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1 Introduction

Many time series that are sampled at a quarterly or monthly frequency, in
economics and in other disciplines, show remarkable seasonal variation. Re-
cent statistical research has focused on the problem of discriminating models
with seasonal unit roots from models with deterministic seasonal cycles. Such
discrimination is relevant for prediction but it may also allow a more substan-
tial interpretation. If seasonal unit roots are present, shocks to the seasonal
cycle have a permanent effect. If deterministic cycles explain seasonal vari-
ation, all shocks to the seasonal cycle are transitory. This distinction may
permit a detailed interpretation of the sources of seasonal variation. For
example, tourism demand may shift permanently from summer to winter
tourism if skiing facilities are developed in a mountainous region. Construc-
tion may increase permanently during the cold season if a new technology
can be applied that copes with icy conditions. Conversely, all seasonality
may be classified as being deterministic if the direct effect of the climatic
cycle dominates.

For this discrimination problem, a variety of statistical testing procedures
have been suggested in the literature. The test by HYLLEBERG et al. (1990,
HEGY) was the first one to separately treat seasonality at different frequen-
cies. We will exclusively focus on the quarterly case and we will abstain from
testing for a non-seasonal unit root at frequency w = 0, hence the HEGY test
may classify series by having a unit root pair 4+ at the annual cycle w = /2
or not, and simultaneously by having a unit root of —1 at w = m or not. The
HEGY test uses an autoregressive model frame and has the presence of unit
roots as null hypotheses. The tests by TAM AND REINSEL (1997), CANOVA
AND HANSEN (1995, CH), and CANER (1998) use different model frames
that allow an apparent interchange of null and alternative hypotheses. For
example, the CH test sees the data generation process as the weighted sum
of deterministic, stationary stochastic, and pure unit-root components. Only
if the weight of the latter component is zero, the unit root will be rejected.
In this paper, we focus on the CH test and on the CANER test, as the pro-
cedure by TAM AND REINSEL does not treat the two seasonal frequencies
separately.

The question whether the HEGY test or the tests by CH or CANER
are to be preferred has no trivial answer. HYLLEBERG (1995) compares the
performance of the HEGY and the CH procedures by Monte Carlo simulation
and finds that either test dominates with respect to discriminatory power if



the true data generation mechanism corresponds to the hypothesized model
frame. This result gives no clear guidance for the case of conflicting results
from the two procedures, as the true generation mechanism is unknown.

We focus on interpreting all testing problems in a parametric framework,
although we are aware that particularly the CH test was presented in a semi-
parametric one. Seen as parametric tests, we note that the null hypotheses
of the HEGY test and the alternatives of the CH and CANER tests are not
simply equivalent. Starting from different parametric structures, each test
considers specific restrictions on their individual parameter spaces, which fi-
nally imply the persistence of shocks to seasonal cycles. We take this feature,
i.e., whether or not seasonal shocks are persistent, to represent the main hy-
potheses of interest. The application of any of these tests is then interpreted
as an indication that the researcher is also willing to accept the union of
the suggested model classes as his/her working frame. We note that similar
remarks apply to the more common problem of testing a unit root at 1, and
that a fully semi-parametric interpretation of unit-root testing encounters
subtle difficulties (see ABADIR AND TAYLOR, 1999).

In this paper we develop a decision-theoretic setup that aims at construct-
ing a new test from considering a pair of available seasonal unit-root statistics
jointly. The researcher is assumed to observe a data series that was generated
from either the HEGY or the CH generation model, either with or without
unit roots, with identical probability. The researcher wishes to classify the
generation mechanisms as to whether seasonal shocks are persistent or not.
We use Monte Carlo simulation in order to maximize the frequency of correct
classification. In the field of testing for unit roots at frequency 0, joint usage
of two tests with seemingly complementary hypotheses was also analyzed by
HATANAKA (1996) and HATANAKA AND KoTo (1995) who recommend a
comparison of p—values from both tests. We build on their suggestion but we
extend their idea in order to explicitly quantify the test decision.

