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1. Introduction

The stability properties of overlgpping generations models have been subject to afairly large
amount of research since the mid 1980's. It has been shown how idedlized business cycles
may gppear in a purdy endogenous fashion even though “fundamentas’ of the system, i.e,
tastes, endowments and technologies or economic policies, do not vary over time.
Endogenous business cycles have been known to be possible in overlapping generations
models since Gale (1973). To mention a few more recent examples, Farmer (1986) and
Reichlin (1986) have shown using dightly different modds the existence of limit cycles (Hopf
bifurcations) in planar systems, especialy in the one-sector overlgpping generations mode of
capita accumulation. By applying the theory of flip bifurcations Grandmont (1985) has
shown how in a particular verson of this class of models periodic equilibria can occur.
Grandmont (1998) presents an intuitive survey of some recent developments, which have
utilized geometric methods. For a comprehengve survey of the field, the reader may consult
Azariadis (1993).

Ancther issue associated with the properties of dynamic systems isindeterminacy. It
has been shown more recently that, for instance, a one-sector rea business cycle modd with
aufficient aggregete increasing returns to scae or a multisector model that has congtant
returns to scae and market imperfections, may exhibit indeterminate steady sate (i.e. Snk)
that can be exploited to generate business cycles driven by “animal spirits’.* Benhabib and
Farmer (1999) provide a survey of this literature from the macroeconomics viewpoint.

To demondrate ether bifurcation or indeterminacy in an overlapping generations
model, or in ared business cycle modd, one usudly has to make quite specific assumptions
about the fundamentals, e.g., postulating either increasing returns to scale or externdities.

These gability and indeterminacy issues have not been sudied carefully in models
with renewable resource use, like forestry or fisheries. Traditiona theories of renewable
resource use assume an infinitely lived agent or a socia planner, and demondtrate thet there
is one steady State equilibrium, which is a saddle. Equilibrium is a function of resource price

and exogenous red interest rate (for economics of forestry and fisheries, see eg. Clark

! Also theterms “sunspots’ and “self-fulfilling beliefs’ are used interchangeably in the literature to
refer to the same phenomenon.



1990 and Johansson and Ldfgren 1985). These modds do not account for the fact that in
practice renewable resources are important stores of vaue between different generations?
Hence, one can ask whether this standard renewable resource analysis is robust in an
overlapping generations economy, where agents have a finite life but resource stock may
grow forever, and where the red interest rate is endogenoudy determined.

Recent studies (Kemp and Long 1979, Lofgren 1991, and Mourmouras 1991,
1993) focusng on the sugtainable use of renewable resources within the overlapping
generations framework have established the generdly well-known fact that competitive
equilibria in overlapping generations economies may be inefficient.®  These papers share the
common feature that they study the steady state equilibrium without andyzing its trangtion
dynamics and thereby the gtability properties. This is an unfortunate drawback for severd
reasons. Firg, it is not obvious what the dynamic properties are when the model includes a
renewable resource with its own dynamics. Second, one may argue that stability properties
of the renewable resource exploitation are important epecidly for policy. If the utilization of
the resource tends to be unstable, competition may more easly lead to the destruction of the
whole resource, which naturally necessitates a more careful resource management.” Olson
and Knapp (1997) is an interesting study of an overlapping generations economy with an
exhaugtible resource. With the exception of the resource type, their basic mode is quite
Smilar to ours.

Our purpose is to examine the dynamic properties of a conventiona overlapping
generations economy augmented with a renewable resource which serves both as a factor of
production and a store of value. Because a renewable resource has its own dynamics and
growth function, we will get a planar sysem with harvesting and the resource stock as
dynamic variables We characterize the deady date equilibrium of this overlapping

2 Tobin (1980), for instance, when criticizing the role of money as a store of value in overlapping
generations models, pointed out that “land and durable goods, or claims upon them are principal stores
of value” (p. 83).

3 Kemp and Long (1979) demonstrate that a competitive economy with constant population may under-
harvest its renewabl e resources as a consequence of the resource being inessential for production. In a
different vein, Mourmouras (1993) shows that both a low rate of resource regeneration relative to
population growth and a low level of saving may lead to unsustainable use of renewable resources, so
that consumption declines over time.

* In addition to the above references, see e.g. Amacher et al (1999) for an analysis of the effects of
forest and inheritance taxation on harvesting stand investment and timber bequestsin an OLG model
with one-sided altruism.



generations economy, compare competitive and efficient solutions, and in particular, sudy its
gtability properties, which have thus far remained unexplored in the literature,

We congruct a generd equilibrium overlapping generations model where agents live
two periods and there is no population growth. The young are endowed with one unit of
labor and earn a competitive wage. They can consume or save in the financid asset or buy
the available stock of the renewable resource from the firm. During the firgt period of ther
lives the young indadticdly supply labor to firms, which transforms labor and resource,
which they buy from the old, into output by congtant returns to scale technology. As the
focusis entirdly on the extractive use of resource, we omit amenity services provided by the
resource. The resource stock may be interpreted as either forests or fisheries (with well-
defined property rights over fish stocks). Unlike Kemp and Long (1979) and Mourmouras
(1993), who make the unredistic assumptions of constant and linear growth, respectively,
we utilize agenerd drictly concave resource growth function, which capturesin a better way
the essential features of renewable resources.

We demondtrate that the nature of steedy state equilibrium depends on the vaue of
the intertempord eadticity of subgitution in consumption. In particular, if the Sze of the
intertempord eadticity of subdtitution is at least hdf, but different from one, then Sationary
equilibria are saddle points. The equilibrium is stable under the logarithmic utility function
when intertempord eadticity of subgtitution is equa to one. For smdler vaues of the
intertempora eadticity of subgtitution we use a parametric example to demondrate the
exisence of asubcriticd flip bifurcation for the case of an inefficient equilibrium. This means
that a repdling two-cycle emerges on the sde of flip bifurcation, where the Seady date is
gable. Thus we obtain cycles and indeterminacy from a mode with standard well-behaved
utility function and condant returns to scae production function in the absence of
externdities or imperfect competition.

