is positively related to the probability of the good event for p > 1/2. Asthe expected net
return rises, the denominator rises, and optimal consumption/capita declines.

Inthe g = 0 case, the optima consumption/capitd is equation (17b). It does not involve
uncertainty. It isamultiple of "safe wedth”. If the future utility is given the same weight as
present utility, then optima consumption is 1/2 of "safe wedth".

(17b) c(2) = Y*/(1+b).
Optimal saving/capitd is equation (21), in the casewhereg = 0. It isequal to Y (1)/
K (1) = b, less consumption/capital from equation (17b).
(21) h(1) = Y(1)/K(D) - C(1)/K(D) =Db(1) - Y*/(1+b).
This equation does involve inter-tempora consumption smoothing. Saving will be positive if the
current output/capital b(1) exceeds the discounted vaue of "safe wedth" Y*/(1+b). All of these
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magnitudes are known with certainty at the time decisions are made. The known current
productivity of capital b(1) = Y (1)/K (1), the known rate of interest r, are measurable and the
relative weight on future utility b isavaue judgment.

3.2 The Investment Function

In the standard literature, the stock of capital K(t+1) is selected such that the expected
margina productivity is equa to the exogenous interest rate. Thisis certainty equivaence. If the
expected margina productivity of capitd is constant and exceeds the interest rate, then an
infinite rate of investment and debt are optimd. In our two period anadyss of optima short-term
debt, the productivity of capital b(t) = Y (t)/K(t) isindependent of the total stock of capital.
Unlike the certainty equivalence case, our equation for optima investment/capita i(1) given by
equation (18), implies very different conclusions. Equation (18) and table 1 summarize our
results in three cases. In this part of the text, we discuss the case: [B] whereg= 0, and part 4
discussesthe [LD] large deviations case.

Equation (18) for investment/capita i(1) = I(1)/K (1) is expressed as equation (18a) in
the case where g = 0. We use the definitions in table 1. The expected net return x = E[b(2)-r]
= ap-1/2) isacrucid variable. The indicator functionc = 1 when x >r and ¢ = 0 otherwise”.

Termr defined in (18b) corresponds to arisk premium. It is positively related to the downside
risk that b(2) =r - a2, and negatively related to safe wedlth.

(183) i(1) = c[b/(1+b)]sY* (x -r).

(18b) r = (al2)* / [b/(1+b)]sY* > 0.

This equation for optima investment/capitd is plotted in figure 2 as the broken linei(1). It isi(1)
=0forx <r,andlinear inx >r . In the standard literature, which relies upon certainty
equivaence, if the expected net return - equal to the expected margind product of capital less
the interest rate - is pogitive, investment is pogtive. If the margind product of cepitd were
relaively congtant, then investment would be unbounded. Our "intertertempora optimization”
gpproach equation (18a), on the other hand, is very senstive to risk. There will be no

2 Thisisthe condition that indicator function: ¢ = 1 when [(N-8)S, —NS, ] > 0, and ¢ =0 otherwise..
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investment unless the expected net return E[b(2) - r] exceedsthe risk premium r defined in
(18b).

3.3. Optimad foreign debt/capita

We are now able to answer the question of risk management. How should we evaluate
the risk involved with holding or issuing short-term debt? The optima foreign debt per unit of
capitd f(2) = L(2)/K(1) incurred during the first period is smply the trade deficit. It isequd to
optima invesment i(1) in equation 18) less optimal saving h(1) in equation 21, dl per unit of
capital. Inthe case where g = 0, it is equation (22), graphed in figure 2.

(22) f(2) =i(2) - h(1) = c[b/(1+b)]sY* (x -r) - [by - Y*/(1+b)].

The optima foreign debt f(2) is the difference between i(1) and h(1). Investment should
only be postive if the expected net return x exceeds the risk premium r . Saving h(1) is podtive.
In the case where g = 0, saving isindependent of the expected return or risk factors.

The country should incur short-term debt if the expected net return exceeds quantity OB >r >
0, and should be a short- term lender if the expected net return islessthan OB. A short-term
foreign debt is excessve, the economy is vulnerable, if the foreign debt exceeds the f(2) linein
figure 2. All of the quantities in equation (21) are theoreticdly measurable, except for two
preference or value judgment factors: the discount factor equd to the reative weight on future

utility b/(1+b) and risk aversion (1-g).



