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Abstract 
 
Evidence suggests that participants in direct student-proposing deferred-acceptance mechanisms 
(DA) play dominated strategies. To explain the data, we introduce expectation-based loss aversion 
into a school-choice setting and characterize choice-acclimating personal equilibria in DA. We 
find that non-truthful preference submissions can be strictly optimal if and only if they are top-
choice monotone. In equilibrium, DA may implement allocations with justified envy. Specifically, 
it discriminates against students who are more loss averse or less confident than their peers, and 
amplifies already existing discrimination. To level the playing field, we propose sequential 
mechanisms as alternatives that are robust to these biases. 
JEL-Codes: C780, D470, D780, D810, D820, D910. 
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1 Introduction
The direct student-proposing deferred-acceptance mechanism (DA) offers a celebrated

solution to the problem of matching prospective students to schools. It is strategyproof,

(constrained) efficient, and leads to the student-optimal stable allocation. Consequently,

DA is used in many existing school choice programs.1 By submitting their true prefer-

ences, students can maximize the probability of getting into their most preferred school

without hurting their chances of admission to other schools. Unfortunately, growing evi-

dence from both the field and the lab suggests that (especially, but not only) students with

low priority tend to conceal their preferences for popular schools and mimic preferences

for district schools despite the dominance of the truthful strategy. Hence, potentially,

none of the desired properties may be obtained.

We explain this puzzle with expectation-based loss aversion (EBLA, Kőszegi and Rabin

(2006, 2007)). In our framework, the preference report is a channel to manipulate the

expectations to which final match outcomes are compared. Ranking a popular school

behind a less preferred school is always costly in terms of the expected match utility, as

such a rank-ordered list (ROL) shifts a part of the match probability to an inferior school.

However, it also mitigates disappointment, and not even trying to get into the popular

school by dropping it shields off disappointment completely. We characterize that ROLs

are strictly rationalizable as a choice-acclimating equilibrium (CPE) in DA if and only if

they satisfy a property we call top-choice monotonicity, which is a testable prediction.2

This theoretical foundation of commonly observed deviations is the first contribution of

this paper.

As a second contribution, we show that these misrepresentations may give rise to justified

envy and inefficiency in equilibrium. We analyze choice-acclimating Bayesian Nash equi-

libria when heterogeneously loss-averse students compete for scarce seats at elite schools.

More specifically, loss-averse students decide to apply to their district schools over the

elite schools if they are pessimistic about their admission chances. Consequently, weaker

students with a lower degree of loss aversion (or higher degree of confidence), who submit

true preferences, are accepted instead.

Third, we delineate how social segregation can arise if certain characteristics are correlated

with demographics. Reference-dependent preferences open the door for biased beliefs as

an important determinant of optimal ROLs, although they play no role in the standard

model with a dominant strategy. We establish that DA favors students who are less loss

averse or more overconfident. For example, evidence suggests that overconfidence is more

1For instance, Pathak and Sönmez (2013) provide many examples.
2An ROL is top-choice monotone if it ranks all schools preferred to the one ranked first in decreasing

order of their preference and all other schools in increasing order. Such ROLs are indeed common in the
data by Li (2017).
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(Barber and Odean, 2001; Niederle and Vesterlund, 2007) and loss aversion less (Karle

et al., 2019) pronounced among men compared to women. Moreover, DA augments the

disadvantage for students who are already (or are perceive to be) marginalized when

discrimination distorts priority scores, because EBLA incentivizes such students to shy

away from ranking better schools in first place.3 In that sense, DA does not “level the

playing field,” voiding one of the crucial advantages prominently named by Pathak and

Sönmez (2008). Our model also highlights a flaw in the empirical strategy to identify

preferences reported to DA as true. Regarding affirmative action policy, this insight is

important because the observation that certain students do not rank certain schools does

not necessarily mean that they prefer other schools.

Finally, we investigate how alternative mechanisms remedy these weaknesses. If all possi-

ble preference realizations have a unique stable matching, we suggest sequential student-

receiving (school-proposing) deferred-acceptance as an alternative to foster truthful re-

porting on the student side. If school preferences are homogeneous, this mechanism

collapses to a simple serial dictatorship mechanism. Crucially, a remedy mechanism nec-

essarily has to be sequential as a static mechanism can implement the student-optimal

stable allocation if and only if DA can do so. Letting students choose sequentially allows

the mechanism (i) to manipulate the informational environment by revealing previous

students’ choices, and (ii) to shrink the choice set of students selecting later and to

incentivize reporting true preferences over this set.

In our model, students privately learn their match values for each school and their individ-

ual degree of loss aversion. Moreover, they receive a signal about their relative priorities

compared to the other students at each school. Generally, given beliefs about the other

students’ priorities and strategies, a student’s preference report corresponds to a lottery

over match outcomes. For instance, by swapping two schools’ ranks in the reported ROL,

match probability mass is shifted from one school to the other. With respect to match

utility alone, truthful reporting is a dominant strategy and, thus, induces a lottery that

first-order stochastically dominates any lottery induced by any other ROL. Following the

CPE framework by Kőszegi and Rabin (2007), the chosen outcome lottery constitutes the

reference point. In addition to match utility, students receive psychological utility from

comparing an outcome to the reference point. Since losses with respect to the reference

point are weighted stronger than gains, any uncertainty in the match utility distribution

generates a cost in expected utility.

As Kőszegi and Rabin (2007) have already proved, CPE allows for a preference for stochas-

3Through differences in perceived discrimination, our model can resolve apparently contradictory
findings in the data. While Shorrer and Sóvágó (2017) document that students with a better socioeco-
nomic background are more likely to deviate, Chen and Pereyra (2019) make the opposite observation.
Higher social status may lead to a more pessimistic belief about getting a tuition waiver, but may cause
a more optimistic belief about getting into an elite school.
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tically dominated lotteries, if an agent’s loss aversion is sufficiently strong. Indeed, a loss-

averse student may prefer to be matched with school x with certainty over being matched

with the same school x with probability (1− ε) and being matched with an even better

school y with probability ε > 0. Intuitively, the mere possibility of getting into y makes

the realization of the more likely outcome x more painful. Not listing y abandons all

hope so that this school does not enter the stochastic reference point and disappointment

is avoided. Such motifs can explain the evidence, suggesting that low- and mid-priority

students are prone to misrepresentations but high-priority and optimistic students are

not.

We draw on the extensive literature on matching mechanisms, but depart from the stan-

dard framework where preferences are only ordinal. In their seminal paper, Gale and

Shapley (1962) introduce the deferred-acceptance mechanism as a solution to find the

optimal stable matchings for the proposing side in the one-to-one matching problem.

Dubins and Freedman (1981) and Roth (1982) show that it is strategyproof for the

proposing side. Roth (1982) proves that it is not strategyproof for the receiving side.

Balinski and Sönmez (1999) show that DA is constrained efficient in the sense that no

other fair mechanism Pareto-dominates it. Our model introduces a fundamentally differ-

ent structure of incentives and questions all of these classical insights. Roth (1989) and

Ehlers and Massó (2007) are the first to study matching with incomplete information.

Hassidim et al. (2017a) gather stylized facts about the pervasive misrepresentation of

preferences in truthful mechanisms. Similar to Rees-Jones (2018) and Chen and Pereyra

(2019) who analyze survey data, they find that “misrepresentation rates are higher in

weaker segments of markets” and increase “when applicants expect to face stronger com-

petition,” in line with the predictions of our model. In field data, misrepresentations are

hard to identify since the true preferences are not observable. However, Hassidim et al.

(2017b), Shorrer and Sóvágó (2017) and Artemov et al. (2020) exploit objective rank-

ings in their data to expose “obvious misrepresentations” and find the same pattern.4

Artemov et al. (2020) and Hassidim et al. (2017b) find that 1 - 20% and 2–8% of obvious

misrepresentations are ex-post costly, respectively. Shorrer and Sóvágó (2017) estimate

that the 12–19% costly obvious misrepresentations amount to $3,000–$3,500 on aver-

age (unconditionally $347–$738 per misrepresentation). That is, even when restricting

attention to obvious misrepresentations, consequential deviations can be observed.

Truthfulness is easier to detect in the lab where preferences are induced by the experi-

mental design. While the pioneers Chen and Sönmez (2006) focused on a comparison of

4They study the Israeli Psychology Master’s Match, Hungarian college admission, and Australian
college admissions, respectively. Naturally, all students should prefer a school with a scholarship over
the same school without scholarship, but the authors record that students forgo tuition waivers and
no-strings-attached stipends.
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different mechanisms, more recently researchers have investigated patterns in preference

manipulations. Hakimov and Kübler (2021) provide a well-structured overview of the

current state of experimental research on matching markets. They document that rates

of truthfulness in DA seem to depend on multiple factors which should not impede the

dominance of the strategy and which vary widely between studies. Rather than rooted

in behavioral theory, most experimental studies are descriptive. For instance, Chen and

Sönmez (2006) introduced the district-school bias and the small-school bias, which cap-

ture the tendency that safe district schools are ranked higher and small schools are ranked

lower. We offer a theory to explain this pattern.

In contrast to our paper, where students deliberately feed DA incorrect preferences, mis-

representations have most commonly been interpreted as cognitive failures to identify the

dominant strategy.5 Li (2017) points out that DA is not “obviously strategyproof”, and

shows that most “mistakes” vanish when replacing DA with sequential serial dictator-

ship. We illustrate that our model is also able to explain the most common deviations

documented by Li (2017).6 Moreover, we show that students with EBLA reveal their

true preferences in this obviously-strategyproof mechanism as well. Hence, our model of

non-standard preferences provides an alternative explanation for the observations in Li

(2017). We believe that both explanations, cognitive mistakes and non-standard utility,

are relevant in practice.7

Combinations of behavioral theory and matching are still relatively rare. To the best of

our knowledge, the first paper to consider non-standard preferences in matching is by

Antler (2015) whose agents’ preferences are directly affected by the reported preferences

of others. Fernandez (2020) studies anticipated regret in deferred acceptance, and Zhang

(2021) considers school choice with level-k reasoning. Dreyfuss et al. (2019) recently and

independently raised the point that EBLA can help explain misrepresentations in DA.

Alongside various differences in modeling choices, they focus on the individual decision

problem and use empirical strategies to identify loss aversion in existing experimental

data. In contrast, we take a deeper theoretical approach by deriving characterization

results on rationalizable ROLs, analyzing strategic interaction, and evaluating remedy

mechanisms. We discuss the distinction to our paper more carefully in Section A.I.

5See, e.g., Basteck and Mantovani (2018). However, when priorities and preferences are induced by
the experimenter, we see the same individuals play a dominant or dominated strategy depending on their
assigned score. Hassidim et al. (2017b) observe the same pattern in a high-ability population (compared
to the general population). Controlling for cognitive ability, Shorrer and Sóvágó (2017) and Artemov
et al. (2020) find a causal relationship between admission selectivity and dominated choices.

6We discuss the differences between the two concepts in Section A.II.
7The persistence of misrepresentations even in high-stake environments, with trained participants and

after many rounds of practice suggests that cognitive mistakes are not the only explanation. That some
participants respond to advice and training suggests that our bias is not the only explanation. We see it
as one piece of the puzzle. Even if the relevance of loss aversion in market-design practice was in doubt,
we show to what extend loss aversion can confound experimental evidence and how it can be tested.
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Since Kahneman and Tversky (1979), loss aversion has become one of the most widely

applied concepts in behavioral economics. Based on their insights, Kőszegi and Rabin

(2006) developed EBLA and subsequently, in 2007, introduced the choice-acclimating

personal equilibrium (CPE), the equilibrium concept we adopt. It essentially captures

disappointment aversion similar to Bell (1985), Loomes and Sugden (1986) or Gul (1991),

who model the reference point as the lottery’s certainty equivalent. We choose CPE where

outcomes are compared to the lottery’s full distribution because it allows for “mixed

feelings” and because it is unclear what the certainty equivalent of lottery over real

school placements is supposed to be.