We proceed as follows. The dements of a conventional overlgpping generations
economy augmented by dynamics and growth of a renewable resource is presented, and the
equilibrium conditions of the economy characterized in section 2. Conditions for a unique
deady Sae and its efficiency are described in section 3. In section 4 we study dynamic
equilibria of a planar sysem conssting of harvesting and stock of a renewable resource, and
end up with a characterization when al the sationary equilibria are saddle points. Section 5



andyzes the case of the logarithmic utility function when the intertempord dadticity of
subdtitution is unity. Since saddle point equilibria may not exig if the intertempord eadticity
of subgtitution in consumption is low enough, section 6 studies what hgppens in this case. A
subcriticdl flip bifurcation is shown to occur under certain parametric congtellations when the
deady Sate digolays dynamic inefficiency. Findly, section 7 summarizes our findings.

2. The Model and the Equilibrium Conditions

We consider an overlapping generations economy where agents live for two periods. There
is no population growth. Agents maximize the following intertempordly additive lifetime
utility function

D V=ulg)+buls),

where ¢! denotes the period i (=1,2) consumption of consumer-worker born a time't and

b =(@+d) ! with d being the rate of time preference. We assume that #¢>0, u@<0

lim u'(c)=0 and lim

and the Inada conditions, i.e
® ¥ c®0

u'(c) =¥ . The young ae

endowed with one unit of labor, which they supply indadicaly to firms in consumption
goods sector. The labor earns a competitive wage. The representative consumer-worker
uses the wage to buy consumption good and to save. He can save in the financid asset or
buy the available stock of the renewable resource.

The firms in the consumption good sector have a condant returns to scae
technology, F(H,,L,), to transform the harvested resource (H,) and labor (L,) into

output. This technology can be expressed in factor intensve form to give
F(H,,L)IL, = f(h,),where h, (= H,/L,) is the per capita level of the harvest. The

per capita production function has the standard properties f¢>0 and f€<O.
Furthermore, we assume - £ €4, ) =¥ and -0 f€#4,) = 0.

The renewable resource in our modd has two roles. It is both a store of vaue and

an input in the production of consumption good. The market for the resource operatesin the



following manner. At the beginning of the period the old agents own the stock, and dso
receive that period’s growth of the stock. They sdll the stock (growth included) to the firms,
which then decide how much of tha resource to harvest and use as an input in the
production of the consumption good. The firm will sall the remaining stock of the resource to
the young a the end of the period. Alternatively we could think of the old deciding how
much to harvest of the resource and how much to sdll to the young.

The growth of the resource (the growth function) is g(x,), where x, denotes the
beginning of period t stock of the resource. g(x,) is assumed to be a drictly concave
function, i.e. g&< 0. Besdes owning the stock the current old generation (generation t-1 in
period t) will dso get its growth, i.e. the stock they have available for trading is x, + g(x,) .
Furthermore, we assume that there are two values x =0 and x =X for which
2(0) = g(x) = 0. Consequently, there is a unique vdue x a which g&x) =0. Hence, x
denotes the level of stock where the growth is maximized, providing the maximum sustained
yidd (MSY). X is the level a which the stock is so0 large that growth is zero. It is the
maxima stock that the naturd environment can sustain. For instance a quadratic growth
function (g(x) = ax- (1/2)bx?) reflecting logistic growth for renewable resources fulfills

these assumptions.

The trangition equation for the resource is

(2) Xy — X4 - ht +g(xt)’

where 4, denotes that part of the resource stock which has been harvested for use as an
input in production. The initid stock and its growth, g(x,), can be conserved for the next

period’s stock or used for this period's harvest.
In addition to trading in the resource markets, the young can also participate in the
financid markets by borrowing or lending, the amount of which is denoted by s,. The

periodic budget congraints are thus

©) C{ TP X ts, =w,



4) Ctz = pt+1[xt+l + g(xt+l)] + RS,

where p, isthe price of the resource stock in terms of period t's consumption, w, is the
wage rate, and R,,; =1+r,,, isthe interest factor. The young generation buys an amount
x,4 Of the resource stock from the representative firm. The firm has harvested an amount
h, of the stock, and x,,; has been left to grow. According to (4) the old generation

consumes thar savings including the interest, and the income they get from sdling the

resource next period to the firm, ptﬂ[xﬁ1 + g(xﬁl)] .

The periodic budget congraints (3) and (4) imply the lifetime budget congtraint

(5) ci + Cé =W + pt+l[xt+1 + g(xt+1)] - RapiX
t

t+l Rt+l

Maximizing (1) subject to (5) and to the appropriate nonnegativity congraints (which we do
not have to worry about because of our assumptions on the utility, production and growth
functions) leads to the following first-order conditionsfor s, and x,,;

©®  uw(q)=R

t+1

bu'(c})

(7)) pu(E) = pafl+ g (x.)]bu'(c).

These conditions have sraightforward interpretations. (6) is the Euler equation
which says that the margind rate of subgtitution between today’s and tomorrow's
consumption should be equd to the interest factor. According to (7) the margind rate of
subgtitution between consumptions in two periods should be equa to the resource price
adjusted growth factor. (6) and (7) together imply the arbitrage condition for two assets

©)) Ry = [1+ gl(xt+1)] P 1

t




according to which the interest factor is equd to the resource price adjusted growth factor.

Using (8) we can rewrite the lifetime budget condtraint as

(9) C{ + Ctz =, + pt+l[g(xt+l) - g'(xt+l)xt+l] .

t+1l Rt +1

The term in the square brackets is pogtive, snce the growth function is strictly concave.
After presenting the dements of the modd, we turn next to characterize the

equilibria and dynamics of the model. The competitive equilibrium is defined as follows.

Definition. A sequence of a price system and a feasble dlocation,
{pt,Rt,wt,ci,cgl,ht,xt }?11 is a comptitive equilibrium, if

(i) given the price system consumers maximize subject to their budget  congtraints
and
(i) marketsclear fordl t=1,2,...,T,...

Market clearing conditions are

(108) cj+ept = f(h)
(10b)  x,,4 +h =x, +g(x,)
(10c) s, =0

(10d) /&)= p,

(108) (1)~ h f%h,) =w,

(109) is the resource condraint for dl t, and (10b) is the trandtion equation for the
renewable resource stock. The fact that there is only one type of a consumer per generation
and no government debt forces the asset market clearing condition to be such that saving

s, =0 for al t. Equations (10d) and (10e) in turn are the first-order conditions for profit

maximization, and determine the evolution of prices, p, and w, .



Market clearing condition (10b) and the first-order condition (7) for the resource
gock and harvesting imply the following planar system that describes the dynamics of the
modd.