Although, strictly speaking, the results of our analysis are only valid con-
ditional on our weighting priors within the assumed classes, we feel that at
least our qualitative conclusions are of interest to the practitioner. Firstly, al-
though every second trajectory is generated from the unobserved-components
frame that was suggested by CANOVA AND HANSEN (1995), it appears that
the test statistic suggested by HEGY allows a much more precise classifica-
tion than both the CH and the CANER statistics if any of these is used on its
own. Although the alternative tests may dominate on their home grounds,
they fail to do so on a mixture of their generation models with the simple
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autoregressive model. Secondly, the information contained in the CH and
in the CANER statistics is roughly equivalent, hence there is not much to
choose between these two approaches. Thirdly, the situation at the two sea-
sonal frequencies is very different. For w = 7/2, our procedure suggests to
rely solely on the HEGY statistic. For w = 7, a combination of the HEGY
statistic with one of the alternative statistics is likely to improve the task.
This latter issue is in line with HYLLEBERG (1995).

The remainder of this paper is organized as follows. Section 2 reviews the
test procedures and our decision setup. Section 3 reports and analyzes the
results of our Monte Carlo simulation. Section 4 concludes.

2 Testing for seasonal unit roots

2.1 Three testing procedures

The most common test for seasonal unit roots has been suggested by HYLLE-
BERG et al. (1990, HEGY). It starts by assuming a low-order autoregression
as the data generation process, possibly with added deterministic terms such
as a constant, a linear time trend, and a strictly periodic cycle

@(B)Xt = Dt + Et

We denote the lag operator by B and we use D; for the deterministic part.
®(.) is a polynomial of order p. The error term ¢, is specified as Gaussian
white noise. The latter assumption can be relaxed considerably without
affecting the asymptotic performance of the test but we will not focus on this
issue here. By an algebraic one-one transformation, the autoregressive model
can be expanded around the values of +1 and +¢ to yield the representation

A4Xt = alS(B)Xt_l + CLQA(B)Xt_l + agAQXt_l + G4A2Xt_2

p—4
-+ Z ¢jA4Xt—j -+ Dt + Et . (1)
j=1

We use S(B) =1+ B+ B? + B? for the seasonal moving average operator,
A(B) = 1— B+ B?— B? for the alternating summation, and A; = 1— B7 for
the seasonal differencing operator. HEGY (1990) show that the polynomial
®(.) contains roots at +1, -1, and +i iff a; = 0, ay = 0, and (a3, as) = (0,0),
respectively. Therefore, they suggest running a least-squares regression based
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on (1) and using ¢-values on the coefficients a;, j = 1,...,4 in order to test for
the unit-root hypotheses. For the hypothesis ®(+7) = 0, i.e., (a3, aq) = (0,0),
they also consider the corresponding F'-statistic. The asymptotic distribu-
tions of these statistics are mixtures of normal or chi-square random vari-
ables that can be expressed as rational functions of Brownian motion inte-
grals. Tabulated fractiles of these distributions can be used for testing the
hypotheses at specified conventional significance levels, such as 5%. In sum-
mary, the persistence of seasonal shocks corresponds to sharp restrictions on
the parameter space and therefore to the null hypotheses of the HEGY tests.

Although an autoregression is often a convenient first step in time-series
modeling and the HEGY procedure remains valid asymptotically for ARMA
structures provided that p — oo, some authors consider alternative ap-
proaches. A general non-parametric frame was analyzed by JOYEUX (1992),
an unobserved-components approach was adopted by CANOVA AND HANSEN
(1995, CH), and a test based on checking for seasonal over-differencing was
presented by TAM AND REINSEL (1997). CANER (1998) presented another
test that draws on similar ideas and shows that it has higher local power
than the CH test.

