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Abstract 
 
We consider a multi-service transportation system in which passengers are heterogeneous along 
two dimensions, namely ideal departure time and value of time, leading to both horizontal and 
vertical differentiation. We investigate the behavior of passengers, and assess how service 
pricing and scheduling affect their travel choices and welfare. We show that this depends, first, 
on whether passengers are uninformed or informed about the timetable of services, supplied at 
different prices, upon arrival at the station. Besides, given the information passengers hold, it 
also depends on their (individual-specific) value of time. The market segmentation results 
accordingly, and is found to be finer, in general, when passengers are informed. Our analysis 
offers policy-makers a scientifically founded tool to make sensible decisions, based on the exact 
identification of those who would gain and those who would lose from policy changes. The 
analysis further highlights the potential benefits of information, and points to the importance of 
facilitating information accessibility to passengers. 
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1 Introduction
Travel behaviour is complex and multi-faceted. Most of travel demand has a derived

nature and its determinants are many, with price being only one of those. Whereas some
of the determinants are unrelated to transport decision-making, others result directly from
policy-makers’ and transport operators’ choices. When appraising the performance of a
(passenger) transportation system, it is of primary importance to look beyond the sole
prices and also consider these other determinants.

Since the first attempts to measure travel demand, which we owe to McFadden [19],
it has been recognized that two major determinants are (on-vehicle) travel time and
service scheduling. Whereas travel time is essentially related to network characteristics
and technological choices, and can thus be regarded as a given attribute, at least to some
extent, service scheduling (hence, frequency) reflects operators’ and/or policy-makers’
decisions nearly in the same fashion as price. Therefore, it looks natural to examine the
impact of both price and scheduling on passenger choices and welfare.

This task is complicated by the fact that, in a number of instances, passengers are not
bound to purchase services from a single provider, and can rather swing across operators
to their best convenience. One obvious reason for this is that many transportation sectors
are (imperfectly) competitive markets. In any case, the choice of a given service depends,
first, on how the prices differ over time and, possibly, across operators; second, on how
the services, possibly supplied at different prices, are scheduled over time.

The goal of our paper is to investigate the behaviour of passengers in multi-service
transportation systems, and assess how price and schedule (or frequency) of the available
services affect their choices and welfare. This analysis further permits to draw policy
insights, particularly in light of distributional considerations.

Given that the sequence of differently priced services matters for travel decisions,
the exact time at which passengers reach the station/stop of departures is relevant as
well. This, in turn, depends on the information passengers hold about the schedule of
available services. To account for this, we rely on a comprehensive analytical framework,
which enables us to represent two types of passengers, namely uninformed and informed.
Uninformed passengers do not know the schedule of services before reaching the station.
More precisely, they know neither at what time services will depart nor whether each of
them is cheap or expensive. Hence, once they are in the station, they can only choose
between taking the next departing service and waiting for a subsequent service. This
latter option is attractive only if the subsequent service happens to be sufficiently cheap
that the price saving will be worth the waiting time. By contrast, informed passengers
know both how services are scheduled and at what price each of them is supplied, and
decide in advance what exact service they will take. Accordingly, they adjust their arrival

2



time at the station and avoid waiting. In other words, information grants flexibility to
travel choices. However, even the most suitable service, among the available ones, may not
depart at the their ideal time. A shift in departure time harms the concerned passengers.
In either case, individual choices will reflect a trade-off between willingness to pay and
willingness to shift departure, which in turn depends on the individual value of time.

Far from adding gratuitous complexity to the model, the introduction of an individual-
specific value of time, on top of an individual-specific ideal departure time, is paramount
to the understanding of passenger behaviour and the derivation of policy insights. First, as
already pinpointed by Small and Yan [21], if passengers were all identical, then the conse-
quences of multiple services being supplied, which enables people to indulge their varying
preferences, would remain concealed. Second, it is now well established in economics that
the value of time is positively related to the individual income. To illustrate, using data
from a natural experiment, in which motorists are required to choose between waiting in a
queue for purchasing low-price gasoline and purchasing at a higher price without waiting,
Deacon and Sonstelie [10] obtain estimates of the value of time which, in most cases, are
similar to individuals’ after-tax wages. Accordingly, the value of time in a transportation
market is a reasonably accurate indicator of passenger earnings. In addition, it is also an
important determinant of passenger choices, as it reflects the opportunity cost of waiting
or, more generally, shifting departure.1

Being based on this description, one might believe that making an assessment of
the performance of a multi-service transportation system, as here considered, is a simple
exercise. In fact, it is a complex problem, for two critical reasons. First, whereas our model
is purposely silent about the specific industry structure, the demand for transportation
services is made endogenous. Indeed, it is taken to depend on the characteristics of
the supply of services, particularly prices and schedules. Second, the assessment is not
based on a set of pre-defined criteria, as is the case, for instance, when it is assumed
that an ideal system is one in which the difference between actual and ideal departure
time is minimized over the whole population of passengers. Rather, in this work, the
assessment is made through the very lens of those who use the transportation system,
with the acknowledgement that the associated benefits do not need be alike across users.
More specifically, we account for the fact that (i) the ideal departure time varies across
users, in general; (ii) not only monetary costs but also time costs are relevant; and (iii)

the trade-off between monetary costs and time costs, which is ordinarily rooted in the
individual earnings, is all the more heterogeneous that income inequalities are becoming
more pronounced in the population.

We find that low-value-of-time (low-income) passengers tend to privilege relatively
1See Wardman [23] for a report on research about the evaluations of values of time in the use of public

transport.
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cheap services. By contrast, high-value-of-time (high-income) passengers tend to attach
more importance to the timetable of services than to their prices. Although this is a
natural result, there are a few important implications coming to the forefront of our study.
First, changes in price and/or schedule have a different impact on the various passengers in
the population, depending on their value of time, which ultimately mirrors their economic
conditions. Even budget-neutral changes, like an increase in service frequency, as coupled
with an increase in price that compensates for the resulting cost increase, may appear to
be welfare-enhancing for some individuals and welfare-degrading for others. Second, not
only does the value of time represent a key to identify ‘winners’ and ‘losers’ of specific
policies. It also provides a tool to appraise their differentiated impact. Third, a more
accurate appraisal can be made as passengers are better informed on the available travel
options. In substance, by delivering a fine segmentation of the population of passengers,
which permits to discern winners from losers, our detailed model of travel demand in a
multi-service transportation system offers policy-makers a scientifically founded tool to
make sensible decisions.

There is also a parallel lesson, concerning the value of information, to be retained from
our analysis. By allowing for more flexible transport choices, information enhances the
matching between heterogeneous passengers and differently priced services. In addition,
by permitting a more accurate appraisal of the impact of policy decisions on passenger
welfare, information can also help public decision-makers fine-tune service supply and
targeted redistribution strategies. These conclusions have implications for the design and
implementation of devices which could facilitate information acquisition by passengers.

1.1 Related literature

Our paper is first related to the domain of literature on modal and/or service choice
in transportation systems. To investigate how individuals accrue to services, we inspire
ourselves to the approach developed in the studies on traffic flow predictions (such as
Leurent [18]). According to that approach, passengers choose the option minimising the
generalised cost of the trip, which depends on the monetary price and some individual
characteristics (value of time and ideal departure time, in our setting).2 A similar ap-
proach is followed by Yang et al. [24] to study the effect of time value distributions
on price and frequency competition among three transportation modes (low-quality bus,
high-quality bus, and private car). Our work diverges from theirs in that rather than rep-
resenting vertically differentiated modes, we consider horizontally differentiated services,
which are tantamount to varieties of a single product ranked by passengers according to
their ideal departure times, whereas vertical differentiation is rooted in the heterogeneous

2A more general theory of consumer behaviour, as designed to address economic problems with relevant
time dimensions, is provided by DeSerpa [11].
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value of time in our model. In addition to determining the allocation of passengers across
services for given prices and schedule, we also study how changes in price and frequency
of the available services affect passenger surplus, mirroring the individual trade-off be-
tween willingness to pay and willingness to depart at the favourite time. In so doing, we
highlight how the distribution of demand over the course of the reference time interval
(say, the day) responds to both explicit price changes and the price changes implicit in
the variation of departure. This approach brings our model somewhat closer to queuing
models, also applied to other sectors such as telecommunications.

The impact of service (re)scheduling is also considered by Jiang et al. [16]. Particu-
larly, they focus on how to schedule passenger trains in a highly congested railway in such
a way as to meet the increased demand for transportation services as new users add up.
We follow a somewhat different approach and wash out any ‘volume’ effects, abstracting
from any change in the number of passengers that comes along with a change in the time
interval between subsequent services. This enables us to restrict attention to how those
passengers, who are already using the services, react to policy changes in terms of both
allocation across services and quantity of demanded travels.

Cantos-Sànchez and Moner-Colonques [7] model a mixed duopoly in which two trans-
portation modes (bus and train) are offered, each characterized by both a quality attribute
and departure frequency. In that setting, in addition to quality determining a unanimous
ranking of modes in the population of users in the same vein as in Yang et al. [24], fre-
quency also introduces an element of horizontal differentiation, capturing the multiplicity
of supplied products. This strikes a more pronounced similarity with our model. As an
additional ingredient, we also consider that passengers are either uninformed or informed,
and highlight the impact of information on the resulting market segmentation. In par-
ticular, we show the consequences associated with the possibility for informed passengers
of anticipating departure (in addition to postponing it), relative to their ideal departure
time, in order to take advantage of a lower price. The possibility of passengers antici-
pating actions related to their trips is also considered by Koster et al. [17] with regards
to air transportation. However, what these authors exactly account for is the choice of
passengers to anticipate departure from their place in order to reach the airport in due
time. Whereas this focus is functional to their goal, which is to assess the cost of access
travel time variability for air passengers through the analysis of the determinants of the
preferred arrival times at airports, we are concerned with access to transportation services
themselves.

In transport economics the dichotomy between uninformed and informed passengers
has long been associated with the following two situations: passengers prefer to go to ur-
ban transport stops without consulting the timetable of service departures; they prefer to
plan long-distance journeys according to the timetable. After being explored separately
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in earlier studies, these two situations are first analysed in a unified framework by Jansson
[15], who concludes that the choice of passengers to acquire or not information depends
on service frequency. That is, passengers do not acquire information on the timetable
in systems with frequent services, such as urban transport; they do so, instead, in sys-
tems with infrequent services, such as long-distance transport.3 Although we also offer
a comprehensive model, which permits to represent uninformed and informed passengers
within the same analytical framework, we rather attempt to pinpoint the effects of the
(lack of) information on passenger behaviour, being suggestive of the role that devices
for information diffusion could play to enhance the performance of multi-service trans-
portation systems. In this respect, our work is in line with recent studies assessing the
effects of information disclosure on market outcomes. Among those, being based on a field
experiment on the wholesale market for used cars, Tadelis and Zettelmeyer [22] conclude
that information disclosure leads to a better matching of vertically differentiated cars
with heterogeneous buyers. Whereas information helps to solve a classical lemon market
problem in that study, the finding that it improves on the commodity-customer matching
is akin to our work.

There are a number of studies on welfare effects in multi-service transportation systems
in which price and scheduling are the relevant policy dimensions.4 In general, such studies
rest on specific hypotheses about the industry structure. This is the case of many of the
works previously referred to, but also of several other papers, such as Yang and Zhang
[25], who focus on competition between air transport and high-speed rail. Diverging from
that approach, we avoid imposing assumptions on the supply side of the market, and only
require the transportation system to include several services offered at possibly different
prices. This rests on the implicit idea that a multiplicity of differently priced alternatives
(services), among which customers can choose, is consistent with two or more operators
being active in the market. To the extent that the richness of the set of customer choices
proxies competition in supply, the analysis can be developed through the lens of customers
only, with an important benefit. The effects of policy choices on passenger welfare so
identified, and the distributional considerations drawn thereof, are not restricted to hold
within a given industry structure, and might rather be indicative of what a desirable
industry structure would look like.

Of course, as most of the papers recalled so far, also our study is related to the wide
literature on product differentiation. The origins of that literature are rather distant in
the past. Horizontal (or spatial) differentiation is first studied by Hotelling [14]; in a

3Informed passengers are identified as those engaging in long-distance journeys also in a more recent
work by Abrantes and Wardman [1].

4More generally, there is now a rich literature on the optimal pricing and frequencies of transportation
services. In addition to the aforementioned paper by Jansson [15], this includes, for instance, Börjesson et
al. [4] who derive the optimal pricing and frequencies for buses in Stockholm, showing how they depend
on the congestion charges levied on the corridors leading into the city.
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later stage, D’Aspremont et al. [9] provide clarifications on basic theoretical aspects. The
equilibria of the basic vertical differentiation model are characterized by Gabszewicz and
Thisse [12] and Shaked and Sutton [20]. In the specification adopted in these studies, and
in several papers thereafter, the product varieties (or quality attributes) are bound to two.
By contrast, in our model the service schedule includes more than two departures. In this
respect, our work is more akin to Barigozzi and Ma [3], who model vertical differentiation
with an arbitrary number of quality attributes.5 Besides, in many models of product
differentiation it is assumed that customers have only one unit of consumption to allocate
so that the individual problem boils down to selecting one variety/quality. We also admit
a quantity dimension, letting passengers both pick the variety (service) to be used and
express demand for the number of travels to be made. This enables us to identify the
effects of policy changes on the distribution of passengers across services and, in addition,
on the amount of demanded travels for each service.

Lastly, there is a flourishing strand of studies on the distributional effects of transport
policies and their use for (re)distribution purposes, including poverty alleviation.6 Among
those studies, Bureau and Glachant [5] use data in the Paris Region from the Global
Transport Survey 2001-2002 to conclude that low-income individuals benefit more from a
reduction in fares than from an increase in the speed of urban public transport. Rather
than focusing on how variations in fare and speed affect the well-being of the various
income groups, we explore the welfare effects of variations in service price and frequency,
looking at the market segmentation that results from time value heterogeneity.

1.2 Outline

The remainder of the paper is organized as follows. In section 2 we describe the
problem to be analysed, presenting the key ingredients of the model and the methodology
to be followed. In section 3 and 4 we respectively investigate how uninformed and informed
passengers decide what service to take, characterizing the resulting market segmentation
for a given price pattern. We further explore the impact on passenger welfare of marginal
changes in price and in schedule. In section 5 we discuss how one can make use of our

5The juxtaposition of our model, which is interpretable as one of both horizontal and vertical dif-
ferentiation, and the model of pure vertical differentiation proposed by Barigozzi and Ma [3] does not
look inconsistent, if it is considered that the horizontal differentiation model à la Hotelling is a special
case of the vertical differentiation model, as shown by Cremer and Thisse [8]. It must nonetheless be
acknowledged that there may be differences between the two kinds of models, due to the specification of
the strategy sets available to firms (more generally, to decision-makers). In particular, just as firms’ posi-
tions in location models, service scheduling in transportation models like ours may face more restrictions
than do quality attributes in vertically differentiated models.

6For an analysis of transportation policies as a tool for poverty alleviation see Gannon and Liu [13],
for instance. Less related to ours, yet worth mentioning, are the studies on direct redistribution policies
in transport sectors. For instance, Adler and Cetin [2] discuss redistribution through toll collection from
drivers on a more desirable route and subsidization of drivers on a less desirable route.
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methodology to derive policy insights. In section 6 we are based on our results to provide a
clue on the value of information in multi-service transportation systems. Section 7 briefly
concludes. Lengthy calculations, including for alternative price patterns, are relegated to
an appendix.

2 Description of the problem
Transportation system We consider an origin-destination pair over which several
transportation services are available. A given service s ∈ S differs from the others in its
departure time t ∈ H and, possibly, in its price p ∈ R+. The set H of departure times
is a time interval within the day; transportation operations are restricted to take place
within that interval. We assume that there is a discontinuity in services from one day to
the next one, say, for maintenance reasons, due to legal restrictions on the working time,
or simply because demand is very low at night. Under this assumption, it is legitimate
to focus on the scheduling problem within a single day.

Passengers Passengers are heterogeneous along two dimensions. The first is the ideal
departure time t∗ ∈ Ĥ, which we take to be uniformly distributed with a density of n > 0.