(11 Xy =X, - h +g(x,)

@2 )R - ) - £ B)x] =
b £ (o)’ [ (g) (kg + £ ()] [14+ € (x o)

We have used the periodic budget congraints (3) and (4), and the equilibrium conditions
(10d) and (10e), to arrive a egquation (12). Equations (11) and (12) are the main objects of

our study.” Before andyzing the quditative properties of this sysem we characterize the
dationary equilibrium.

3. Stationary Equilibria and Efficiency

In the steady states (DA, =0 and Dx, = 0) the following equetions hold

(13) hr=gk)

@) w[f(h)- £ (k- f1h)x])=bu'[f (M) (x+g(x)] L+g ().

Given the properties of the growth function, the curve defined by (13) is not monaotonic.
Totdly differentiating (14) we get

® Instead of usi ng Euler equation (12) we could have taken another route for the dynamic analysis by
concentrating on the evolution of savings defined as q(w,, R, 11, Pyags ;) © W, = & (W, Ryss Praas Py) -
It is straightforward to show that T¢ /1R, <0, when the intertemporal elasticity of substitution is
less than unity. See discussion below on the crucial importance of this elasticity in our analysis.



ag o bule)ebuen) At g ) Hue) " g
dx -u'' (o) M (x+h)- b fU(x+h)

This means that the Sationary Euler equation is an increasng curve in the Zx -space. Next

we show that the curve defined by (14) goes through the origin in the 4x -space.
Lemma. Thepoint {# = 0,x =0} fulfills equation (14).

Proof. Suppose the Euler equaion does not go through the origin. Since the curve is
upward doping, there are two possibilities for the limiting behavior. Firg, if welet x® O,
then 2 must go towards some positive number. Secondly, if welet 2 ® O, then x must
gpproach some positive number. In the first case the right-hand side of (14) approaches
infinity (if g'(x) approaches infinity when x approaches zero, this effect will reinforce the

argument), because c'g@—mou'(c) =¥ , but the left-hand sde approaches some finite number.
Thus equation (14) cannot hold. In the second case when # ® O the right-hand sde
approaches zero, since cl(i@—m¥u'(c) =0, but the argument for the left-hand sde (the first

period consumption) gpproaches a negative number, which is not a feasible solution to the

consumer’ s optimizetion problem. Q.E.D.

It is quite straightforward to see that the Steady State in our modd is not necessarily
unique. When the growth rateis g’ (x) > 0, the upward doping Euler equation can crossthe
growth curve in many points. For steady state to be unique, it is necessary that the Euler
equation cuts the growth curve from below. If it cuts the growth curve from above, there are
more than one equilibrium. For growth rate g'(x) £0 the Saionary equilibrium is
necessarily unique because of decreasing resource growth curve. In the subsequent analyss

we will concentrate on the nontrivia unique steady state.®

® It can al'so be the case that the only point where the curves crossisthe origin, especialy, sincewe
have not imposed Inada conditions on the growth function.
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We will describetheloci Dx, =0 and Dk, =0 inthe Ax -space. The dope of the

locus, i, = g(x,), evaluated et the Steady Stateis

e N =g,

“lbx, =0

The dope of the locus (derived in Appendix 1) determined by equation (12), and evaluated
at the seady sateis

(17)

u'(c) '+ g) +bu'(c,)g"(A+g") + bu"(c,) f'1+g")°

¥y, o @)U (@) [ (x + @) +bu'(e)g - bu”(e)(1+ )/ (x+ ) - L+ )

The dope in (16) can be pogtive, zero or negetive. The dope in (17) is dways pogtive
given our assumptions on the utility function and the fact that 1+ ¢' needs to be dways
positive, because in the Sationary equilibrium 1+ ¢' equds the interest factor (c.f. arbitrage
equation (8)).

The fact that we concentrate on the unique steady state means that the following

holds in the gationary equilibrium

(18)

This means that Euler equation cuts the growth curve from below, see Figures 1 and 2
below.

To summarize, we have argued that a unique sationary equilibrium exists, when the
growth rate, g'(x), isnonpostive. In the case of postive growth rate a necessary condition
for the steady state to unique is that the Euler equation cuts the growth curve from below.

There are multiple equilibriaif g'(x) ispostive and Euler equation cuts the resource growth

curve from above.



11

Are the dtationary equilibria efficent? It is a wdl-known fact that the competitive
equilibriain overlgpping generations models can be inefficient. Keegping in mind that g'(x) is
the rate of interest in the steady State and the population growth rate is zero in our modd,
we conclude that al those steady states for which g'(x) 3 0 are efficient. This is the case
where the red interest rate exceeds population growth rate.

Steady dates in which g€x) <0 ae inefficent, snce consumption could be
increased for every generation by harvesting some of the resource stock during any period.
This case corresponds to the Situation where the redl interest rate is less than the population

growth rate. This overaccumulation isinefficient.”

4. Dynamical Equilibria: Saddles

To sudy the quditative properties of our modd we start by consdering paths for which

X412 x, and b,y 3 k. It followsfrom (11)

(19) x4 % x, U x, - h +g(x,)3 x, U g(x,)® h,.

Thismeansthat x is increesng beow the growth curve, and it is decreasing above the
curve.

Congdering paths for which 4,3 h,, requires more work. In Appendix 1
(equation A.3) we derive the following expression (evauated at the Steady dtate) for the
derivative of the right-hand side of equation (12) above with respect to 4,,, (denoted also

by 4)

WIS —rgypsuf- 23

) L rc)g

! Efficiency outside steady states is a more involved problem. One can study the efficiency of
nonstationary paths by modifying the criterion developed by Cass (1972) to the needs of the model at
hand.
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where r (¢) (=- [u'(c)/cu"(c)]) is the reciproca of the dadticity of the margind utility of
consumption. This quantity is aso known as the intertempora eadticity of subgtitution, and it
depends inversdy on the curvature of the periodic utility function. We can see that given the

vauesof x, and 4,, the right-hand side of eguation (12) is an increasing (decreasing)
functionof 4,,,,if r isless (greater) then unity.®

If r >1 we get from (12)

@) ke ® RO SO - B - FB)xw] £
b £ (h ' [f" () (xq + 2(x,10)] [1+ &'(x40)]

Equation (21) is equivaent to the following statement

wlf ()= £ (h)h, - £ (h) %)

£1
bul[f.(ht)(xt+l+g(xt+1)] [1+gl(xt+1)]

(22)

If r <1, the inequditiesin (21) and (22) are reversed. All this means that the motion of /
on both sides of the curve, where 4,,, = A, , depends on the vaue of intertemporal

eadicity of subgtitution. This fact points out to the posshility that dynamics of the sysem
can dradtically change when r  passes through unity. When r =1, the preferences are

logarithmic. We will return to this case later on in section 5.

