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Some Evidence for the Spanish Stock Market 

 
 

Abstract 
 
This paper examines the stochastic behaviour of the realized betas within the one-factor CAPM 
for the six companies with the highest market capitalization included in the Spanish IBEX stock 
market index. Fractional integration methods are applied to estimate their degree of persistence 
at the daily, weekly and monthly frequency over the period 1 January 2000 – 15 November 2018 
using 1, 3 and 5-year samples. On the whole, the results indicate that the realized betas are 
highly persistent and do not exhibit mean-reverting behaviour. However, the findings are rather 
sensitive to the choice of frequency and time span (number of observations). 
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1. Introduction 

The one-factor capital asset pricing model (CAPM), initially introduced in the 1960s, is 

based on the idea that systematic risk is determined by the covariance between market 

and individual stock returns and is still the standard framework taught in finance 

courses and used by risk-averse investors for selecting optimal portfolios. Fama and 

MacBeth (1973) estimated this model to analyse the relationship between risk and 

return in NYSE stocks and documented a positive linkage between average return and 

market beta in the period 1926-1968; however, Fama and French (1992) found that this 

linear relationship had disappeared in the period 1963-1990.  

The one-factor model has several limitations and is based on rather restrictive 

assumptions (see Fernandez, 2015, 2019); for instance, it requires investors to have 

homogeneous expectations (of returns, volatility and correlations for every security, 

over the same time horizon). In its standard formulation it is a linear regression, whose 

most critical parameter to be estimated is beta, which measures the risk arising from 

exposure to market-wide as opposed to idiosyncratic factors; polls are instead used to 

predict market risk, and the yield curve for the expected return of the risk-free asset.  

Betas are normally predicted using historical data on the assumption that their 

future behaviour will be similar. Out of 150 finance textbooks we have reviewed 80 

recommend some estimation method but differ in terms of the frequency (daily, weekly, 

monthly or annual) and the span of data (from 6 months to 25 years) used for this 

purpose. As in Campbell et al. (1997), we found that the most common estimation 

approach (in 64% of the cases) is to use monthly data over a 5-year period. However, 

more recently, higher frequency data have often been used as developments in IT have 

made computations easier. Table 1 summaries our findings concerning the frequency 
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and the number of observations (time span) chosen for estimating the realized betas in 

the textbooks reviewed. 

INSERT TABLE 1 ABOUT HERE 

Among more recent studies focusing on higher frequency data, Andersen et al. 

(2003) and Bollerslev et al. (2009) analysed intraday trading with samples of 15 

minutes. Damodaran1 on his public portal for beta estimation selected different time 

periods (5 years and 2 years with weekly returns). Papageorgiou et al. (2016) analysed 

daily returns over a one-year period and showed that these results outperform those 

obtained using monthly data over a 5-year period as in Fama and MacBeth (1973). 

Cenesizoglu et al. (2016) evaluated the accuracy of one-month-ahead beta forecasts (at 

the monthly, daily and 30-minute frequency) and found that low (high) frequency 

returns produce the least (most) accurate estimates. Sharma (2016) analysed the 

conditional variance of various stock indices over 14 years. Bollerslev et al. (2016) 

investigated how individual stock prices respond to market price movements and jumps 

using data at the 5-minute intraday frequency with one-year samples, and found 

evidence that betas associated with intraday discontinuous and overnight returns entail 

significant risk premiums, while the intraday continuous betas do not. Cenesizoglu et al. 

(2018) used a realized beta estimator for daily returns over the previous year for 1, 3, 

and 6-month holding periods to explain momentum effects.  

An appropriate estimation period and sampling frequency are clearly crucial for 

obtaining accurate beta forecasts. An important issue is the possibility of time variation 

in the betas (Andersen et al., 2003), which is not considered by the standard, one-factor 

CAPM. Multi-factor pricing models including additional empirically motivated factors, 

such as such firm size and book-to-market ratios (Fama and French, 1993), have been 

                                                 
1 Damodaran online: http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/variable.htm 
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shown to have better in-sample fit and to produce more accurate out-of-sample 

predictions, but are often criticized because of the difficulty in interpreting the expanded 

set of variables in terms of systematic risk. 

An interesting question in this context is how persistent the betas are. Andersen 

et al. (2005) apply fractional integration methods to analyse data for 25 Dow Jones 

Industrial Average (DJIA) stocks over the period 1962-1999 and conclude that the 

corresponding realized betas are not very persistent and are best modelled as I(0) 

processes. The present paper uses a similar modelling framework but focuses instead on 

the Spanish stock market and provides evidence on the degree of persistence of the 

betas for six companies included in the IBEX index. In contrast to Andersen et al. 