Inspired by a traditional unobserved-components model that was sug-
gested by HANNAN (1970), CH view the observed variable as the sum of a
typically time-changing seasonal component and a purely stochastic short-
memory stationary remainder

Xt:,u+ft/04t+€t . (2)

The variable f; consists of deterministic seasonal cycles at the frequencies
w = m,m/2, i.e., f/ = (cos(mt),cos(nt/2),sin(nt/2)). The error term e; is
short-memory stationary but generally serially correlated. The coefficients
oy are specified to follow a random walk

Aoy =Aoy g +uy

?

with a white-noise error term with its variance described by the scalar pa-
rameter 72. The matrix A is a selection matrix that can be modified in
order to test for seasonal variation at a specific frequency and thus defines
the dimensionality of u;. In our notation, 72 = 0 is equivalent to the absence
of a seasonal unit root at w = 7 for A/, = (1,0,0) and to the absence of a
seasonal unit root at w = m/2 for A’ , = (0, 1) such that dim(Ar ) = 3x 2.

A Lagrange-multiplier (LM) statistic for this hypothesis can be constructed
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on the basis of a non-parametric generalized least-squares estimate of the re-
gression equation (2). CH show that the asymptotic distribution of this LM
statistic under the null hypothesis of no seasonal unit roots can be character-
ized by an integral over Brownian bridge variables. They call this distribution
a ‘generalized Von Mises distribution’ and tabulate critical points.

CANER (1998) considers a very similar idea, starting with an autoregres-
sive variant of the unobserved-components (UC) model (2),

CI)(B)Xt = U + ft/Oét +e , p =041 +U . (3)

The error terms e; and u; are white noise. This fully parametric version of
HANNAN’s UC model is equivalent to a seasonal ARMA model

®(B)S(B) Xy =+ O(B)¢, - (4)

The error series (, is a function of the UC errors e; and u;. The null hypothesis
of no seasonal unit roots can be expressed by findings of unit roots in the
MA polynomial. Hence, the test incorporates the idea of over-differencing,
which is also considered by TAM AND REINSEL (1997, TR). The comparative
advantage of CANER’s test relative to the TR test is its ability to separate
the cases of unit roots at w = 7w and w = 7/2. Each one of these tests
has a counterpart in the literature for the case of testing a unit root at
w = 0. A main difference to the CH test is that the model (4) is estimated
fully parametrically, without taking resort to a spectral estimate. Again, the
asymptotic distribution under the null can be expressed as a generalized Von
Mises distribution, i.e., as an integral over Brownian bridge elements. For all
details, see CANER (1998).

2.2 The general discrimination problem

All seasonal unit-root tests consider a discrimination problem among the ba-
sic types of seasonality: firstly, seasonal cycles generated by trigonometric
functions of time; secondly, seasonal cycles generated by seasonal unit roots
in linear time-series models. For convenience we refer to these two modeling
ideas as ‘deterministic’ and ‘stochastic’ seasonality. With quarterly observa-
tions, the type of seasonality at the two seasonal frequencies is not necessarily
the same. For example, one may have a seasonal unit root at w = 7 and a
deterministic cycle proportional to cos(wt/2). However, the joint occurrence
of stochastic and deterministic seasonality at the same frequency is unlikely
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as it causes seasonal cycles of increasing amplitude that appear implausible
(see FRANSES AND KUNST, 1999, for details).

Whereas the HEGY test uses the stochastic model as its null hypothesis
and the deterministic one as its alternative, the CH and CANER tests use
the opposite approach. As it is common in binary discrimination tests, the
choice of null and alternative hypotheses apparently depends on technical re-
quirements and not on theoretical considerations. We see no a priori reason
to prefer any of the two testing ideas. It seems attractive to combine the two
tests in order to increase the efficiency of the statistical discrimination proce-
dure. Such a combination of the HEGY and the CH test was recommended
by HYLLEBERG (1995) who, however, did not specify his recommendation in
detail.