The crucid role of r s illugrated in Figures 1 and 2. In Figure 1, where the
intertempora eadticity of subdtitution is greater than one, the arrows indicate a possibility of
saddle point equilibrium.® In this section we give aformal proof for this intuition. In Figure 2,
where the intertempord eagticity of subgtitution isless one, the arrows describing the motion

8 When the utility function belongs to the class of constant relative risk aversion (CRRA) functions, the
inverse of the relative risk aversion measure is the intertemporal elasticity of substitution. See e.g
Deaton (1991) for afurther discussion.

® The direction of / on both sides of the /4 curve in diagrams 1 and 2 can be obtained as follows.
Consider equation (21) as an equality. Differentiate both sides with respect to # keeping x fixed. E.g . in
the case of r >1, the left-hand-side decreases and the right-hand side increases, which means that
abovethe curve, i isincreasing and below it is decreasing (c.f. equation (21) again). Analogously, it can
be shown that the direction of the arrowsisreversed whenr <1.
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of harvesting are reversed. This suggests a posshility for the stable equilbrium. One should
notice, however, that orbits in discrete dynamica systems are sequences of points in the
relevant date spaces. This quditative information drawn from discrete phase diagrams is
quite tentative and must be confirmed andyticaly, which we will do in detal in the next
section.

In order to study formaly the stability properties of dynamica equilibrium, we first

rewrite equation (11) asfollows

(23)  xp=x, - b +g(x)° Glx, k)

Subdtituting the RHS of (11) for x,,; in (12) gives an implicit equation for 4,4,

(24)  h,y =F(x,,h)

The planar system describing the dynamics of the renewable resource stock and harvesting
consists now of equations (23) and (24). The Jacobian matrix of the partid derivatives of the
system (11)-(12) can be written as

(25) J=
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Figure 1. Elagticity of intertempora substitution gregter than one

Figure 2. Elagticity of intertempora subgtitution less than one
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where A has been derived above in equation (20) and B and C aethe partid derivatives
of equation (12) with respect to /, and x, respectively, and have been derived in Appendix

2. By defining 1 =" thetwo ratiosin the Jacobian matrix can then be expressed as

~

2u'e) SR g)? [l
) ) S

—_ — —
(o)

@n Bolp Swiederh) ) STAr (), Se U
O T R T I L S NV

where we can see the importance of the magnitude of the intertempora eadticity of
subdtitution for the ability andlysis. These eements of the Jacobian change signs whenever
r passes through unity, since the bracketed teerm in C/ A4 is negdive and in B/ A is
positive.

The trace and determinant of the characteristic polynomid of our system can be
calculated as

S'u"(c)(x+ )0
u'(cq)

R
(28) D=(1+g)f{1-
|

(29)

ST P ST Y Rl I A O A S 9 T CO N -G
i ' (c) ) fulea) )

Armed with these calculations (see Appendix 2 for details) we get the following Proposition

Proposition 1. If theintertempord eadticity of subdtitution is at least one hdlf,

and differsfrom unity, al the Sationary equilibria are saddle points.

Proof. See Appendix 3.
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According to Proposition 1, sationary equilibria are saddle points for a wide range
of the values for the intertempord eadticity of subgtitution. Empirica evidence on the sze of
this eadticity does not, however, necessarily coincide with these parameter values, but often
points out to lower values™ It is therefore of interest to study also the characteritics of
equilibriaof the specid casewhen r =1 andwhen r <1/2. These equilibriaare sudied in

the next two sections.

5. Dynamical Equilibria under the Logarithmic Utility Function:
Stability

Next we consder the case, where the intertempord eadticity of subdtitution is unity, i.e. the
periodic utility function islogarithmic, u(c) =In ¢. Inthis case (12) can be written as

(20 /() _bli+g' ()]
f(hz)- hzfl(hz)- fl(ht)le Xi+1 +g('xt+l)

Usng (11) in (30) gives a relation between 4, and x,, defined as 4, = P(x,) . Hence
h,., disappears from the Euler equation (12) so that our planar system (11)-(12) is reduced

to afirs-order nonlinear difference equation for x
31) x, =x - P(x,)+g(x,).

Once the evolution of X is determined, the behavior of h can be obtained from (12) so that
the system has become recursive. What are the dynamic properties of this system?
The dope of the first-order nonlinear difference equation (31) is

@ D=1 p)+g).

t

19 See the discussion e.g. in Deaton (1991, pp. 63-75).
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In order to develop the expression for P'(x,) we take into account (11) and rewrite (30) as

(33)  S(W)x-h+g(x)+glx- h+g(x)] =
blL+g'(x- h+g@]f(h)- £ (h)x- f(h)g )]

Wetotdly differentiate (33) with respect to # and x, and define ¥ = x- &+ g(x) toget
(34)

{rr+e®]- ra+g@) +bg " @ - /1(c+g)]- b@+g @)/~ 1" (x +g(x) an

=(1+g b e @ - f1(x+g())]- bA+g @) S~ £ (1+ g (x))}dx

Denoting the term in braces on the left-hand side by Y and on the right-hand side by Z we
oet

(35) dh:P'(x):M >0,

dv {r}

snce both Y and Z are negative. Next we evaduate (35) in the steady State, where x = x .
Note that now Y =Z + f"(x+ g)[1+b 1+ g")], which means tha 0<P'(x)<1+g',

because |§| <1. From hereit followsthat 1- P'(x)+g'(x)>0.

To prove the dability of the deady date we need to have
1+g'(x)- P'(x) <1 U P'(x) >g'(x). This condition holds for al ineffident equilibria (
where g'(x) £ 0), which are thus stable. What about the stability of efficient equilibria
(where g'(x) > 0)? If the dationary equilibrium is unique, then the upward doping Euler

equation cuts the resource growth curve from below o that the inequadity (18) holds. Thisis
equivaent to the stability conditionP' (x) > g'(x) . Hence we can summarize our findingsin
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Proposition 2. Under the logarithmic utility function, the planar sysem reduces
to a nonlinear firs-order difference equation for the natura resource stock. If the
dationary equilibrium is unique, it is Sable regardiess of whether the equilibrium is
efficient or not.