EBLA is supported by evidence from the field, such as Crawford and Meng (2011) or Pope

and Schweitzer (2011). Evidence from the lab is mixed. While the conflicting evidence of

Ericson and Fuster (2011) and Heffetz and List (2014) is affirmatively mended by Heffetz

(2021), who introduces an extra treatment causing expectations to “sink in,” the evidence

on real-effort experiments with EBLA (Abeler et al., 2011; Gneezy et al., 2017) does not

allow a clear verdict, yet. EBLA has been applied to a variety of economic models.8

2 The Model
Players: We consider finite sets of students, I := {i1, . . . , in}, and schools, S :=

{1, . . . ,m}. Each school s ∈ S has a capacity of qs ∈ N seats for students. If we

want to allow for students to remain unmatched, we can think of school m as a safe

outside option with unlimited capacity.

Preferences: Each student i ∈ I draws a type θi = (vi,wi,Λi), where each entry of

vector vi = (vi,s)s∈S represents the payoff student i receives from being matched with

corresponding school s.9 Similarly, each element of vector wi = (wi,s)s∈S represents the

payoff school s receives from being matched with student i. Let (vi,wi) be distributed

over a compact subset of Rm × Rm for all i ∈ I. We explain the loss-aversion parameter

Λi ≥ 1 in its own section later. It is discretely distributed over a finite set. For some re-

sults, we consider the special case that schools have the same preferences over students:10

Assumption 1 (Homogeneous school preferences). wi,s = ωi ∀s ∈ S and ωi is uniformly

8Such as moral hazard (Herweg et al., 2010), monopoly pricing (Herweg and Mierendorff, 2013;
Heidhues and Kőszegi, 2014; Carbajal and Ely, 2016), pricing with competition (Heidhues and Kőszegi,
2008; Karle and Peitz, 2014), consumer search (Karle and Schumacher, 2020), and auctions (Lange and
Ratan, 2010; Rosato, 2019; von Wangenheim, 2020).

9In order to evaluate reference-dependent utility, we must rely on cardinal utilities. Yet, our main
results will not depend on the cardinal ranking.

10For instance, the score may represent the result of a general assessment test, such as the SAT or
GRE. In many countries and cities, all schools use the same centralized score to rank students. See Fack
et al. (2019, Table 1)
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distributed on [0, 1].11

The ordinal preference over schools corresponding to type θi is captured by a rank-ordered

list (ROL). Formally, an ROL is a permutation of set S, where ROL (s1, s2, . . . , sm) is

interpreted as school s1 being most preferred, sm least preferred, and sk having k-th

highest preference.12 Let S(S) be the set of all such permutations.

Mechanism: Our results refer to the direct student-proposing deferred-acceptance algo-

rithm (DA) defined below. We assume that schools always report their true preferences

over students.13 Formally, a reporting strategy for student i is a mapping σi : Θi → S(S)

from types into ROLs. In particular, we are interested in when the truthful strategy,

which fully reveals the true ROL for all types, is optimal.

DA is defined as follows: After all students report their ROLs,

t = 1 All students apply to the top-ranked school of their submitted ROL. Each school

rejects the least-ranked students in excess of its capacity and temporarily holds the

others.

t > 1 All students who were rejected in step (t − 1) apply to the highest-ranked school

of their submitted ROL that has not rejected them yet. Each school rejects the

lowest-ranked students in excess of its capacity from the pool of current applicants.

Those who are not rejected are temporarily held.

End The process terminates after the first step without rejections.

Importantly, the mechanism is direct and all steps are executed mechanically based on

the reported ROL. The rules of the mechanism are fully understood. Schools know their

preferences over students. Students know their own type, schools’ capacities, and the

distributions of other students’ types.

Loss aversion: Each student reports the preferences maximizing her expected utility.

Students are expectation-based loss averse in the sense of Kőszegi and Rabin (2006,

2007). In addition to classical match utility vi,s, the student perceives gains and losses

when comparing the realized match utility to her reference utility. For the specification

of gain-loss utility, we follow most of the literature by assuming a linear gain-loss function

11Given iid draws from continuous distributions, this is without loss of generality. If ωi is distributed
with cdf Φ(ω) 6= ω, we can relabel the score to be ω′ := Φ(ω) which is uniformly distributed for any Φ.

12Ties in the ROL may be arbitrarily broken. With continuous type distributions indifferences occur
with probability zero and do not affect any result in this paper.

13This assumption distinguishes school choice where local laws determine schools’ priorities from the
college admission problem where colleges are strategic actors, see, e.g., Chen and Sönmez (2006).
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with a kink at zero. More specifically, let

u(θi, s|r) = vi,s +

ηi(vi,s − vi,r) if vi,s ≥ vi,r,

ηiλi(vi,s − vi,r) if vi,s < vi,r,
(1)

denote student i’s ex-post utility from being matched with school s, when school r ∈ S is

her reference match. The parameter λi > 1 captures the degree of loss aversion, whereas

ηi ≥ 0 is the weight assigned to the gain-loss utility. As we will show in (7), behavior

is driven by a summarizing parameter Λi = λiηi − ηi called the loss dominance. We call

students with Λi ≤ 1 moderately loss averse and students with Λi > 1 dominantly loss

averse.

Given θi, a belief about θ−i, and all other students’ reporting strategies σ−i, each report

σi(θi) corresponds to a distribution Fi = (fi,s)s∈S , where fi,s denotes the probability with

which i expects to be matched with school s. Given θi, σ−i and beliefs about θ−i, we say

a lottery is feasible for student i if there exists a report that induces it, and let Fi(θi, σ−i)
be the set of feasible lotteries. The expected utility from a lottery Fi evaluated with

respect to some reference lottery G = (gs)s∈S is then

Ui(θi, Fi|G) =
∑
s∈S

fi,s

(∑
r∈S

u(θi, s|r)gr

)
. (2)

Equilibrium: Given some σ−i, a strategy σi is a choice-acclimating personal equilibrium

(CPE) for student i if, for all θi ∈ Θi the corresponding distribution Fi satisfies

Ui(θi, Fi) := Ui(θi, Fi|Fi) ≥ Ui(θi, F ′i |F ′i ) ∀F ′i ∈ Fi(θi, σ−i). (3)

That is, we assume expectation-based loss aversion (EBLA) according to Kőszegi and

Rabin (2007, Section IV), where the reference point is stochastic and determined by the

actual belief of the own match outcome. In a CPE, strategies maximize expected utility

given that the corresponding beliefs determine both the reference lottery and the outcome

lottery. For the strategic interaction, we say a strategy profile σ := (σi, σ−i) is a choice-

acclimating Bayesian Nash equilibrium, if every σi ∈ σ is a CPE given σ−i and correct

beliefs for all i ∈ I.

Properties of mechanisms: An allocation M is a many-to-one mapping from I to S
such that M(i) = s denotes that student i is matched to school s and M−1(s) = {i :

M(i) = s} lists the students matched to s. Feasibility requires |M−1(s)| ≤ qs. Let M
be the set of all feasible allocations. An allocation rule is a function α : S(S)n → M,

mapping profiles of ROLs into matchings. Let ν = (νi)i∈I be the profile of true ROLs.

An allocation rule is strategyproof if

vi,α(ν)[i] ≥ vi,α(ν′i,ν−i)[i] ∀ i ∈ I, ∀θ. (4)

8



An allocation M is stable14 if there is no pair i, s such that student i has justified envy,

vi,s > vi,M(i) and ws,i > ws,i′ for some i′ ∈M−1(s), (5)

i.e., no student i prefers another school s over her match, while this school prefers i

over at least one of her matched students. A student-optimal stable matching is a stable

matching M such that

vi,M(i) ≥ vi,M ′(i) for any stable matching M ′. (6)

All proofs are relegated to the appendix, Section A.III.

3 Analysis

3.1 The Individual Decision Problem
As we consider the individual problem of some student i by fixing her type θi and the

other students’ strategy profile σ−i, it is convenient to drop the student’s indices i and

also, without loss of generality, relabel schools such that v1 > v2 > · · · > vm.

Match probabilities and attainability

By construction of DA, student i is rejected by school s if at some step of the algorithm

more than qs students with a higher priority than i apply to school s. Hence, student i is

matched to the k-th ranked school of her ROL if the capacities of all schools she ranked

before are filled by students that these schools individually prefer over student i. Given

the other students’ ROLs, we define school s as attainable for student i if and only if i

obtains a seat at school s when ranking it first.

Lemma 1. DA assigns a student to her highest-ranked attainable school.

Let As ∈ {1, 0} be a binary variable determining whether school s is attainable for

student i and we drop index i following the convention of this section. Whether a school

is attainable for student i depends on the strategies of other students and on the schools’

preferences over students, but not on the ROL submitted by the student herself. The

submitted ROL does, however, determine which of the attainable schools is ranked first,

and hence constitutes the student’s match. Therefore, the submitted ROL determines the

match outcome distribution F , and selecting an ROL effectively corresponds to choosing

a lottery over match outcomes.

More formally, a student’s beliefs about other students’ types and strategies and school

preferences lead to a joint probability distribution P on Πn
s=1As of being attainability

14We use the classic definition of pairwise stability and use this word synonymously with “no justified
envy,” but we focus on the latter meaning, i.e., interpreting it as a fairness notion, following Abdulka-
diroğlu and Sönmez (2003) in the spirit of Balinski and Sönmez (1999). To interpret stability as “no
coalition can profitably deviate” in our setting, we would have to take into account that student i’s
approach to school s would create expectations and therefore scope for disappointment.
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at each school. We denote for each school s with ps = P (As = 1) the unconditional

probability of being attainable at that school.15 Since the student is matched with her

highest-ranked attainable school, a reported ROL (s1, s2, ...., sm) leads to a lottery with

match probabilities F = (f1, ..., fm), where fsk is the joint probability that school sk is

attainable, while schools s1, ..., sk−1 are not. Importantly, the attainability probabilities

are usually not independent, even when types are independent draws. Given a set of

schools S and the individual loss parameter Λ, everything a student needs to know to

find an optimal ROL is captured by the individual decision environment ξ = (P, (vs)s∈S).

Outside options and truncated lists

In many existing implementations of DA, it is allowed to submit incomplete ROLs. We

can include the possibility to drop a school from the ROL by defining the outside option

as a fictional school m with unlimited capacity and normalized vm = 0. Depending on

the context the outside option may refer to remaining unmatched or being matched to

some “default” option. Different ROLs which rank the same schools in arbitrary order

behind the outside option are equivalent in the sense that they induce the same match

probabilities. Because the outside option is always attainable, ranking a school after it

corresponds to dropping this school with which a match is excluded. While it is never

optimal to list schools with vs < 0, we will show that it can be optimal to drop schools

with vs > 0.

Payoffs

For any ROL resulting in lottery F = (f1, ..., fm), we can rewrite the expected utility as

U(θ, F ) =
∑
s∈S

fs

(∑
r∈S

u(θ, s|r)fr

)

=
m∑
s=1

fs

[(
m∑
r=1

fr

)
vs +

s−1∑
r=1

frλη(vs − vr) +
m∑

r=s+1

frη(vs − vr)

]

=
m∑
s=1

fsvs︸ ︷︷ ︸
classical utility

−Λ
m∑
s=1

m∑
r=s+1

fsfr(vs − vr)︸ ︷︷ ︸
gain-loss utility

. (7)

Each pairwise comparison is weighted by fsfr and shows up twice: once as a gain and

once as a loss, its total factor is Λ > 0. Since losses are weighted stronger than gains,

expected gain-loss utility always enters negatively. Under our notational convention, the

difference (vs−vr) is positive for each r > s. One can think of the expected gain-loss term

as the cost of uncertainty. It is proportional to the loss dominance Λ and the average

distance between two realizations. An equal weight on gains and losses, λ = 1, would

result in Λ = 0 such that students only maximize classical utility. If Λ > 1, gain-loss

15Nothing in the analysis of this section relies on the presumption that beliefs are correct. The student
could be overoptimistic about her priority, hold wrong beliefs about other students’ preferences or draw
wrong inference on other students’ used strategies.
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utility dominates match utility, which will become central.