The second is a marginal disutility of τ ∈ R+, which is incurred if the actual departure
time t ∈ H differs from t∗, and has cumulative distribution function G (τ) such that
(dG (τ) /dτ) = g (τ). The set Ĥ of ideal departure times does not need coincide with the
set H of actual departure times. We nonetheless assume that all passengers with ideal
departure time t∗ ∈ Ĥ end up using a service scheduled at some time t ∈ H (alternatively,
they do not travel at all).7 Therefore, there will be no leftover demand at the end of the
day.

Choice of service Each passenger decides what service to use given the supply S,

taking into account, on the one hand, her ideal departure time and, on the other, the
actual departure time and the price of the available services. Formally, the choice is made
in such a way as to maximize the individual net surplus

b (x, p̃) = u (x)− p̃x. (1)
7The fact that passengers care about the time at which they begin - rather than complete - their

trips is plausible in various instances. To illustrate, one can think of the trips made by commuters
and shoppers in the evening to return home. Moreover, the fact that the travel time is not represented
reflects the (implicit) assumption that all services take the same time to reach the destination point,
the in-vehicle time being essentially related to network and technological features. In light of previous
empirical findings, this restriction does not seem to be a severe one. For instance, using stated preference
models to estimate the value that commuters are willing to pay to save on travel time, Calfee and Winston
[6] find that even high-income commuters attach a very low value to travel time savings, and rather adjust
other choices, such as the departure time.
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In (1) u (x) denotes the gross utility derived from a total of x travels, which is increasing
(u′ (x) > 0) and concave (u′′ (x) < 0) in its argument. Furthermore, p̃ = p + τ ∥t∗ − t∥
denotes the so-called generalised price, including both the monetary price p, which is
the same for all passengers using a given service, and the disutility τ ∥t∗ − t∥ , which is
individual specific instead. In fact, the optimal service choice is the one yielding the
lowest generalised price. Notice that different choices across individuals do not reflect
heterogeneity in preferences, provided the function u (·) is the same for all of them. They
rather reflect heterogeneity in wealth and travel needs, as proxied by the parameters τ and
t∗, which affect the individual generalised price. Moreover, the individual demand x (p̃)

depends on the information the passenger holds about the schedule of departure times.
This is because the generalised price p̃ includes the wedge ∥t∗ − t∥ between the ideal and
the actual departure time, and the latter depends on the individual choice, hence on the
individual information set. Henceforth, we let v (p̃) = b (x (p̃) , p̃) be the individual surplus
when the generalised price is p̃.

Information Passengers are either uninformed or informed. Uninformed passengers do
not know how differently priced services are scheduled until after they reach the station
of departures. Once they learn the schedule of departure times, either they take the first
available service or, alternatively, they wait for a later (but cheaper) service, if available.
Thus, for these individuals the difference between the true departure time and the ideal
one measures the waiting time (henceforth, WT) until departure. By contrast, informed
passengers learn how differently priced services are scheduled before reaching the station.
They can thus decide to take services departing both earlier and later than their ideal
departure time, planning their arrival at the station accordingly. For these individuals
the divergence of the true departure time from the ideal one measures the departure time
shift (henceforth, DTS).

In what follows, we investigate the choice of services and its impact on the market
outcome first for uninformed passengers, next for informed passengers. In either case, the
problem also admits an interpretation along the lines of models with product differenti-
ation. Specifically, it can be viewed as a case of both horizontal (or spatial) and vertical
differentiation. Suppose for a moment that the value of time is alike for all passengers,
whereas the ideal departure time is not. Then, the available services represent different
varieties (or store locations) of the same commodity, which each passenger orders ac-
cording to the distance from her ideal departure time. The ranking of services is thus
individual specific, and we are in a standard setting of horizontal differentiation. Next
suppose that passengers would like to depart all at the same time, whereas they are not
equally hindered by a DTS. Then, the available services represent product versions of
different quality levels, with the service scheduled at (or closest to) the ideal time rep-
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resenting the best version and more distant services representing lower-quality versions.
The ranking of services is thus univocal in the population of passengers, and we are in a
standard setting of vertical differentiation. In our comprehensive framework, these two
features are blended together, with a quantity dimension being nested on top of that. Ac-
tually, in addition to picking a service, each individual expresses a demand of travels for
that service. There is an intuitive reading key of the quantity dimension too, as regarded
at the individual level. Depending on the individual value of time, the passenger may be
keen on shifting departure to take advantage of a cheap service, if not available at (or
close to) her ideal departure time; or she may not be prone to that and rather prefer to
forego any price savings. Provided the individual value of time is persistent, the favourite
option to the passenger will of course be the same in any travel occasion. Accordingly,
the optimal choice will be replicated across travels, and the individual demand for the
service will result.

3 Uninformed passengers
Recall that uninformed passengers can either take the first available service upon

arrival at the station, or they can opt for one of the subsequent services. Taking a
subsequent service requires waiting the time interval until its departure time, denoted
∆T . This is not convenient unless a price saving, denoted ∆p, is obtained. Accordingly,
only sufficiently patient passengers will decide to wait for a subsequent service, namely
passengers with

τ ≤ △p

∆T
. (2)

One can interpret the threshold △p/∆T as being the value of time of an individual whose
willingness to pay for transportation services is exactly balanced by the willingness to
wait.

The attractiveness of a given service depends on how its price compares with those of
the other services. A ‘cheap’ service can attract (patient) passengers even if they reached
the station before the departure of previous services. An ‘expensive’ service can lose some
of its potential clients, who may prefer to wait for a subsequent service, if that choice
permits to pay less. Overall, the demand for the various services depends on both the
pattern of prices and the schedule of departures.

For readability, we will consider a setting where service departures are evenly dis-
tributed over time, and there are only two levels of price, high (ph) and low (pl). Hence, the
time interval ∆T between any two subsequent departures and the price saving ∆p = ph−pl

are both constant. Furthermore, ∆T = ∆T and ∆T = 2∆T for passengers who postpone
departure, respectively, by one and two services. Accordingly, the cut-off value of time
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in (2) specifies as τ̂ ≡ ∆p/∆T in the former case, and as τ̂ /2 in the latter case. Without
loss of generality, we will take a service s1, departing at t1 and offered at a price of p1, to
be the ‘reference’ service. We will characterize the distribution of passengers with ideal
departure time t∗ ∈ [t1 − 2∆T, t1] across this service, the previous service s0, which is
offered at a price of p0, and the subsequent service s2, which is offered at a price of p2.

Depending on the exact level of p0, p1 and p2, there are four possible allocations of
passengers across services. Hereafter, rather than plunging into a long description of the
various cases, we only present a case where prices are such that p1 = ph > pl = p2, which
admits a simple and realistic interpretation. That is, t1 may represent a pick hour of the
day, in which the service is priced more, whereas t0 and t2 are off-pick hours, in which the
service is priced less. For this case, to be denoted U.1 to ease reference, we will explore
the impact of a marginal change in price and in schedule on passenger welfare. The other
cases (U.2 to U.4) are reported in Appendix A.

Before turning to present case U.1, it is useful to briefly mention the limit case where
the price is uniform across services (p0 = p1 = p2). As no saving is available in that case,
there is obviously no point to wait for later services. Each passenger will thus take the
first service next to her ideal departure time, regardless of how (im)patient she is.

3.1 Case U.1: p1 = ph > pl = p2

When service s1 is at least as expensive as the previous service s0 and more expensive
than the later service s2 it attracts fewer passengers than any of the other two services.
To see this, we need to explore the behaviour of passengers with different ideal departure
times within the range [t1 − 2∆T, t1].

Let us first consider passengers with t∗ ∈ [t−1, t0], where t−1 = t1−2∆T is the departure
time of a hypothetical service s−1 preceding s0. Since p1 ≥ p0, for these passengers there
is no point to wait until t1, and they all take s0. Passengers with t∗ ∈ [t0, t1] choose s1,

if they are impatient, namely τ > τ̂ ; they wait for s2 otherwise. In substance, neglecting
passengers with t∗ > t1, who would take s2 in any case, all those who choose s2 are
actually passengers who could have taken s1 but tolerate a longer WT to pay less. On
the other hand, there is no passenger with t∗ < t0 who waits until t2. Accordingly, the
partial and total demand for s0, s1 and s2, are respectively given by

X0 (τ) =

ˆ t0

t−1

x (p0 + τ ∥t0 − t∗∥)ndt∗

X̃0 =

ˆ +∞

0

X0 (τ) dG (τ) ,
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X1 (τ) =

ˆ t1

t0

x (p1 + τ ∥t1 − t∗∥)ndt∗

X̄1 =

ˆ +∞

τ̂

X1 (τ) dG (τ) ,

and

X1◃2 (τ) =

ˆ t1

t0

x (p2 + τ ∥t2 − t∗∥)ndt∗

X2 =

ˆ τ̂

0

X2 (τ) dG (τ) ,

where the subscript 1 ◃ 2 refers to passengers who would prefer to depart at t1 but wait
until t2. This market segmentation is represented in the graphs on the right in Figure 1,
whereas the graphs on the left represent the market segmentation in a case where the price
is uniform across services (p0 = p1 = p2 = pl). Contrasting the two pairs of graphs, it is
evident that when s1 is expensive s2 attracts some (patient) passengers with earlier ideal
departure time, whereas this is not the case when services are all cheap. Using the capital
letter V to refer to aggregate surplus, together with further notation along the previous
lines, we can also write the surplus derived by the use of the three services, namely

Ṽ0 =

ˆ +∞

0

(ˆ t0

t−1

v (p0 + τ ∥t0 − t∗∥)ndt∗
)
dG (τ)

V 1 =

ˆ +∞

τ̂

(ˆ t1

t0

v (p1 + τ ∥t1 − t∗∥)ndt∗
)
dG (τ)

V 2 =

ˆ τ̂

0

(ˆ t1

t0

v (p2 + τ ∥t2 − t∗∥)ndt∗
)
dG (τ) .

The total surplus is V = Ṽ0 + V 1 + V 2.

3.1.1 A change in price

We now turn to assess the effect induced on passenger surplus by a marginal change in
some price pi, where i ∈ {0, 1, 2} , which does not alter the overall ordering of prices across
services. Of course, the aggregate impact cannot be understood without first considering
the individual level. Recalling that (1) is true for any given passenger, one straightfor-
wardly obtains the well-known result that an infinitesimal increase in the monetary price
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Figure 1: Uninformed passengers - Case U.1: p1 = ph > pl = p2 (right)
Top graphs: The generalised price is plotted against the ideal departure time when the
price is uniform (left) and when it is not (right). The blue line represents the generalised
price of a patient passenger (τ < τ̂), the red line that of an impatient passenger (τ > τ̂),
the magenta line that of a passenger with τ = τ̂ . The individual generalised price decreases
to the monetary price (the thick black vertical line placed in the service locations) as the
departure time approaches the ideal one, t∗.
Bottom graphs: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services with uniform price (left) and in case U.1 (right). Colors refer to the
value of time τ ; the intensity is associated with the number of passengers displaying the
characteristics (t∗, τ). For this representation, we assume it independent of t∗. When s1
is more expensive than the other services, s2 attracts some patient passengers with earlier
ideal departure time.
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p triggers a reduction in individual surplus equal to the demanded quantity:

dv (p̃)

dp
= (u′ (x (p̃))− p̃)

dx (p̃)

dp
− x (p̃)

= x (p̃) . (3)

At the aggregate level, two effects are at work, respectively on the extensive and
intensive margin. First, if there is an infinitesimal increase in the price saving ∆p, then
this induces an increase of 1/∆T in τ̂ , the cut-off value of the marginal disutility of waiting
in this case. The distribution of passengers across services is thereby altered, with some
passengers moving away from the service which is now more expensive. Second, there is a
reduction in the individual demand expressed by the passengers who stick to that service.
The impact on passenger surplus results from the combination of these two effects.

With the prices being such that p0 ≤ p1 = ph, the passenger distribution is not altered
by a change in p0. It is altered, instead, by both a change in p1 and a change in p2, each
of which triggers a variation in the cut-off value of time τ̂ . However, because this boils
down to some passengers switching between s1 and s2, the effect on the extensive margin
is offset in the aggregate, and only the effect on the intensive margin matters. Formally,
following an infinitesimal increase in some price pi, where i ∈ {0, 1, 2} , surplus is reduced
by the exact size of the demand for service si, namely (see Appendix A.1 for details)

dV

dp0
= −X̃0;

dV

dp1
= −X̄1;

dV

dp2
= −X2.

Although this is a familiar result in microeconomics, there are a few insights to be
retained in this context, using the individual value of time as a proxy for individual
earnings. First, an increase in the price of an expensive service operated in a peak hour
would hinder high−τ (high-earning) passengers only. Second, the overall loss of surplus
associated with that policy would be greater, if a later but cheaper service (s2) were
not available, given that this service attracts some of the passengers who were using the
expensive service prior to the price change. Third, a raise in the lower price (p2) would
essentially penalize low−τ (low-earnings) passengers, who are ready to wait in order to pay
less. Thus, in a transportation system with the characteristics here considered, a policy-
maker could actually favour passengers in difficult economic conditions by decreasing the
price of a late but cheap service.

3.1.2 A change in schedule

Of course, any variation in the schedule of services will affect passenger surplus as
well. For any given passenger with ideal departure time t∗ ≤ inf {t, t+ dt} , a delay of dt
in the actual departure time induces a decrease in surplus equal to the marginal disutility
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of waiting for each of the demanded travels, namely

dv (p̃)

dt
=

[
(u′ (x (p̃))− p̃)

dx (p̃)

dp
− x (p̃)

]
dp̃

dt

= −τx (p̃) . (4)

Again this result is in line with product differentiation models, in which it is found that
the reduction induced in the individual surplus, as quality is curtailed, equals the benefit
attached to quality for each consumed product unit. It is thus not surprising that, as can
be seen by taking (4) together with (3), the marginal rate of substitution between time
and money is equal to the marginal value of time, which measures the loss of utility from
not consuming the ideal commodity (not departing at the ideal time):

dv (p̃) /dt

dv (p̃) /dp
= τ.

More insights can be derived at the aggregate level. Following a variation in schedule,
which raises the time interval ∆T between any two subsequent services, some patient in-
dividuals renounce to wait for a cheaper service as the cost of delaying departure becomes
too high for them. Formally, this is captured by a decrease in the cut-off value of time
τ̂ . Letting dT be the increase in ∆T, one can verify that (dτ̂/τ̂) = − (dT/∆T ) , i.e., the
elasticity of τ̂ with respect to ∆T is constant and equal to −1.

To examine the effects on the aggregate surplus, we proceed as follows. We consider
an increase in the time interval between the departure time of service s0 and the departure
times of the two services which are respectively scheduled before and after s0. This is
done by fixing t0, and letting t−1 decrease by dT, t1 increase by dT , and t2 increase by
2dT . To avoid dealing with pure ‘volume’ effects associated with an increased number
of passengers, we cut out of the surplus variation the terms which are due to the 2ndT

additional passengers whose ideal departure time coincides with any of the two extremes
of the time interval, namely, those with t∗ ∈ [t−1 − dT ; t−1] and with t∗ ∈ [t1; t1 + dT ] .

With the departure time t0 being fixed, the change in schedule does not concern any of
the passengers who were already using s0. The only effect on the surplus associated with
the use of s0 would pertain to the passengers who come to take this service following the
change, which we neglect, as explained. As the departure of s1 is postponed, passengers
who were already using (and stick to) s1 all wait longer. As the departure of s2 is
postponed even more, passengers with τ = τ̂ shift to the previous service, those who stick
to s2 in order to pay less wait even longer. Omitting the specific expressions that capture
the impact on surplus associated with the single services, the overall impact (net of any
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volume effects) is formalised as follows (see Appendix A.1 for details):

dV

dT
= −

(
τ̄1X̄1 + 2τ 2X2

)
, (5)

where
τ̄1 =

ˆ +∞

τ̂

τ
X1 (τ)

X̄1

dG (τ) and τ 2 =

ˆ τ̂

0

τ
X1◃2 (τ)

X2

dG (τ)

provide an average measure of the value of time of passengers respectively using s1 and s2.
From (5), it is apparent that the impact on surplus through service s2 accounts doubly,
which is precisely because, as ∆T is increased keeping t0 fixed and postponing t1 by dT ,
t2 is postponed by 2dT . One useful property of our approach is precisely its capability
of highlighting these effects. Whereas (5) provides an aggregate measure of the impact
of changes in service scheduling on the welfare of the overall population of passengers, it
also pins down a segmentation of that population based on an individual characteristic,
namely the value of time, which is a reliable indicator of the passenger economic conditions
and preferences. In the situation here considered, if it is decided to increase the service
frequency, then the benefit to patient individuals has a higher weight in aggregate surplus
enhancement than the benefit to impatient individuals. Note however that, whereas the
marginal impact of a change in schedule is proportional to the value of all passengers, the
cost of WT may differ sensibly across them. As high-income passengers typically face a
higher cost of WT, it might be the case that they are favoured to a greater extent by a
decision to make services more frequent.