As Propostion 2 reveds, the logarithmic utility function is very specid. When the
intertempora eadticity of subgtitution becomes unity, the planar system turns to a first-order
nonlinear difference equation for the resource stock, saddle point equilibria vanish and gable

equilibria emerge. Next we turn to examine the case, where r <1/2.

6. Dynamical Equilibria: Indeterminacy and Flip Bifurcations

In the above discussion we found that when r >1, the determinant (D) and the trace (T) of
the system are postive, and furthermore that D-T+1 < 0. Stationary equilibria are thus
saddles. These equilibriaare in area C in Figure 3 in which we have reproduced the familiar
graphical description of dynamica equilibria in a planar system (see eg. Azariadis 1993).
Stable equilibria lie in area B, and the other saddle point equilibria are in area A. Thus
complex roots are not possible in our modd, which in turn means that we cannot get Hopf
bifurcations.

When r <1, the determinant of the system becomes negative, and D-T+1 positive.
This means that the saddle-node bifurcations (they require among other thingsthat D-T+1 =
0) are not possble. We dready proved that sationary equilibria are saddles for
1>r 3 1/2. Since D+T+1 cannot be unambiguoudy signed for r <1/2, it is possible to
have flip bifurcations in our model (see areas A and B in Figure 3).

In the followingweassume r <1/2 (i.e. ¥ <0 and |f| <1). Inspecting the generd
case above seems to point out to the fact that it is possble to get stable equilibria and flip
bifurcations. Since r < 0, we consider the case where D < 0. We have also established in
the proof of Proposition 1 that, when r 3 1/2 (and r * 1) D-T+1 > 0. To get Sability, we

need to have D+T+1 > 0 as well. Because we have rigoroudy shown the existence of
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saddles when D < O, we can dso show the existence of flip bifurcations, if we can show the

dability of equilibria

@)

T
1 2
D-T+1=0 D+T+1=0
Figure 3. Characteristics of stability in aplanar system
To proceed we rewrite D+T+1 as follows
(36) D=(+g)i{Mm+1
(37) T=@+g)+f{M+N+1,
where
AT O G0 B
u'(cy)
PO AU CV B o T CY ST S0
P/ ) A
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Using this shorthand notation we can express D+T+1 after some manipulation
(38) D+T+1= 2+ g M +FN+(2+g")(1+r).

This shows that at least in principle D+T+1 can be zero or positive, if the last term, the only
positive term in the expression, dominates. Note that when D <0, D-T+1>0and D+T+1 =
0 we have aflip bifurcation (see the line between areas A and B).

Since the exigtence of stable equilibria (indeterminacy) and a flip bifurcation cannot
be proved andyticdly in our model we congder a parametric example. We use the following

gandard explicit functiond forms.

3 1

i X 1
julc) =

; L1
1 r
Lf()=h? P fe=ahr®?, fe=a(a-
;

i .
%g(x) =ax- bez P gC=qa-bx, gl=-b, 1+gC=1+a- bx

= |k
i

=) u'(c):c- "u'(c) =- rlc-

Notethat r inthe utility function is exactly the intertemporad eadticity of subditution. In the
dationary eqilibrium /= ax - (1/2)bx*. Using this expression for 7, the Euler equation
and budget congraints, we end up with the following expression (see Appendix 4) for the
stock of the renewable resource in a stationary equilibrium

(39) 1 2 14,
1+(1+a- bx)'b’ a-l
2

A graightforward but tedious cdculation yidds the expresson for D+T+1
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(2+a-bx)a(l+a- —bx)

10 2r

40) D+T+1= gr +(2+a- bx)g

(WEREeH

1
g(l a)(a- EbX) aH

S 1 [ ] r b(ax - 1bx2)u

- _ -r _ r r —_ l:l

+€e 1 @—%[1+(1+a bx)' b’ ] ad+a-bx) I+{+a-bx) b + 2 G
el-agr '1% b’ 1+a- bx G
e a

In the 'que we undertake a numerical andyss for a cdibrated verson of the
parametric example of our modd. We assume the following vaues for parameters of the
growth function and the discount factor: @ =b =1 and b=1/2." The vaues for growth
parameters mean that x =1 and X =2, and furthermore that the condition 1+ g'(x)3 0
holdsfor dl O £ x £ 2. Economicaly more interesting parameters are the output elagticity of
resource (a ), which determines the price eéadticity of resource demand, and the
intertempord dadticity of subgtitution (r ). For this reason our focus will be to find out for
what vaues of these parameters we will get stability and flip bifurcations.

Solving a from equation (39) and plugging that vaue into (40) we find out for what
combinationsof x andr D+T+1 is greater or less than zero or exactly zero. Solving a

from (39) we get

2a- bx 2a- bx & 1 0

(41) a= - — .
2+2a- bx 2+2a-bxg1+(1+a-bx) b" 5

Pugging this relaionship (41) into (40) gives the following rdatively complicated expression

2r

42) D+T+1= (ée 2( 2+a-bx)1+a- bx)'b" +(2+a- bx)g
ﬂ

[SEEReE

" 1f we want to interpret literally the length of the period in our overlapping generations economy to be
around 25 years, then the annual discount factor 0.975 (or the rate of time preference about 2.6 percent)
means that the discount factor for 25 years should be around Y.
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+<’:E 1 ggr bx(2a - bx)§2+2a- bx)[1+ A+a- bx)' b’]u
gr - 1%2(1+a— bx)lZa- bx +2[1+ (L+a- bx)' beJ H

® 1 Oe(2a bx)A+a- bx)'b" (1+(+a- bx) b’ )U

+
r- 2a- bx+ Q1+ (L+a- bx) b'] a

el Oe(2a bx)A+a- bx)(1+(l+a- bx) b")U
u.

+
r 2a - bx+2[1+(1+a bx)" bj b

To get a more precise idea where to look for stable equilibria, note that the only

positive term in this expression is the second term. Combining this term and the fird term we

Oet after rearranging
43) ?J’la—rb"ﬂa 2r)- (L+a- bx) b .

Aswe have dready mentioned, we assumethat b=1/2 and 0 <r <1/2. Congder firs the

effident dlocations, which lie on the left-hand sde of the maximum sugtained yidd, i.e.
OEx£alb. Itis quite sraightforward to see that the term in the brackets of (43) is
negetive. This meansthat dl the Sationary equilibria are saddles. Therefore, we should look
for possible stable equilibria from the right-hand sde of the MSY, where equilibrium is
inefficient.

The dationary equilibrium condition (39) indicates that there is an inverse
relationship between a and x. Because we will now concentrate on such dlocations for
which x > a /b ,thevaueof a mus be rdaively smal for equation (39) to hold.