In the parallel problem of discriminating unit-root processes and trend-
stationary processes, HATANAKA AND KOTO (1995) and HATANAKA (1996)
indicate a formal solution. They consider the tests by DICKEY AND FULLER
(1979) and by SAIKKONEN AND LUUKKONEN (1993), the former of which has
the unit root as a null hypothesis and trend stationarity as the alternative,
whereas the roles are reversed in the latter test. Transforming the sample ev-
idence from the primary statistics into nominal p—values enables viewing the
decision problem in the square [0, 1] x [0, 1]. HATANAKA (1995) distinguishes
three main empirical situations: (a) clear cases where one p—value is very
small (say, less than 0.05 or 0.1) and the other is inconspicuous; (b) unclear
cases where both hypotheses are seemingly rejected; (c) two inconspicuous
p—values. When one is a prior: unlikely to accept the joint occurrence of
both features—as it would lead to implausible long-run behavior—or to ac-
cept the joint absence of them—as it conflicts with plain visual evidence or
with the primary stimulus of the analysis—decisions have to be defined for
the unclear cases (b) and (c). HATANAKA considers preferring hypotheses on
the basis of a simple comparison of p—values. It is known from the statistical
literature that such decision rule is, under certain conditions, equivalent to a
Bayes test after assigning a prior probability of 0.5 to each of the hypotheses.
Although HATANAKA does not use a formal Bayesian framework, some of his
remarks—particularly the one on ‘fair’ tests—reveal that he actually uses
Bayesian ideas.

The seasonal problem is very similar to HATANAKA’s problem and de-
serves a similar treatment. We assign prior probabilities of 0.5 to each of
the specific hypotheses of seasonal unit roots at w = 7 and w = 7/2 and
the ‘alternatives’ of deterministic cycles at these frequencies. The nominal
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p—values of both the HEGY and the CH test are calculated. Additional to
the specification of prior probabilities, Bayesian decision procedures require
the specification of a loss criterion. In line with HATANAKA, we specify loss
by the simple 0-1 loss function in the spirit of a model selection problem. In
other words, we assume that we are interested in maximizing the probability
of finding the true model.

2.3 The frame

The frame is a stochastic process that defines the design for the decision
problem. If a decision is searched among n hypotheses and each hypothesis
is represented by a collection of stochastic processes (X;(w,#),0 € ©;) for
t =1,...,n, the basic rule is that the probability that a trajectory is taken
from any of the n collections is n~!. The index i can be viewed as a discrete
parameter and this rule can be viewed as a discrete uniform prior over this
discrete parameter space.

Within each of the n collections of processes or model classes, a weighting
prior has to be defined for the parameter space ©;. There is no unanimous
agreement about how to represent prior lack of information over arbitrary
continuous parameter spaces. We have decided for simple technical priors.
Bounded parameters will generally be drawn from uniform distributions,
which we denote by U(A) for the bounded set A, while unbounded nui-
sance parameters will be drawn from standard normal N (0, 1) distributions.
We are aware of the Bayesian argument that uniform priors are unlikely to
reflect prior beliefs in testing sharp hypotheses—particularly for unit-root
testing, see MARRIOTT AND NEWBOLD (1998)—but we note that the aim
of our analysis differs from a usual Bayes test. Rather, our method crucially
relies on well-defined simple priors that are comparable across experiments.

Note that neither the prior distributions nor the parameter spaces ©; are
necessarily related across the classes and that 8 may have different dimension
in different model classes. In accordance with the Bayesian literature it is
always assumed that w and 6 are independent.

With these definitions, the frame is a stochastic process that is gener-
ated by a sequence of hierarchical random steps. First, the discrete class
parameter is drawn from a uniform distribution. Second, a continuous pa-
rameter 6 is drawn from a technical prior. Third, a trajectory symbolically
denoted by w is drawn from the probability law of the fixed-parameter pro-
cess (X¢(w,0)|0). The first-step discrete decision problem is to infer the first
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random draw from the finite observed part of the trajectory. This problem
is simplified by condensing the relevant information in statistics.