4 Informed passengers
Unlike uninformed passengers, who can only decide to wait, informed passengers may

alternatively decide to use one of the services which are scheduled before their ideal de-
parture time. For any given pair of services {si, sj} ∈ S, an individual with t∗ ∈ [ti, tj]

prefers si to sj, if the generalised price associated with the former service is lower than
that associated with the latter, namely

pi + τ (t∗ − ti) < pj + τ (tj − t∗) ,

where now the parameter τ expresses the value attached to the DTS. For any given value
of τ, there exists a critical departure time

t∗c (τ) ≡
ti + tj

2
+

pj − pi
2τ
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splitting passengers into two groups: those who would like to leave before t∗c (τ) take si, the
others opt for sj. Notice that passengers with a high (marginal) disutility of DTS prefer
the service which is closer to their ideal departure time, overlooking price differences.
Passengers with a low (marginal) disutility of DTS choose the cheaper service, caring
little about the departure time.

Focusing on passengers with t∗ ∈ [t0, t2] , we now turn to characterize their distribution
across the three subsequent services s0, s1 and s2. We will next investigate how their
surplus is affected by changes in price and in schedule. Again, for readability, we focus
on situations in which service departures are evenly distributed over time, and there are
only two levels of price, high (ph) and low (pl) , so that the time interval ∆T and the price
saving ∆p are both constant.

As with the uninformed passengers, there are again four cases to consider, depending
on the pattern of prices across services, but we only discuss the case where prices are such
that p1 = ph > pl = p0 = p2, to be referred to as I.1, for clarity. The other cases (I.2 to
I.4) are analysed in Appendix B.

Before turning to present case I.1, we briefly return to the limit case where the price is
uniform across services so that no saving is available. When so, any given service collects
all passengers whose ideal departure time lies within half the time interval which sepa-
rates that service from the previous and the subsequent service. Unlike with uninformed
passengers, this includes passengers who would like to depart both earlier and later than
the service is actually scheduled.

4.1 Case I.1: p1 = ph > pl = p0 = p2

When s1 is the only expensive service passengers with a low value of time all accrue
to other services to save on price. Actually, these are passengers with τ < τ̂ , highlighting
that the cut-off value of time is just the same as for uninformed passengers. Individuals
with t∗ ∈ [t0; t1] opt for s0; those with t∗ ∈ [t1; t2] prefer to wait and take s2. Passengers
with a high value of time, namely τ ≥ τ̂ , stick to s1 in the event that t1 is sufficiently
close to their ideal departure time, and choose other services otherwise. Specifically, these
passengers respectively use s0, s1 and s2 when

t∗ ∈
[
t0;

t0 + t1
2

+
∆p

2τ

]
t∗ ∈

[
t0 + t1

2
+

∆p

2τ
;
t1 + t2

2
− ∆p

2τ

]
t∗ ∈

[
t1 + t2

2
− ∆p

2τ
; t2

]
.
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Accordingly, we can respectively write the demand for service s0, s1 and s2 as

X̃0 = X0 +X0

=

ˆ τ̂

0

X(1]◃0 (τ) dG (τ) +

ˆ +∞

τ̂

X1◃0 (τ) dG (τ)

X1 =

ˆ +∞

τ̂

X1 (τ) dG (τ)

X̃2 = X2 +X2

=

ˆ τ̂

0

X(1]◃2 (τ) dG (τ) +

ˆ +∞

τ̂

X1◃2 (τ) dG (τ)

where

X(1]◃0 (τ) =

ˆ t1

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗

X1◃0 (τ) =

ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗,

together with

X1 (τ) =

ˆ t1+t2
2

−∆p
2τ

t0+t1
2

+∆p
2τ

x (p1 + τ ∥t∗ − t1∥)ndt∗

and with

X(1]◃2 (τ) =

ˆ t2

t1

x (p2 + τ ∥t∗ − t2∥)ndt∗

X1◃2 (τ) =

ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥)ndt∗,

where the subscripts (1] ◃ 0 and 1 ◃ 0 respectively indicate passengers with t∗ ≤ t1 and
with t∗ ≤ t0+t1

2
+ ∆p

2τ
< t1, who would take s1 rather than s0, if they were to abstract from

any price consideration; and similarly for (1] ◃ 2 and 1 ◃ 2. A representation of this
market segmentation is found in the graphs on the right in Figure 2, whereas the graphs
on the left represent the market segmentation with a (nearly) uniform price. We can also
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write the surplus respectively derived from the use of s0, s1 and s2 as

Ṽ0 =

ˆ τ̂

0

(ˆ t1

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t0+t1
2

+∆p
2τ

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

V 1 =

ˆ +∞

τ̂

(ˆ t1+t2
2

−∆p
2τ

t0+t1
2

+∆p
2τ

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

Ṽ2 =

ˆ τ̂

0

(ˆ t2

t1

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ) ,

with total surplus V = Ṽ0 + V 1 + Ṽ2.

4.1.1 A change in price

Also in this case, an infinitesimal change in price pi, i = 0, 1, 2, has a double impact.
First, it affects all passengers who take si both before and after the change (the intensive
margin). Second, it affects the distribution of passengers across services (the extensive
margin). Here, the sole additional twist is that the latter effect works not only through
the cut-off value of time τ̂ but also through the critical departure time t∗c (τ). Overall, we
find the standard result that an increase in the price of a given service triggers a reduction
in surplus equal to the demand for that service, namely (see Appendix B.1 for details):

dV

dp0
= −X̃0;

dV

dp1
= −X1;

dV

dp2
= −X̃2.

4.1.2 A change in schedule

We next consider an infinitesimal change in the time interval ∆T that separates two
subsequent services. Our strategy is to look at an increase in the time interval around
the departure time of service s1, with the number of passengers being held constant.
Formally, we fix t1 and let t0 decrease by dT and t2 increase by dT, cutting out of the
surplus variation the terms which are due to the 2ndT additional passengers whose ideal
departure time coincides with either t0 or t2. This approach is tantamount to that followed
to investigate uninformed behaviour, once it is considered that informed passengers can
not only delay but also anticipate departure.
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Figure 2: Informed passengers - Case I.1: p1 = ph > pl = p0 = p2 (right)
Top graphs: The generalised price is plotted against the ideal departure time when the
price is (nearly) uniform (left) and when it is not (right). The blue line represents the
generalised price of a patient passenger (τ < τ̂), the red line that of an impatient passenger
(τ > τ̂), the magenta line that of a passenger with τ = τ̂ . The individual generalised
price decreases to the monetary price (the thick black vertical line placed in the service
locations) as the departure time approaches the ideal one, t∗.
Bottom graphs: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services with uniform price (left) and in case I.1. Colors refer to the value of time
τ ; the intensity is associated with the number of passengers displaying the characteristics
(t∗, τ). For this representation, we assume it independent of t∗. When s1 is more expensive
than the other services, it only attracts passengers with high value of time (τ > τ̂) who
would like to depart immediately before and after t1.
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Let

τ 0 =

ˆ τ̂

0

τ
X(1]◃0 (τ)

X0

dG (τ) and τ 0 =

ˆ +∞

τ̂

τ
X1◃0 (τ)

X0

dG (τ)

τ 2 =

ˆ τ̂

0

τ
X(1]◃2 (τ)

X2

dG (τ) and τ 2 =

ˆ +∞

τ̂

τ
X1◃2 (τ)

X2

dG (τ)

measure the value of time of more to less patient passengers respectively using s0 and s2.

Omitting again the specific expressions that capture the impact of an increase of dT in
the infra-service time interval ∆T on surplus derived by the use of the single services, the
overall impact (net of any volume effects) amounts to

dV

dT
= −

(
τ 0X0 + τ 0X0 + τ 2X2 + τ 2X2

)
. (6)

Essentially, this expression mirrors two consequences to transportation services becoming
less frequent. First, passengers using s1 are not concerned, provided this service still
departs at t1. Second, as the DTS increases for patrons of s0 and s2, welfare reduces
by an aggregate measure of their value of time, given their travel demand, according to
whether that value is low or high. In this context, a decision to make services more
frequent around the expensive service (s1) would benefit individuals with both low and
high value of time, hence individuals in any economic conditions. Although it would not
benefit all passengers in the system, it would leave out those with a high value of time,
who are plausibly wealthier.

5 Assessing policy choices: winners and losers
So far we have investigated travel choices, looking at the impact on passenger welfare

of marginal variations in price and in schedule, which alter neither the pattern of prices
across services nor the number of available services. To illustrate how our analysis can be
made fully operational in practice, and help decision-makers assess and fine-tune targeted
policies, we now turn to consider discrete variations in price and in frequency, which do
lead to a different pattern of prices and number of services. We identify winners and
losers in the population of passengers.

5.1 A change in price

To illustrate the impact of a change in price leading to a different pattern of prices
across services, we compare a situation in which prices are such that p1 = ph > pl = p0 =

p2, as in cases U.1 and I.1, with a situation in which prices are such that p0 = p1 = ph >

p2 = pl, as in cases U.4 and I.4, which are respectively developed in Appendix A and B.
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Clearly, the only difference between the two situations is that service s0 is expensive in
the former and cheap in the latter.

Assessing the consequences for uninformed passengers requires comparing case U.1
with case U.4. A graphical representation is found in Figure 3. Although the top graph
on the left refers to case U.1 and the top graph to the right refers to case U.4, they look
nearly the same. This is because, as p0 is raised to ph, nothing changes for passengers with
t∗ ∈ [t0, t2], namely, those whose behaviour is apparent from the graphs. The passengers
who are actually concerned by the variation in p0 are those with t∗ ∈ [t−1, t0] instead.
Specifically, those with τ ≤ τ̂

2
are induced to switch from s0 to s2, that is, they decide

to wait much longer to still be able to take a cheaper service. Hence, in fact, s2 receives
more passengers in the graph on the right than in the graph on the left.

There are essentially two insights which a policy-maker could retain by looking at
these effects in a transportation system with uninformed passengers. First, making a
cheap service available before an expensive service (i.e., switching from case U.4 to case
U.1) would allow for travelling to be not only less expensive but also more timely in the
overall system. Second, within the whole population, this policy would be beneficial to
some of the passengers who have low earnings, in different ways. The poorest would still
travel for cheap but face a shorter WT. The others would still wait little but spend less.

We now turn to consider informed passengers, and compare case I.1 with case I.4.
This is made graphically in Figure 3, in which the bottom graph on the left represents
case I.1 and the bottom graph to the right represents case I.4. These graphs show that
passengers with t∗ ∈ [t0, t1] are now concerned as p0 is increased to ph. Among those,
passengers with τ ≤ τ̂

2
and some with τ ∈

(
τ̂
2
, τ̂
]

are induced to switch from s0 to s2, that
is, they decide to wait long, rather than anticipating departure slightly, to still be able
to use a cheap service. Passengers with τ > τ̂ , whose ideal departure time is closer to t1

than t0, switch from s0 to s1 to wait less than they were anticipating departure prior to
the change, but spend more to travel.

The insights previously drawn on the possibility of making a cheap service available
before an expensive service (here, a switch from case I.4 to case I.1), carry over only
partially when passengers are informed. First, although it is still true that travelling
would become overall less expensive, it is not clear that it would also be overall more
timely, since some passengers decide to anticipate departure when s0 is cheap more then
they wait when s0 is expensive. Second, the price cut would produce more extensive effects
in that, in addition to low-earning individuals, it would benefit high-earning individuals
as well. Thus, it would be less powerful a pro-poor tool in this context.
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Figure 3: Change in price: p1 is increased from pl (left) to ph (right)
Top graphs: Distribution of uninformed passengers. As p1 is increased, s2 attracts very
patient passengers from s0.
Bottom graphs: Distribution of informed passengers. As p1 is increased, passengers with
very low value of time and some passengers with intermediate value of time switch from s0
to s2. Passengers with high value of time switch from s0 to s1 only if their ideal departure
time is very closer to t1.

5.2 Introduction (or cancellation) of a service

We now turn to consider a change in the number of services due to the introduction or
cancellation of a service. To that end, we compare cases U.1 and I.1, in which service s1 is
offered at a price of ph, with a situation in which, whereas the other services are still both
cheap, s1 is infinitely expensive instead (p1 → ∞). A switch from the latter to the former
situation is tantamount to the service frequency being doubled since, after the switch, the
first truly affordable service after s0 is scheduled at t1 rather than at t2. This makes it
plane that scheduling considerations cannot be disjoint from price considerations. More
precisely, it is not possible for a decision-maker to assess the consequences of fewer/more
services being provided in the transportation system, without taking into account the
price of the services which are eliminated or newly introduced and, hence, the resulting
price pattern.

The effects for the uninformed passengers with t∗ ∈ [t0, t2] are represented in Figure
4. The graphs on the left refer to the case where s1 is unavailable; those on the right
refer to the case where s1 is offered at a price of ph. From the graphs it appears that the
switch from the former case to the latter concerns passengers who would like to depart
after t0 but no later than t1, and dislike waiting (τ > τ̂). They all switch from s2 to s1

as s1 becomes affordable (or available). Although they spend more in the presence of
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s1, provided s1 is more expensive than s2, this does not make them worse off as they all
sustain a lower opportunity cost of waiting.

In the informed regime, as represented in Figure 5 with similar interpretation to Figure
4, concerned passengers appear to be those who would like to depart immediately before
and after t1, and dislike shifting departure away from their ideal time (τ > τ̂). They
respectively switch from s0 and s2 to s1 when this latter service is available. Again, they
all spend more since both s0 and s2 are cheaper than s1; yet, they all benefit from a
decrease in the DTS.

There is a clear insight to be retained, which applies to both uninformed and informed
passengers. The introduction of an expensive service between two cheap services (i.e., a
switch from a regime without s1 to case U.1 / I.1) represents a suitable tool, if a decision-
maker chases to favour high-earnings (high−τ) passengers, who are prone to pay more
in order to depart at a more desirable time, without penalizing low-earnings (low−τ)
passengers, who could still travel for cheap as if the schedule of services were unaltered.

6 On the impact of information on passenger welfare
We complete our analysis with a few considerations on the impact that the possibility

for passengers of making informed travel decisions (potentially) has in multi-service trans-
portation systems as here explored. Since the choices, which are available to passengers
when they lack information on services, are all equally available when they hold infor-
mation, it is clear that, if information were irrelevant, then informed passengers would
simply behave in exactly the same manner as uninformed passengers. Our previous anal-
ysis shows that this is not the case of (at least) some passengers, and it is straightforward
to conclude that information is relevant indeed.

One effect of information is precisely that, for an equal supply of services, the set of
services which are actually accessible to passengers is richer. Suppose that S = {s0, s1, s2},
where p0 = p1 = p2 so as to abstract from any price difference, and restrict attention to
passengers with t∗ ∈ [t0, t2]. If uninformed, then these passengers take either s1 or s2,
whereas s0 is scheduled too early for their use. If informed, then s0 becomes accessible and
some passengers do switch to it, namely, those with t∗ ∈

[
t0, t0 +

∆T
2

]
. In good substance,

given the supply S, informed passengers have one more service to use, if they wish, which
is instead inaccessible to uninformed passengers, even with equal ideal departure time
and value of time. Thereby, with a uniform price, the DTS will be halved, in aggregate,
if passengers are informed.
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Figure 4: Introduction of a service with uninformed passengers: s1 is unavailable
(left); s1 is available (right)
Top graphs: The generalised price is plotted against the ideal departure time, with similar
interpretation to previous figures.
Bottom graphs: Passenger distribution across services. When s1 is introduced (right),
it attracts some passengers from s2. These are impatient passengers who would like to
depart after t0 but no later than t1.