Our gpproach will be the following. We will first graph the plane defined by equation
(42) inthe (D+T+1) xr - space. Then we set D+T+1 = 0, and graph those values of x and

r for which D+T+1 =0 holds.
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Figure 4. D+T+1.

1.98

1.96

1.94

1.92

1.9

Figure 5. A characterization of indeterminacy and flip bifurcations

Figure 4 is the three dimensond grgph of equation (42) (when a has been
subdtituted in for the expresson of D+T+1). It points out to the fact that D+T+1 will be
positive only for extremey high (i.e. vaues which are doseto x (= 2) levds of the
renewable resource stock.

In Figure 5 we have projected those vaues of the resource stock x and the

eadicity of intertempora subdtitution r for which D+T+1 is exactly zero, i.e., for which we
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have flip bifurcations. Vadues of x and r , which lie above the curve will yidd gable
equilibria, and for thevauesof x and r below the curve we have saddle point equilibria
In Figure 6 we have depicted a, x and r in the same diagram, i.e. we have
graphed equation (41). This figure indicates that to get stable eguilibria and flip bifurcations
thevaueof a needsto be quite smdl. E.g. if a =0.01 and r =0.03 we get the leve of

the stationary equilibrium stock to be 1.95664 and the level of harvesting 0.04242. We aso
get D+T +1=0.00119886. And if welet a =0.011, we get the equilibrium stock to be
1.95228, the level of harvesting 0.04658, and D + T +1=-0.00373852 .

Figure 6. Equation (34).

We have shown that there is a nontrivid set of parameter valuesof a and r , for

which our parametrized economy exhibits stable equilibria, i.e, indeterminacy, and flip
bifurcations. In contrast to previous literature, indeterminacy arises here under standard
assumptions on utility and production functions. This dso means tha there can be

endogenous cycles in our model, since the characteristic roots are of different sign.*

12 Interestingly, Grandmont (1985) has shown in a different overlapping generations model with money
that a succession of flip bifurcations may occur when the Arrow-Pratt relative risk version of the old
agents exceedstwo, which is equivalent to the condition that the intertemporal elasticity of substitution
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Hip bifurcations are caled period-doubling because they give rise to stable
periodic orbits whose period is twice that of the ability losing equilibrium. There are two
cases to consder regarding Stability. In a supercritica flip bifurcation a stable two-cycle
emerges on the side of the bifurcation vaue where the steedy state is saddle. In a subcritical
flip bifurcation, an ungtable two-cycle emerges on the sde of the bifurcation vaue where the
deady stateis stable.’®

To investigate the type of flip bifurcation, i.e. on which sde of the flip bifurcation a
two-cycle exigts in our mode, we resort to numerical smulations. We asked whether it is

possible to find four numbers {x,, 4;x,,h,}, which solve the following transition and Euler

equations.

a-1 a-lrn_
(44 x,=x-htx- le and M = bhy (2 XZ)i
[(1' a)h - ahla-lxz:lr [ahg_l(xl"' hz)]r
hg-l _ bar Y2- xq)

(45) x1:x2-h2+x2-%x22 and = T
[(1- a)hd - a hg“lxl]T [a B (x, +h1)]?

If we find afour-tuple that fulfills the equations (44)-(45), then a two-cycle exists. We fixed
a =0.004, and chose the vdues of the intertempord dadticity of subgtitution from both
sdes of the Hip bifurcation curve in Figure 5. In Figure 7 we have chosen to depict the
emergence of the two-cycle for the resource stock x (the vertica axis). The same
phenomenon happens, of course, to the level of harvesting, which we have not depicted.
The flip bifurcation occurs for vdues of r (the horizontd axis) between 0.1825 and

0.1826. If r =0.1826, we have a saddle, and if it is 0.1825 we have a stable equilibrium.

1889 T T T T T T 1 which means that we

1235 -

183 -

185 -

g function of the rate of

cular Guckenheimer and
15e5r 7 specific types.

18961 1

15955
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Figure 7. Subcriticd flip bifurcation

In overlgpping generations models with one dimensond dynamics flip bifurcations
have been shown to exist when the eadticity of intertempord substitution has been less than
one (see footnote 12), which adso means that saving has been a decreasing function of the
rate of interest (backward bending offer curves). The logigtic growth function is a typica
example of asmple dynamica system, which alows for complex dynamics.

Although there are no nonconvexities and market imperfections, except the typica
overlgpping generaions structure, in our modd, it seems that the case thet flip bifurcations
and complex dynamics emerge in our model due to the mixture of low eadticity of
subdtitution in consumption and logigtic growth.

The parameter vaues for the intertempord eadticity of substitution for which we get
gability and flip bifurcations are empiricaly quite plausble. The parameter vaues for the
production function parameter (a ), for which we obtain stability and bifurcations, are quite
smdl. The parameter a measures the share of natura resources in total output. It varies

across countries and can be relatively low.

7. Conclusions

The gahility properties of an overlgpping generations modd with capita accumulation, like
periodic equilibriaand indeterminacy of equilibria, have been subject to afairly large amount
of research since the mid 1980s. These issues have not, however, been studied carefully in
models with renewable resource usg, like forestry or fisheries. Our purposein this paper has
been to do just that. We have examined the dynamic propertties of an overlapping
generations economy under the standard assumptions about the utility and production
functions, but augmented with a renewable resource. In addition to a factor of production it
serves as a dore of vaue. Because a renewable resource has its own growth function and
dynamics, we get a planar systlem conssting of harvesting and the resource stock. After
having characterized the Seady State equilibrium and efficiency we turned our main focus to
studying the stability properties of our model.