Example

The following example illustrates the tradeoff between the gains from classical utility

and the losses from expected reference-dependent utility, which provides the incentives

to misrepresent true preferences. It foreshadows our characterization results on which

ROLs can be rationalized under EBLA and provides intuition for comparative statics in

a student’s loss dominance parameter and her priority. Intuitively, increasing Λ augments

the relative weight of gain-loss utility over match utility. Hence, reducing the exposure

to sensations of loss by taming expectations becomes a central motif.

Example 1. There are three students, I = {A,B,C}, and two schools with a single

seat each, such that one student will remain unmatched. By treating the outside option

as a third school with unconstrained capacity, we obtain S = {1, 2, 3} with capacities

q1 = q2 = 1, q3 = 3. Suppose that all students prefer a school seat over being unmatched

and that school 1 is expected to be the more popular school,

Pr(vi,1 > vi,2 > vi,3) = (1− ε) > Pr(vi,2 > vi,1 > vi,3) = ε ∀i ∈ I.

Schools’ preferences are determined by scores ωi which each student independently draws

from a uniform distribution on [0, 1], i.e., Assumption 1 holds. We take the perspective

of student A with preferences v1 > v2 > v3 and score ω. Suppose she believes the other

two students are truthful. Table 1 provides the distribution of attainability probabilities

for ω = 1/4 and ε = 1/20.

Attainability at 1 not 1

at 2 ω2 = 10/160 2ω(1− ω)(1− ε) = 57/160

not 2 2ω(1− ω)ε = 3/160 (1− ω)2 = 90/160

Table 1: Attainability probabilites for ω = 1/4 and ε = 1/20 and ω = 1/4.

Evidently, both schools are attainable for A only if she has the highest score, and neither

school is if she has the lowest score. Only one of the schools is attainable if she has

the second highest score and the student the with highest score prefers the other school.

Note that the attainability probabilities are interdependent, even though preferences and

scores are drawn independently.

From the attainability probabilities, the student can infer the lottery over match outcomes

for any possible ROL. For instance, the true ROL, (1, 2, 3), leads to a match with school

1 if and only if it is attainable, with school 2 if and only if is attainable but school 1 is

not, and to no match if and only if both schools are unattainable. Table 2 presents match

probabilities for all ROLs.

We see that flipping 1 and 2 in the ranking shifts a probability mass of 10/160 (the probabil-
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ROL f1 f2 f3

1,2,3 13/160 57/160 90/160

2,1,3 3/160 67/160 90/160

2,3,1 0 67/160 93/160

1,3,2 13/160 0 147/160

3,2,1 0 0 1
3,1,2 0 0 1

Table 2: All possible ROLs of the example and the corresponding lotteries for ε = 1/20

and ω = 1/4.

ity of both schools being attainable) from school 1 to 2, which decreases not only classical

utility but also the cost of uncertainty. Similarly, dropping the last ranked school simply

shifts match probability mass from this school to the outside option. ROLs listing the

outside option first induce identical degenerate lotteries.

(1,2,3)

(2,1,3)

(2,3,1)
(1,3,2)

(3,2,1)
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Λ0

1

2

3

4

5

6

7
Expected utility

(a) Expected utility as a function of Λ with ω = 1/4,

(3,2,1) (2,3,1) (2,1,3) (1,2,3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Score0

5

10

15

20
Expected utility

(b) Expected utility as a function of ω with Λ = 3/2.

Figure 1: The expected utilities induced by every ROL as a function of (a) Λ and (b) ω,
setting v1 = 100, v2 = 30, v3 = 0 and ε = 1/20.

Given the lotteries, we can calculate the expected utilities for any Λ and select the optimal

ROL. Figure 1 illustrates the expected utilities induced by different ROLs. Figure 1a

demonstrates that for a sufficiently small Λ the student always reports truthfully, as the

lottery corresponding to the true ROL first-order stochastically dominates every other

lottery and the positive effects on match utility dominate the cost of uncertainty. As we

increase Λ, preferred schools are optimally ranked as worse, ultimately culminating in

submitting an empty ROL when the perceived cost of uncertainty is sufficiently high.16

Notably, any optimal manipulation involves a flipping (or dropping) of the most preferred

option – ROL (1, 3, 2) is never optimal. Figure 1b illustrates that students tend to become

more truthful as their scores increase and they become more optimistic.

16Abstaining from the mechanism by choosing a dominated outside option is reminiscent of the “un-
certainty effect” documented by Gneezy et al. (2006).
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A large Λ by itself does not lead to profitable deviations from the true ROL, as they are

inherently linked to incomplete information. If students had full information about other

students’ reports and schools’ preferences, they could infer their match outcome from the

mechanism, and would have no cost of being truthful, such that DA would implement the

student-optimal stable matching. Moreover, the optimal ROLs of this example cannot be

explained by simple risk aversion, because the truthful lottery first-order stochastically

dominates every other feasible lottery.

Characterization of optimal ROLs

As we have seen in Example 1, the dominance of the truthful strategy does not necessarily

carry over to a truthful CPE if loss aversion is sufficiently strong. As we will show

in Proposition 2, for any Λ > 1, a sufficiently pessimistic student will misrepresent

her preferences. Conversely, Masatlioglu and Raymond (2016, Proposition 1) show that

CPE respects first-order stochastic dominance if Λ ≤ 1, and, by the dominance of the

truthful strategy with standard preferences, the truthful lottery first-order stochastically

dominates any other feasible lottery. Hence, the truthful strategy is a CPE in DA for

any profile and all possible beliefs if and only if Λ ≤ 1.

There is substantial evidence that a relevant fraction of the population is indeed dom-

inantly loss averse.17 Λ > 1 matches the conventional wisdom that “losses loom about

twice as large as gains.” While this rule of thumb originates from studies on riskless

choices, it also seems to apply when risk is involved.18 In a meta-analysis of over 150

articles, Brown et al. (2021) find that the mean loss-aversion coefficient λ with η = 1 is

between 1.8 and 2.1 and about 38% out of more than 600 estimates find λ > 2, corre-

sponding to Λ > 1. While the possible preference for first-order stochastically dominated

lotteries that comes with this assumption may appear counterintuitive, it is not only

observable in the matching context.19

When searching for a best-responding ROL given a type, beliefs, and others’ reporting

strategies, the following property turns out to be both necessary and sufficient condition

for optimality for some decision environment ξ = (P, (vs)s∈S).

17While many applied papers restrict attention to Λ ≤ 1, we explicitly allow (all or only some)
students to be dominantly loss averse, in order to explain deviations from truth-telling. Herweg et al.
(2010) introduced the assumption “no dominance of gain-loss utility”as λ ≤ 2 with fixed η = 1, and it
was later picked up in various forms. Rather than being based on evidence, the main reason why it is
imposed seems to be that it makes problems well-behaved.

18See Tversky and Kahneman (1992), Gill and Prowse (2012), Sprenger (2015) or Karle et al. (2015).
19See the discussion around Proposition 7 by Kőszegi and Rabin (2007). While the “uncertainty

effect” found by Gneezy et al. (2006) provides evidence in this direction, Rydval et al. (2009) suggest
it cannot be replicated. In the context of choice bracketing, Tversky and Kahneman (1981) and Rabin
and Weizsäcker (2009) provide experimental evidence that people can have a preference for dominated
lotteries.
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Definition 1. An ROL is top-choice monotone if it

• reverses the order of schools preferred over the top choice, i.e., it ranks school k

first and all schools 1, . . . , k − 1 in decreasing order, and

• preserves the order of schools not preferred over the top choice, i.e., it ranks school

k first and all schools k + 1, . . . ,m in increasing order.

For example, the ROL (1, 3, 2, 4) is not top-choice monotone, because 2 is ranked behind

3 although v2 > v3 such that the preference order of schools considered worse than top-

choice 1 is not reflected in the ranking. Similarly, ROL (3, 1, 2, 4) violates the property,

while ROL (3, 2, 1, 4) satisfies it as the preference ranking of schools preferred over top-

choice 3 is reversed. Table 3 exhibits further examples.

Proposition 1. Take any S = {1, . . . ,m} with the implied ordinal ranking and any

Λ > 1.

a) For any decision environment ξ, a strictly optimal ROL must be top-choice mono-

tone.

b) For any ROL L which is top-choice monotone with respect to the ordinal ranking

there is a decision environment ξ such that L is strictly optimal.

If all ROLs correspond to different lotteries over match outcomes, Proposition 1 holds

for any optimal ROL. However, if some ROLs correspond to identical lotteries (and

therefore identical expected utility), it is possible that a student is indifferent between

multiple ROLs out of which at least one is top-choice monotone.20 Only a comparably

small set of ROLs is top-choice monotone.21

The formal proof of the proposition is the appendix, but its general idea is easily un-

derstood by example. Table 3 shows all possible ROLs for a setting with m = 4 as an

outside option. The bold numbers are the listed schools, as schools ranked after 4 can be

interpreted as “dropped from the ranking.” The shaded ROLs are never strictly optimal

as they violate top-choice monotonicity. For instance, (1, 3, 2, 4) reverses 2 and 3 which

are not preferred over top choice 1. Intuitively, if the student were willing to reduce

20For this reason, we render ROLs equivalent for which only the ranking after the outside option
differs. In Table 3 the darkly shaded ROLs are in this sense redundant as they represent the same
lottery as a unique top-choice monotone analog. Identical lotteries can also arise if a subset of schools
together constitute an outside option, making any permutation of schools ranked after them meaningless.
Similarly, the ranking of two schools that are not attainable does not matter. There are no equivalent
ROLs if for any subset of schools the probability of all of them being attainable is strictly between zero
and one.

21Indeed, while for m schools the number of ROLs is m! (or
∑m

i=1(m− i)!
(
m−1
i−1
)

=
∑m

i=1
(m−1)!/(i−1)!

non-redundant ROLs when m is an outside option), just 2m−1 are top-choice monotone.
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risk by shifting probability mass from school 2 to 3, i.e., (1, 3, 2, 4) �i (1, 2, 3, 4), then she

would be a forteriori willing to shift probability mass from school 1 to 3, i.e., (3, 1, 2, 4) �i
(1, 3, 2, 4). Hence, (1, 3, 2, 4) can never be strictly optimal. Similarly, (3, 1, 2, 4) cannot

be strictly optimal as either (1, 3, 2, 4) �i (3, 1, 2, 4) or (3, 2, 1, 4) �i (3, 1, 2, 4).

Full ROL Drop one Drop two Empty ROL
1,2,3,4 1,2,4,3 1,4,3,2 4,3,2,1
2,1,3,4 2,1,4,3 2,4,3,1 4,1,2,3
3,1,2,4 3,1,4,2 3,4,2,1 4,2,1,3
1,3,2,4 1,3,4,2 1,4,2,3 4,3,1,2
2,3,1,4 2,3,4,1 2,4,1,3 4,1,3,2
3,2,1,4 3,2,4,1 3,4,1,2 4,3,2,1

Table 3: All possible permutations with three schools and an outside option. The darkly
shaded ROLs are redundant. The lightly (and darkly) shaded ROLs are not top-choice
monotone and thus never strictly optimal.

As a first impression of our theory’s predictive power, we briefly consider an experiment by

Li (2017, treatment SP-RSD). Here, each participant is privately endowed with a priority

score (an integer between 1 and 10) and is informed about how all participants commonly

value each of four prizes between $0 and $1.25. Then, participants simultaneously submit

an ROL about the prizes to a mechanism which calculates the DA allocation.