25



τ

t∗

s0 s2

τ

t∗

s0

s1 s1

s2
τ̂

t∗

p̃

t0 t1 t2

∆T ∆T

p̃ 0
=
p 0
+
τ |t

0
−
t
⋆ |

p̃0 =
p0 +

τ |t0 −
t⋆ | p̃2 = p2 + τ |t2 − t⋆|

p̃
2 =

p
2 +

τ |t
2 −

t ⋆|

t∗

p̃

t0 t1 t2

∆p

∆T ∆T

p̃ 0
=
p 0
+
τ |t

0
−
t
⋆ |

p̃0 =
p0 +

τ |t0 −
t⋆ |

p̃
1 p̃ 1

p̃2 = p2 + τ |t2 − t⋆|

p̃
2 =

p
2 +

τ |t
2 −

t ⋆|

Figure 5: Introduction of a service with informed passengers: s1 is unavailable
(left); s1 is available (right)
Top graphs: The generalised price is plotted against the ideal departure time, with similar
interpretation to previous figures.
Bottom graphs: Passenger distribution across services. When s1 is introduced (right), it
attracts some passengers from both s0 and s2. The former are passengers with high value
of time who would like to depart no much earlier than t1. The latter are passengers with
high value of time who would like to depart no much later than t1.
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Of course, looking at the impact of information with the monetary dimension being
sterilized is a somewhat simplistic approach. One should also consider possible differences
in the monetary price to assess the impact of information on passengers welfare. In some
situations, information affects passengers in the same direction along both the monetary
and the non-monetary dimension. This is the case, for instance, when prices are such that
p1 = ph > pl = p0 = p2. Actually, by comparing again U.1 and I.1, it is easy to verify
that informed passengers face both a lower monetary price and a lower non-monetary
cost, in aggregate. Thus, clearly, information reduces the generalised price for the whole
population of passengers.

This is not a general rule though, and conclusions may be different with other price
patterns. To illustrate, let us take p0 = p1 = ph > p2 = pl, as in cases U.4 and I.4
analysed in Appendix B.4. With this price pattern, passengers still benefit from a lower
non-monetary cost, if informed; yet, the monetary price is now higher, in aggregate (the
mathematical proof is found in Appendix C). Intuitively, those who really care about early
departure will have to pay more to take advantage of s0, which is now expensive. As a
result, monetary costs are higher, overall. Of course, it remains that the monetary penalty
must be worth the non-monetary benefit for those passengers to be willing to modify
their behaviour when aware of the service scheduling. This conclusion brings us back to
considerations previously made about the possibility of introducing an expensive service
in a system with informed passengers. In that case, we concluded that the additional
service favours those with high earnings without, yet, damaging those who stick to cheaper
services. In a similar fashion, information permits passengers with a high willingness to
pay to depart more timely, whereas the others can still choose to spend less, accepting to
face a bigger DTS.

In spite of a general rule not being identifiable, an interesting lesson seems to emerge.
Although information might lead to higher monetary payments for the population of
passengers, it nonetheless reduces aggregate time costs. This lesson has emerged by taking
the supply of services to be the same, regardless of passenger information. Plausibly
enough, in a transportation system the supply of services will be adjusted to account
for passenger behaviour, which obviously depends on the held information. If this is
considered, then it is clear that making information accessible to passengers is also an
indirect way of promoting efficiency gains in service frequency and scheduling.

One last point is worth making. As information does not need affect all passengers, one
may be interested in disentangling those who take advantage of information from those
who do not. To avoid delivering additional calculations, which would add little to the main
message of the analysis, we content ourselves with a graphical representation, which we
provide in Figure 6. In the top graphs, the distribution of uninformed passengers is com-
pared with that of informed passengers when the price pattern is p1 = ph > pl = p0 = p2
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(cases U.1 and I.1). First, with information, the early service s0 attracts some passengers
with ideal departure time beyond t0, who would rather take s1 and s2 if uninformed. The
former are passengers with high value of time, who welcome the possibility of facing a
smaller DTS by anticipating departure, and all the more that s0 is cheaper than s1. The
latter are passengers with low value of time, who welcome the possibility of travelling
for cheaper by anticipating departure slightly rather than waiting until t2. Also ser-
vice s1 attracts some passengers who would take s2 if uninformed. These are passengers
with high value of time, who are prone to spend more money in order to face a smaller
DTS. In good substance, to the extent that the individual value of time is indicative of
the individual earnings, information is beneficial to both passengers with low and high
earnings, albeit the latter seem to take more advantage of it, in that they adjust their
behaviour through the double channel of a switch to s0 and s1. The bottom graphs in
Figure 6 compare the distributions of uninformed and informed passengers when prices
are p1 = p0 = ph > pl = p2 (cases U.4 and I.4 in Appendix B.4). One can read and use
them along the same lines, as a support to draw useful policy insights.

7 Conclusion
We constructed a micro-founded travel demand model which allows for two dimen-

sions of heterogeneity. Passengers differ both in their ideal departure time (horizontal
differentiation) and in their value of time (vertical differentiation). We showed that either
aspect is relevant in terms of both their travel choices and the impact of changes in price
and/or schedule on welfare. If policy-makers are to account for these effects, then our
model shall be precious at enabling them to make informed decisions.

Besides, the model sheds light on the role and the importance of information for
the performance of multi-service transportation systems. Ceteris paribus, information on
prices and service schedules enhances passenger welfare. Again, the impact of information
varies across passengers. Some are unaffected, others may derive significant benefits from
it - and their behaviour may be altered radically, if this information is made available (or
easily accessible) to them.

Whereas our paper still falls short of providing a full analysis of the impact of informa-
tion on passenger welfare, we believe it paves the way for that. Making further progress
in that direction is on our research agenda.
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Figure 6: Impact of information
Top graphs: Passengers distribution with prices p1 = ph > pl = p0 = p2

On the left, uninformed passengers wait until t2 if their value of time is low (τ < τ̂);
they take s1 otherwise. With information, some passengers, rather than waiting for s2,
anticipate departure slightly and take s1 (area A), in spite of the higher price (p1 > p2).
Others, who patronize s1 without information, anticipate departure even more and take
s0 (area C) in order to take advantage of the lower price p0 < p1.
On the right, informed passengers pay a higher price to use s1 only if it is scheduled
immediately before or after their ideal departure time, and they find it costly to wait
(τ > τ̂).
Bottom graphs: Passengers distribution with prices p0 = p1 = ph > pl = p2

On the left, uninformed passengers wait until t1 and even until t2, if they are sufficiently
patient. With information, those with not-too-low value of time who would like to depart
early enough, switch to s0 (areas C and D); those with high value of time who would like
to depart slightly later than t1 (area A), anticipate departure and take s1.
On the right, informed passengers pay a higher price to use s1 only if the service is sched-
uled sufficiently close to their ideal departure time, and they dislike shifting departure
(τ > τ̂).
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A Uninformed passengers

A.1 Case U.1: p1 = ph > p2 = pl

A.1.1 The impact of a change in price
As similar results are obtained in all cases, we provide detailed calculations of the

impact of a price change on surplus only for this case, omitting them for cases U.2 to U.4,
to be reported below.

A marginal change in p0 We compute

dṼ0

dp0
= −
ˆ +∞

0

(ˆ t0

t−1

x (p0 + τ ∥t0 − t∗∥)ndt∗
)
dG (τ)

= −X̃0,

whereas
(
dV 1/dp0

)
= 0 and (dV 2/dp0) = 0. Hence,

dV

dp0
= −X̃0.

A marginal change in p1 We compute

dV 1

dp1
= − dτ̂

dp1

(ˆ t1

t0

v (p1 + τ̂ ∥t1 − t∗∥)ndt∗
)
g (τ̂)

−
ˆ +∞

τ̂

(ˆ t1

t0

x (p1 + τ ∥t1 − t∗∥)ndt∗
)
dG (τ)

=− dτ̂

dp1

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗))ndt∗
)
g (τ̂)− X̄1

and
dV 2

dp1
=

dτ̂

dp1

(ˆ t1

t0

v (p2 + τ̂ (t2 − t∗))ndt∗
)
g (τ̂) ,
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whereas
(
dṼ0/dp1

)
= 0. By the definition of τ̂ we see that p1+τ̂ (t1 − t∗) = p2+τ̂ (t2 − t∗)

so that

dV

dp1
= −X̄1 −

dτ̂

dp1

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗))ndt∗
)
g (τ̂)

+
dτ̂

dp1

(ˆ t1

t0

v (p2 + τ̂ (t2 − t∗))ndt∗
)
g (τ̂)

= −X̄1.

A marginal change in p2 We compute

dV 1

dp2
= − dτ̂

dp2

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗))ndt∗
)
g (τ̂)

and

dV 2

dp2
=

dτ̂

dp2

(ˆ t1

t0

v (p2 + τ ∥t2 − t∗∥)ndt∗
)
g (τ̂)

−
ˆ τ̂

0

(ˆ t1

t0

x (p2 + τ ∥t2 − t∗∥)ndt∗
)
dG (τ)

=
dτ̂

dp2

(ˆ t1

t0

v (p2 + τ (t2 − t∗))ndt∗
)
g (τ̂)−X2,

whereas
(
dṼ0/dp2

)
= 0. Summing up and using again the equality p1 + τ̂ (t1 − t∗) =

p2 + τ (t2 − t∗), we obtain

dV

dp2
= − dτ̂

dp2

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗))ndt∗
)
g (τ̂)

+
dτ̂

dp2

(ˆ t1

t0

v (p2 + τ (t2 − t∗))ndt∗
)
g (τ̂)−X2

=−X2.

A.1.2 The impact of a change in schedule
We compute

1

n

dṼ0

dT
= 0 +

ˆ +∞

0

(
dt0
dT

v (p0)−
dt−1

dT
v (p0 + τ∆T )

)
dG (τ)

−
ˆ +∞

0

(ˆ t0

t−1

dt0
dT

τx (p0 + τ (t∗ − t0)) dt
∗
)
dG (τ) .
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With t0 the reference point, (dt0/dT ) = 0 and (dt−1/dT ) = −1 and we have

dṼ0

dT
=

ˆ +∞

0

v (p0 + τ∆T )ndG (τ) .

We next compute

1

n

dV 1

dT
= − dτ̂

dT

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗)) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
dt1
dT

v (p1)−
dt0
dT

v (p1 + τ∆T )

)
dG (τ)

−
ˆ +∞

τ̂

(ˆ t1

t0

dt1
dT

τx (p1 + τ (t1 − t∗)) dt∗
)
dG (τ) .

Being based on the definitions of X̄1 and τ̄1, and considering again that t0 is the reference
point, we can further write

dV 1

dT
= − dτ̂

dT

(ˆ t1

t0

v (p1 + τ̂ (t1 − t∗))ndt∗
)
g (τ̂)− τ̄1X̄1 + n (1−G (τ̂)) v (p1) .

We also compute

1

n

dV 2

dT
=

dτ̂

dT

(ˆ t1

t0

v (p2 + τ̂ (t2 − t∗)) dt∗
)
g (τ̂)

+

ˆ τ̂

0

(
dt1
dT

v (p2 + τ∆T )− dt0
dT

v (p2 + 2τ∆T )

)
dG (τ)

−
ˆ τ̂

0

(ˆ t1

t0

dt2
dT

τx (p2 + τ (t2 − t∗)) dt∗
)
dG (τ) .

With t0 the reference point, (dt1/dT ) = 1 and (dt2/dT ) = 2 and we have

dV 2

dT
=

dτ̂

dT

(ˆ t1

t0

v (p2 + τ̂ (t2 − t∗))ndt∗
)
g (τ̂)− 2τ 2X2 +

ˆ τ̂

0

v (p2 + τ∆T ) dG (τ) .

Overall:

dV

dT
=

dṼ0

dT
+

dV 1

dT
+

dV 2

dT
= −τ̄1X̄1 − 2τ 2X2

+
dτ̂

dT

(ˆ t1

t0

[v (p2 + τ̂ (t2 − t∗))− v (p1 + τ̂ (t1 − t∗))]ndt∗
)
g (τ̂)

+

ˆ +∞

0

v (p0 + τ∆T )ndG (τ) + n (1−G (τ̂)) v (p1)

+

ˆ τ̂

0

v (p2 + τ∆T )ndG (τ) .
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By definition, p2 + τ̂ (t2 − t∗) = p2 + τ̂∆T + τ̂ (t1 − t∗) = p1 + τ̂ (t1 − t∗), and we can
rewrite

dV

dT
= −τ̄1X̄1 − 2τ 2X2 + n (1−G (τ̂)) v (p1)

+

ˆ +∞

0

v (p0 + τ∆T )ndG (τ) +

ˆ τ̂

0

v (p2 + τ∆T )ndG (τ) .

Neglecting the last three terms, which capture volume effects, yields (5).

A.2 Case U.2: p1 = pl < ph = p0
Passengers with t∗ ∈ [t−1, t0] would all take s0, if they were to choose the service

considering the sole departure time. Because price matters as well, only those who are
impatient (with τ > τ̂) are not attracted by the price saving available with s1, and do
take s0. Accordingly, the partial and total demand for s0, and the average value of time
of its patrons are given by

X0 (τ) =

ˆ t0

t−1

x (p0 + τ ∥t0 − t∗∥)ndt∗

X0 =

ˆ +∞

τ̂

X0 (τ) dG (τ)

τ 0 =

ˆ +∞

τ̂

τ
X0 (τ)

X0

dG (τ) .

By contrast, patient passengers (with τ ≤ τ̂) prefer to wait for s1 and save some money.
The partial and total demand for s1, and the average value of time of its patrons are given
by

X0◃1 (τ) =

ˆ t0

t−1

x (p1 + τ ∥t1 − t∗∥)ndt∗

X1 =

ˆ τ̂

0

X1 (τ) dG (τ)

τ 1 =

ˆ τ̂

0

τ
X0◃1 (τ)

X1

dG (τ) ,

where the subscript 0 ◃ 1 is used to indicate passengers who would prefer to depart at t0
and, yet, take s1.

For passengers with t∗ ∈ [t0, t1], s1 is the best matching in terms of departure time.
Provided p1 = pl ≤ p2, there is no benefit to postponing departure, and they all stick to
s1. Thus, whereas there is no demand for s2, the partial and total demand for s1 and the

34



value of time are given by

X1 (τ) =

ˆ t1

t0

x (p1 + τ ∥t1 − t∗∥)ndt∗

X̃1 =

ˆ +∞

0

X̃1 (τ) dG (τ)

τ̃1 =

ˆ +∞

0

τ
X1 (τ)

X̃1

dG (τ) .

In definitive, X0, X1, and X̃1 are respectively the aggregate demand of passengers who
choose to take s0, prefer to wait for s1 although they could have taken s0, and take
s1 having no incentive to wait for a later and equally expensive service. A graphical
representation is provided in Figure 7. We also write the surplus respectively associated
with s0 and s1 as follows:

V 0 =

ˆ +∞

τ̂

(ˆ t0

t−1

v (p0 + τ ∥t0 − t∗∥)ndt∗
)
dG (τ)

and

V 1 + Ṽ1 =

ˆ τ̂

0

(ˆ t0

t−1

v (p1 + τ ∥t1 − t∗∥)ndt∗
)
dG (τ)

+

ˆ +∞

0

(ˆ t1

t0

v (p1 + τ ∥t1 − t∗∥)ndt∗
)
dG (τ) .

A.2.1 The impact of a change in price
As expected, we have

dV

dp0
=

dV 0

dp0
= −X̄0.

An increase in the price of the early but expensive service would hinder high−τ (high-
income) passengers only. The overall loss of surplus would be greater, if the cheaper
service s1 were not available, provided this service attracts some of the passengers who
were using s0 prior to the price increase. Similarly, we have

dV

dp1
=

dV 1

dp0
+

dṼ1

dp0

= −
(
X1 + X̃1

)
,

showing that a variation in the price of the late but cheap service would have more
pervasive effects. In addition to high-income passengers, it would concern also (and above
all) low-income (low−τ) passengers. A policy-maker, who were to decrease the price of
the late but cheap service, at the aim of favouring little wealthy passengers, would end
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Figure 7: Uninformed passengers - Case U.2: p1 = pl < ph = p0

Top graph: The generalised price is plotted against the ideal departure time. The blue
line represents the generalised price of a patient passenger (τ < τ̂), the red line that of
an impatient passenger (τ > τ̂), the magenta line that of a passenger with τ = τ̂ . The
individual generalised price decreases to the monetary price (the thick black vertical line
placed in the service locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. Patient passengers, who would use s0 if it were cheap, wait
until t1 to save on the price.
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up benefiting also passengers with high earnings through that same policy.