We showed that the nature of the steedy State equilibrium depends on the vaue of
intertempora dagticity of subgtitution in consumption. In paticular, if the intertempora
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eadticity of subgtitution is a least one hdf, but different from unity, then stationary equilibria
are saddle points, but the gtationary equilibrium is stable under the logarithmic utility function
with the intertempora dadticity of subgtitution being equa to unity. Interestingly, for smaller
vaues of the intertempord eadticity of subgtitution, which are equdly plausible on the basis
of empiricd evidence from consumption behavior, we use a parametric example to
demongrate the existence of a subcriticad flip bifurcation for the case of ineffident
equilibrium. This means that a repdling two-cycle emerges on the sde of flip bifurcation
where the deady date is stable. Hence, an overlapping generations economy with a
renewable resource may display cycles and indeterminacy under standard well-behaved
utility and congtant returns to scale production functions without externaities or imperfect
competition as is usudly required to get bifurcations and indeterminacy from tability

anayses.
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Appendix 1. The slope of equation [17] and the RHS of equation [12] as a
function of 7,

The right-hand side of equation (12) as a function of 7/, ;.
The RHS of (12) is
ALl RHS () =B f ()’ [ () O *+ g (0] L+ 8" ()]
Differentiating this with respect to #,,, we get (dropping the arguments)

A2 RHS'(h.) = @+g)b fu+1+g") b f'u" (o) f"(x + g(x))]
=L+ g) b/ [u+ 1 (x+ g(x)u']

Kegpinginmind thet ¢, = f"'(x + g(x)) we get

A3  RHS'(h,)=@A+g)bf" & 12
. 1) = g ugl- T
i £ T
where r (¢) =% In the case of congtant Arrow-Pratt relative risk averson utility
cu \c

functions r (c¢) isexactly the dadticity of intertempora substitution. From A.3 it is now easy
to seethat RHS'(h,,,) > 0(<O)when r (c) >1(<1).

The derivation of the slope of equation (17)

We fird rewrite equation (12), and take into account the fact that we consider paths, where
h,q =h, fordl ¢ but x, may vary.

A4 W[ (h)- F1 A= 1 (1) Xa] = D' [£ (B ) + g (o)) L+ €' (x,0))
Totally differentiating A.4 and taking into account equation (10) we get
A5 { (el £+ glx) + ]+ bu(ch)g (%) -

bu' ()" (1 + @) + 'L+ & (50| (L+ &' (x,00)) Y,

{u" ()" @+ g (x)+ bu'(ch)g" (x) L+ g'(x,)) +

bu () L+ g (x,) + &' (v )A+ g (e DA+ g (x,00)) Jebx, -
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Rearranging and evauating A.5 & the dationary point, #,,, =h, and x,,; = x,, Yyieds
equation (17) in the text.

Appendix 2. Development of the Jacobian Matrix of the Partial Derivatives

For the purposes of gtability andyss we develop the Jacobian matrix, its determinant and
trace.

A6 x4 =G(x,,h)
A7 x4 =F(x,,h,)

The stability of the steady-state depends on the eigenvaues of the Jacobian matrix of the
partid derivatives

a;x Gh l;'

J=a .
&. F,q

Cdculating the partid derivatives of the Jacobian matrix we first obtain
G, (x, h)=1+g'(x,), G,(x,, k) =-1.

To get the partids of 4,,; = F(x,,h,) we fird do the implicit differentiation in the following
manner

A8  Adh,, = Bdh, +Cdx,,

where 4, B and C are appropriate partid derivatives to be presented in a moment.
Cdculating these we take into account the other dynamicad equation of our system:
X, =X, - h +g(x,).Giventheddfinitionsof 4, Band C wewill then have

C B
Fx(xt’ht) = Z, Fh(xt’ht) :Z.
Asfor A (as evauated at the steady state) we get from A.3

A9  A=(1+g)b fu'(c,)

r-1
r 1

where r has been defined in the text. For the future developments we define r = Ll
r -
Clealy, 4> (<)0,as r < (>)1. Totaly differentiating (12) with respect to 4, (again taking

into account the trangition equation) we obtain
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AL0 B=f(hu'(ch) + £ () (Dl B (x, +g(x)) + ()] +
bl ()P (51 &' (xa)]? + 0 £ (g’ (c5)g " (x,1) < O,

and totaly differentiating (12) with respect to x, (again taking into account the trangtion
equation) we have

A1l C=-[f'()]Pu (DR +g' ()] bf (hau'(ch) g (k)L + g (x,)]-
b/ (ha)Pu(ch)[1+ &' (x,)] L+ &' (x00)]? > 0.

Next we evauate 4, B and C at the steady state. By taking into account the Euler condition
at the steady State u'(c;) = 1+ g')bu'(c,) , we get

At C=t [Pue)  fPu(e)A+e) St
4 5 bfu'(e,) fu'(cp) b

LS | SR e) | SR ), fg” U
| .
T ul(cl) fllul (cl) fllul(cz) fll(1+ gl)g

Clearly, C/A>(<)0whenr <1(>1),and B/ 4> (<)0Owhen r >1(<1).
We can now rewrite the Jacobian as follows

d+g' -1u
Al13 J=¢écC 5@.

&4 44

. . . £WB C
The determinant (D) and the trace (T) of the Jacobian matrix, J, aeD = (1+ ¢ )E+Zmd

T=1+ g'+%respective|y. Using equations A.9, A.10 and A.11 we have the following

expressons

S'u"(c)(x+ )0
u'(cq)

R
Al4 D=(1+g)F|l-
|



31

A.15
P P AT C1 ) W AT Y A S0 U Y S i
i ' (c) ) fules) )

Appendix 3. Proof of Saddle-Point Stability
We andyze the ability of system (23) and (24) on the basis of (11) and (12).

The characterigtic polynomia associated with the system (23) — (24) expressed in terms of
DadTis

A16 p(l)=1%2-T1 +D=0

It is known from the stability theory of difference equations (see eg. Azariadis, 1993, pp.
63-67) that for a saddle point therootsof p(l ) =0 need to be on both sdes of unity. Thus

for asaddlewe need that D-T+1<0and D+T+1>00r D-T+1>0and D+T+1< 0.

When ¥ ispositive i.e r >1, it iseasy to conclude that both the determinant and the trace

in A.14 and A.15, respectivey, are postive, which dso means that that D+T+1 > 0 holds.
Making inferences about the sign of D-T+1 requires more work. A draightforward
cdculation yidds

Al7 D-T+1=
G- Der . SR P e) SR e) [t

s
~

i ' (cr) ) W) A

A.17 cannot be signed yet for ¥ >0 (i.e. r >1). To get the sign of D-T+1 we use the

assumption that our steady State is unique. This is assured by comparing dopes of the
curves, where h,,; =h, and x,,; = x,. We develop the condition

dh,
dx,

S dh,
dx,

A.18

Dx,=0

Dh,=0
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A.19

W) A+ ') +bu'(c,)g "L+ g') + bu'(c,) /' (1+ g')° . g
W) f-u" (e) S (x +h) + bu'(c,)g"- bu'(c,) A+ g ) f " (x+h) - f1A+g")]

Multiplying both sides of A.19 by the denominator (negetive sign) on the left-hand Sde we
get