Priority 1 2 3 4 5 6 7 8 9 10 ALL
1234 61.1% 57.1% 58.8% 67.7% 55.2% 79.0% 74.4% 85.7% 84.3% 91.3% 71.0%
2134 1.1% 1.2% 3.8% 6.5% 12.1% 8.1% 10.3% 7.1% 5.7% 1.3% 5.3%
3214 6.7% 6.0% 7.5% 4.8% 3.4% 0.0% 0.0% 1.8% 0.0% 0.0% 3.2%
4321 17.8% 8.3% 3.8% 4.8% 1.7% 3.2% 1.3% 0.0% 2.9% 0.0% 4.9%

TCM 91.1% 77.4% 77.5% 88.7% 75.9% 91.9% 87.2% 98.2% 95.7% 93.8% 87.5%

Table 4: Share of most commonly submitted ROLs and total share of top-choice monotone
ROLs for each priority score. Most common deviation from truth-telling for each priority
score, i.e., for each column in Table 5 in the appendix, is in bold.

Table 4 summarizes several noteworthy observations regarding our theoretical results.

Table 5 in the appendix provides more details. While the standard theory can explain

71% of the ROLs (first row, last column), our theory can explain 87.5% of the reported

ROLs (last row, last column). More importantly, the most common misrepresentations for

each priority score (for each priority score in bold face) are indeed all top-choice monotone.

Moreover, the rates of these misrepresentations move according to the intuitions suggested

by our model. ROL (4, 3, 2, 1) is most common among low scores, ROL (3, 2, 1, 4) among

lower intermediate scores, and ROL (2, 1, 3, 4) among higher intermediate scores. As

suggested by Example 1, higher scores are more likely to submit truthful ROLs.

Proposition 1 implies that any manipulation of the ROL will concern the most preferred
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schools: the true ROL is strictly optimal if and only if it is strictly optimal to rank

school 1 first. This insight helps us to provide necessary and sufficient conditions on the

loss parameter which determine whether a manipulation of the true ROL is profitable.

The attainability probability p1 only depends on beliefs about what other students do

and their priority relative to our representative student. Hence, Proposition 2 gives

precise bounds on when DA is incentive-compatible for loss-averse students based only

on fundamentals that are exogenous in this section. These bounds are strict in the sense

that for any p1 ∈ [1−1/Λ
2
, 1 − 1/Λ] the answer to whether truthfulness is optimal depends

on other attainability probabilities and also the cardinal utilities.

We say a school is exclusive if attainability at that school implies non-attainability of

some other school.22

Proposition 2. Suppose the most preferred school is not exclusive. Let p1 be the prob-

ability that a student’s most preferred school is attainable.

1. If p1 > 1− 1/Λ, then the true ROL is strictly optimal.

2. If p1 <
1−1/Λ

2
, then the true ROL is strictly suboptimal.

This proposition implies that under Assumption 1 sufficiently high scores report truthfully

whereas sufficiently low scores misrepresent whenever seats at their preferred school are

scarce. This result is in line with the evidence that suggests a causal relationship between

priority and truthfulness mentioned in our introduction and Table 4.

An important implication of the result is that students’ beliefs are crucial. That is,

one of the advantages of strategyproof mechanisms, namely, the irrelevance of priors,

vanishes in our setting. Importantly, we have made no assumptions on whether the beliefs

determining the attainability probabilities are rational. Consequently, EBLA is a channel

which renders other well-documented biases distorting the beliefs as decisive. Here, an

overconfident student is more likely to be truthful as she overestimates her chances of

getting into her favorite school. Hence, overconfidence and loss aversion countervail each

other in terms of incentive compatibility. Indeed, Rees-Jones and Skowronek (2018) find

that overconfident participants are more likely to be truthful.23 Without our theory, this

observation may appear counterintuitive as this bias usually steers behavior away from a

rational unbiased benchmark.

22For instance, a boy school would be exclusive, if there were a girl school in the set of schools.
Evidently, if a school is exclusive with other schools, then the rank of the exclusive school among these
schools in an ROL is inconsequential for attainability, and hence multiple ROLs induce the same outcome
lottery.

23In their online experiment, participants completed a test on logical reasoning ability and afterwards
estimated the percentage of other participants they outperformed. They deem a participant overconfident
if they overestimated their percentile rank.
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Truncated lists are prevalent in the data. Since constraining the ROLs to a fixed number

of schools can destroy both the strategyproofness and the stability of DA, economists

often advocate against such restrictions. While prohibiting complete ROLs introduces

strategic motifs into DA with standard preferences, such motifs are already present in

our setting. As in our models truncations formally correspond to ranking a school behind

the outside option, Proposition 1 implies the following statement on truncations:

Corollary 1. It is never strictly optimal to drop some desirable school k from the ROL,

but list some preferred school ` < k.

3.2 Strategic Interaction
In this section, we investigate the structure of the (essentially) unique choice-acclimating

Bayesian Nash equilibrium with homogeneous school preferences. We rationalize the

prevalent district-school bias as an equilibrium phenomenon in a setting with district

and elite schools.

To establish the general existence of an equilibrium for arbitrary school preferences, note

that a choice-acclimating Bayesian Nash equilibrium is just a standard Bayesian Nash

Equilibrium, where individual utilities over actions are given by utility function (7).24

Equilibrium existence is then implied by Theorem 1 in Milgrom and Weber (1985).25

In general, strategic interaction between loss-averse agents is difficult to analyze and

has to date only been sparsely studied. A key observation in the analysis of strategic

interaction with homogeneous preferences of schools is that a student’s match outcome

is only affected by the behavior of other students with a higher score. By construction

of DA, a student will only be rejected by a school she proposes to if this school also has

an application from a student with a higher score. Hence, intuitively, the existence and

the structure of a choice-acclimating Bayesian Nash equilibrium follows by an iterative

argument where each student chooses her optimal ROL according to the rational beliefs

she holds over submitted ROLs by students of higher scores. For ease of exposition, we

now assume that students’ type space is finite and all schools break ties between students

in the same publicly known deterministic way. An equilibrium is essentially unique if

it is unique after imposing a rule for how students break ties when they are indifferent

24This interpretation subtly involves a view on the interpretation of mixed strategies. We follow, e.g.,
Rubinstein (1991) in his interpretation that we should either regard mixed strategies “as the distribution
of the pure choices in the population” or as “a plan of action which is dependent on private information
which is not specified in the model.” In both interpretations the player knows his own choice of (pure
strategy) action when forming her reference point. In this interpretation, we depart from Dato et al.
(2017) who assume that the uncertainty of a mixed strategy is realized only after the player has chosen
it and has formed her reference point.

25More concretely, note that compact metric spaces are complete and separable and that utility func-
tions are measurable for the induced Borel σ-algebra.
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between multiple ROLs.

Proposition 3. With homogeneous school preferences and discrete types, there exists

an essentially unique choice-acclimating Bayesian Nash equilibrium in pure strategies.

Misallocations with elite schools and the district-school bias

We now employ a simplified setting to derive the district-school bias first explored by

Chen and Sönmez (2006).26 For complex preference structures, there are numerous inter-

dependencies, each giving rise to potential risks of instability. For now, we focus on the

district-school bias and neglect other sources of misrepresentations, such as differences in

preferences for schools within the set of desirable schools.

Suppose that there is a set E ⊂ S of elite schools. Each school from this set is unam-

biguously preferred by each student over some safe outside option, the district school. To

simplify, we assume that all elite schools induce the same match utility v > 0, whereas

the safe outside option induces a normalized utility of zero.

Suppose further that Assumption 1 holds: each student i independently draws a score

ωi from the uniform distribution. Let a student’s loss dominance Λi be independently

drawn from a common distribution with discrete support {Λ0,Λ1, . . . ,Λl}. Since truthful

reporting is a dominant strategy for any Λ < 1, we can combine all loss dominance

parameters in [0, 1] into Λ0 and assume, without loss of generality, Λ0 = 0 and Λ1 > 1.

By the following lemma, we can, without loss of generality, focus on just one elite school

with capacity q =
∑

s∈E qs < n instead of a set E of elite schools.

Lemma 2. For any belief on the attainability probabilities of elite schools, the best

response is to either rank all elite schools adjacently (in any order) or no elite school

before the district school.

In equilibrium, a student’s decision as to whether to apply to the elite school depends on

her probability of attaining it, i.e., the probability that fewer than q students of higher

score apply there. Hence, the attainability probability is a function which is weakly

increasing in her score ω and depends on the other students’ reporting strategy σ−i.

Fixing σ−i, payoff function (7) implies that listing the elite school before the outside

option is optimal for any ω > 0 if and only if

f(ω)v − Λf(ω)(1− f(ω))v ≥ 0 ⇐⇒ Λ ≤ 1

1− f(ω)
⇐⇒ f(ω) ≥ 1− 1

Λ
. (8)

Consequently, for any score ω ∈ (0, 1), there is a cutoff Λ(ω) = 1/(1−f(ω)) such that

applying to the elite school is a best response if and only if Λ ≤ Λ(ω). Due to the

26Hakimov and Kübler (2021) state the phenomenon that “the district school (or safe school) is ranked
higher in the reported list than in the true preferences,” and document its prevalence in a wide range of
experiments. In our two-school setting, it is equivalent to the small-school bias.
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monotonicity in the cutoff structure, the choice-acclimating Bayesian Nash equilibrium

can again be determined iteratively. Students with the highest loss dominance Λl have

the highest cutoff score ω(Λl) below which they abstain from listing the elite school in

their ROL. Anticipating this behavior, any student with loss dominance Λl−1 can infer

her score cutoff ω(Λl−1) below which she drops the elite school, and so on.

Lemma 3. In the elite school problem, there is an essentially unique choice-acclimating

Bayesian Nash equilibrium. In this equilibrium, a student with loss dominance Λ applies

to the elite school if and only if her score is above some cutoff score ω(Λ) ∈ (0, 1), which

is increasing in Λ.

The insight that pessimistic loss-averse students shy away from applying has relevant ram-

ifications for affirmative action policy beyond the scope of this simplified model. While

the cutoff attainability probability in (8) only depends on the score and the loss domi-

nance, beliefs can be additionally skewed which leads directly to unfavorable allocations.

For instance, if some students expect their scores to be lower than they are, because

of (perceived) discrimination, these students may not apply to the elite school although

they would be assigned a seat in the stable allocation. Consequently, DA aggravates the

discrimination by discouraging truthful revelation, and whether this discrimination is real

or caused by underconfidence or doubts about how schools assess abilities, is irrelevant.

Thus, downplaying the cost of discrimination when marginalized students do not rank

discriminating schools in DA is inherently flawed in models incorporating EBLA, because

the submitted ROLs may not reflect true preferences in equilibrium.

3.3 Possible remedies
In keeping with Proposition 2, misreporting in our model is inherently linked to beliefs

on attainability and thereby on how a student expects to compare to others in terms

of priority. While we modelled the source of uncertainty about this relative priority as

uncertainty about other students’ priorities w−i at schools, the same holds true when

it stems from uncertainty about how the schools assess own abilities wi. Notably, this

uncertainty is unlikely to depend on market size. Moreover, our model abstracts away

from other inherent sources of uncertainty in the market than the relative priority, and

other students’ preferences that may aggravate the problem, such as institutional uncer-

tainties. In general, any regulation that may help a student to better assess his own

standing and capacities of schools is likely to reduce students’ uncertainty and hence the

misrepresentation of preferences. In this section, we study how the choice of the mecha-

nism itself may mitigate the problem of uncertainty and help to prevent justified envy in

the equilibrium allocation.
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Static mechanisms

If we restrict to static matching mechanisms, we can provide a negative result. A static

mechanism is any mechanism which asks students about their preferences only once with-

out providing feedback on other students’ preferences. Formally, a static matching mech-

anism consists of reporting spaces R = ×i∈IRi for each student i and an allocation

function o, mapping reported profiles r = (ri)i∈I ∈ R into allocations.

Lemma 4. For any distribution of preferences, there exists a static mechanism that

implements the student-optimal stable allocation as a choice-acclimating Bayesian Nash

equilibrium for all realizations if and only if DA is truthful.

Hence, if DA fails, there is no hope for remedies in the class of static mechanisms. Our

argument is akin to the revelation principle for static mechanisms. Intuitively, if a student

prefers to avoid the ex-ante risk that comes with the implementation of the student-

optimal matching, she will not reveal her preferences under any such mechanism.