A.2.2 The impact of a change in schedule
We compute

1

n

dV 0

dT
= − dτ̂

dT

(ˆ t0

t−1

v (p0 + τ̂ ∥t0 − t∗∥) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
dt0
dT

v (p0)−
dt−1

dT
v (p0 + τ∆T )

)
dG (τ)

−
ˆ +∞

τ̂

(ˆ t0

t−1

dt0
dT

τx (p0 + τ ∥t0 − t∗∥) dt∗
)
dG (τ) .

With t0 the reference point, t−1 decreases by dT , t1 increases by dT (and t2 by 2dT ) so
that

dV 0

dT
=

τ̂

∆T

(ˆ t0

t−1

v (p0 + τ̂ ∥t0 − t∗∥)ndt∗
)
g (τ̂) +

ˆ +∞

τ̂

v (p0 + τ∆T )ndG (τ) ,

where the last term is associated with the additional passengers using s0 as the time
interval around s0 is extended. As t0 is fixed, the change in schedule does not concern
any of the passengers already using s0. The only effect associated with s0 pertains to the
passengers who come to take this service following the change. Similarly, we compute

1

n

(
dV 1

dT
+

dṼ1

dT

)
=

dτ̂

dT

(ˆ t0

t−1

v (p1 + τ̂ ∥t1 − t∗∥) dt∗
)
g (τ̂)

+

ˆ τ̂

0

(
dt0
dT

v (p1 + τ∆T )− dt−1

dT
v (p1 + 2τ∆T )

)
dG (τ)

−
ˆ τ̂

0

(ˆ t0

t−1

dt1
dT

τx (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

+ 0 +

ˆ +∞

0

(
dt1
dT

v (p1)−
dt0
dT

v (p1 + τ∆T )

)
dG (τ)

−
ˆ +∞

0

(ˆ t1

t0

dt1
dT

τx (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ) ,

which is rewritten as

dV 1

dT
+

dṼ1

dT
= −τ 1X1 − τ̃1X̃1 −

τ̂

∆T

(ˆ t0

t−1

v (p1 + τ̂ ∥t1 − t∗∥)ndt∗
)
g (τ̂)

+ nv (p1) +

ˆ τ̂

0

v (p1 + 2τ∆T )ndG (τ) ,

where again the last two terms capture volume effects. As the departure of s1 is postponed,
there is a double reduction in the surplus derived from the use of s1: passengers with a
value of time of τ̂ shift to the previous service; those who stick to s1 all wait longer. The
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total effect on surplus amounts to

dV

dT
=

dV 0

dT
+

dV 1

dT
+

dṼ1

dT

= −τ 1X1 − τ̃1X̃1

+
τ̂

∆T

(ˆ t0

t−1

v (p0 + τ̂ ∥t0 − t∗∥)ndt∗
)
g (τ̂)

− τ̂

∆T

(ˆ t0

t−1

v (p1 + τ̂ ∥t1 − t∗∥)ndt∗
)
g (τ̂)

+

ˆ +∞

τ̂

v (p0 + τ∆T )ndG (τ) +

ˆ τ̂

0

v (p1 + 2τ∆T )ndG (τ) + nv (p1) .

Using p0 + τ̂ ∥t0 − t∗∥ = p1 + τ̂ ∥t1 − t∗∥ and neglecting the last three terms (to rule out
any volume effects), the aggregate impact of a variation in schedule boils down to

dV

dT
=

dV0

dT
+

dV 1

dT
+

dṼ1

dT

= −
(
τ 1X1 + τ̃1X̃1

)
. (7)

Since s1 is cheaper than s0, the postponement of s1 affects not only passengers with
t∗ ∈ [t0; t1] but also passengers with t∗ ∈ [t−1; t0] and τ ≤ τ̂ .

A.3 Case U.3: p0 ≤ p1 ≤ p2
Under this price ordering, there is no point for any passengers to wait for the subse-

quent service. They will all take advantage of the first available departure. With similar
notation to the previous case, we let the partial and total demand for service i = 0, 1, and
the value of time of its patrons respectively be

Xi (τ) =

ˆ ti

ti−1

x (pi + τ ∥ti − t∗∥)ndt∗

X̃i =

ˆ +∞

0

Xi (τ) dG (τ)

τ̃i =

ˆ +∞

0

τ
Xi (τ)

X̃i

dG (τ) .

No demand for s2 is expressed by passengers with t∗ ∈ [t1 − 2∆T, t1] . A graphical rep-
resentation is provided in Figure 8. The surplus associated with si, i = 0, 1, is given
by

Ṽi =

ˆ +∞

0

(ˆ ti

ti−1

v (pi + τ ∥ti − t∗∥)ndt∗
)
dG (τ) .
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p̃

τ

t∗

t−1 t0 t1 t2

∆p

∆T ∆T ∆T

p̃
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2 −

t ⋆|

p̃
1 =

p
1 +

τ |t
1 −

t ⋆|p̃
0 =

p
0 +
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p̃0 = p0 + τ |t0 − t⋆|

p̃1 = p1 + τ |t1 − t⋆|

p̃2 = p2 + τ |t2 − t⋆|

Figure 8: Uninformed passengers - Case U.3: p0 ≤ pl ≤ p2

Top graph: The generalised price is plotted against the ideal departure time. The blue
lines are associated with lower values of time than the magenta lines; in turn, these
are associated with lower values of time than the red lines. The individual generalised
price decreases to the monetary price (the thick black vertical line placed in the service
locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. No passenger has any interest in waiting for later services
since s1 and s2 are both more expensive than s0.
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A.3.1 The impact of a change in price
In this context, a change in price pi alters neither the distribution of passengers across

services nor their WT. It only affects the surplus of those who take si. We thus find the
following usual result:

dV

dpi
= −X̃i.

A.3.2 The impact of a change in schedule
With t0 the reference departure time, an infinitesimal increase in the time interval ∆T

around t0 involves that s1 is re-scheduled at t1 + dT, whereas the service preceding s0 is
re-scheduled at t−1 − dT. First take i = 0 and compute

1

n

dṼ0

dT
= 0 +

ˆ +∞

0

(
dt0
dT

v (p0)−
dt−1

dT
v (p0 + τ∆T )

)
dG (τ)

−
ˆ +∞

0

(ˆ t0

t−1

dt0
dT

τx (p0 + τ (t∗ − t0)) dt
∗
)
dG (τ) .

Using (dt0/dT ) = 0 and (dt−1/dT ) = −1, this reduces to

dṼ0

dT
=

ˆ +∞

0

v (p0 + τ∆T )ndG (τ) .

Next take i = 1 and compute

1

n

dṼ1

dT
= 0 +

ˆ +∞

0

(
dt1
dT

v (p1)−
dt0
dT

v (p1 + τ∆T )

)
dG (τ)

−
ˆ +∞

0

(ˆ t1

t0

dt1
dT

τx (p1 + τ (t1 − t∗)) dt∗
)
dG (τ) ,

which further yields
dṼ1

dT
= nv (p1)− τ̃1X̃1.

Overall:

dV

dT
=

dṼ0

dT
+

dṼ1

dT

= −τ̃1X̃1 +

ˆ +∞

0

v (p0 + τ∆T ) dG (τ) + nv (p1) .

Neglecting the last two terms, we end up with

dV

dT
= −τ̃1X̃1. (8)
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A.4 Case U.4: p0 = p1 = ph > pl = p2
Given that s1 is as expensive as s0, for passengers who can take s0 there is no point to

wait for s1. These are passengers with t∗ ∈ [t−1, t0], who reach the station before t0 and
choose between s0 and s2. They prefer the latter if and only if τ ≤ τ̂ /2: only very patient
passengers are prone to wait until t2 to benefit from the price saving. Passengers with
t∗ ∈ [t0, t1] choose between s1, which departs earlier, and s2, which is cheaper. The latter
is preferred if and only if τ ≤ τ̂ : only sufficiently patient passengers are available to wait
until t2 to pay less. Because two cut-off values of time are relevant, the distribution of
passengers across services depends on whether τ takes low, intermediate, or high values.
The partial and total demand for s0 are respectively given by

X0 (τ) =

ˆ t0

t−1

x (p0 + τ ∥t0 − t∗∥)ndt∗

X0 =

ˆ ∞

τ̂
2

X0 (τ) dG (τ) ,

those for s1 are given by

X1 (τ) =

ˆ t1

t0

x (p1 + τ ∥t1 − t∗∥)ndt∗

X1 =

ˆ ∞

τ̂

X1 (τ) dG (τ) .

For s2 one has

X0◃2(τ) =

ˆ t0

t−1

x (p2 + τ ∥t2 − t∗∥)ndt∗

X1◃2 (τ) =

ˆ t1

t0

x (p2 + τ ∥t2 − t∗∥)ndt∗

X2 = X
2
+X2,

where

X
2
=

ˆ τ̂
2

0

X0◃2(τ)dG(τ) and X2 =

ˆ τ̂

0

X1◃2(τ)dG(τ),

and the subscripts 0 ◃ 2 and 1 ◃ 2 respectively refer to passengers who would depart at
t0 and t1, if s2 were not cheaper than s0 and s1. A graphical representation is provided
in Figure 9, which evidences that s2 attracts some passengers from both s0 and s1. The
total surplus is given by

V = V0 + V1 + V
2
+ V 2,
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where

V0 =

ˆ ∞

τ̂
2

(ˆ t0

t−1

v (p0 + τ ∥t0 − t∗∥)ndt∗
)
dG (τ)

V1 =

ˆ ∞

τ̂

(ˆ t1

t0

v (p1 + τ ∥t1 − t∗∥)ndt∗
)
dG (τ)

V
2

=

ˆ τ̂
2

0

(ˆ t0

t−1

v (p2 + τ ∥t2 − t∗∥)ndt∗
)
dG (τ)

V 2 =

ˆ τ̂

0

(ˆ t1

t0

v (p2 + τ ∥t2 − t∗∥)ndt∗
)
dG (τ) .

A.4.1 The impact of a change in price
As in previous cases, a change in any of the prices determines a ‘standard’ reduction

in total surplus:
dV

dpi
= −Xi, ∀i ∈ {0, 1, 2} .

A.4.2 The impact of a change in schedule
We compute

1

n

dV0

dT
= −1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p0 +

τ̂

2
∥t0 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−dt−1

dT

ˆ ∞

τ̂
2

v (p0 + τ∆T ) dG (τ) +
dt0
dT

ˆ ∞

τ̂
2

v (p0) dG (τ)

−
ˆ ∞

τ̂
2

τ

(ˆ t0

t−1

dt0
dT

x (p0 + τ ∥t0 − t∗∥) dt∗
)
dG (τ)

= −1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p0 +

τ̂

2
∥t0 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−dt−1

dT

ˆ ∞

τ̂
2

v (p0 + τ∆T ) dG (τ) + 0− 0
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Figure 9: Uninformed passengers - Case U.4: p0 ≥ p1 = ph > pl = p2

Top graph: The generalised price is plotted against the ideal departure time. The red line
represents the generalised price of an impatient passenger (τ > τ̂), the magenta line that
of a passenger with τ = τ̂ . The blue line represents the generalised price of a passenger
with τ = τ̂ /2. The light blue line shows that for passengers with a strictly value of time
below (above) τ̂ /2, it is (not) worth waiting 2∆T in order to face a price cut of ∆p. The
individual generalised price decreases to the monetary price (the thick black vertical line
placed in the service locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. Very patient passengers, who would use s0 if it were cheap,
and not too impatient passengers, who would use s1 if it were cheap, all wait until t2 to
take advantage of a cheaper service.
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and

1

n

dV1

dT
= v (p1)

ˆ ∞

τ̂

dt1
dT

dG (τ)

−
ˆ ∞

τ̂

τ

(ˆ t1

t0

dt1
dT

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−
ˆ t1

t0

dτ̂

dT
(v (p1 + τ̂ ∥t1 − t∗∥) dt∗) g (τ̂)

−
ˆ ∞

τ̂

dt0
dT

v (p1 + τ∆T ) dG (τ)

= v (p1)

ˆ ∞

τ̂

dt1
dT

dG (τ)−
ˆ ∞

τ̂

τ

(ˆ t1

t0

dt1
dT

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−
ˆ t1

t0

dτ̂

dT
(v (p1 + τ̂ ∥t1 − t∗∥) dt∗) g (τ̂)− 0

and

1

n

dV
2

dT
=

1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p2 +

τ̂

2
∥t2 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−
ˆ τ̂

2

0

dt−1

dT
v (p2 + 3τ∆T ) dG (τ)

−
ˆ τ̂

2

0

(ˆ t0

t−1

dt2
dT

τx (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

+

ˆ τ̂
2

0

dt0
dT

v (p2 + 2τ∆T ) dG (τ)

=
1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p2 +

τ̂

2
∥t2 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−
ˆ τ̂

2

0

dt−1

dT
v (p2 + 3τ∆T ) dG (τ)

−
ˆ τ̂

2

0

(ˆ t0

t−1

dt2
dT

τx (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ) + 0
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and

1

n

dV 2

dT
=

ˆ τ̂

0

dt1
dT

v (p2 + τ∆T ) dG (τ)

+

(ˆ t1

t0

dτ̂

dT
v (p2 + τ̂ ∥t2 − t∗∥) dt∗

)
g (τ̂)

−
ˆ τ̂

0

τ

(ˆ t1

t0

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

−
ˆ τ̂

0

dt0
dT

v (p2 + 2τ∆T ) dG (τ)

=

ˆ τ̂

0

dt1
dT

v (p2 + τ∆T ) dG (τ) +

(ˆ t1

t0

dτ̂

dT
v (p2 + τ̂ ∥t2 − t∗∥) dt∗

)
g (τ̂)

−
ˆ τ̂

0

τ

(ˆ t1

t0

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)− 0.

Overall:

1

n

dV

dT
= −1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p0 +

τ̂

2
∥t0 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−dt−1

dT

ˆ ∞

τ̂
2

v (p0 + τ∆T ) dG (τ) + v (p1)

ˆ ∞

τ̂

dt1
dT

dG (τ)

−
ˆ ∞

τ̂

τ

(ˆ t1

t0

dt1
dT

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−
ˆ t1

t0

dτ̂

dT
(v (p1 + τ̂ ∥t1 − t∗∥) dt∗) g (τ̂)

+
1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p2 +

τ̂

2
∥t2 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−
ˆ τ̂

2

0

dt−1

dT
v (p2 + 3τ∆T ) dG (τ)

−
ˆ τ̂

2

0

(ˆ t0

t−1

dt2
dT

τx (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

+

ˆ τ̂

0

dt1
dT

v (p2 + τ∆T ) dG (τ)

+

(ˆ t1

t0

dτ̂

dT
v (p2 + τ̂ ∥t2 − t∗∥) dt∗

)
g (τ̂)

−
ˆ τ̂

0

τ

(ˆ t1

t0

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ) .
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We rewrite

1

n

dV

dT
= −1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p0 +

τ̂

2
∥t0 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
+
1

2

dτ̂

dT

(ˆ t0

t−1

v

(
p2 +

τ̂

2
∥t2 − t∗∥

)
dt∗
)
g

(
τ̂

2

)
−
ˆ t1

t0

dτ̂

dT
(v (p1 + τ̂ ∥t1 − t∗∥) dt∗) g (τ̂)

+

ˆ t1

t0

dτ̂

dT
v (p2 + τ̂ ∥t2 − t∗∥) dt∗g (τ̂)

−
ˆ τ̂

2

0

dt−1

dT
v (p2 + 3τ∆T ) dG (τ)−

ˆ ∞

τ̂
2

dt−1

dT
v (p0 + τ∆T ) dG (τ)

−
ˆ ∞

τ̂

τ

(ˆ t1

t0

dt1
dT

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−
ˆ τ̂

2

0

τ

(ˆ t0

t−1

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

+

ˆ τ̂

0

dt1
dT

v (p2 + τ∆T ) dG (τ) + v (p1)

ˆ ∞

τ̂

dt1
dT

dG (τ)

−
ˆ τ̂

0

τ

(ˆ t1

t0

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ) .