The effect of the discrete decisions is commonly evaluated by a loss func-
tion. Technical loss functions consider the correctness of the classification
only. In other words, the purpose of the discrimination is maximizing the
probability of correctly classifying the observed trajectory. Different loss
functions are conceivable if the purpose of modeling is known, as for example
in forecasting, but we note that technical loss directly matches the classical
hypothesis testing approach.

In detail, in accordance with the discrete prior probability of 1/2 for
each of the two hypotheses of deterministic and unit-root seasonality at both
seasonal frequencies w = m and w = /2, we allot a prior probability of 0.25
to each of the following events: processes with seasonal unit roots at both
frequencies, processes without seasonal unit roots, processes with a unit root
at w = 7 only, processes with a unit root at w = 7/2 only. Additionally,
within each of these four cases, we draw with a probability of 0.5 from those
models where the HEGY test feels most at home and with a probability of
0.5 from those models that were suggested by CANOVA AND HANSEN (1995).
For both partial frames, we extend the most primitive data generation design
by two autoregressive and two moving-average lags. We feel that this setup
gives equal chances to both procedures and also to each of the four partial
hypotheses.

As a ‘HEGY DGP’ we choose the general model

(1= L)1+ p L)L+ poL%)(1 — ¢, L)(1 — ¢, L) X,
= p+ fla+ (14+6,L)(1+0:L)e, (5)

with the 3—vector of seasonal constants f, = (cos(nt/2),sin(7t/2), cos(nt))’
and the corresponding coefficients vector a = (ay, as, a3)’. The four hy-
potheses correspond to the following cases:

1. unit roots at w =, 7/2: p; = py =1, a =0,
2. unit root at w =m: p; =1, py ~U(—1,1), a3 =0,
3. unit root at w =7/2: p; ~U(=1,1), py =1, a1 = az =0,

4. no seasonal unit roots: py, py ~ U(—1,1).



Unless it is stated otherwise explicitly, all random drawings of parameters
are mutually independent. The remaining parameters—for «;, unless already
specified by the above assumptions—are taken from simple non-informative
distributions:

wyani=1,...,3 ~ N(0,1),

¢17¢2781782 ~ (_]—71)7
E(ef) =0 ~ xi-

As a ‘CH DGP’ we consider an unobserved-components structure as a
general model

(1=L)(1 = ¢ L)(1 = ¢ L)yy = pp+ fiay + (1 + 01 L)(1 + 02 L),  (6)

where «; follows a vector AR(1) process with diagonal coefficient matrix D
and Gaussian errors vy, i.e. o = Day_1 + v; with E(v,v}) = 02I3. This
model generates seasonal unit roots whenever the diagonal matrix D =
diag(dy, ds, ds) with |dy|,|d2|,|d3| < 1 contains a one as an autoregressive
coefficient for a scalar component of a;. In particular, one has

1. unit roots at w = w,w/2 for d; = dy = ds = 1,

2. unit root at w =w/2 fordy =dy =1, ds ~ U(—1,1),
3. unit root at w = 7 for dy,dy ~ U(—1,1), d3 =1,

4. no seasonal unit roots for dy, ds,ds ~ U(—1,1).

In all cases, we draw starting values for g from a standard Gaussian
N(0,1I3) distribution. The distributional specifications for the remaining pa-
rameters are:

uw ~ N(0,1),
¢17¢2781762 ~ U(_171)7
E(ef) =0® ~ xi,

2 2
U'u ~ Xl'
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3 The simulation results

For each DGP we simulate 100,000 realizations of the frame, such that 25,000
realizations correspond to each of the basic cases: unit roots at w = 7w and
w = m/2; unit root at w = 7 only; unit root at w = /2 only; no unit root.
Each generated trajectory has a length (‘sample size’) of T'= 100. For each
trajectory, HEGY, CH, and CANER statistics for both seasonal frequencies
are calculated and are transformed into p—values, which have been numeri-
cally calculated from a base-line simulation. The bivariate distributions of
p—values for pairs of statistics at the same seasonal frequency are discretized
in bins of length 0.05. This value has to be chosen large enough, such that
the bins are not empty.