Sequential student-receiving DA

Since uncertainty is the source of students’ deviations, the use of sequential mechanisms

may mitigate this problem. A sequential mechanism enables feedback between different

rounds and, hence, has the ability to alter beliefs before eliciting preferences. At first sight,

it may seem surprising that the sequential use of information enables us to go beyond

what is achievable with static mechanisms, as it seems to violate the fundamental insight

of the revelation principle that any sequential mechanism has a static direct equivalent,

see, e.g., Myerson (1979). In settings with dynamic information and EBLA, however,

this revelation principle does not apply. As students evaluate outcomes with respect to

their beliefs, information endogenously affects their preferences over alternatives.

For a dynamic equilibrium concept in the context of EBLA, we follow Rosato (2019)

in his straightforward extension of CPE to dynamic settings. At each decision node

of an extensive form game, a student correctly anticipates her choices at any future

node. Based on the induced beliefs and using backward induction, she selects the lottery

most-preferred under the static CPE at every decision node, with the reference point at

each choice being her beliefs about final match outcomes conditional on the information

available at that stage.

Formally, any stage of the mechanism may reveal new information that alters the beliefs

about the final match outcome, which depends on the student’s behavior in future stages.

Let Fi,k(θi, σ−i) be the set of feasible lotteries given θi, σ−i and the beliefs about θ−i

conditional on the information available at node k, and let Fi,k be a lottery corresponding

to some σi. Given some σ−i, strategy σi is a sequential CPE if, at every decision node k,
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it selects a lottery Fi,k such that

Ui(θi, Fi,k) ≥ Ui(θi, F
′
i,k) ∀θi ∈ Θi, ∀F ′i,k ∈ Fi,k(θi, σ−i).

Accordingly, we call a strategy profile where each player’s strategy is a sequential CPE,

given other players’ strategies, a sequential choice-acclimating Bayesian Nash equilibrium.

Equipped with the tools to analyze incentives in sequential mechanisms, we now eval-

uate the sequential student-receiving (school-proposing) deferred-acceptance mechanism

(sequential receiving DA).

Definition 2 (Sequential receiving DA).

t = 1 All schools offer their most-preferred student a seat. All students may temporarily

accept one of their offers (if they have one), and reject all other schools.

t > 1 All schools that have temporarily unfilled seats make an offer to the highest-ranked

student that has not yet rejected them. All students may tentatively accept one

of their new offers (if they have one), and reject their current match (if they have

one).

End The process terminates after the first step without rejections.

It is well known that even with standard preferences DA is not truthful for the receiving

side, as it implements the optimal stable allocation for the proposing side. Under full

information, the receiving side could coordinate on their preferred stable match by strate-

gically rejecting all alternatives. In general, a strategic rejection of a school s can trigger

a more preferred offer s′ because another student may free capacity at s′ by accepting

s. Such considerations play no role when the stable matching is unique. For standard

ordinal preferences, Ehlers and Massó (2007) show that under incomplete information

truthfulness is an ordinal Bayesian Nash equilibrium if and only if for all realizations of

preferences the stable match is unique.27

The literature has identified numerous sufficient conditions to ensure the uniqueness of

stable matches for given preferences (e.g., Eeckhout (2000), Niederle and Yariv (2009)

and Karpov (2019)).

Proposition 4. If there is a unique stable allocation for all realizations of preferences,

the truthful strategy profile is a sequential choice-acclimating Bayesian Nash equilibrium

in sequential receiving DA, and this stable allocation is implemented for all preference

realizations.

27A strategy profile is an ordinal Bayesian Nash equilibrium if it is a Bayesian Nash equilibrium for
any cardinal representation of the ordinal preferences.
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In contrast to the student-proposing DA, EBLA tends to mitigate the incentives for

misreporting in the student-receiving DA. This finding is in line with evidence that, in

contrast to the proposing side, strategizing on the receiving side seems to play no major

role.28 Intuitively, a student with an offer in sequential receiving DA can obtain a seat

with certainty if she accepts. A rejection increases the uncertainty over the match out-

come. Since the loss parameter Λ can be interpreted as a cost parameter for uncertainty,

strategic rejections become even less appealing for a larger Λ.29

The following example shows that sequential receiving DA can produce match outcomes

in equilibrium that are strictly preferred by students to the outcome under DA.

Example 2. Consider the elite school problem with two students and q = 1. In the

unique stable matching, the student with the higher score is assigned to the elite school

whereas the lower-score student is matched with a district school. sequential receiving

DA implements this allocation. Indeed, both schools propose to the stronger student, she

accepts at the elite school, leaving the district school for the lower-score student. Under

DA, however, students report their preferences truthfully only if (8) holds. Consequently,

if the score of both students is below 1 − 1/Λ, both students attend the district school,

and the match outcome is neither stable nor student optimal.

Sequential serial dictatorship

Under Assumption 1, sequential receiving DA simplifies considerably. When all schools

have the same preferences, all schools approach the same student in the first step. Then,

this student is aware that she has the highest score among all students and is immediately

accepted at the school she selects. All other schools are rejected and apply to the second-

highest-score student who is then aware that she is now the highest-score student of the

unmatched population and that she is assigned to her selected school with certainty, and

so on. In short, sequential receiving DA simply becomes sequential serial dictatorship

in which homogeneous priority scores determine the order in which students pick their

school. Because each student determines her match with certainty, the dominance of

choosing the most preferred among the available options is obvious regardless of EBLA.

Since with homogeneous school preferences the stable allocation is unique, the following

corollary is an immediate consequence of Proposition 4.

Corollary 2. Under Assumption 1, the truthful strategy is a sequential choice-acclimating

Bayesian Nash equilibrium in sequential receiving DA, and the unique optimal stable al-

28For instance, Klijn et al. (2019) find that sequential receiving DA outperforms the (static and se-
quential) student-proposing DA mechanism in terms of stability and average payoffs.

29This effect is related to the logic in Fernandez (2020), who identifies anticipated regret for the case
where manipulations do not pay off as a possible explanation for the observed truthful behavior in
sequential receiving DA.
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location is obtained.

Li (2017) compares the outcome of DA with the outcome of a sequential serial dicta-

torship mechanism in a lab experiment. He finds that while in DA 36% of games do

not end in the stable outcome as induced by the dominant strategy, this rate drops to

7% under sequential receiving DA. He explains this finding by the fact that, in contrast

to sequential receiving DA in this setting, DA is not obviously strategyproof (OSP). A

mechanism is OSP if for the equilibrium strategy the worst outcome is still weakly better

than the best possible outcome from any alternative strategy, where the only outcomes

considered are those that follow from the information sets where both strategies first

diverge. Hence, dominance in an OSP mechanism may be easier to detect by agents with

cognitive limitations.

Ashlagi and Gonczarowski (2018) show in their Example 1 that the sequential serial

dictatorship mechanism is in general OSP when the proposing side has homogeneous

preferences. However, they show that for general preferences it is impossible to construct

an OSP mechanism which always implements stable match outcomes. In Appendix A.II,

we build on their Example 2 to demonstrate that a stable OSP mechanism may fail to

induce stability with EBLA. This example sets the two concepts apart and suggests how

to disentangle the explanations experimentally. Our model conveys EBLA as an alterna-

tive explanation for the observed misrepresentations. Rather than a mistake because of

cognitive limitations, we see them as the deliberate optimal choice of students who suffer

from a behavioral bias.

4 Conclusion
We have identified a possible reason why students play dominated strategies in the strat-

egyproof direct student-proposing deferred-acceptance mechanism (DA). The truthful

equilibrium in dominant strategies may not be a choice-acclimating personal equilibrium

(CPE) with dominant expectation-based loss aversion (EBLA). In other contexts, evi-

dence consistent with dominant EBLA has been found in numerous experimental and

field studies. The notion that students forgo small chances to get into preferred schools

to avoid disappointment is therefore plausible. Indeed, the costly deviations from the

dominant truthful strategy are most pervasive among low- and intermediate-priority stu-

dents who want to get into competitive programs. Our theoretical predictions fit this

pattern in experimental and field data, and we also provide a formalized framework for

the pervasive district-school and small-school biases. Our characterization of optimal

play in Proposition 1 and 2 is testable.

The extensive evidence of dominated play in DA calls into question the identification

strategy to treat reported preferences as truthful. Regarding affirmative action this in-
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sight is important, because the observation that people of certain demographics do not

reveal a preference for certain schools in DA does not imply that they do not want to go

there. In fact, we show that groups that are discriminated or perceive to be, indeed, are

more likely to misrepresent their preferences. Moreover, we show that DA in conjunction

with EBLA discriminates against loss-averse and underconfident students. If (as the data

suggests) these characteristics are correlated with demographics, DA indirectly but inher-

ently implements an imbalanced allocation and amplifies discrimination against already

marginalized groups. The misallocation problem does not vanish as markets grow large.

We have discussed remedy mechanisms and our theory suggests that sequential mecha-

nisms outperform static mechanisms in terms of truthfulness. Under homogeneous school

preferences, a sequential serial dictatorship mechanism delivers the unique stable alloca-

tion in dominant strategies and in a truthful CPE, i.e., it succeeds where the celebrated

DA fails. Indeed, Li (2017) documented that this mechanism outperforms its static ver-

sion in his experiment. While he attributes this to obvious strategyproofness, we suggest

that also reference-dependent preferences may drive this difference. That is, it is not

clear whether misrepresentation originates from a behavioral bias (loss aversion) or a

cognitive impairment (difficulties understanding the dominance of a strategy). We see

the presence of at least some students with non-standard preferences as hard to deny.

Our paper provides first steps into understanding this dimension, but more experimental

work is needed to disentangle loss aversion and cognitive limitations.

Appendix

A.I Relation to Dreyfuss et al. (2019)
Similar to our paper, Dreyfuss et al. (2019) find that EBLA can explain non-truthful

ROLs. In their reduced form dynamic framework à la Kőszegi and Rabin (2009), stu-

dents enter the decision problem with a reference point given by the outside option,

whereas in our decision problem students already anticipate the choices ahead of them,

which is reflected in their reference point. Moreover, Dreyfuss et al. (2019) consider an

extra period where uncertainty is resolved, which gives rise to additional gain-loss util-

ities. The essential intuition for how students use manipulations to shield off potential

disappointment is, however, similar in both models.

We take the stylized approach that gains and losses are assigned when comparing to the

value of other potential outcomes (narrow bracketing). Dreyfuss et al. (2019) take the

opposite approach as they consider each school in a separate consumption dimension and

assign gains and losses separately for each school. The reality is certainly somewhere in-

between, as schools may be comparable in some aspects but not in others. We choose our

modeling approach to draw a clear comparison to the existing experimental literature,

where stakes are simply money, and values are hence fully comparable between schools.
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The uncertainty in Dreyfuss et al. (2019) stems from iid shocks on how individual schools

assess a student’s abilities with respect to exogenuously given school standards. This

reduced form approach has two implications. First, it leaves no scope for strategic inter-

action between students and, hence, cannot be operationalized in the matching context

immediately. Second, it implies that attainability probabilities are independent between

schools, which is not the case in our model, not even under Assumption 1 and inde-

pendently drawn scores. Assuming independent attainability probabilities would exclude

the existence of “popular schools,” and we want to explain why students shy away from

applying to such schools.

From the first theoretic insight that under EBLA there is scope for strategic misrep-

resentations, both papers proceed quite complementarily. While Dreyfuss et al. (2019)

comprehensively reevaluate the experimental data in Li (2017) in light of EBLA, we delve

deeper into its theoretical implications, and analyze the set of rationalizable strategies,

strategic interaction, and evaluate remedy mechanisms.

A.II OSP versus EBLA
This section illustrates the distinction of the notion of robustness against EBLA and the

concept of OSP. We start with the observation that robustness against EBLA does not

imply that a mechanism is OSP. By Proposition 2, all students will report truthfully in

DA if their probability p1 that their favorite school is attainable is sufficiently large. This

condition certainly does not imply that DA is OSP. For example, ranking the favorite

school 1 second can yield a match with 1 as a best case, whereas the true ROL can lead

to a worse match.