(2005), we find evidence of persistence, though the results are sensitive to the choice of 

frequency and time span (number of observations). The layout of the paper is as 

follows: Section 2 provides a brief literature review; Section 3 outlines the fractional 

integration model used for the analysis; Section 4 describes the data and discusses the 

empirical results; Section 5 offers some concluding remarks. 

 

2. Literature Review 

In this section we discuss in turn each of the three main approaches to modelling and 

forecasting the realized betas that have been adopted in the CAPM literature. 

 

2.1 Realized variance and data filtering  

A first group of studies focuses on realized variance, covariance, and data filtering. 

Ghysels and Jacquier (2006) proposed a mix of existing data-driven filters and 

parametric methods. Hooper et al. (2008) compared a series of competing models to 

forecast beta; specifically, the applied realized measures of asset return variances and 
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covariances following the methodology proposed in Andersen et al. (2005). 

Christoffersen et al. (2008) used the information embedded in the prices of stock 

options and index options to compute the forward-looking market beta at the daily 

frequency, using option data for a single day. Chang et al. (2012) found that option-

implied volatility was a good predictor of future realized betas and proposed a beta 

estimator based on this approach. Chen and Reeves (2012) estimated monthly realized 

betas with Hodrick–Prescott noise filters, while Reeves and Wu (2013) evaluated 

constant and autoregressive (AR) models of time-varying realized betas, showing that 

beta models with constant parameters generate more accurate quarterly forecasts. 

 

2.2. Time-varying betas 

A second group of studies are based on the idea that the betas may vary with the 

conditioning variables, which leads to the concept of “conditional CAPM”, and 

therefore focus on time-varying betas. This approach was introduced by Dybvig and 

Ross (1985). Fama and French (1992) pointed out the inability of the static CAPM to 

explain the cross-section of average returns; more specifically, the robustness of the size 

effect and the absence of a relationship between beta and average returns are 

inconsistent with the CAPM. Fama and French (1993) examined common risk factors in 

the returns on stocks and bonds, namely factors related to markets, firm size and book-

to-market ratio. Ferson et al. (1987) developed tests of asset-pricing empirical models 

allowing market betas to change over time. Ferson and Harvey (1991) analysed the 

predictable components of monthly common stock and bond portfolio returns. 

Jagannathan and Wang (1996) argued in favour of time-varying betas on the grounds 

that the relative risk of a firm's cash flow is likely to change with the business cycle. 

Wang (2003) used a non-parametric approach to incorporate the conditioning 
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information. Ang and Chen (2007) proposed a conditional CAPM with time-varying 

betas and market risk premia.  

In the last decade, additional factors have been considered. Garleanu and 

Pedersen (2011) introduced the margin-CAPM model where high-margin assets require 

higher returns. Ang and Kristensen (2011) estimated time-varying betas with non-

parametric techniques, proposing a conditional CAPM and multifactor models for book-

to-market and momentum decile portfolios. Engle and Rangel (2010) and Rangel and 

Engle (2012) provided evidence that models with volatility and correlation components 

outperform single component models. Patton and Verardo (2012) studied the 

information flow and its impact on the betas, finding that these increase on 

announcement days by a statistically significant amount. Buss and Vilkov (2012) used 

forward-looking information from option prices to estimate option-implied correlations. 

Boubaker and Sghaier (2013) analysed portfolio optimization in the presence of 

financial returns with long memory. Frazzini and Pedersen (2014) presented a leverage 

and margin constraint model that varies across investors and time. Jayasinghe et al. 

(2014) estimated the time-varying conditional variance of index returns, finding 

evidence of mean-reversion and long memory in the betas. More recently, Fama and 

French (2015) extended the standard CAPM model to include five additional factors 

representing size, value, profitability, and investment patterns in average stock returns. 

However, this five-factor model still fails to capture the low average returns on small 

stocks whose returns behave like those of firms that invest a lot despite low 

profitability. 

Several more recent studies have proposed alternative beta estimation methods. 

Lu and Murray (2017) suggested a “bear beta” model, where time variation in the 

probability of future bear market states is priced. Pyun (2019) introduced a new out-of-
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sample forecasting method for monthly market returns using the Variance Risk 

Premium (VRP) defined in Bollerslev et al. (2009) as the difference between the 

objective and the risk-neutral expectations of the forward variance. Bai et al. (2019) 

proposed a general equilibrium model to quantify the consumption CAPM performance.  

Hollstein et al. (2019) proposed a link between conditional betas and high high-

frequency data to explain asset pricing anomalies. 