TABLE 1. Definitions of Crucia Terms: three cases
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CASE [A] CASE [B] CASE[LD]
¥ <g<1 g=0 Large Deviations
(1- p) = e—a(l—g)’
a>0,g>-¥,
(1-p)"9= e" =B
1>B> 0 weight on bad case
S; weight s(2pb + 1) l+s
on good case (2psb)*9+s
S, weghton | (2(1-p)sb)'*%+s S(2(1-p)b+1) B+s
bad case
S-S (2psh) V1 2sb(2p—1) 1-B>0
— (2(1-p)sh) ¥**
S+S, 25+ (2s0)"+ 9 [p 9+ 25(1+b) (1+B +29)
(1-p)"*
S/S, (2pb + 1)/ (1+9)/(B+3) > 1
(2(1-p)b+1)
N A+ b(D))s+ (@2) -1 SY* +(al2) SsY* +(al2)
=sY* + (al2)
(N—a) (1+ b(1)s- (a/2) - 1 SY* - (al2) SY* - (al2)
= sY* - (al2)

Note: The vaues of the net return b(2) - r are symmetrica around zero with arange a>
0, and probabilities (p, 1-p). Expected net return x = E[b(2)-r] = ap - 1/2). Theinterest rate is
rand defines=1+r. "Safewedth" isdefined as Y*=[(1+ b(1))s- 1]/s, and therisk
premium in case [B] isdefined asr = (a/2)%[b/(1+b)sY*] .

Table2

Optimd controls: consumption/capita, ¢(1) saving/capitd h(1), investment/capitd i(1), and the

debt/capitd f(2).

(17 c() =N -a)/ (S5 +S2)

(21) h(2) = b(1) - c(1)

(18)i(2) = c(@2)[(N-8)S, — NS J[(S:+S)]
(19) 1(2) = [C(D) + 1(D) = Y(DV/K(D) =i(1) - h(T) = c(1) +i(1) —b(1)

Seetable 1 for definitionsof N, S, S,

Indicator function: ¢ = 1 when [(N-8)S; — NS, ] > 0, and ¢ =0 otherwise.
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4. Extreme Prudence: Large Deviations Model

The optimization has focused upon a borrower facing a given rate of interest. The
decision, concerning optimal investment in period t=1 and the optimal debt carried into period
t=2, is condrained to satisfy the condition that there be no default, L(3) = O, regardless of
whether the good or bad outcomes occur. Borrowers with low risk aversion salect higher
investment and debt ratios than what are selected by those who are more risk averse. This
follows from the inference that investment i(1) in equation (18) isdirectly rdlated to S)/S;
According to the valuesin column [A] of table 1, when p > 1/2 ratio S)/S; is directly related to
coefficient g.

If the lenders are indtitutiond investors that manage pension funds, they may be infinitely
risk averse. The digribution of the net return is subjective, and no one can objectively judtify
what is the probability of a successful outcome. On the basis of sad exerience, the lenders may
not share the optimism of borrowers that default will not occur®. Ingtitutiond investors may only
be willing to lend for investments where the probability is minima that the productivity of capita
isbelow r - theinterest rate on short term debt. We develop an aternative gpproach to
optimization, caled the Large Deviations [LD] mode. The lenders may only bewilling to lend &
short term rate r if the borrower optimizes according to the lenders' criteria.

We take the viewpoint of the conservative lender who wants to manage risk, and derive
what these lenders consider to be optimal investment, consumption and debt. Although thereis
infiniterisk averson (1-g) =>¥, the only investments that are financed at rate r are those where
the probability of a successful outcome isamogt unity, p ~ 1. Thisisavery conservetive
investment drategy: the LD case. This gives us abenchmark for vulnerability or for risk
management. If the debt exceeds the optimal debt in the LD case, then the lender considers that
the economy is vulnerable to shocks, and the borrower islikely to defaullt.

4.1 Optima investment

3 See theintroductory part of this paper.
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There are three main features of the LD modd. Fird: Thereisinfinite risk averson, the good
caeisamog asure thing, and it is mogt unlikely that the bad event will occur. The probability
of the good event p ~ 1, and the probability of the bad event

(1-p) = €9 whererisk averson (1-g) =>¥ and a > 0. Second: The values of the net return
[b(2) - r] are ether (&/2) > 0 or -(al2) < 0. Since p ~ 1, the expected net return E[b(2) - 1] =
(a2) > 0. Therefore the expected net return is equa to the symmetrica upside and downside
risk, albeit with different probabilities. Define x = E[b(2) - r] = (a/2), the expected net return
equal to the downside risk. Third: The crucia parameter B = (1-p)Y*?= €. Sincea > 0,
then 1 > B > 0. Werefer to B as the weight placed upon the bad event. It combinesinfinite risk
averson with minimal risk.