We have p0 +
τ̂
2
∥t0 − t∗∥ = p2 +

τ̂
2
∥t2 − t∗∥. Indeed, using the definition of τ̂ , this is

rewritten as

p0 +
∆p

2∆T
∥t0 − t∗∥ = p2 +

∆p

2∆T
∥t2 − t∗∥ ⇔ p0 = p2 +∆p,

which is true. We also have p1 + τ̂ ∥t1 − t∗∥ = p2 + τ̂ ∥t2 − t∗∥. Indeed, this is equivalent
to p1 = p2 +∆p, which is true. We end up with

1

n

dV

dT
= −

ˆ ∞

τ̂

τ

(ˆ t1

t0

dt1
dT

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−
ˆ τ̂

2

0

τ

(ˆ t0

t−1

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t1

t0

dt2
dT

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

−
ˆ τ̂

2

0

dt−1

dT
v (p2 + 3τ∆T ) dG (τ)−

ˆ ∞

τ̂
2

dt−1

dT
v (p0 + τ∆T ) dG (τ)

+

ˆ τ̂

0

dt1
dT

v (p2 + τ∆T ) dG (τ) + v (p1)

ˆ ∞

τ̂

dt1
dT

dG (τ) .
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Using (dt−1/dT ) = −1, (dt1/dT ) = 1, and (dt2/dT ) = 2, we further rewrite

1

n

dV

dT
= −

ˆ ∞

τ̂

τ

(ˆ t1

t0

x (p1 + τ ∥t1 − t∗∥) dt∗
)
dG (τ)

−2

ˆ τ̂
2

0

τ

(ˆ t0

t−1

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

−2

ˆ τ̂

0

τ

(ˆ t1

t0

x (p2 + τ ∥t2 − t∗∥) dt∗
)
dG (τ)

+

ˆ τ̂
2

0

v (p2 + 3τ∆T ) dG (τ) +

ˆ ∞

τ̂
2

v (p0 + τ∆T ) dG (τ)

+

ˆ τ̂

0

v (p2 + τ∆T ) dG (τ) + v (p1)

ˆ ∞

τ̂

dG (τ) .

Letting

τ1 =

ˆ ∞

τ̂

τ
X (τ)

X1

dG (τ) , τ
2
=

ˆ τ̂
2

0

τ
X0◃2(τ)

X
2

dG(τ) and τ 2 =

ˆ τ̂

0

τ
X1◃2(τ)

X2

dG(τ),

and grouping terms, we ultimately obtain

dV

dT
= −τ1X1 − 2(τ

2
X

2
+ τ 2X2)

+

ˆ ∞

τ̂
2

nv (p0 + τ∆T ) dG (τ) + n (1−G (τ̂)) v (p1)

+

ˆ τ̂
2

0

nv (p2 + 3τ∆T ) dG (τ) +

ˆ τ̂

0

nv (p2 + τ∆T ) dG (τ) .

The terms in the second and third line all identify volume effects, to be neglected. Thus,
the overall impact on surplus, working through s1and s2, amounts to

dV

dT
= −

[
τ1X1 + 2

(
τ
2
X

2
+ τ 2X2

)]
, (9)

The impact on surplus through s2 accounts doubly, and includes the effect on very patient
passengers and that on sufficiently patient passengers.

B Informed passengers

B.1 Case I.1: p1 = ph > pl = p0 = p2

B.1.1 The impact of a change in price
Again, as similar results are obtained in all cases, we provide detailed calculations of

the impact of a price change on surplus only for this case, omitting them for cases I.2 to
I.4, to be reported below.
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A marginal change in p0 We first compute

dṼ0

dp0
=

dτ̂

dp0

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

−
ˆ τ̂

0

(ˆ t1

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

− dτ̂

dp0

(ˆ t0+t1
2

+∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
v

(
p0 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t0

∥∥∥∥)n

)
dG (τ)

−
ˆ +∞

τ̂

(ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

Using (dτ̂/dp0) = − (1/∆T ) and

p0 + τ

(
t0 + t1

2
+

∆p

2τ
− t0

)
= p0 + (τ + τ̂)

∆T

2
,

we rewrite

dṼ0

dp0
=

−1

∆T

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t0+t1
2

+∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
v

(
p0 + (τ + τ̂)

∆T

2

)
n

)
dG (τ)− X̃0.

We also compute

dV 1

dp0
=

1

2τ

ˆ +∞

τ̂

(
v

(
p1 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t1

∥∥∥∥)n

)
dG (τ)

+
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

Using
p1 + τ

(
t1 −

t0 + t1
2

− ∆p

2τ

)
= p1 + (τ − τ̂)

∆T

2
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we rewrite

dV 1

dp0
=

1

2τ

ˆ +∞

τ̂

(
v

(
p1 + (τ − τ̂)

∆T

2

)
n

)
dG (τ)

+
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂) .

Since
(
dṼ2/dp0

)
= 0, overall we have

dV

dp0
=

−1

∆T

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t0+t1
2

+∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
v

(
p0 + (τ + τ̂)

∆T

2

)
n

)
dG (τ)

1

2τ

ˆ +∞

τ̂

(
v

(
p1 + (τ − τ̂)

∆T

2

)
n

)
dG (τ)

− X̃0.

Considering that p1 = ph > pl = p0 = p2, we can write

p0 + (τ + τ̂)
∆T

2
= p1 −∆p+

∆T

2
(τ + τ̂)

= p1 − τ̂∆T +
∆T

2
(τ + τ̂)

= p1 + (τ − τ̂)
∆T

2
.

Moreover,

p1 + τ̂ ∥t∗ − t1∥ = p0 +∆p+ τ̂ ∥t∗ − t1∥

= p0 + τ̂ ∥t∗ − t0∥+∆p− τ̂∆T

= p0 + τ̂ ∥t∗ − t0∥+
(
∆p

∆T
− τ̂

)
∆T

= p0 + τ̂ ∥t∗ − t0∥ .
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Hence, we end up with

dV

dp0
=

−1

∆T

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t0+t1
2

+∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

− X̃0.

Summing the second and the third integral and rearranging, we further obtain

dV

dp0
= −X̃0 −

1

∆T

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂) .

Using t1+t2
2

− ∆p
2τ̂

= t1 +
∆T
2

− ∆T
2

= t1, we ultimately obtain

dV

dp0
= −X̃0.

A marginal change in p1 We compute

dṼ0

dp1
=

dτ̂

dp1

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

− dτ̂

dp1

(ˆ t0+t1
2

+∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p0 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t0

∥∥∥∥)) dG (τ) .

Using (dτ̂/dp1) = (1/∆T ) together with

p0 + τ

(
t0 + t1

2
+

∆p

2τ
− t0

)
= p0 + τ

(
t0 + t1 − 2t0

2
+

∆p

2τ

)
= p0 + (τ̂ + τ)

∆T

2

and with t0+t1
2

+ ∆p
2τ̂

= t1 − ∆T
2

+ ∆T
2

= t1, we end up with

dṼ0

dp1
=

1

2τ

ˆ +∞

τ̂

(
nv

(
p0 + (τ̂ + τ)

∆T

2

))
dG (τ) .
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We also compute

dV 1

dp1
= − dτ̂

dp1

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

∥∥∥∥t1 + t2
2

− ∆p

2τ
− t1

∥∥∥∥)) dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t1

∥∥∥∥)) dG (τ)

−
ˆ +∞

τ̂

(ˆ t1+t2
2

−∆p
2τ

t0+t1
2

+∆p
2τ

x (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

=−X1 −
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

(
t1 + t2

2
− ∆p

2τ
− t1

)))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t1

∥∥∥∥)) dG (τ) .

We lastly compute

dṼ2

dp1
=

dτ̂

dp1

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− dτ̂

dp1

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + τ

∥∥∥∥t1 + t2
2

− ∆p

2τ
− t2

∥∥∥∥)) dG (τ)

=
1

∆T

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− 1

∆T

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + τ

∥∥∥∥t1 + t2
2

− ∆p

2τ
− t2

∥∥∥∥)) dG (τ) .
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Overall we have

dV

dp1
= −X1 +

1

∆T

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− 1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

− 1

∆T

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p0 + (τ̂ + τ)

∆T

2

))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

(
t1 + t2

2
− ∆p

2τ
− t1

)))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

∥∥∥∥t0 + t1
2

+
∆p

2τ
− t1

∥∥∥∥)) dG (τ)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + τ

∥∥∥∥t1 + t2
2

− ∆p

2τ
− t2

∥∥∥∥)) dG (τ) .

Using t0+t1
2

+ ∆p
2τ̂

= t1 =
t1+t2

2
− ∆p

2τ̂
, as previously computed, we obtain

dV

dp1
= −X1

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p0 + (τ̂ + τ)

∆T

2

))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

(
t1 + t2

2
− ∆p

2τ
− t1

)))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

(
t1 −

t0 + t1
2

− ∆p

2τ

)))
dG (τ)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + τ

(
t2 −

t1 + t2
2

+
∆p

2τ

)))
dG (τ) .

Further using

p1 + τ

(
t1 + t2

2
− ∆p

2τ
− t1

)
= p0 +∆p+ τ

(
t2 − t1

2
− ∆p

2τ

)
= p0 + (τ + τ̂)

∆T

2

and noticing that p1 + τ
(
t1 − t0+t1

2
− ∆p

2τ

)
= p2 + τ

(
t2 − t1+t2

2
+ ∆p

2τ

)
, we end up with

dV

dp1
= −X1.
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A marginal change in p2 We compute

dV 1

dp2
= − dτ̂

dp2

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + τ

(
t1 + t2

2
− ∆p

2τ
− t1

)))
dG (τ)

=
1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + (τ − τ̂)

∆T

2

))
dG (τ)

together with

dṼ2

dp2
= −
ˆ τ̂

0

(ˆ t2

t1

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+
dτ̂

dp2

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− dτ̂

dp2

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + τ

(
t1 + t2

2
− ∆p

2τ
− t2

)))
dG (τ)

−
ˆ +∞

τ̂

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

=− X̃2 −
1

∆T

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + (τ + τ̂)

∆T

2

))
dG (τ) .
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Since
(
dṼ0/dp2

)
= 0, overall we have

dV

dp2
= −X̃2 +

1

∆T

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

+∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥)ndt∗
)
g (τ̂)

− 1

∆T

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

∆T

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ̂ ∥t∗ − t2∥)ndt∗
)
g (τ̂)

+
1

2τ

ˆ +∞

τ̂

(
nv

(
p1 + (τ − τ̂)

∆T

2

))
dG (τ)

− 1

2τ

ˆ +∞

τ̂

(
nv

(
p2 + (τ + τ̂)

∆T

2

))
dG (τ) .

Using again t0+t1
2

+ ∆p
2τ̂

= t1 = t1+t2
2

− ∆p
2τ̂

and p1 + (τ − τ̂) ∆T
2

= p2 + (τ + τ̂) ∆T
2

, this
reduces to

dV

dp2
= −X̃2.

B.1.2 The impact of a change in schedule
We begin by computing

1

n

dṼ0

dT
=

dτ̂

dT

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)
g (τ̂)

+

ˆ τ̂

0

v (p0) dG (τ)−
ˆ τ̂

0

τ

(ˆ t1

t0

x (p0 + τ (t∗ − t0)) dt
∗
)
dG (τ)

− dτ̂

dT

(ˆ t1

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
−1

2
v

(
p0 +

1

2
(τ + τ̂)∆T

)
+ v (p0)

)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ) ,

which is rearranged as

1

n

dṼ0

dT
= v (p0)−

1

2

ˆ +∞

τ̂

v

(
p0 +

1

2
(τ + τ̂)∆T

)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t1

t0

x (p0 + τ (t∗ − t0)) dt
∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ) .
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We next compute

1

n

dV 1

dT
= − dτ̂

dT

(ˆ t1

t1

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ +∞

τ̂

v

(
p1 +

∆T

2
(τ − τ̂)

)
dG (τ)

+
1

2

ˆ +∞

τ̂

v

(
p1 +

∆T

2
∥τ̂ − τ∥

)
dt∗dG (τ)

which yields
1

n

dV 1

dT
=

ˆ +∞

τ̂

v

(
p1 +

∆T

2
(τ − τ̂)

)
dG (τ) .

We lastly compute

1

n

dṼ2

dT
=

dτ̂

dT

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

+

ˆ τ̂

0

v (p2) dG (τ)−
ˆ τ̂

0

τ

(ˆ t2

t1

x (p2 + τ (t2 − t∗)) dt∗
)
dG (τ)

− dτ̂

dT

(ˆ t2

t1

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
v (p2)−

1

2
v

(
p2 + (τ̂ + τ)

∆T

2

))
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ (t2 − t∗)) dt∗

)
dG (τ) ,

which is rearranged to obtain

1

n

dṼ2

dT
= v (p2)−

1

2

ˆ +∞

τ̂

v

(
p2 + (τ̂ + τ)

∆T

2

)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t2

t1

x (p2 + τ (t2 − t∗)) dt∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ (t2 − t∗)) dt∗

)
dG (τ) .
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Summing up yields

1

n

dV

dT
=

1

n

(
dṼ0

dT
+

dV 1

dT
+

dṼ2

dT

)

= v (p0)−
1

2

ˆ +∞

τ̂

v

(
p0 +

∆T

2
(τ + τ̂)

)
dG (τ)

+

ˆ +∞

τ̂

v

(
p1 +

∆T

2
(τ − τ̂)

)
dG (τ)

+v (p2)−
1

2

ˆ +∞

τ̂

v

(
p2 +

∆T

2
(τ + τ̂)

)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t1

t0

x (p0 + τ (t∗ − t0)) dt
∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t2

t1

x (p2 + τ (t2 − t∗)) dt∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ (t2 − t∗)) dt∗

)
dG (τ) .

Recalling that p0 + (τ + τ̂) ∆T
2

= p1 + (τ − τ̂) ∆T
2

, we reformulate the above expression to
obtain

dV

dT
= n (v (p0) + v (p2))

−
ˆ τ̂

0

τ

(ˆ t1

t0

x (p0 + τ (t∗ − t0))ndt
∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

+∆p
2τ

t0

x (p0 + τ (t∗ − t0))ndt
∗

)
dG (τ)

−
ˆ τ̂

0

τ

(ˆ t2

t1

x (p2 + τ (t2 − t∗))ndt∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ (t2 − t∗))ndt∗

)
dG (τ) .

Making use of the notation introduced in the text, we further rewrite

dV

dT
= −τ 0X0 − τ 0X0 − τ 2X2 − τ 2X2 + n [v (p0) + v (p2)] .

Neglecting the bracketed term, which captures volume effects, (6) is derived.
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B.2 Case I.2: p1 = pl < ph = p0 = p2
All passengers with τ < τ̂ are eager to increase their DTS by more than ∆T in order

to benefit from a price saving of ∆p. Hence, provided s1 is cheaper than any other service,
passengers with t∗ ∈ [t0, t2] and τ < τ̂ all take s1. Passengers with τ ≥ τ̂ respectively use
s0, s1 or s2 when

t∗ ∈
[
t0;

t0 + t1
2

− ∆p

2τ

]
t∗ ∈

[
t0 + t1

2
− ∆p

2τ
;
t1 + t2

2
+

∆p

2τ

]
t∗ ∈

[
t1 + t2

2
+

∆p

2τ
; t2

]
.