 

2.3 Long memory in asset pricing 

A third approach introduced by Bollerslev et al. (1988) focuses on long-run 

dependence. Following the early contribution of Robinson (1991), many subsequent 

studies showed the empirical relevance of long memory for asset return volatility (e.g., 

Ding et al., 1993). Robinson (1995) developed a formal framework for testing long-run 

dependence in the logarithmic volatilities; the FIGARCH model was used by Baillie et 

al. (1996) to analyse exchange rates, and by Bollerslev and Mikkelsen (1996) to 

examine US stock market, in both cases long memory being detected, with the series 

being modelled as mean-reverting fractionally integrated processes, where the 

conditional variance decreases at a slow hyperbolic rate. Andersen and Bollerslev 

(1997) concluded that long memory is an intrinsic feature of returns. Bollerslev and 

Mikkelsen (1999) provided evidence of mean reversion in the volatility process using 

fractionally integrated models. 

Cochran and DeFina (1995) found predictable periodicity in market cycles. 

Bollerslev and Mikkelsen (1996) concluded that long-run dependence in the US stock 

market is best modelled as a mean-reverting fractionally integrated process. However, 

Andersen and Bollerslev (1997) found that this process is very slow for most returns, 

and thus detecting mean reversion is not an easy task. Balvers et al. (2000) pointed out 
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that, if it exists, it can only detected over long horizons; nevertheless, investors try to 

discover mean-reverting patterns for forecasting purposes (Javasinghe, 2014).  

Andersen et al. (2003) analysed the persistence and predictability of the realized 

betas as well as of the underlying market variances and covariances using intraday data 

over the period 1962-1999; the latter were found to be highly persistent and fractionally 

integrated processes, in contrast to the realized betas, which appear to be much less 

persistent and best modelled as a standard stationary I(0) process. Further, simple AR-

type models were shown to outperform other parametric models in terms of their 

forecasting properties for the integrated volatility. Andersen et al. (2005) pointed out 

that it is possible for the betas to be only weakly persistent (short-memory, with d ~ 0), 

despite the widespread finding that realized variances and covariances exhibit long 

memory (fractionally integrated, with d > 0), in the case of fractional cointegration.  

Regarding the sampling frequency, Bollerslev et al. (2006) found evidence of 

negative correlations between stock market movements and volatility at the intraday 

frequency. In particular, five-minute intervals appear to provide better results than one-

day market sampling for assessing volatility asymmetries. Todorov and Bollerslev 

(2007) looked for a solution to the problem of modelling jumps in the betas using high-

frequency data. Morana (2009) improved the realized beta estimator introduced by 

Andersen et al. (2005, 2006) by allowing for multiple non-orthogonal risk factors.  

 Bollerslev et al. (2011) explored alternative volatility measures to reduce the 

impact of the microstructure noise. Bollerslev et al. (2012) used intraday data for the 

S&P 500 and the VIX volatility indices and found further evidence that aggregate stock 

market volatility exhibits long-run dependence, while the volatility risk premium (VRP) 

is much less persistent. Bollerslev et al. (2013) concluded that market volatility is best 

described as a long-memory fractionally integrated process. Hansen et al. (2014) 
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proposed a GARCH model incorporating realized measures of variances and 

covariances. Engle (2016) put forward the Dynamic Conditional Beta (DCB) model to 

estimate regressions with time-varying parameters.   

A brief comparison between the most popular market beta estimation techniques 

can be found in Hollstein and Prokopczuk (2016), who examined the performance of 

several time-series models and option-implied estimators, and suggested using the 

hybrid methodology of Buss and Vilkov (2012) since it consistently outperforms all 

other approaches.  

 

3. Methodology 

We analyse persistence in the realized betas by using fractional integration methods to 

estimate the degree of dependence in the data, which is measured by the differencing 

parameter d. For our purposes we define a covariance stationary process {xt, t = 0, ±1, 

… } as integrated of order 0, and denote it by I(0), if the infinite sum of its 

autocovariances is finite. This type of processes, also known as short-memory ones, 

include not only the white noise but also the stationary and invertible ARMA-type of 

models. To generalise, we can define the process {yt, t = 0, ±1, … } as integrated of 

order d, and denote it by I(d), if d-differences are required to make it I(0), i.e., 

   ,...,1,0t,ux)B1( tt
d ±==−    (1) 

where B is the backshift operator, and d can be any integer or fractional value. 

Processes with d higher than 0 are known as long-memory ones because of the high 

degree of dependence between observations far apart in time, where the polynomial in 

B in equation (1) can be expressed in terms of its Binomial expansion, such that 

    ...B
2

)1d(dBd1B)1(j
dB)B1( 2jj
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implying that 

...x
2

)1d(dxdxx)B1( 2t1ttt
d −

−
+−=− −− . 