Each bin contains a certain finite amount of pairs of statistics. A certain
proportion of these pairs stem from processes that have been generated with
a unit root at the critical frequency, whereas the remaining pairs stem from
processes without that unit root. When a bin is dominated by unit-root
processes, this can be interpreted as evidence that a unit root is more likely
or more probable, given that a pair in that bin area is observed and that
trajectories have been generated from the known frame. In other words, the
posterior probability for the unit-root hypothesis is larger than 0.5, hence one
would be inclined to decide for a unit root if, as we assume, one is interested
in maximizing the probability of a correct decision.

Ideally, the areas where a decision for a unit root is suggested and those
where the opposite decision is obtained are separated by smooth curves. Due
to sampling variation, the empirical counterparts to these decision contours
often have a ragged and split appearance. Rather than confusing the evidence
by arbitrary smoothing, we prefer to present the raw results, assuming that
their asymptotic counterparts can be guessed from the figures.

These empirical decision contours are displayed for four cases that corre-
spond to tests for unit roots at w = 7 and w = /2, based on pairs of the
HEGY and CANER and of the HEGY and CH statistic. For the first case,
i.e., the HEGY and CANER pair and w = 7, we also present the empiri-
cal density for each of the eight model subclasses that constitute the frame,
which permits some more detailed analysis of the evidence.
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3.1 Caner and HEGY: Testing for a unit root at =

In this case, we give all results in some detail, including a full set of graphs.
In order to save space, for the other cases we just outline the main features.
It turns out that the main qualitative results are quite similar for all four
experiments.

Figures 1,3,5,7 correspond to cases with a unit root at m, whereas Figures
2,4,6,8 display cases without that unit root. Correspondingly, the figures with
odd numbers correspond to the null hypothesis of the CANER test and to the
alternative of the HEGY test, while these roles are reversed for the even-
numbered figures. Ideally, one would expect that the p—values are uniformly
distributed under the null, while they are concentrated in the area close to 0
under the alternative.

Figure 1 approximately corresponds to this expectation. There is some
concentration of the CANER p—values for large values, which just indicates
that the distribution under the alternative has additional mass in the ‘wrong’
end relative to the null distribution and would be of little concern to the

decision problem. The visual impression of the HEGY test performance does
not deviate significantly from uniformity.
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Figure 1: p—values for HEGY and Caner test procedure for a unit root at

w = m when the generating process is the HEGY model with unit roots at
w=mm7/2.
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In contrast, Figure 2 represents a less satisfactory situation. The HEGY
test performs according to its construction and tends to reject its null. How-
ever, the CANER test also rejects, although it is not supposed to do so. A
possible reason for this behavior is the generation process, which is based on
the HEGY idea and a parametric autoregression and may bias the results in
favor of the HEGY test. This feature had also been observed by HYLLEBERG
(1995) for the CH and HEGY tests and hence represents no surprise.
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Figure 2: p—values for HEGY and Caner test procedure for a unit root at

w = 7 when the generating process is the HEGY model without unit roots
at w=m, /2.

Figure 3 is almost perfect. The fat tails of the CANER alternative have
disappeared. Figure 4 confirms that they are caused by the unit root at the
other seasonal frequency. The root at 7/2 tends to tip the distribution away
from the critical area for w = 7. Unfortunately, the CANER test distribution
is U-shaped indicating an incorrect ‘size’. The apparently low ‘power’ of the
HEGY test is a visual artifact due to the strong cross-frequency shift effect
in the CANER test.

Figures 5 and 6 are the counterparts to Figures 1 and 2 with a modified
generating mechanism that is supposedly more favorable to the CANER test.
These figures indicate that the conclusion from HYLLEBERG’s (1995) simu-
lations that the CH and HEGY tests are most powerful in their individual
‘habitats’ may not be corroborated. The problems that we analyzed for Fig-
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ure 2 persist in Figure 6, although they have weakened. Similarly, Figures 7
and 8 come close to Figures 3 and 4, respectively.
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Figure 5: p—values for HEGY and Caner test procedure for a unit root at

w = 7 when the generating process is the CH model with unit roots at
w=mm7/2.