Accordingly, the total demand for s0, s1 and s2 is respectively written as

X0 =

ˆ +∞

τ̂

X0 (τ) dG (τ)

X̃1 = X1 +X1

=

ˆ τ̂

0

X[0,2]◃1 (τ) dG (τ) +

ˆ +∞

τ̂

X0,2◃1 (τ) dG (τ)

X2 =

ˆ +∞

τ̂

X2 (τ) dG (τ) ,

where

X0 (τ) =

ˆ t0+t1
2

−∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗

X[0,2]◃1 (τ) =

ˆ t2

t0

x (p1 + τ ∥t∗ − t1∥)ndt∗

X0,2◃1 (τ) =

ˆ t1+t2
2

+∆p
2τ

t0+t1
2

−∆p
2τ

x (p1 + τ ∥t∗ − t1∥)ndt∗

X2 (τ) =

ˆ t2

t1+t2
2

+∆p
2τ

x (p2 + τ ∥t∗ − t2∥)ndt∗,

and the subscript [0, 2] ◃ 1 (resp., 0, 2 ◃ 1) indicates that, in addition to passengers
whose ideal departure time is t1, s1 also attracts all (resp., some) passengers who would
have taken s0 and s2 absent the price saving. This is all graphically represented in Figure
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10. The surplus respectively associated with s0, s1 and s2 is written as

V 0 =

ˆ +∞

τ̂

(ˆ t0+t1
2

−∆p
2τ

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ) ,

Ṽ1 = V 1 + V 1 =

ˆ τ̂

0

(ˆ t2

t0

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t1+t2
2

+∆p
2τ

t0+t1
2

−∆p
2τ

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ) ,

V 2 =

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

+∆p
2τ

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ) .

B.2.1 The impact of a change in price
As standard, a price increase of dp triggers a surplus reduction equal to the aggregate

demand for service si, where i ∈ {1, 1, 2}:

dV

dp0
= −X0;

dV

dp1
= −X̃1;

dV

dp2
= −X2.

B.2.2 The impact of a change in schedule
Define

τ̄0 =

ˆ +∞

τ̂

τ
X0 (τ)

X0

dG (τ) and τ̄2 =

ˆ +∞

τ̂

τ
X2 (τ)

X2

dG (τ) ,

the value of time of the passengers respectively using s0 and s2. We begin by computing

1

n

dV 0

dT
= − dτ̂

dT

(ˆ t0+t1−∆T
2

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)

−
ˆ +∞

τ̂

(ˆ t0+t1
2

−∆p
2τ

t0

τ
d ∥t∗ − t0∥

dT
x (p0 + τ ∥t∗ − t0∥) dt∗

)
dG (τ)

+

ˆ +∞

τ̂

1

2

dt0
dT

v

(
p0 + τ

∥∥∥∥t0 + t1
2

− ∆p

2τ
− t0

∥∥∥∥) dG (τ)

−
ˆ +∞

τ̂

dt0
dT

v (p0) dG (τ) ,

which is rewritten as

1

n

dV 0

dT
= −

ˆ +∞

τ̂

τ

(ˆ t0+t1
2

−∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥) dt∗
)
dG (τ)

−1

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) + (1−G (τ̂)) v (p0) ,
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s2

t∗
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τ
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1 =
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t
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t⋆ |
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2

Figure 10: Informed passengers - Case I.2: p1 = pl < ph = p0 = p2

Top graph: The generalised price is plotted against the ideal departure time. The blue
line represents the generalised price of a patient passenger (τ < τ̂), the red line that of
an impatient passenger (τ > τ̂), the magenta line that of a passenger with τ = τ̂ . The
individual generalised price decreases to the monetary price (the thick black vertical line
placed in the service locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. The two expensive services s0 and s2 are only used by
passengers with high value of time and whose ideal departure time is very close to t0 and
t2 respectively. The cheap service s1 attracts all the other passengers.
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hence as

dV 0

dT
= −τ̄0X0 −

n

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) + n (1−G (τ̂)) v (p0) . (10)

We next compute

1

n

dṼ1

dT
=

dτ̂

dT

ˆ t2

t0

v (p1 + τ̂ ∥t∗ − t1∥) dt∗ −
dτ̂

dT

ˆ t1+t2+∆T
2

t0+t1−∆T
2

v (p1 + τ̂ ∥t∗ − t1∥) dt∗

−
ˆ τ̂

0

(ˆ t2

t0

τ
d ∥t∗ − t1∥

dT
x (p1 + τ ∥t∗ − t1∥) dt∗

)
dG (τ)

−
ˆ +∞

τ̂

(ˆ t1+t2
2

+∆p
2τ

t0+t1
2

−∆p
2τ

τ
d ∥t∗ − t1∥

dT
x (p1 + τ ∥t∗ − t1∥) dt∗

)
dG (τ)

+

ˆ τ̂

0

[v (p1 + τ ∥t2 − t1∥) + v (p1 + τ ∥t0 − t1∥)] dG (τ)

+
1

2

ˆ +∞

τ̂

dt2
dT

v

(
p1 + τ

∥∥∥∥t1 + t2
2

+
∆p

2τ
− t1

∥∥∥∥) dG (τ)

− 1

2

ˆ +∞

τ̂

dt0
dT

v

(
p1 + τ

∥∥∥∥t0 + t1
2

− ∆p

2τ
− t1

∥∥∥∥) dG (τ) .

This is rearranged to obtain

dṼ1

dT
= n

ˆ τ̂

0

[v (p1 + τ ∥t2 − t1∥) + v (p1 + τ ∥t0 − t1∥)] dG (τ) (11)

+ n

ˆ +∞

τ̂

v

(
p1 + τ

(
1 +

τ̂

τ

)
∆T

2

)
dG (τ)

We lastly compute

1

n

dV 2

dT
= − dτ̂

dT

(ˆ t2

t1+t2
2

+∆p
2τ̂

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)

+

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

+∆p
2τ

τ
d ∥t∗ − t2∥

dT
x (p2 + τ ∥t∗ − t2∥) dt∗

)
dG (τ)

−
ˆ +∞

τ̂

1

2

dt2
dT

v

(
p2 + τ

∥∥∥∥t1 + t2
2

+
∆p

2τ
− t2

∥∥∥∥) dG (τ)

+

ˆ +∞

τ̂

dt2
dT

v (p2) dG (τ)

= 0−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

+∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

− 1

2

ˆ +∞

τ̂

v

(
p2 + (τ − τ̂)

∆T

2

)
dG (τ) + [1−G (τ̂)] v (p2) ,
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which further becomes

dV 2

dT
= −τ̄2X2 −

n

2

ˆ +∞

τ̂

v

(
p2 + (τ − τ̂)

∆T

2

)
dG (τ) (12)

+ n (1−G (τ̂)) v (p2) .

Summing up, we obtain

dV

dT
=

dV 0

dT
+

dṼ1

dT
+

dV 2

dT

= −τ̄0X0 − τ̄2X2 −
n

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ)

+n

ˆ +∞

τ̂

v

(
p1 + (τ + τ̂)

∆T

2

)
dG (τ)− n

2

ˆ +∞

τ̂

v

(
p2 + (τ − τ̂)

∆T

2

)
dG (τ)

+2n

ˆ τ̂

0

(v (p1 + τ∆T )) dG (τ) + n (1−G (τ̂)) [v (p0) + v (p2)] .

By the definition of τ̂ , we have

p0 + (τ − τ̂)
∆T

2
= p0 −

∆p

2
+ τ

∆T

2

= p1 + τ
∆T

2
+

∆p

2

= p1 + (τ + τ̂)
∆T

2

and

p2 + (τ − τ̂)
∆T

2
= p2 −

∆p

2
+ τ

∆T

2

= p1 + τ
∆T

2
+

∆p

2

= p1 + (τ + τ̂)
∆T

2

so that

v

(
p0 + (τ − τ̂)

∆T

2

)
= v

(
p1 + (τ + τ̂)

∆T

2

)
v

(
p2 + (τ − τ̂)

∆T

2

)
= v

(
p1 + (τ + τ̂)

∆T

2

)
,
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and we can rewrite

dV

dT
= −τ̄0X0 − τ̄2X2

+ 2n

ˆ τ̂

0

(v (p1 + τ∆T )) dG (τ) + n (1−G (τ̂)) [v (p0) + v (p2)] .

Once the volume effects (the terms in the second line) are net out, this yields

dV

dT
= −

(
τ̄0X0 + τ̄2X2

)
. (13)

As the service frequency is reduced, and the DTS increases for patrons of s0 and s2, there
is a reduction in welfare equal to an aggregate measure of their value of time. Passengers
using s1 are not concerned, provided this service still departs at t1. A policy choice to
make services more frequent around the cheap service s1 would exclusively benefit wealthy
passengers, who are keen to spend more in order to contain departure shifting.

B.3 Case I.3: p0 = ph > pl = p2 = p1

Services s1 and s2 are now both cheaper than s0.
8 First consider passengers with

τ < τ̂ . Again, they are eager to increase their DTS by more than ∆T to take advantage
of the price saving. Thus, all such passengers who also have t∗ ∈ [t0, t1] use s1. Next
consider passengers with τ ≥ τ̂ . Those with t∗ ∈

[
t0,

t0+t1
2

− ∆p
2τ

]
use s0; those with

t∗ ∈
[
t0+t1

2
− ∆p

2τ
, t1
]

opt for s1. Clearly, regardless of the value of τ, all passengers with
t∗ ∈

[
t1,

t1+t2
2

]
choose s1; those with t∗ ∈

[
t1+t2

2
, t2
]

prefer s2. Accordingly, the total
demand for s0, s1 and s2 is respectively written as

X0 =

ˆ +∞

τ̂

X0 (τ) dG (τ)

X̃1 = X1 +X1

=

ˆ τ̂

0

X[0)◃1 (τ) dG (τ) +

ˆ +∞

τ̂

X0◃1 (τ) dG (τ)

X̃2 =

ˆ +∞

0

X2 (τ) dG (τ) ,

8This is one of two possible cases where s1 is one of the cheap services. In the other such case, s1 and
s0 would both be cheaper than s2, namely p2 = ph > pl = p0 = p1. The analysis of this latter case would
be analogous, mutatis mutandis, and is thus omitted to avoid redundancy.
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where

X0 (τ) =

ˆ t0+t1
2

−∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗

X[0)◃1 (τ) =

ˆ t1+t2
2

t0

x (p1 + τ ∥t∗ − t1∥)ndt∗

X0◃1 (τ) =

ˆ t1+t2
2

t0+t1
2

−∆p
2τ

x (p1 + τ ∥t∗ − t1∥)ndt∗

X2 (τ) =

ˆ t2

t1+t2
2

x (p2 + τ ∥t∗ − t2∥)ndt∗

and the subscript [0) ◃ 1 (resp., 0 ◃ 1) is used to indicate that s1 also attracts all (resp.,
some) passengers who would have departed at t0 absent the price saving. A graphical
representation is provided in Figure 11. The surplus respectively associated with s0, s1
and s2 is given by

V 0 =

ˆ +∞

τ̂

(ˆ t0+t1
2

−∆p
2τ

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

Ṽ1 = V 1 + V 1

=

ˆ τ̂

0

(ˆ t1+t2
2

t0

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t1+t2
2

t0+t1
2

−∆p
2τ

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

Ṽ2 =

ˆ +∞

0

(ˆ t2

t1+t2
2

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ) .

B.3.1 The impact of a change in price
The impact on surplus of a price increase is analogous to the other cases, namely

dV

dp0
= −X0;

dV

dp1
= −X̃1;

dV

dp2
= −X̃2.
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∆T ∆T
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t ⋆| p̃ 1
=
p 1
+
τ |t

1
−
t
⋆ |

p̃1 = p1 + τ |t1 − t⋆| p̃1 =
p1 +

τ |t1 −
t⋆ |

p̃
2

Figure 11: Informed passengers - Case I.3: p0 = ph > pl = p2 = p1

Top graph: The generalised price is plotted against the ideal departure time. The blue
line represents the generalised price of a patient passenger (τ < τ̂), the red line that of
an impatient passenger (τ > τ̂), the magenta line that of a passenger with τ = τ̂ . The
individual generalised price decreases to the monetary price (the thick black vertical line
placed in the service locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. The expensive service s0 is only used by passengers with high
value of time and ideal departure time very close to t0. The cheap service s1 attracts all
the other passengers who would otherwise take s0. Instead, it does not attract passengers
from s2, which is equally cheap.
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B.3.2 The impact of a change in schedule
We first compute

1

n

dV 0

dT
= − dτ̂

dT

(ˆ t0

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)
g (τ̂)

−
ˆ +∞

τ̂

τ

(ˆ t1−∆T
2 (1+ τ̂

τ )

t1−∆T

x (p0 + τ ∥t∗ − t0∥) dt∗
)
dG (τ)

+ [1−G (τ̂)] v (p0)−
1

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) ,

from which we obtain

dV 0

dT
= −

ˆ +∞

τ̂

τ

(ˆ t1−∆T
2 (1+ τ̂

τ )

t1−∆T

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

+n (1−G (τ̂)) v (p0)−
n

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) .

We next compute

1

n

dṼ1

dT
=

dτ̂

dT

(ˆ t1+t2
2

t0

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

− dτ̂

dT

(ˆ t1+t2
2

t0+t1
2

−∆p
2τ̂

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ τ̂

0

v

(
p1 + τ

∥∥∥∥t1 + t2
2

− t1

∥∥∥∥) dG (τ) +

ˆ τ̂

0

v (p1 + τ ∥t0 − t1∥) dG (τ)

+

ˆ τ̂

0

(ˆ t1+t2
2

t0

τ
d ∥t∗ − t1∥

dT
v′ (p1 + τ ∥t∗ − t1∥) dt∗

)
dG (τ)

+
1

2

ˆ +∞

τ̂

v

(
p1 + τ

∆T

2

)
dG (τ) +

1

2

ˆ +∞

τ̂

v

(
p1 + τ

∥∥∥∥∆T

2

(
1 +

τ̂

τ

)∥∥∥∥) dG (τ)

+ n

ˆ +∞

τ̂

(ˆ t1+t2
2

t0+t1
2

−∆p
2τ

τ
d ∥t∗ − t1∥

dT
v′ (p1 + τ ∥t∗ − t1∥) dt∗

)
dG (τ) ,

65



which is rearranged as

1

n

dṼ1

dT
= − τ̂

∆T

(ˆ t1+t2
2

t0

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
τ̂

∆T

(ˆ t1+t2
2

t0

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ τ̂

0

v

(
p1 + τ

∆T

2

)
dG (τ) +

ˆ τ̂

0

v (p1 + τ∆T ) dG (τ)

+
1

2

ˆ +∞

τ̂

v

(
p1 + τ

∆T

2

)
dG (τ) +

1

2

ˆ +∞

τ̂

v

(
p1 + τ

(
1 +

τ̂

τ

)
∆T

2

)
dG (τ) .

This ultimately yields

dṼ1

dT
=

n

2

ˆ +∞

0

v

(
p1 + τ

∆T

2

)
dG (τ) +

ˆ τ̂

0

v (p1 + τ∆T )ndG (τ)

+
n

2

ˆ +∞

τ̂

v

(
p1 + τ

(
1 +

τ̂

τ

)
∆T

2

)
dG (τ) .

We also compute

1

n

dṼ2

dT
=

ˆ +∞

0

v (p2) dG (τ)

− 1

2

ˆ +∞

0

v

(
p2 + τ

∥∥∥∥t1 + t2
2

− t2

∥∥∥∥) dG (τ)

+

ˆ +∞

0

(ˆ t2

t1+t2
2

τ
d ∥t∗ − t2∥

dT
v′ (p2 + τ ∥t∗ − t2∥) dt∗

)
dG (τ) .

Using t2 = t1 +∆T and t1+t2
2

= t1 +
∆T
2
, this is rewritten as

dṼ2

dT
= −

ˆ +∞

0

τ

(ˆ t1+∆T

t1+
∆T
2

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+nv (p2)−
n

2

ˆ +∞

0

v

(
p2 + τ

∆T

2

)
dG (τ) .
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As a result

dV

dT
=

dV 0

dT
+

dṼ1

dT
+

dṼ2

dT

= −
ˆ +∞

τ̂

τ

(ˆ t1−∆T
2 (1+ τ̂

τ )

t1−∆T

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

− n

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) + n [1−G (τ̂)] v (p0)

+
n

2

ˆ +∞

0

v

(
p1 + τ

∆T

2

)
dG (τ) + n

ˆ τ̂

0

v (p1 + τ∆T ) dG (τ)

+
n

2

ˆ +∞

τ̂

v

(
p1 + τ

(
1 +

τ̂

τ

)
∆T

2

)
dG (τ)

+ nv (p2)−
n

2

ˆ +∞

0

v

(
p2 + τ

∆T

2

)
dG (τ)

−
ˆ +∞

0

τ

(ˆ t1+∆T

t1+
∆T
2

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ) ,

from which we further obtain

dV

dT
= −
ˆ +∞

τ̂

τ

(ˆ t1−∆T
2 (1+ τ̂

τ )

t1−∆T

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

−
ˆ +∞

0

τ

(ˆ t1+∆T

t1+
∆T
2

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

− n

2

ˆ +∞

τ̂

v

(
p0 + (τ − τ̂)

∆T

2

)
dG (τ) + n

ˆ τ̂

0

v (p1 + τ∆T ) dG (τ)

+
n

2

ˆ +∞

τ̂

v

(
p1 + (τ + τ̂)

∆T

2

)
dG (τ) + n [(1−G (τ̂)) v (p0) + v (p2)] .