The parameter d plays a crucial role in this context, since it is a measure of the 

degree of persistence of the series: the higher is d, the higher is the degree of 

dependence between observations. More specifically, d = 0 implies short memory 

behaviour, while 0 < d < 0.5 characterises a covariance stationary long-memory 

process; if 0.5 ≤ d < 1, the series is non-stationary but mean-reverting with shocks 

having long-lasting effects that disappear in the long run; finally, d ≥ 1 implies non-

stationarity and lack of mean reversion. 

 Although fractional integration was already proposed in the early 1980s by 

Granger (1980, 1981), Granger and Joyeux (1989) and Hosking (1981), it was not until 

the late 1990s and early 2000 that it become popular in economics and finance (Baillie, 

1996; Gil-Alana and Robinson, 1997; Mayoral, 2006; Gil-Alana and Moreno, 2012; 

Abbritti et al., 2016; etc.). We estimate the differencing parameter using the Whittle 

function in the frequency domain (Dahlhaus, 1989) by using a version of the LM tests 

of Robinson (1994) which is computationally very attractive. 

 

4. Data and Empirical Results 

We have obtained data on daily, weekly and monthly returns from the Reuters Eikon 

database for the six companies with the highest market capitalization included in the 

IBEX-35 (ISIN ES0SI0000005), the most popular Spanish stock index, over the period 

1 January 2000 – 15 November 2018. Specifically, we consider the following six 

companies: BBVA (ISIN ES0113211835), Santander (ISIN ES0113900J37), Telefonica 

(ISIN ES0178430E18), Inditex (ISIN ES0148396007), Endesa (ISIN ES0130670112) 

and Iberdrola (ISIN ES0144580Y14). Using the raw data, we construct daily, weekly 
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and monthly realized beta series by applying the formula 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆,𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶𝐼𝐼)
𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶𝐼𝐼)

  and 

selecting 1, 3 and 5-year samples. Thus, we calculate 9 beta measures for each 

company. 

The estimated model is the following: 

,...,2,1,)1(,10 ==−++= tuxLxty tt
d

tt oββ  (1) 

where yt is the observed time series (the realized betas in our case), β0 and β1 are 

unknown coefficients on the intercept (constant) and the linear time trend, and xt is I(d), 

where d is estimated from the data. We consider three model specifications, namely i) 

no deterministic terms, i.e., β0 = β1 = 0 in (1); ii) a constant only, i.e., β1 = 0; and iii) a 

constant as well as a linear trend, i.e., β0 and β1 are estimated. We also assume in turn 

white noise and autocorrelated disturbances, using the model of Bloomfield (1973) in 

the latter case.1 Table 2 and 3 report the estimated values of d along with their 

associated 95% confidence bands under the assumption of white noise and (Bloomfield) 

autocorrelated disturbances respectively; the coefficients in bold are in each case those 

from our preferred model, which has been selected on the basis of the statistical 

significance of the other parameters as indicated by the t-values.  

INSERT TABLE 2 ABOUT HERE 

In the case of white noise errors, the specification with an intercept is the 

preferred one in most cases; the coefficient on the linear time trend is only found to be 

statistically significant in three cases out of the fifty-four examined (namely, Iberdrola,  

5-year span, daily observations; Telefonica, 5-year span, weekly observations; Inditex, 

3-year span, daily observations). As for the estimated values of d, at the monthly 

frequency the unit root null cannot be rejected in most cases. When using the Fama and 

                                                 
1 This is a non-parametric way of describing autocorrelation in I(0) contexts, similar to that produced by 
parametric ARMA models. 
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MacBeth (1973) “standard” beta measure (based on 5 years of monthly observations), 

estimates of d significantly higher than 1 (which imply lack of mean reversion) are 

found in the case of BBVA (1.06), Endesa (1.13) and Inditex (1.04), while weak 

evidence of mean reversion (values of d significantly below 1) is obtained for the cases 

of Iberdrola (0.96), Telefonica (0.96) and Santander (0.97). However, at the weekly or 

daily frequency, in all cases but one (Telefonica, 5-year span, weekly observations) 

mean reversion does not occur. With a 5-year span and daily observations, the estimated 

values of d range from 1.04 to 1.12, while in the case of a 5-year span and weekly 

observations the corresponding range is [1.05 - 1.10], except in the case of Telefonica 

(0.85), as already mentioned.  

By contrast, the results based on a 1-year span and monthly observations suggest 

the presence of mean reversion, the estimates of d ranging from 0.85 to 0.96, except in 

the case of BBVA (1.08). These estimates should be seen as less reliable because of the 

smaller sample size on which they are based, and clearly show how crucial the choice of 

frequency, span and sample size are for estimation purposes.  