Figure 9 summarizes all eight experiments by averaging aggregation. A
wiggly curve delimits the area where the joint decision supports a unit root
at m. The rough shape is likely to be due to sampling variation in our
experiment. The curve could be smoothed by increasing the number of ex-
perimental replications, by smoothing the primary bins, or by smoothing the
curve itself. Some tentative application of the latter two ideas resulted in a
boundary that runs parallel to the ordinate (i.e., the p—value of the HEGY
test is 0) axis, at a p—value of around 0.2, excepting the area close to the
origin where the boundary moves in to smaller HEGY p—values. This would
mean that the ‘optimal’ decision on whether a unit root at 7 is present or not
mainly relies on the HEGY p-value. Only if the CANER p-value is very small
(significant), the decision maker should decide for a unit root, even when the
HEGY test rejects. For less significant CANER p—values, the decision maker

should reject the unit root in the presence of even weak evidence against it
on the basis of the HEGY statistic.
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3.2 Caner and HEGY: Testing for a unit root at /2

If a unit root at /2 is being tested for, it is convenient to note that the sample
contains less information with regard to this hypothesis, as the number of
fully observed cycles of length 4 is exactly half the number of cycles of length
2. One may conjecture that this fact should be reflected in the decision
procedure in such a way that weaker evidence against a ‘null hypothesis’
and hence a larger p—value might already lead the decision maker to decide
against the ‘null hypothesis’. Figure 10 displays a summary contour plot
and is the counterpart to the Figure 9 in the previous subsection. Although
the preference for the HEGY decision relative to the CANER-test decision is
similar to the previous case, we note that the boundary has actually shifted
left and not right, as one would have presumed. A much stronger evidence
against the unit root at 7/2 is necessary to recommend a decision for a
deterministic ‘annual’ cycle, corresponding to p—values in the range of 0.05
to 0.1, i.e., in the classical and traditional range.

o

0.6

unit root at m/2

Caner p—value
0.4

0.2
T

0.0

0.0 0.2 0.4 0.6 0.8 1.0
HEGY p—value

Figure 10: Optimal decision for the hypothesis of a unit root at 7/2.

Although we cannot give a simple explanation for this unexpected phe-
nomenon, we find that it is mainly caused by a rather high frequency of
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‘almost significant’ p—values for the HEGY test, even when the generating
mechanism is drawn from any of the cases with a unit root at 7/2. We
conjecture that the roles of the two seasonal frequencies may be reversed
in larger samples and that the w = 7 decision boundary will ‘overtake’ the
w = m/2 decision boundary. We note that the frame may also be responsible
for the phenomenon, as the design of purely real autoregressive roots comes
arbitrarily close to the unit root of —1 but not to the unit root at 4+: and
hence may simplify discrimination at w = 7/2. A variation of the frame in
the direction of complex roots will be a task for future research.

3.3 Canova-Hansen and HEGY: Testing for a unit root
at w

0.8

0.6

no unit root at m unit root at

Canova—Hansen p—value
0.4

O. Il Il Il Il
0.0 0.2 0.4 0.6 0.8 1.0

HEGY p—value

Figure 11: Optimal decision for the hypothesis of a unit root at .

If the CANER test statistic is replaced by the CANOVA-HANSEN (CH)
test statistic, one may conjecture that the results will not be affected greatly
by the modification, as both tests rely on a similar approach. However, one
may expect a situation that is slightly less favorable to the HEGY test as
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compared to its rival, as the frame contains CH-type processes rather than
CANER-type ones and the test should find it easier to make correct decisions
in the framework where it was originally developed.