Building on Example 2 in Ashlagi and Gonczarowski (2018), we now provide an example

of acyclical preferences and an OSP mechanism which always implements the student-

optimal stable matching with standard preferences, but fails to do so if students exhibit

EBLA. There are two students, I = {A,B} and two schools, S = {1, 2}. School 1 prefers

student A over B, whereas school 2 prefers student B over A. Conversely, student A

prefers school 1 over school 2 with probability (1 − ε), and student B prefers school 2

over school A with probability of (1 − ε) for some small ε > 0. Here, DA is not OSP.

For instance, if student A prefers school 2 truth-telling is not obviously dominant as the

true ROL (2, 1) may result in a match with school 1, whereas ROL (1, 2) may result in a

match with 2 with positive probability.

Ashlagi and Gonczarowski (2018, Figure 2) propose the following OSP sequential mecha-

nism. First, student A is asked whether she prefers 1 or 2. If she prefers 1, she is assigned

to 1 and B is assigned to 2. If she prefers 2, B is asked for her preferences which then

determine the match outcome. Because B determines the match with certainty when-

ever she is asked, revealing her true preferences is an obviously dominant strategy (and
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a sequential CPE at this final decision node). If A prefers school 1, deviating yields her

either vA,1 or vA,2 instead of a certain payoff vA,1 > vA,2 such that the truth is both a

sequential CPE and an obviously dominant strategy.

If A prefers school 2, misrepresenting yields her a sure payoff of vA,1 < vA,2 and being

truthful leads to a lottery over vA,2 and vA,2. Because even the worst outcome from

being truthful is not worse than the best (only) outcome from deviating, the truth is

an obviously dominant strategy, making the mechanism OSP. However, for any Λ > 1,

truth-telling is not a sequential CPE for student A if ε < 1− 1/Λ. Hence, because of the

uncertainty effect, even OSP mechanisms can fail to have a truthful sequential CPE.

A.III Proofs
Proof of Lemma 1. The claim follows from the fact that DA is strategyproof for every

student with standard preferences. Take an arbitrary ROL and let s be the highest-ranked

attainable school in it.

Suppose that under this ROL the student is matched with s′ ranked before s. But

then, since s′ is unattainable (i.e., she would not get in if ranked first), she would prefer

this ROL over her true ROL if s′ was her most preferred school, a contradiction to

strategyproofness.

Suppose that under this ROL she is matched with s′′ ranked behind s. But then, if the

ROL was true, she would prefer a match with s over s′′, and ranking s first would achieve

this match, again a contradiction to strategyproofness.

Proof of Proposition 1. a) We start with a practical lemma which identifies when flipping

two adjacently ranked schools in an ROL is profitable. Consider two otherwise identical

ROLs swapping two adjacently ranked schools x < y, i.e., two ROLs (..., x, y, ...) and

(..., y, x, ...). Let the former induce lottery F = (fs)s∈S and the latter induce lottery

F = (f
s
)s∈S , and let ε denote the probability of x and y being attainable but no school

which is ranked before.

Lemma 5. U(·, F ) ≥ U(·, F ) if and only if

ε

Λ
≥ ε

(
−

x∑
s=1

fs + ε+

y−1∑
s=x+1

fs
vx + vy − 2vs
vx − vy

+
m∑
s=y

fs

)
(9)

with equality in (9) only in the case of indifference.

Proof of Lemma 5. By (7), we have

U(·, F )− U(·, F ) =
m∑
s=1

(fs − f s)vs − Λ
m∑
s=1

m∑
r=s+1

(fsfr − f sf r)(vs − vr). (10)
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For the matching probabilities f
s

of ROL (..., y, x, ...), it must be that fs = f
s

for s 6= x, y

and f
x

= fx − ε, f y = fy + ε, with ε ≥ 0. Hence, if we split the second sum over s into

five summands, we obtain

m∑
s=1

m∑
r=s+1

(fsfr − fsf r)(vs − vr)

=
x−1∑
s=1

[
(fsfx − fsfx)(vs − vx) + (fsfy − fsfy)(vs − vy)

]
+

m∑
r=x+1

(fxfr − fxf r)(vx − vr)

+

y−1∑
s=x+1

(fsfy − fsfy)(vs − vy) +
m∑

r=y+1

(fyfr − fyfr)(vy − vr) + 0

=

x−1∑
s=1

[fsε(vs − vx)− fsε(vs − vy)] +

m∑
r=x+1

εfr(vx − vr) + (f
x
fy − fxfy)(vx − vy)

+

y−1∑
s=x+1

fs(−ε)(vs − vy) +
m∑

r=y+1

(−ε)fr(vy − vr)

=−
x−1∑
s=1

εfs(vx − vy) +
m∑
r=y

εfr(vx − vr) + (fx − ε)(−ε)(vx − vy)

+

y−1∑
s=x+1

εfs(vx − 2vs + vy) +
m∑

r=y+1

(−ε)fr(vy − vr)

=ε(vx − vy)

(
−

x∑
s=1

fs + ε+
m∑
s=y

fs +

y−1∑
s=x+1

vx − 2vs + vy
vx − vy

)

Since the difference in classical utility satisfies
∑m

s=1(fs − f
s
)vs = ε(vx − vy), we have

U(·, F )− U(·, F ) ≥ 0 if and only if

ε(vx − vy) ≥ Λε(vx − vy)

(
−

x∑
s=1

fs + ε+
m∑
s=y

fs +

y−1∑
s=x+1

vx − 2vs + vy
vx − vy

)
.

Dividing by Λ(vx − vy) > 0 yields the result for the inequality. For the statement about

indifference, replace all inequalities with equality.

We now prove the next auxiliary lemma by contradiction.

Lemma 6. If a strictly optimal ROL ranks school b after school c for b < c, it ranks the

schools 1, ..., b− 1, b in decreasing order.

Proof of Lemma 6. Suppose that for some 1 ≤ a < b < c ≤ m, the strictly optimal ROL

ranks b behind c but a before b. Let c be the least preferred school, i.e., the one with the

highest index, for which such a triple exists in this ROL. Given this c, select b and a such

that a is the lowest-index school, i.e., the most preferred one, satisfying the requirement.

Since a is ranked before b, the optimal ROL has one of the following forms:
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i) (..., a, ..., c, ..., b, ...)

ii) (..., c, ..., a, ..., b, ...)

We make first considerations for both cases.

i) Since, by assumption, a is the lowest-index school ranked before b, the list must be

increasing from a, and eventually decreasing (possibly at b) to a number above a. Call

x the first school where the list starting from a has decreased. Now, by choosing x

appropriately in the list between a and x, we obtain in the optimal ROL a sequence

(..., x, y, ..., y, x, ...) (with possibly y = y), which is increasing from x to y and satisfies

x < x < y ≤ y.

ii) Since, by assumption, c is the highest-index school for which there exists b and a with

b ranked behind c but a before b, the list must be decreasing from c, but eventually

increasing (possibly immediately after a) to a number below c. Call y the first school

after c where the list is increasing. Now, by choosing y appropriately in the list between

c and y, we obtain in the optimal ROL a sequence (..., y, x, ..., x, y, ...) (with possibly

x = x), which is decreasing from y to x and satisfies x ≤ x < y < y.

The rest of the proof is identical for both cases.

Since the ROL is supposed to be strictly optimal, it must be strictly preferred to an

otherwise equivalent ROL that swaps x and y. Let fs be the matching probabilities as

induced by the optimal ROL, and let f s be the matching probabilites as induced by the

(otherwise identical) ROL that flips x and y. By the rules of DA, we obtain fs = f s for

all s 6= x, y, and

fx = fx + ε and f y = fy − ε, (11)

where ε is the probability that x and y are attainable, but any school ranked before x

and y in the optimal ROL is not. By the strict optimality, ε > 0.

Hence, by Lemma 5

1

Λ
< −

x∑
s=1

fs + ε+

y−1∑
s=x+1

fs
vx + vy − 2vs

vx − vy
+

m∑
s=y

fs

= −
x∑
s=1

fs +

y−1∑
s=x+1

fs
vx + vy − 2vs

vx − vy
+

m∑
s=y

fs − ε

(12)

Similarly, the ROL must be strictly preferred to an otherwise equivalent ROL that swaps

x and y. Hence, by Lemma 5

1

Λ
> −

x∑
s=1

fs + ε+

y−1∑
s=x+1

fs
vx + vy − 2vs

vx − vy
+

m∑
s=y

fs (13)
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Both inequalities can only simultaneously hold if the right-hand side of (12) is strictly

larger than the right-hand side of (13), which we bring to a contradiction. Since −ε <
0 < ε it suffices to show that for each s the respective summand in (12) is (weakly)

smaller than in (13).

For s ∈ [x + 1, x], we have −1 =
vx+vy−2vs

vx−vy + 2
vs−vx
vx−vy <

vx+vy−2vs

vx−vy , since vx > vs > vy. For

s ∈ [x+ 1, y − 1], we have

vx + vy − 2vs
vx − vy

=
1

1 +
2vs−2vy

vx+vy−2vs

<
1

1 +
2vs−2vy

vx+vy−2vs

=
vx + vy − 2vs

vx − vy
,

where the inequality follows since vx > vx, vy > vy, and the term is increasing in both,

vx and vy. For s ∈ [y, y − 1], we have
vx+vy−2vs
vx−vy = 1 + 2

vy−vs
vx−vy < 1 since vx > vs > vy.

Now, a) of the proposition follows immediately. That schools preferred over top choice b

are optimally ranked in decreasing order is just Lemma 6. An ROL not ranking schools

worse than a top choice a in increasing order would rank some a < b < c in the form of

(a, ..., c, ...., b, ...). As seen by the contradiction of case (i) in the proof of Lemma 6, this

cannot be optimal.

We now establish assertion b). First, by Proposition 2 the truthful ROL is always strictly

optimal for a sufficiently large attainability probability p1 at the most preferred school.30

Hence, we can focus on non-truthful, top-choice monotone ROLs.

We say that the joint distribution of attainability probabilities has full support if for

any subset of schools without the safe school m the probability of these schools being

attainable and these schools only is strictly between zero and one. We now show by

induction over the number of schools that for any non-truthful top-choice monotone

ROL there exists an environment ξ = (P, (vs)s∈S) with full support on the distribution

of attainability probabilities such that the ROL is strictly optimal.

For the base case S2 = {1, 2}, Lemma 5 establishes that (2, 1) is strictly optimal for any

v1 > v2 if p1 satisfies

p1

Λ
< p1 (−p1 + 1) ⇔ 0 < p1 < 1− 1

Λ
.

For the induction step suppose that the statement holds for any set of m − 1 schools.

Let L be an arbitrary non-truthful top-choice monotone list for the set Sm = {1, ...,m}.
Since any such ROL must rank school 1 behind school 2, list L must be of the form

([a], 2, [b], 1, [c]), where [a], [b], and [c] stand for some (potentially empty) ordered subsets

of schools {3, 4, . . . ,m}.

By induction assumption, for the school set Sm−1 = {2̃, 3, ...,m} there is some ξ̃ =

30Note, that this is not a circular argument, as Proposition 2 only builds on Proposition 1a.
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(P̃ , (ṽs)s∈Sm−1) with full support such that L̃ = ([a], 2̃, [b], [c]) is strictly optimal. Intu-

itively, we now construct the environment for set Sm that makes L strictly optimal by

splitting school 2̃ into two schools, 1 and 2. Formally, we define v1 > v2̃ and vs = vs̃

for all s ≥ 2. Attainability probabilities are defined exactly as on the set Sm−1 with the

additional assumption that whenever school 2̃ is attainable school 1 but not 2 is attain-

able with probability ε, school 2 but not 1 with 1 − 2ε, and both schools 1 and 2 with

probability ε.31 Note that the resulting distribution has full support. We need to show

that for suitable choices of v1 and ε list L becomes strictly optimal. Foreshadowing the

structure of the argument, we split the remaining proof into proving the following three

claims.