INSERT TABLE 3 ABOUT HERE 

 Table 3 displays the estimated values of d under the assumption of weak 

autocorrelation for the error term. In this case, the only significant regressor is the 

intercept. Mean reversion is found with a 1-year span and monthly data, with the 

estimates of d in the range [0.77 - 0.97], whilst the opposite holds when using a 5-year 

span (with daily, weekly and monthly observations). The range for the estimated values 

for d is narrower in the case of daily observations [1.15 - 1.25], compared to weekly 

[1.00 - 1.19] and monthly [1.12 - 1.26], which clearly reflects the respective sample 

sizes.  
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To summarise, we find evidence of non-stationary behaviour, with orders of 

integration equal to or higher than 1, in the vast majority of cases, with mean reversion 

(d < 1) occurring only in a few cases. By contrast, as previously mentioned, Andersen et 

al. (2005) had concluded that the realized quarterly betas from daily returns in the US 

over the years 1962-1999 had a lower order of integration than the market variance, 

with d ranging between 0 and 0.25 for the individual stocks and between 0.35 and 0.45 

for the market as a whole; higher degrees of integration were found for the monthly 

realized betas with 15-minute intraday trading during the years 1993-1999.  

The differences between our findings and those reported by Andersen et al. 

(2005) can be explained if one considers, firstly, that our study focuses on the Spanish 

market during the period 2000-2018, more specifically on 6 stocks representing 51.8% 

of the total market capitalization and thus a much larger percentage of the IBEX-35 than 

the corresponding one for the 30 US stocks from the SP-500 analysed by Andersen et 

al. (2005) over the period 1962-1999. Secondly, those authors used daily returns for 

estimating the betas over 3-month periods, while we have used a much longer span of 

data, from 1 to 5 years. Thirdly, unlike Andersen et al. (2005) we do not pre-filter the 

data. However, consistently with their study, we also find lower values of d for shorter 

time spans.  

 

5. Conclusions 

In this study we have examined the statistical properties of the realized betas within the 

framework of the one-factor CAPM using data on six companies from the Spanish stock 

market index (IBEX-35) and applying fractional integration, long-memory techniques. 

In particular, we have estimated their degree of integration d to measure persistence.  
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Our results highlight the importance of the choice of frequency and time span 

(number of observations) for estimation purposes. In particular, we find that using a 

longer span of data leads to higher estimates of d, and that a higher number of 

observations results in a narrower range of estimates. When using a 5-year span as in 

Fama and MacBeth (1973), the realized betas appear to be characterized by lack of (or 

slow) mean reversion, which implies that shocks have permanent effects; the use of 

different time spans is one of the possible explanations for the difference between our 

results and those reported by Andersen et al. (2005) for the US.  

Therefore our analysis suggests that the standard practice of estimating the betas 

as in Fama and MacBeth (1973) using only a 5-year sample period is questionable given 

the lack of robustness of the results to the choice of frequency and time span (number of 

observations). In the literature, typically, as the frequency increases the selected time 

span decreases (on average, monthly estimates are based on a span of 6 years, weekly 

ones on a span of 3 years, and daily ones a span of 1.5 years – see Table 1), whilst the 

number of observations used for the analysis increases; this issue should be investigated 

further. Future work should also provide evidence for other developed and emerging 

stock markets to gain additional insights into the behaviour of the realized betas. 
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Table 1: Estimation of the realized betas: chosen frequency and number of 

observations (time span) in finance textbooks  

 Daily Weekly Monthly Quarterly Annual 
Number of textbooks 7 6 51 1 15 
Average number of 
observations used 489 156 76 16 8 

Most common number of 
observations used 765 26 60 16 10 

It can be seen that, as the frequency increases, the selected time span decreases (on average, monthly 
estimates are based on a span of 6 years, weekly ones on a span of 3 years, and daily ones a span of 1.5 
years), whilst the number of observations used for the analysis increases.  
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Table 2: Estimates of d with white noise errors 
BBVA  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.03    (1.01,  1.05) 1.09    (1.07,  1.10) 1.09    (1.07,  1.10) 

3y 1.00    (0.98,  1.03) 1.08    (1.06,  1.10) 1.08    (1.06,  1.10) 

5y 1.00    (0.97,  1.03) 1.06    (1.04,  1.09) 1.06    (1.04,  1.09) 

 
Weekly 

 

1y 1.03    (0.99,  1.09) 1.02    (0.97,  1.07) 1.02    (0.97,  1.07) 

3y 1.01    (0.97,  1.07) 1.06    (1.01,  1.11) 1.06    (1.01,  1.11) 

5y 1.00    (0.95,  1.06) 1.10    (1.05,  1.14) 1.10    (1.05,  1.14) 