Figure 11 shows that there is in fact little change relative to the joint test
of CANER and HEGY for w = 7. The boundary between decision areas is
roughly parallel to the ordinate axis at a HEGY p-value of 0.3 and bends
westward close to the origin, i.e., for highly significant CH statistics. In
summary, highly significant CANER or CH statistics tell that a unit root at
7 is very likely. If the CANER or CH statistic yields a p—value of over 5%, the
information in the statistic can be ignored altogether and unit-root decision
should be based on a HEGY statistic only. If the HEGY statistic yields a
p—value of less than 20%, the unit-root hypothesis is recommended to be
rejected.

3.4 Canova-Hansen and HEGY: Testing for a unit root
at m/2
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unit root at ©/2

Canova—Hansen p—value
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0.0 0.2 0.4 0.6 0.8 1.0
HEGY p—value

Figure 12: Optimal decision for the hypothesis of a unit root at 7/2.
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This is the last of the four cases, and again the boundary shows a marked
leftward shift from the w = 7 frequency. We note that the boundary is even
left from the joint test based on a CANER and a HEGY statistic. It indicates
that decision on the unit root at w = 7/2 is to be based solely on the HEGY
test. Whenever the HEGY test rejects at a significance level of around 5%,
one opts for a model without a unit root at 7/2, otherwise the unit root at the
annual frequency is confirmed. In summary, for the problem of testing a unit
root of +1, the information provided by the CH test statistic is redundant,
given the value of the HEGY test statistic.

4 Summary and conclusions

Unit-root tests are conducted on one out of two basic principles: on au-
toregressive representations or on over-differencing and testing for a moving-
average unit root. Occasionally, undue relevance has been attributed to the
fact that, formally, null and alternative hypothesis change place across the
two principles. More importantly, a researcher may try to reach a more con-
clusive decision by exploiting the information in two test statistics, one out
of each class.

We consider two such test combinations. Firstly, seasonal unit roots at
w =7 and at w = 7/2 are checked by a pair of test statistics that is formed
by a HEGY statistic and a statistic that has recently been recommended by
CANER (1998). Secondly, we consider a joint test formed from the HEGY
statistic and the statistic suggested by CANOVA AND HANSEN (1995). In
order to evaluate the power of a joint decision, we rely on a scheme that was
suggested by HATANAKA (1996) who uses a square formed from the p—values
of two test statistics for the problem of testing for a unit root at w = 0.

Our evaluation scheme deviates from the cited work of HATANAKA (1996)
or HYLLEBERG (1995), as we employ a pseudo-Bayesian framework and as-
sume that, a priori, the same probability is allotted to the unit-root hy-
pothesis and to the no-unit-roots hypothesis. We further employ a com-
plex non-informative prior scheme within either hypothesis. We conceded
that variations in this prior scheme may influence our results but we doubt
whether they do so in an important qualitative way.

Our main result is that it appears that the HEGY test is more important
in reaching a decision on the hypotheses of interest than its competitors that
are derived from an over-differencing paradigm.
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For the semi-annual cycle at w = 7, we find that the over-differencing
tests can be used, in a first round, to sort out trajectories that clearly point
to a unit root. Among the remaining trajectories, the HEGY statistic should
be applied with a loose significance level. In other words, unless the over-
differencing (CANER or CH) tests clearly recommend a unit root of —1, such
a unit root is to be rejected on the basis of even slight indications of its
non-existence in a HEGY test.

For the annual cycle at w = 7/2, we find that the over-differencing tests
provide little guidance and that the decision on a unit root at +: should
preferably be based solely on a HEGY test at a traditional significance level.
We conjecture that this result is robust with respect to replacing the HEGY
test by another test from the autoregressive class, such as a seasonal variant
of the semi-parametric test of SAIKKONEN AND LUUKKONEN (1993).

Our results do not contradict the simulations of HYLLEBERG (1995) who
recommends to use either test class—his study is restricted to the HEGY
and CH specifications—in their ‘natural habitat’. Because the generating
law is not known to the researcher, this recommendation would require an
additional selection procedure as a first step. It is conceivable that such a
refined testing procedure would be more powerful than our global approach
that solely uses the two statistics at hand. Such a comparison may constitute
a further area for future research.
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