(i) If p1 = εp2̃ <
1−1/Λ

2
, then there is some v > v2 such that for v1 = v any optimal

ROL ranks school 1 after outside option m.

(ii) For sufficiently small ε and v1 ≤ v, any strictly optimal ROL of set Sm ranks schools

{2, . . . ,m} in the order ([a], 2, [b], [c]).

(iii) For sufficiently small ε there is some v1 ∈ (v2, v] such that ([a], 2, [b], 1, [c]) is strictly

optimal.

Proof of Claim (i): For any ROL that does not rank school 1 last, consider Lemma 5 for

a switch of ranks between school x = 1 and school y ranked directly after it. Define

α(v1, vs, vy) =
v1 + vy − 2vs
v1 − vy

= 1− 2
vs − vy
v1 − vy

and let α(v1) = min2≤s<y≤m α(v1, vs, vy). Note that α(v1) is strictly increasing in v1 with

α(v1) ∈ (−1, 1) for all v1, and limv1→∞ α(v1) = 1.

Considering the swap of 1 and y, we have

−f1 + ε+

y−1∑
s=2

fs α(v1, vs, vy) +

m∑
s=y

fs > −f1 + α(v1)

m∑
s=2

fs > 1− 2f1 + (α(v1)− 1),

as
∑m

s=2 fs = (1− f1) and α(v1) < 1. If p1 < p ≡ 1−1/Λ
2

, then f1 ≤ p1 implies

1− 2f1 + (α(v1)− 1) > 1− 2p+ (α(v1)− 1) = 1/Λ + (α(v1)− 1).

Since the inequality is strict and limv1→∞(α(v1) − 1) = 0, there is some v, for which

swapping 1 and y is profitable by Lemma 5 as 1 − 2p + (α(v1) − 1) > 1/Λ and ε > 0 by

full support. Hence, it is always profitable to switch ranks of 1 and y for any school y

ranked behind it, and, by iteration, ranking 1 before m is strictly suboptimal for v1 = v.

31More formally, for any E ∈ Πm
s=3As we define P (A1 = A2 = 1, E) = εP̃ (A2̃ = 1, E), P (A1 =

1, A2 = 0, E) = εP̃ (A2̃ = 1, E), P (A1 = A2 = 0, E) = P̃ (A2̃ = 0, E), P (A1 = 0, A2 = 1, E) =

(1− 2ε)P̃ (A2̃ = 1, E).
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Proof of Claim (ii): Intuitively, for small ε the position of school 1 is unsubstantial for

expected utility such that the optimality of the order ([a], 2, [b], [c]) follows from the strict

optimality of ([a], 2̃, [b], [c]).

More formally, let L′ = ([d], 1, [e]) be an arbitrary ROL of school set Sm. We calculate

a bound on the utility difference between L′ with attainability distribution P and ROL

L̃′ = ([d], [e]) under school set Sm−1 and attainability distribution P̃ (indentifying school

2 with school 2̃).

Let p1 = εp2̃ be the unconditional probability of school 1 being attainable. Denote with

(f ′s)s∈Sm the match probabilities of list L′ and with (f̃ ′s)s∈Sm−1 the match utilities of list

L̃′. Let further be ∆U([d], [e]) the absolute value of the utility difference between L′ and

L̃′. Employing triangle inequality and the fact that the match probabilities with schools

2, ...,m each differ by less then p1 between ROLs L′ and L̃′, we obtain by 7

∆U([d], [e]) ≤
m∑
s=1

|f̃ ′s − f ′s|vs + Λ
m∑
s=1

( ∣∣∣∣∣f ′s
m∑

r=s+1

f ′r(vs − vr)− f̃ ′s
m∑

r=s+1

f ′r(vs − vr)

∣∣∣∣∣
+ f̃ ′s

m∑
r=s+1

p1(vs − vr)
)

<

m∑
s=1

p1v + Λ

m∑
s=1

(
p1v

m∑
r=s+1

f ′r + f̃ ′s(m− s− 1)p1v

)
< mp1v + Λ2mp1v = εp2̃mv(1 + 2Λ).

As ([a], 2̃, [b], [c]) is strictly optimal for for Sm−1 and P̃ , let C be the utility difference to

the second best ROL of Sm−1. Let ε < C
2p2̃mv(1+2Λ)

. Hence, whenever the order of schools

{2, ...,m} in ([d], [e]) is different to the order in ([a], 2, [b], [c]) we know that the utility of

([a], 2, 1, [b], [c]) exceeds the utility of ([d], 1, [e]) by more that

−∆U([a], 2, [b], [c]) + C −∆U([d], [e]) > −C/2 + C − C/2 = 0,

which shows that any optimal ROL of n schools ranks schools 2, ...,m in the order

([a], 2, [b], [c]).

Proof of Claim (iii): By top choice monotonicity, ([b], [c]) is of form (k, k + 1, ...,m) with

k ≥ 3.. Also by top choice monotonicity, it is suboptimal to rank 1 behind 2. We

need to show that for sufficiently small ε any position of school 1 in (k, k + 1, ...,m) can

be achieved as strictly optimal by choosing v1 appropriately. We employ Lemma 5 to

consider a swap of school x = 1 and school y ranked directly behind 1 (if any). For fixed

match probabilities f1, ..., fm, the term in brackets on the right-hand side of (9) is strictly

decreasing in y for any v1, since α(v1, vs, vy) < 1 is increasing in vy and vy is decreasing

in y ∈ {k, k + 1, ...,m}. Moreover, the amount by which this term decreases depends

continuously on v1, and hence the term attains a minimum strictly larger than zero at
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some v1 ∈ [v2, v]. Since the match probabilities fs and ε can differ by at most p1 = εp̃2̃

between two different ROLs it follows that the term in the brackets of (9) is also strictly

decreasing in y ∈ {k, k + 1, ...,m} for all v1 ∈ [v2, v] for sufficiently small ε. Hence, an

order ([a], 2, k, ..., y−1, 1, y, ...,m) is optimal if and only if there is a v1 for which the term

in the brackets of (9) is strictly larger than 1
Λ

for the adjacent swap of 1 and y − 1, but

strictly smaller than 1
Λ

for the adjacent swap of 1 and y. Since for each y the term in the

brackets of (9) is continuously increasing in v1 and decreasing in y, such v1 ∈ (v2, v] exists

by the intermediate value theorem for all y if ([a], 2, 1, k, ...m) is optimal for v1 sufficiently

close to v2 and ([a], 2, k, ...,m, 1) is optimal for v1 = v. The latter has been shown in

Claim (i). For v1 sufficiently close to v2 the optimality of L = ([a], 2, 1, k, k + 1, ...,m)

follows from the optimality of L̃ = ([a], 2̃, k, k + 1, ...,m) for schools Sm−1: By Lemma 5,

optimality of L̃ implies for this list

1

Λ
> −f2̃ + ε+

k−1∑
s=3

fs
v2̃ + vk − 2vs
v2̃ − vk

+
m∑
s=k

fs.

Since the match probabilities for schools 3,...,m are the same in ([a], 2, 1, k, k + 1, ...,m)

and L̃, the match probabilities f1 and f2 satisfy f1 + f2 = f2̃, and for v2 = v2̃, we have

1

Λ
> −f1 +

v2 + vk − 2v2

v2 − vk
f2 + εε+

k−1∑
s=3

fs
v2 + vk − 2vs
v2 − vk

+
m∑
s=k

fs

= lim
v1→v2

(
−f1 + εε+

k−1∑
s=2

v1 + vk − 2vs
v1 − vk

fs +
m∑
s=k

fs

)
,

which shows that it is unprofitable to swap 1 and k in ([a], 2, 1, k, k+ 1, ...,m) when v1 is

sufficiently close to v2 . This concludes the proof of Claim (iii).

Proof of Proposition 2. 1. Suppose, by way of contradiction, that truth-telling is sub-

optimal. By Proposition 1a, this implies that there is an optimal ROL which does not

rank school 1 first. Let F = (f 1, ..., fm) be the lottery induced by thatl ROL. Let

F = (f1, ..., fm) be the lottery induced by the ROL which ranks school 1 first and all

other schools in the same order as the optimal ROL. Let further εi = fi − f i be the

shifts in probability when choosing F instead of F . Evidently, εi ≤ 0 for all i ≥ 2 and

ε1 = −
∑m

i=2 εi > 0, where the strict inequality comes from the fact that school 1 is not

exclusive. To find a contradiction to the optimality of F , we show that U(·, F ) > U(·, F ).

By (7),

U(·, F )− U(·, F ) =
m∑
s=1

fs

[
vs − Λ

m∑
r=s+1

fr(vs − vr)

]
−

m∑
s=1

f s

[
vs − Λ

m∑
r=s+1

f r(vs − vr)

]

≥
m∑
s=1

fs

[
vs − Λ

m∑
r=s+1

fr(vs − vr)

]
−

m∑
s=1

f s

[
vs − Λ

m∑
r=s+1

fr(vs − vr)

]
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=

(
−

m∑
i=2

εi

)[
v1 − Λ

m∑
r=2

fr(v1 − vr)

]
+

m∑
s=2

εs

[
vs − Λ

m∑
r=s+1

fr(vs − vr)

]

=
m∑
s=2

εs

[
vs − v1 + Λ

s∑
r=2

fr(v1 − vr) + Λ
m∑

r=s+1

fr(v1 − vs)

]

>
m∑
s=2

εs

[
vs − v1 + Λ

s∑
r=2

fr(v1 − vs)

]

=
m∑
s=2

εs [vs − v1 + Λ(1− p1)(v1 − vs)] > 0,

where the last inequality exploits that, by assumption, p1 > 1− 1/Λ.

2. Suppose, by way of contradiction, that truth-telling is strictly optimal. Hence,

(1, 2, ...,m) �i (2, 1, ...,m), and by Lemma 5

ε

Λ
≥ ε

(
−f1 + ε+

m∑
s=2

fs

)
,

where ε is the probability that the student is attainable at schoo 1 and school 2. Since

school 1 is not exclusive, we have ε > 0, and hence

1

Λ
≥ −f1 + ε+

m∑
s=2

fs = −f1 + ε+ (1− f1) > 1− 2f1 = 1− 2p1,

which can be rearranged to p1 > 0.5 (1− 1/Λ), a contradiction.

Proof of Proposition 3. The fact that all schools use the same deterministic tie-breaking

rule for students of the same score is isomorphic to an assumption that no two students

share the same score in their supports. The existence of a pure strategy equilibrium then

follows iteratively by scores.

Start with the highest possible score. As this type will be accepted at any school, she

submits (according to the fixed tie-breaking rule) an ROL that lists her most preferred

school (which, of course, depends on vi) first. Next, consider the second highest possible

score and the associated student with her preference profile. If the initial support of

scores is asymmetric between students, this could be the same student. In that case, she

knows again that no other student has a higher score and will report the true ROL. If

another student holds this score, she correctly infers the probability that another student

has a higher score and the probability distribution over her submitted ROLs. From that,

she correctly infers the distribution over her attainability probabilities and picks her best-

responding ROL, depending on her type. Continuing that procedure iteratively through

all possible scores gives us a pure strategy choice-acclimating Bayesian Nash equilibrium

which is unique when fixing how indifference is broken at each decision node.

Proof of Lemma 2. By (7), an ROL which lists any subset of elite schools before the
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outside option induces an expected utility of fv−Λf(1− f)v, where f is the probability

that at least one elite school of the subset is attainable. Since the utility is a convex

function in f , it is maximized by either maximizing or minimizing f . Hence, by either

listing all or none of the elite schools before the outside option.