 
Monthly 

 

1y 1.02    (0.91,  1.15) 1.08    (0.97,  1.22) 1.08    (0.97,  1.22) 

3y 1.01    (0.92,  1.12) 1.11    (1.01,  1.23) 1.11    (1.01,  1.23) 

5y 1.01    (0.90,  1.16) 1.06    (0.96,  1.18) 1.06    (0.96,  1.18) 
 

ENDESA  No terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.02    (1.00,  1.05) 1.04    (1.02,  1.05) 1.04    (1.02,  1.05) 

3y 1.01    (0.98,  1.03) 1.07    (1.05,  1.09) 1.07    (1.05,  1.09) 

5y 1.01    (0.98,  1.04) 1.12    (1.09,  1.14) 1.12    (1.09,  1.14) 

 
Weekly 

 

1y 1.05    (1.00,  1.10) 1.05    (1.00,  1.11) 1.05    (1.00,  1.11) 

3y 1.03    (0.99,  1.08) 1.05    (1.01,  1.09) 1.05    (1.01,  1.09) 

5y 1.01    (0.97,  1.07) 1.05    (1.01,  1.10) 1.05    (1.01,  1.10) 

 
Monthly 

 

1y 0.92    (0.81,  1.05)  0.89   (0.79,  1.03)   0.89   (0.79,   1.03) 

3y 1.10    (1.01,  1.23) 1.16    (1.06,  1.29) 1.16    (1.06,  1.29) 

5y 1.12    (1.03,  1.25) 1.13    (1.03,  1.27) 1.13    (1.03,  1.27) 
 

IBERDROLA  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.02    (1.00,  1.04) 1.05    (1.03,  1.07) 1.05    (1.03,  1.07) 

3y 1.00    (0.98,  1.03) 1.09    (1.07,  1.11) 1.09    (1.07,  1.11) 

5y 1.00    (0.98,  1.03) 1.04    (1.02,  1.07) 1.05    (1.02,  1.07) 

 
Weekly 

 

1y 1.02    (0.98,  1.07) 1.08    (1.03,  1.13) 1.08    (1.03,  1.13) 

3y 1.04    (0.99,  1.09) 1.13    (1.08,  1.17) 1.13    (1.08,  1.17) 

5y 1.01    (0.96,  1.07) 1.08    (1.03,  1.13) 1.08    (1.03,  1.13) 

 
Monthly 

 

1y 0.90    (0.79,  1.05)  0.94   (0.83,  1.08)   0.94   (0.83,  1.08) 

3y 0.83    (0.76,  0.92) 0.97    (0.86,  1.14) 0.97    (0.86,  1.14) 

5y 0.96    (0.85,  1.10) 0.96    (0.89,  1.05) 0.96    (0.88,  1.05) 
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TELEFONICA  No deterministic 
terms 

An intercept Intercept and time trend 

 
Daily 

 

1y 1.02    (1.00,  1.04) 1.05    (1.03,  1.07) 1.05    (1.03,  1.07) 

3y 1.00    (0.98,  1.03) 1.08    (1.06,  1.10) 1.08    (1.06,  1.10) 

5y 1.01    (0.98,  1.04) 1.11    (1.09,  1.14) 1.11    (1.09,  1.14) 

 
Weekly 

 

1y 1.01    (0.96,  1.06) 1.01    (0.96,  1.06) 1.01    (0.96,  1.06) 

3y 1.01    (0.96,  1.06) 1.06    (1.02,  1.10) 1.06    (1.02,  1.10) 

5y 0.87    (0.78,  0.98) 0.85    (0.75,  0.97) 0.85    (0.75,  0.97) 

 
Monthly 

 

1y 0.87    (0.79,  0.99) 0.85   (0.75,  0.97) 0.85    (0.75,  0.97) 

3y 0.96    (0.87,  1.07) 1.01    (0.92,  1.14) 1.01    (0.92,  1.14) 

5y 1.03    (0.92,  1.19) 0.96    (0.88,  1.06) 0.96    (0.88,  1.06) 
 

SANTANDER  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.01    (0.98,  1.03) 1.05    (1.03,  1.07) 1.05    (1.03,  1.07) 

3y 1.00    (0.97,  1.03) 1.06    (1.04,  1.08) 1.06    (1.04,  1.08) 

5y 1.00    (0.97,  1.03) 1.05    (1.03,  1.07) 1.05    (1.03,  1.07) 

 
Weekly 

 

1y 1.01    (0.96,  1.06) 0.99    (0.94,  1.04) 0.99    (0.94,  1.04) 

3y 1.00    (0.96,  1.06) 1.04    (1.00,  1.10) 1.04    (1.00,  1.10) 