A20 u(er)f (L+g')+ bu'(e)g" (L+ ') + bu” () "1+ ¢')° <
u'(cy) f1g-u(e)(x + h) [ g +bu' (c;)g" g™~ bu(c,)(A+ g) [ (x + h)g’
+bu'(c,)1+¢')2f"g".

and collecting terms A.20 can be re-expressed as

A2L () f+bu'(e)g b () f (L+ )P +u () + ) f g
+bu”(c)(1+ g') /" (r+ W)g'< 0,

Dividing by (f""bu'(c,) < 0), usng Euler condition and thefact that ¢, = f"'(x + 4) yidds

A.22
u'(c)f (A+g) , 8" w'(c)(A+g)?  u'(c)x+h)gU+g) 1(@+g)g
S u'(e) f” Sru'(e) u'(cy) rf

Now we multiply both sdesby f'/(1+ g') (>0) to get

nzs W7 I we)f?Arg) we)at g L
) are) e u'(cy) :

Rearranging and taking into account the definition of r yidds

A.24

A

A UGV €Y S O 0 9 i O N B D
T ) W) )

If Fr>0 (i.e. r >1)wege by multiplying with r
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A.25
P(E- Dl S [P SR W) St U g
TS S fwle) A
Note that thisis exactly D-T+1, which meansthat we have asaddlewhen r >1.
If ¥ <0 (i.e. r <1)weget by multiplying with
A.26
B B A G R L At YR i (ST DU YN S

. u'(cy) fle)  fule) A
which means that D-T+1 is postive. To get a saddle in this case, we need to have D+T+1
to be negative. To explore this possihility we check the sign of D+T+1 when F <0 (i.e
r <1). To make this caculation more transparent we rewrite D and T asfollows

A.27i D=(1+g)f{mM+1
A27ii T=QA+g)+F{M+N+1},
where
M= fut(e)x+h) 0
u'(cy)
]\,:}'f'zu”(cl)+J"2(1+g')7ft"(cz)+ et ¥
t /' (e) S u'(cz) AN, g')'{,

Using this shorthand notation D+T+1 can be expressed after some manipulation
A28 D+T+l=(2+g)Y M +FN+(2+g")1+r).

Note that, we are now considering the case, where ¥ <0 (i.e. r <1). Thefirg two terms
in (A28) are negative. The third term is dso negative when 1+ r < 0. This happens when
r >1/2. So we have a saddle in this case, too. This completes the proof of Proposition 1.
Q.E.D.

Appendix 4. Derivation of equation (39)

Given the assumed functiona forms, the Euler equation can be written

A29 ¢,=[1+g)b] ¢,
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Plugging this into the equilibrium condition, ¢, + ¢, = f'(h) and usng the budget condraint
¢, = ['(h)(x + g(x)) gives

- [x(a- W2)bx)f ad o _alx(a- @/2px)f [i+a- (1/2)bx]
Y1+ (@+a- b)'b ? (a- (1/2)bx) '

If we plug these expressions for consumption back into the equilibrium condition we get
equation (32) in the text.



35

References

Ameacher G., R. Brazee, E. Koskdlaand M. Ollikainen. 1999. Taxation, Bequests, and
Short and Long Run Timber Supplies: An Overlapping Generations Problem.
Environmental and Resource Economics, 13, 269-288.
Azariadis, C. 1993. Intertemporal Macroeconomics. Basl Blackwell, Oxford. Benhabib,
J and R.E.A. Farmer 1999. Indeterminacy and Sunspotsin
Macroeconomics, pp. 387- 448 in Taylor, J. and M. Woodford (ed.) Handbook
of Macroeconomics. Amsterdam. North-Holland.
Cass, D. 1972. On Capital Overaccumulation in the Aggregative, Neoclasscad Mode  of
Economic Growth: A Complete Characterization. Journal of Economic Theory 4,
200-223.
Clark, C.W. 1990. Mathematical Bioeconomics. The Optimal Management of
Renewable Resources. Second Edition. New Y ork, John Wiley & Sons, Inc.
Deaton, A. 1992. Understanding Consumption. Clarendon Lectures in Economics.
Clarendon Press, Oxford.
Devaney, R.L. 1989. An Introduction to Chaotic Dynamic Systems, Addison-
Wed ey Publishing Company, New Y ork.
Farmer, R. 1986. Deficits and Cycles. Journal of Economic Theory, 40, 77-88.
Gde, D. 1973. Pure Exchange Equilibrium of Dynamic Economic Modds. Journal of
Economic Theory, 6, 12-36.
Grandmont, J-M. 1985. On Endogenous Competitive Business Cycles.
Econometrica, 53, 995-1045.
Grandmont, J-M. 1988. Nonlinear Difference Equations, Bifurcations and
Chaos. An Introduction, mimeo, June, 119 p.
Grandmont, J.-M. 1998. Introduction to Market Psychology and Nonlinear
Endogenous Business Cycles. Journal of Economic Theory 80, 1-13.
Guckenheimer, J. and P. Holmes. 1983. Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
Johansson, P.-O. and K.-G. Lofgren. 1985. The Economics of Forestry and Natural
Resources, Oxford, Badl Blackwel.



36

Kemp, M. and N Van Long. 1979. “The Under-Exploitation of Natura Resources: A
Modd with Overlapping Generations,” Economic Record, 55, 214-221.

Lofgren, K.-G. 1991. “Another Reconcidition between Economists and Forestry
Experts. OLG-Arguments’. Environmental and Resource Economics, 1, 83-
95.

Mourmouras, A. 1991. Competitive Equilibriaand Sustainable Growth in a Life-

Cycle Modd with Naturd Resources. Scandinavian Journal of Economics, 93,
585-591.

Mourmouras, A. 1993. Conservationist Government Policies and Intergenerationa
Equity in an Overlapping Generations Modd with Renewable Resources.
Journal of Public Economics, 51, 249-268.

Olson, L.J. and K.C. Knapp. 1997. Exhaustible Resource Allocation in an
Overlapping Generations Economy. Journal of Environmental Economics and
Management 32, 277-292.

Reichlin, P. 1986. Equilibrium Cycles and Stabilization Policiesin an Overlapping
Generations Economy with Production. Journal of Economic Theory, 40, 89-
102.

Tohin, J. 1980. Discussion, in Kareken, JH. and N. Wallace (eds): Models of
Monetary Economies, Federa Reserve Bank of Minnegpoalis, 83-90.