Proof of Lemma 3. The probability that there are less than capacity q students with a

score above ω among (n− 1) students,

Pn−1:q(ω) :=

q−1∑
k=0

(
n− 1

k

)
(1− ω)kωn−1−k, (14)

is continuously and monotonically increasing in ω from 0 to 1. Thus, there is a unique ωl

such that Pn−1:q(ω
l) = 1− 1/Λl ∈ (0, 1). Because f(ω) is minimal when all other students

choose to apply, f(ω) ≥ Pn−1:q(ω) for all ω and all reporting strategies of the other

students. Hence, for any Λ ≤ Λl and any ω ≥ ωl, we have f(ω) ≥ Pn−1:q(ω) ≥ 1 − 1/Λ,

meaning that applying to the elite school is a best response for all such types, as (8)

holds.

Knowing that all students of score ω ≥ ωl apply, a student of type Λl infers that for score

ω ≥ ωl she has attainability probability f(ω) = Pn−1:q(ω), and by construction applies if

and only if her score satisfies ω ≥ ωl.

Next, because Λl−1 < Λl, there are types ω < ωl who prefer to apply as well. A student

of score ω < ωl and sufficiently close to ωl expects acceptance if there are less than q

other students with a score either above ωl or a score in [ω, ωl] and Λ < Λl. Again,

this attainability probability is strictly and continuously increasing in ω which implies a

unique cutoff ωl−1 such that f(ωl−1) = 1− 1/Λl−1. Hence, truthful reporting for type Λl−1

is optimal if and only if ω > ωl−1. Proceeding with this manner iteratively, we obtain an

essentially unique choice-acclimating Bayesian Nash equilibrium.

Proof of Lemma 4. If DA is truthful, it is a static mechanism that implements the student-

optimal stable allocations for all realizations of preferences. For the converse, take

any static mechanism (R, o) that implements the student-optimal outcome as a choice-

acclimating Bayesian Nash equilibrium for all realizations. More precisely, for each stu-

dent i there exists a strategy σi : S(S) → Ri such that the joint strategy profile is

a choice-acclimating Bayesian Nash equilibrium given o. Consequently, the associated

direct mechanism
(∏

S(S), o ◦ (σ1, ..., σn)
)

has a truthful choice-acclimating Bayesian

Nash equilibrium by construction, and implements the student-optimal stable allocation.

This direct mechanism asks students for their type vector and implements the student

optimal-stable stable match (hence the DA match outcome) based on the ordinal pref-

erences of their cardinal utility vector. As in this truthful equilibrium students have no

incentive to misrepresent their cardinal utility vector vi they have a forteriori no incen-
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tive to misrepresent in DA, which only asks for ordinal preferences to implement the

student-optimal stable match. Hence, DA is truthful.

Proof of Proposition 4. Fix some student A, label schools according to her preference

order (as in Section 3.1), and suppose that all other students behave truthfully in the

mechanism. We start by showing that the decision of whether to accept or reject a school

does not change the probability of receiving an offer from a more preferred school. We

then show that truthfulness is a sequential CPE such that all students best-respond to

each other.

Suppose A at some stage in the mechanism receives an offer from a school when she

currently holds no other offer. If A rejects rather than accepts the school, then all

students will receive weakly more proposals. Indeed, the rejected school will potentially

send an additional proposal to another student B in the next step. If B rejects the

proposal, the school will offer the seat to yet another student C in the subsequent round.

If B accepts the proposal in favor of another school, then this other school will offer an

additional seat in the next round. By iterating this argument, we can conclude that due

to the initial rejection all students, including A, obtain weakly more proposals. Hence,

a rejection can only weakly increase the probability of receiving an offer from a more

preferred school. However, if this increase was strict and A accepted all proposals by

more preferred schools, then the rejection can implement a stable match outcome, which

is weakly preferred by all students. This contradicts the uniqueness of the stable match.

Hence, the decision of the student to accept or reject a school can only affect attainability

at schools that she prefers less.

Next, suppose A accepts or rejects some school k while holding (or simultaneously receiv-

ing) an offer by some school `. We show that this decision does not change the probability

of receiving an offer from any school preferred to both, ` and k. Rejecting ` when it pro-

poses and accepting k when it proposes at a later stage induces the same match outcome

as accepting ` at first, but only rejecting it in favor of k when the offer from k occurs,

since both strategies induce the same cascade of school proposals and students are truth-

ful. According to the previous paragraph, rejecting both schools instead does not change

the probability of proposals from schools preferred to k. Similarly, we obtain the same

proposal probabilities for schools preferred to ` when accepting ` and rejecting k. Hence,

accepting or rejecting k in favor of ` does not change proposal probabilities from any

school preferred to min{`, k}.

Now, suppose that truthfulness is not a sequential CPE for student A. Going backwards

in her decision tree, take a decision node where truthfulness is suboptimal but such that

it is optimal in all possible future decision nodes. We call k the school that offers a seat

to A at this decision node. Let FR = (f1, ..., fn) be the lottery over match outcomes if A
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rejects k, and let F̃A = (f̃1, ..., f̃n) be the respective lottery if she accepts. We distinguish

three cases:

(i) The student currently holds an offer from a school ` < k such that rejecting would be

truthful. Since, by assumption, truthfulness is optimal in all subsequent decision nodes,

fi = f̃i = 0 for i > k. As shown above, the probability of proposals from schools i < `

does not depend on the decision about k such that fi = f̃i for i < ` and f` =
∑k

i=` f̃i.

Hence, expected payoffs at the decision node satisfy

U(·, FR) =
∑̀
i=1

fivi − Λ
∑

1≤i≤j≤`
fifj(vi − vj)

=

`−1∑
i=1

f̃ivi +

k∑
i=`

f̃iv` − Λ

 ∑
1≤i≤j≤`−1

f̃if̃j(vi − vj) +
∑

1≤i≤`−1

 k∑
j=`

f̃j

 f̃i(vi − v`)


≥

k∑
i=1

f̃ivi − Λ

 ∑
1≤i≤j≤`−1

f̃if̃j(vi − vj) +
∑

`≤j≤k, 1≤i≤j
f̃if̃j(vi − vj)


≥ U(·, F̃A),

and truthful rejection is optimal, a contradiction.

(ii) The student currently holds no offer from a school preferred to k, and vk > vm = 0

such that school k is preferred to remaining unmatched and accepting would be truthful.

Analogously to (i), fi = f̃i for all i < k and f̃k =
∑m

i=k+1 fi. Then,

U(·, FR) =
m∑
i=1

fivi − Λ
∑

1≤i≤j≤m
fifj(vi − vj)

≤
k−1∑
i=1

fivi +
m∑

i=k+1

fivk − Λ

 ∑
1≤i≤j≤k−1

fifj(vi − vj) +
∑

1≤i≤k−1

 m∑
j=k+1

fj

 fi(vi − vk)


=

k−1∑
i=1

f̃ivi + f̃kvk − Λ
∑

1≤i≤j≤k
f̃if̃j(vi − vj) = U(·, F̃A),

and truthfully accepting is optimal, a contradiction.

(iii) The student currently holds no offer from a school preferred to k, and vk < vm = 0,

such that rejecting would be truthful. As A is assumed to be truthful in all following

decision nodes and is always free to take the outside option in later steps, the decision

only makes a difference if the game ends after it, i.e., fm = f̃k. Hence,

U(·, FR) =

m−1∑
i=1

fivi + fmvm − Λ
∑

1≤i≤j≤m−1

fifj(vi − vj)− Λ

m∑
i=1

fifm(vi − vm)

≥
m−1∑
i=1

f̃ivi + f̃kvk − Λ
∑

1≤i≤j≤m−1

f̃if̃j(vi − vj)− Λ

m∑
i=1

f̃if̃k(vi − vk)
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= U(·, F̃A),

and truthfully rejecting is optimal, a contradiction. All in all, truth-telling is a sequential

CPE against others’ truthfulness, completing the sequential choice-acclimating Bayesian

Nash equilibrium.

37



A.IV Data from Li (2017)

PRIORITY SCORES
ROLs 1 2 3 4 5 6 7 8 9 10 ALL
1234 55 61.1% 48 57.1% 47 58.8% 42 67.7% 32 55.2% 49 79.0% 58 74.4% 48 85.7% 59 84.3% 73 91.3% 511 71.0%
1243 1 1.1% 1 1.2% 1 1.3% 0 0.0% 0 0.0% 1 1.6% 1 1.3% 0 0.0% 1 1.4% 0 0.0% 6 0.8%
1324 2 2.2% 3 3.6% 2 2.5% 1 1.6% 2 3.4% 0 0.0% 1 1.3% 0 0.0% 1 1.4% 0 0.0% 12 1.7%
1342 1 1.1% 0 0.0% 0 0.0% 0 0.0% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 3 0.4%
1423 0 0.0% 1 1.2% 0 0.0% 1 1.6% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 3 0.4%
1432 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 1 0.1%
2134 1 1.1% 1 1.2% 3 3.8% 4 6.5% 7 12.1% 5 8.1% 8 10.3% 4 7.1% 4 5.7% 1 1.3% 38 5.3%
2143 0 0.0% 1 1.2% 3 3.8% 0 0.0% 1 1.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 6 0.8%
2314 1 1.1% 2 2.4% 2 2.5% 1 1.6% 2 3.4% 1 1.6% 0 0.0% 2 3.6% 1 1.4% 1 1.3% 13 1.8%
2341 0 0.0% 0 0.0% 0 0.0% 2 3.2% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.4% 0 0.0% 3 0.4%
2413 0 0.0% 1 1.2% 2 2.5% 0 0.0% 0 0.0% 0 0.0% 2 2.6% 0 0.0% 0 0.0% 0 0.0% 5 0.7%
2431 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.6% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 0.1%
3124 1 1.1% 2 2.4% 2 2.5% 1 1.6% 3 5.2% 0 0.0% 4 5.1% 0 0.0% 1 1.4% 0 0.0% 14 1.9%
3142 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
3214 6 6.7% 5 6.0% 6 7.5% 3 4.8% 2 3.4% 0 0.0% 0 0.0% 1 1.8% 0 0.0% 0 0.0% 23 3.2%
3241 0 0.0% 0 0.0% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 2 0.3%
3412 0 0.0% 0 0.0% 1 1.3% 0 0.0% 2 3.4% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 3 0.4%
3421 3 3.3% 2 2.4% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 5 0.7%
4123 1 1.1% 2 2.4% 1 1.3% 0 0.0% 1 1.7% 2 3.2% 1 1.3% 0 0.0% 0 0.0% 1 1.3% 9 1.3%
4132 0 0.0% 1 1.2% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 0.1%
4213 1 1.1% 1 1.2% 0 0.0% 1 1.6% 3 5.2% 1 1.6% 1 1.3% 0 0.0% 0 0.0% 0 0.0% 8 1.1%
4231 1 1.1% 2 2.4% 2 2.5% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.8% 0 0.0% 0 0.0% 6 0.8%
4312 0 0.0% 4 4.8% 4 5.0% 3 4.8% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 1 1.3% 12 1.7%
4321 16 17.8% 7 8.3% 3 3.8% 3 4.8% 1 1.7% 2 3.2% 1 1.3% 0 0.0% 2 2.9% 0 0.0% 35 4.9%
Total 90 100.0% 84 100.0% 80 100.0% 62 100.0% 58 100.0% 62 100.0% 78 100.0% 56 100.0% 70 100.0% 80 100.0% 720 100.0%
misrep’ 35 38.9% 36 42.9% 33 41.3% 20 32.3% 26 44.8% 13 21.0% 20 25.6% 8 14.3% 11 15.7% 7 8.8% 209 29.0%
TCM 82 91.1% 65 77.4% 62 77.5% 55 88.7% 44 75.9% 57 91.9% 68 87.2% 55 98.2% 67 95.7% 75 93.8% 630 87.5%

Table 5: Absolute and relative frequency of all ROLs for each priority score in the experiment by Li (2017). The top-choice monotone
ROLs are marked, and the frequencies of the most common misrepresentations for each priority score are in bold.
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Kőszegi, B., Rabin, M., 2006. A model of reference-dependent preferences. The Quarterly
Journal of Economics 121, 1133–1165.

40
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