5y 1.00    (0.95,  1.06) 1.05    (1.00,  1.11) 1.05    (1.00,  1.11) 

 
Monthly 

 

1y 0.90    (0.81,  1.02) 0.91    (0.81,  1.04) 0.91    (0.81,  1.04) 

3y 1.02    (0.93,  1.15) 1.06    (0.97,  1.16) 1.05    (0.97,  1.16) 

5y 1.02    (0.91,  1.16) 0.97    (0.89,  1.08) 0.97    (0.89,  1.08) 
 
ITX  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.02    (1.00,  1.04) 1.02    (1.00,  1.05) 1.02    (1.00,  1.05) 

3y 1.01    (0.98,  1.03) 1.01    (0.99,  1.03) 1.01    (0.99,  1.03) 

5y 1.01    (0.97,  1.03) 1.02    (1.00,  1.04) 1.02    (1.00,  1.04) 

 
Weekly 

 

1y 1.04    (0.99,  1.09) 1.02    (0.98,  1.07) 1.02    (0.98,  1.07) 

3y 1.03    (0.99,  1.08) 1.05    (1.01,  1.10) 1.05    (1.01,  1.10) 

5y 1.02    (0.97,  1.07) 1.10    (1.06,  1.15) 1.10    (1.06,  1.15) 

 
Monthly 

 

1y 0.96    (0.86,  1.10) 0.96    (0.85,  1.10) 0.96    (0.84,  1.10) 

3y 1.05    (0.97,  1.18) 1.00    (0.91,  1.12) 1.00    (0.90,  1.13) 

5y 1.02    (0.93,  1.14) 1.04    (0.97,  1.14) 1.04    (0.97,  1.14) 
In bold, the selected specifications on the basis of the significance of the deterministic terms. In 
parenthesis the 95% confidence bands for the values of d. 1y, 3y and 5y stand for 1, 3 and 5 year time 
spans respectively. 
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Table 3: Estimates of d with autocorrelated errors 
BBVA  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.07    (1.02,  1.11) 1.18    (1.13,  1.21) 1.18    (1.13,  1.21) 

3y 1.01    (0.97,  1.05) 1.22    (1.18,  1.27) 1.22    (1.18,  1.26) 

5y 1.00    (0.97,  1.05) 1.25    (1.20,  1.29) 1.25    (1.20,  1.29) 

 
Weekly 

 

1y 1.04    (0.97,  1.15) 1.01    (0.94,  1.11) 1.01    (0.94,  1.11) 

3y 1.01    (0.95,  1.11) 1.03    (0.97,  1.13) 1.03    (0.97,  1.13) 

5y 1.01    (0.93,  1.09) 1.06    (0.99,  1.15) 1.06    (0.99,  1.15) 

 
Monthly 

 

1y 0.95    (0.75,  1.22) 0.97    (0.74,  1.27) 0.97    (0.74,  1.27) 

3y 1.10    (0.91,  1.38) 1.16    (0.95,  1.45) 1.16    (0.95,  1.45) 

5y 1.03    (0.86,  1.27) 1.26    (1.00,  1.63) 1.26    (1.00,  1.63) 
 

ENDESA  No terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.10    (1.07,  1.14) 1.15    (1.11,  1.18) 1.15    (1.11,  1.18) 

3y 1.01    (0.98,  1.06) 1.15    (1.12,  1.19) 1.15    (1.12,  1.19) 

5y 1.03    (0.99,  1.08) 1.23    (1.10,  1.28) 1.23    (1.10,  1.28) 

 
Weekly 

 

1y 1.03    (0.94,  1.11) 1.01    (0.94,  1.11) 1.01    (0.94,  1.11) 

3y 1.09    (1.02,  1.16) 1.13    (1.08,  1.20) 1.13    (1.08,  1.20) 

5y 1.05    (0.98,  1.14) 1.14    (1.07,  1.19) 1.13    (1.07,  1.20) 

 
Monthly 

 

1y 0.81    (0.68,  1.01) 0.77    (0.62,  0.99) 0.77    (0.62,  0.99) 

3y 1.11    (0.94,  1.36) 1.15    (0.97,  1.41) 1.15    (0.97,  1.41) 

5y 1.13    (0.99,  1.34) 1.17    (1.03,  1.36) 1.17    (1.03,  1.35) 
 

IBERDROLA  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.01    (1.02,  1.09) 1.13    (1.10,  1.16) 1.13    (1.10,  1.16) 

3y 1.02    (0.98,  1.06) 1.15    (1.12,  1.19) 1.15    (1.12,  1.19) 

5y 1.00    (0.96,  1.05) 1.15    (1.11,  1.18) 1.14    (1.11,  1.18) 