The solution for the optima vaue of investment is given by subgtituting in equetions (18),
thevauesof S, = (1+s) and S; = (B + ) in column 3 of table 1. A condition that invesment be
posgitive, that the indicator function ¢ = 1, isthat inequdity (23q) is satisfied™.

(23a) c=1if sY*(1-B)/(1+2s+B) > a/2. Otherwisec = 0.

Denoter * = sY*(1-B)/(1+2s+B), and x = &2 = E[b(2)-r]. The investment/capitd in the Large
Deviations case is equation (23).

(23)i(2) = c[x(r* - x)]

Investment will be positive if inequdlity (23b) is satisified.

(23b) r* >x>0.

Figure 3 plotsinvestment i(1) = 1(1)/K(1) againg x which, inthe LD casg, is both the
expected net return E[b(2)-r] and the downside risk &2. Optima investment is a parabola, with
i()=0ax=0andx =r*.Itreachesamaximum &t r */2. The logic of the parabolais that
when x = E[b(2)-r] = 0, thereisno net return so it does not pay to invest in risky assets. AsX
rises, the expected net return rises and investment is induced. Since x = &2 isequd to the
downside risk, as x rises above r */2, the risk element dominates and decreases investment. At

x =r*, therisk hastotal domination and optima investment returns to zero.

¥ Thisisthe condition [(N-8)S,-NS,] > O for positive investment.
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Two investment functions are plotted in figure 3, for ahigh and alow vdue of B. As
parameter B the weight on the bad event rises, the vaue of r * declines. The parabola of
investment/capital declines, with asmaler range of x for which there is postive investment.

4.2 Optima Debt.

Optima debt per unit of initid capita f(2) isoptima investment less optimd saving.
Optimd investment i(1) is equation (23) the parabola; and optima saving h(1) is equation (24)
the straight line. Saving h(1), equation (24), is independent of the expected net return x. It is
positively related to the weight B placed upon the bad event and to the current productivity of
capitd b(1), and is negatively related to safe wedth Y*. Asthe vaue of B rises, the saving
function graphed in figure 3 rises.

(24) h(2) =[b(2) - 2sY*/(1+B+29)]

The equation for optima debt/capita f(2) is equation (25). It isthe verticd distance between the
two curvesin figure 3. There will be foreign debt for x, > X > x;.

(25) f(2) = c[x(r * - xX)] - [b(1) - 2sY*/(1+B+29)],

wherex = E[b(2) - r] = (&/2) and r * = sY*(1-B)/(1+2s+B)

The crucid variable hereisfraction B = (1-p)**9= €2, the weight on the bad event.
Thisis a quantity that the lender/borrower must select. Weight B affects both saving and
investment. AsB risesto B', the saving function rises from h(1) to h'(1). Therisein B lowers
r *, and the investment function declinesfrom i(1) toi'(1) infigure 3. For any leve of x =
E[b(2)-r] = &2, the optima foreign debt declines. There will be foreign debt for x, > x > X5,

5. Conclusion

The standard model of intertempord optimization is based upon certainty equivalence
and ignores risk and uncertainty. It therefore contains no useful information concerning risk
management and evauation of internationa short-term debt. We solve a modification of the
standard modd of intertempora optimization in an environment where the return to capitd is
stochastic, and we impose the condraint that there be no default on the short-term debt.
Thereby, we derive benchmarks for optimal foreign debt in aworld of uncertainty. Insofar as
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the actual debt exceeds the benchmark, the risk of default is increased. The main reasons for a
deviation between the actua debt and the optimal debt are that the borrower is overly optimistic
about the digtribution function of the return to investment, and does not optimize with the "no
default” condrant.

We aso consder an intertempord  optimization modd involving extreme prudence. The
lender, whom we think of as an inditutiond investor, has infinite risk averson and will only lend
for projects where the profitability of the investment isamost sure. In this case aso, we derive

the optimal debt, which is our benchmark for risk management.
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