 
Weekly 

 

1y 1.01    (0.95,  1.12) 1.10    (1.02,  1.19) 1.10    (1.02,  1.19) 

3y 1.06    (0.99,  1.17) 1.19    (1.10,  1.31) 1.18    (1.10,  1.31) 

5y 1.03    (0.94,  1.11) 1.17    (1.10,  1.29) 1.17    (1.10,  1.29) 

 
Monthly 

 

1y 0.69    (0.52,  0.95) 0.79    (0.55,  1.08) 0.79    (0.55,  1.09) 

3y 1.03    (0.88,  1.41) 1.02    (0.81,  1.44) 1.02    (0.79,  1.44) 

5y 1.05    (0.89,  1.29) 1.12    (0.97,  1.38) 1.12    (0.96,  1.38) 
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TELEFONICA  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.03   (0.99,   1.07) 1.10    (1.07,  1.13) 1.10    (1.07,  1.13) 

3y 1.01    (0.97,  1.05) 1.15    (1.12,  1.18) 1.15    (1.12,  1.18) 

5y 1.02    (0.98,  1.06) 1.16    (1.11,  1.20) 1.16    (1.11,  1.20) 

 
Weekly 

 

1y 0.99    (0.93,  1.07) 0.99    (0.93,  1.08) 0.99    (0.93,  1.08) 

3y 1.02    (0.96,  1.11) 1.20    (1.13,  1.30) 1.20    (1.13,  1.30) 

5y 1.01    (0.94,  1.11) 1.18    (1.11,  1.27) 1.18    (1.11,  1.27) 

 
Monthly 

 

1y 1.01    (0.79,  1.33) 0.95    (0.72,  1.28) 0.95    (0.73,  1.29) 

3y 1.08    (0.91,  1.39 1.05    (0.87,  1.32) 1.05    (0.87,  1.32) 

5y 1.07    (0.91,  1.30) 1.13    (0.98,  1.36) 1.12    (0.98,  1.35) 
 

SANTANDER  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.06   (1.03,   1.10) 1.08    (1.04,  1.12) 1.08    (1.04,  1.12) 

3y 1.01    (0.97,  1.05) 1.08    (1.04,  1.11) 1.08    (1.04,  1.11) 

5y 1.00    (0.96,  1.05) 1.15    (1.11,  1.19) 1.15    (1.11,  1.19) 

 
Weekly 

 

1y 0.97    (0.90,  1.06) 0.94    (0.87,  1.02) 0.94    (0.87,  1.02) 

3y 1.01    (0.93,  1.08) 0.99    (0.94,  1.07) 0.99    (0.94,  1.07) 

5y 1.00    (0.92,  1.08) 1.00    (0.93,  1.07) 1.00    (0.93,  1.07) 

 
Monthly 

 

1y 0.93    (0.74,  1.21) 0.97    (0.73,  1.31) 0.97    (0.73,  1.31) 

3y 1.05    (0.86,  1.30) 1.23    (1.04,  1.56) 1.23    (1.04,  1.56) 

5y 1.03   (0.88,  1.25) 1.25    (1.05,  1.55) 1.25    (1.05,  1.55) 
 
ITX  No deterministic terms An intercept Intercept and time trend 

 
Daily 

 

1y 1.02   (0.98   1.06) 1.08    (1.05,  1.13) 1.08    (1.05,  1.13) 

3y 1.00    (0.96,  1.04) 1.15    (1.11,  1.09) 1.15    (1.11,  1.09) 

5y 1.00    (0.96,  1.04) 1.18    (1.14,  1.23) 1.18    (1.14,  1.23) 

 
Weekly 

 

1y 1.04    (0.97,  1.13) 1.02    (0.96,  1.11) 1.02    (0.96,  1.11) 

3y 1.07    (1.01,  1.14) 1.14    (1.07,  1.23) 1.14    (1.07,  1.23) 

5y 1.03    (0.96,  1.12) 1.19    (1.11,  1.29) 1.18    (1.11,  1.29) 

 
Monthly 

 

1y 0.92    (0.73,  1.19) 0.89    (0.68,  1.18) 0.89    (0.67,  1.18) 

3y 1.04    (0.89,  1.29) 0.96    (0.83,  1.18) 0.95    (0.81,  1.18) 

5y 1.13   (0.98,  1.33) 1.21    (1.05,  1.41) 1.21    (1.05,  1.40) 
In bold, the selected specifications on the basis of the significance of the deterministic terms. In 
parenthesis the 95% confidence bands for the values of d. 1y, 3y and 5y stand for 1, 3 and 5 year time 
spans respectively. 
 
 


	8171abstract.pdf
	Abstract