Recall that when t∗ = t0+t1
2

− ∆p
2τ

we have p0 + τ ∥t∗ − t0∥ = p1 + τ ∥t∗ − t1∥ so that

p0 + τ

∥∥∥∥∆T

2
− ∆p

2τ

∥∥∥∥ = p1 + τ

∥∥∥∥∆T

2
+

∆p

2τ

∥∥∥∥ ,
which further yields

p0 + (τ − τ̂)
∆T

2
= p1 + (τ + τ̂)

∆T

2
.

Observing also that p0 = p1 + τ̂∆T, we end up with

v

(
p0 + (τ − τ̂)

∆T

2

)
= v

(
p1 + (τ + τ̂)

∆T

2

)
= v

(
p2 + (τ + τ̂)

∆T

2

)
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and we can write

dV

dT
= −
ˆ +∞

τ̂

τ

(ˆ t1−∆T
2 (1+ τ̂

τ )

t1−∆T

x (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

−
ˆ +∞

0

τ

(ˆ t1+∆T

t1+
∆T
2

x (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+ n [(1−G (τ̂)) v (p0) + v (p2)] + n

ˆ τ̂

0

v (p1 + τ∆T ) dG (τ) .

Using t0 = t1 −∆T , t0+t1
2

− ∆p
2τ

= t1 − ∆T
2

(
1 + τ̂

τ

)
, and t1+t2

2
= t1 +

∆T
2

, and defining

τ̄0 =

ˆ +∞

τ̂

τ
X0 (τ)

X0

dG (τ) and τ̃2 =

ˆ +∞

0

τ
X2 (τ)

X̃2

dG (τ) ,

we can further express

dV

dT
= −τ̄0X0 − τ̃2X̃2

+n [(1−G (τ̂)) v (p0) + v (p2)] + n

ˆ τ̂

0

v (p1 + τ∆T ) dG (τ) .

Neglecting the volume effect (the terms in the second line), we obtain

dV

dT
= −

(
τ̄0X0 + τ̃2X̃2

)
, (14)

which evidences that the reduction in surplus works entirely through s0 and s2.

B.4 Case I.4: p1 = p0 = ph > pl = p2

We conclude with a case where s0 and s1 are both more expensive than s2.
9 Given

that p0 = p1, all passengers with t∗ ∈
[
t0,

t0+t1
2

]
are better off if they take s0 instead of

s1. However, it is more advantageous to take s2, if

p2 + τ (t2 − t∗) ≤ p0 + τ (t∗ − t0) ⇔ t∗ ≥ t0 +∆T − ∆p

2τ
. (15)

Here, in addition to τ̂ , a second cut-off value of time is found to be relevant, namely τ̂ /2,
just as in the uninformed case (recall U.4). For τ ≤ τ̂ /2, (15) holds true for all passengers
with t∗ ∈ [t0, t2] , hence they all prefer to use s2. These passengers are so patient that
they find it worth taking the cheapest service, although it is the latest to depart. For
τ > τ̂/2, there exists tc ∈ [t0, t2] such that all passengers with t∗ ∈ [t0, tc] prefer s0 to s2

9This is one of two possible cases where s1 is one of the expensive services. In the other such case,
s1 and s2 would both be more expensive than s0, namely p1 = p2 = ph > pl = p0. Developing this
alternative case would bring no additional insight, hence it is omitted.
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instead. By definition
tc = t0 +∆T − ∆p

2τ
= t1 −

∆p

2τ
,

hence these are passengers with t∗ ∈
[
t0, t1 − ∆p

2τ

]
. When tc ∈

[
t0,

t0+t1
2

]
, namely

t1 −
∆p

2τ
<

t0 + t1
2

⇔ τ̂

2
< τ < τ̂ ,

passengers with t∗ ∈ [t0, tc] also prefer s0 to s1, and choose s0. By contrast, passengers
with t∗ ∈

[
tc,

t0+t1
2

]
prefer s2 to s0 and s0 to s1; hence, they use s2. For passengers with

t∗ ≥ t0+t1
2

, s0 is never convenient. Those with t∗ ∈
[
t0+t1

2
, t1
]

find s2 more convenient than
s1 if

pl + τ (t2 − t∗) ≤ ph + τ (t1 − t∗) ⇔ τ ≤ τ̂ .

In turn, passengers with t∗ ∈ [t1, t2] find s2 more convenient than s1 if

pl + τ (t2 − t∗) ≤ ph + τ (t∗ − t1) ⇔ t∗ ≥ t1 +
1

2

(
∆T − ∆p

τ

)
,

which is again the case for τ ≤ τ̂ . Thus, none of these passenger uses s1, which is equally
expensive but departs later than s0. For τ > τ̂ , all passengers with t∗ ∈

[
t1,

t1+t2
2

− ∆p
2τ

]
find s1 more convenient, whereas those with t∗ ∈

[
t1+t2

2
− ∆p

2τ
, t2
]

find s2 more convenient.
Moreover, all passengers with t∗ ∈

[
t0+t1

2
, t1
]

prefer s1 to s2. As they also prefer s1 to s0,
they take s1. There is, thus, a discontinuity at τ = τ̂ : whereas for τ < τ̂ no passenger uses
s1, regardless of t∗, for τ > τ̂ there is a set of passengers of strictly positive measure using
s1. As seen, this set must contain all passengers with t∗ ∈

[
t0+t1

2
, t1
]
. In definitive, for

τ > τ̂ , passengers with t∗ ∈
[
t0,

t0+t1
2

]
choose s0, passengers with t∗ ∈

[
t0+t1

2
, t1+t2

2
− ∆p

2τ

]
⊃[

t0+t1
2

, t1
]

choose s1, and passengers with t∗ ∈
[
t1+t2

2
− ∆p

2τ
, t2
]

choose s2. Taking this all
into account, we can respectively write the demand for service s0, s1 and s2 as

X0 = X0 +X0

=

ˆ τ̂

τ̂
2

X0 (τ) dG (τ) +

ˆ +∞

τ̂

X[0] (τ) dG (τ)

X1 =

ˆ +∞

τ̂

X1 (τ) dG (τ)

X2 = X
2
+X2 + X̄2

=

ˆ τ̂
2

0

X[0,1]◃2 (τ) dG (τ) +

ˆ τ̂

τ̂
2

X0,1◃2 (τ) dG (τ) +

ˆ +∞

τ̂

X1◃2 (τ) dG (τ) ,

where now

X0 (τ) =

ˆ t1−∆p
2τ

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗

X[0] (τ) =

ˆ t0+t1
2

t0

x (p0 + τ ∥t∗ − t0∥)ndt∗,
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together with

X1 (τ) =

ˆ t1+t2
2

−∆p
2τ

t0+t1
2

x (p1 + τ ∥t∗ − t1∥)ndt∗

and with

X[0,1]◃2 (τ) =

ˆ t2

t0

x (p2 + τ ∥t∗ − t2∥)ndt∗

X0,1◃2 (τ) =

ˆ t2

t1−∆p
2τ

x (p2 + τ ∥t∗ − t2∥)ndt∗

X1◃2 (τ) =

ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥)ndt∗.

This market segmentation is represented in Figure 12. The surplus respectively associated
with s0, s1 and s2 is given by

V0 = V 0 + V 0ˆ τ̂

τ̂
2

(ˆ t1−∆p
2τ

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t0+t1
2

t0

v (p0 + τ ∥t∗ − t0∥)ndt∗
)
dG (τ)

V 1 =

ˆ +∞

τ̂

(ˆ t1+t2
2

−∆p
2τ

t0+t1
2

v (p1 + τ ∥t∗ − t1∥)ndt∗
)
dG (τ)

Ṽ2 = V
2
+ V 2 + V 2

=

ˆ τ̂
2

0

(ˆ t2

t0

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+

ˆ τ̂

τ̂
2

(ˆ t2

t1−∆p
2τ

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

−∆p
2τ

v (p2 + τ ∥t∗ − t2∥)ndt∗
)
dG (τ) .

B.4.1 The impact of a change in price
As usual, an infinitesimal increase in price pi, where i = 0, 1, 2, will determine a

reduction in surplus equal to the aggregate demand for service i.
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s0
s1

s2

t∗

p̃

τ

t∗

τ̂

t0 t1 t2

∆p

∆T ∆T

p̃ 0

p̃
1 =

p
1 +

τ |t
1 −

t ⋆| p̃ 1

p̃2 = p2 + τ |t2 − t⋆|

p̃
2 =

p
2 +

τ |t
2 −

t ⋆|

Figure 12: Informed passengers - Case I.4: p0 = p1 = ph > pl = p2
Top graph: The generalised price is plotted against the ideal departure time. The blue
line represents the generalised price of a patient passenger (τ < τ̂), the red line that of
an impatient passenger (τ > τ̂), the magenta line that of a passenger with τ = τ̂ . The
individual generalised price decreases to the monetary price (the thick black vertical line
placed in the service locations) as the departure time approaches the ideal one, t∗.
Bottom graph: Passenger distribution over the two heterogeneity dimensions (t∗, τ) and
across services. Colors refer to the value of time τ ; the intensity is associated with the
number of passengers displaying the characteristics (t∗, τ). For this representation, we
assume it independent of t∗. The cheap service s2 attracts passengers with low value of
time from s0, and passengers with intermediate value of time from s1. From s1, s2 further
attracts some passengers with high value of time who would like to depart slightly after
t1, but are available to wait until t2 to pay less.
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B.4.2 The impact of a change in schedule
We first compute

1

n

dV0

dT
=

dτ̂

dT

(ˆ t1−∆p
2τ̂

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)
g (τ̂)

− 1

2

dτ̂

dT

(ˆ t1−∆p
τ̂

t0

v

(
p0 +

τ̂

2
∥t∗ − t0∥

)
dt∗

)
g

(
τ̂

2

)

+

ˆ τ̂

τ̂/2

v (p0) dG (τ)−
ˆ τ̂

τ̂/2

τ

(ˆ t1−∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

− dτ̂

dT

(ˆ t0+t1
2

t0

v (p0 + τ̂ ∥t∗ − t0∥) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
−1

2
v

(
p0 + τ

∥∥∥∥t0 + t1
2

− t0

∥∥∥∥)+ v (p0)

)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ) ,

from which we then obtain

1

n

dV0

dT
= −
ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

+

ˆ +∞

τ̂
2

v (p0) dG (τ)− 1

2

ˆ +∞

τ̂

v

(
p0 + τ

∥∥∥∥t0 + t1
2

− t0

∥∥∥∥) dG (τ) .

We next compute

1

n

dV 1

dT
= − dτ̂

dT

(ˆ t1+t2
2

−∆p
2τ̂

t0+t1
2

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ +∞

τ̂

v

(
p1 + τ

∥∥∥∥t1 + t2
2

− ∆p

2τ
− t1

∥∥∥∥) dG (τ)

+
1

2

ˆ +∞

τ̂

v

(
p1 + τ

∥∥∥∥t0 + t1
2

− t1

∥∥∥∥) dG (τ) ,
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which is rearranged as

1

n

dV 1

dT
= − dτ̂

dT

(ˆ t1

t0+t1
2

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ +∞

τ̂

v

(
p1 +

∆T

2
(τ − τ̂)

)
dG (τ)

+
1

2

ˆ +∞

τ̂

v

(
p1 +

1

2
τ∆T

)
dG (τ) .

We also compute

1

n

dṼ2

dT
=

1

2

dτ̂

dT

(ˆ t2

t0

v

(
p2 +

τ̂

2
∥t∗ − t2∥

)
dt∗
)
g

(
τ̂

2

)
+

ˆ τ̂
2

0

(v (p2) + v (p2 + τ ∥t0 − t2∥)) dG (τ)

−
ˆ τ̂

2

0

(
τ

ˆ t2

t0

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

+
dτ̂

dT

(ˆ t2

t1−∆p
2τ̂

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

− 1

2

dτ̂

dT

(ˆ t2

t1−∆p
τ̂

v

(
p2 +

τ̂

2
∥t∗ − t2∥

)
dt∗

)
g

(
τ̂

2

)

+

ˆ τ̂

τ̂
2

v (p2) dG (τ)−
ˆ τ̂

τ̂
2

(
τ

ˆ t2

t1−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

− dτ̂

dT

(ˆ t2

t1+t2
2

−∆p
2τ̂

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

+

ˆ +∞

τ̂

(
v (p2)−

1

2
v

(
p2 + τ

∥∥∥∥∆p

2τ
+

t2 − t1
2

∥∥∥∥)) dG (τ)

−
ˆ +∞

τ̂

(
τ

ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ) .
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This simplifies to

1

n

dV2

dT
=

dτ̂

dT

(ˆ t1

t0+t1
2

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

+ v (p2) +

ˆ τ̂
2

0

v (p2 + τ ∥t0 − t2∥) dG (τ)

− 1

2

ˆ +∞

τ̂

v

(
p2 +

1

2
∆T (τ̂ + τ)

)
dG (τ)

−
ˆ τ̂

2

0

(
τ

ˆ t2

t0

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ τ̂

τ̂
2

(
τ

ˆ t2

t1−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ +∞

τ̂

(
τ

ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ) .

As a result
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1

n

dV

dT
=

1

n

(
dV0

dT
+

dV 1

dT
+

dṼ2

dT

)

= −
ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

+

ˆ +∞

τ̂
2

v (p0) dG (τ)− 1

2

ˆ +∞

τ̂

(
v

(
p0 + τ

∥∥∥∥t0 + t1
2

− t0

∥∥∥∥)) dG (τ)

− dτ̂

dT

(ˆ t1

t0+t1
2

v (p1 + τ̂ ∥t∗ − t1∥) dt∗
)
g (τ̂)

+
1

2

ˆ +∞

τ̂

(
v

(
p1 +

1

2
∆T (τ − τ̂)

)
+ v

(
p1 +

1

2
τ∆T

))
dG (τ)

+
dτ̂

dT

(ˆ t1

t0+t1
2

v (p2 + τ̂ ∥t∗ − t2∥) dt∗
)
g (τ̂)

+ v (p2) +

ˆ τ̂/2

0

v (p2 + τ ∥t0 − t2∥) dG (τ)

− 1

2

ˆ +∞

τ̂

v

(
p2 +

1

2
∆T (τ̂ + τ)

)
dG (τ)

−
ˆ τ̂

2

0

(
τ

ˆ t2

t0

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ τ̂

τ̂/2

(
τ

ˆ t2

t1−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ +∞

τ̂

(
τ

ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ) .

Given that p1 = p0 = ph > pl = p2, we have p1 = p2 +∆p, hence p1 = p2 + τ̂∆T . We can
thus write p1 + τ̂ t1 = p2 + τ̂ (∆T + t1) = p2 + τ̂ t2 and so

p1 −
1

2
τ̂∆T = p2 +

1

2
τ̂∆T.
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Using this equality in the previous computation, we further obtain

1

n

dV

dT
=

(
1−G

(
τ̂

2

))
v (p0) + v (p2) +

ˆ τ̂
2

0

v (p2 + τ2∆T ) dG (τ)

−
ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

x (p0 + τ (t∗ − t0)) dt
∗

)
dG (τ)

−
ˆ τ̂

2

0

τ

(ˆ t2

t0

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ τ̂

τ̂
2

τ

(ˆ t2

t1−∆p
2τ

x (p2 + τ ∥t∗ − t2∥) dt∗
)
dG (τ)

−
ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

x (p2 + τ (t2 − t∗)) dt∗

)
dG (τ) .

Denoting

τ 0 =

ˆ τ̂

τ̂
2

τ
X0 (τ)

X0

dG (τ) , τ̄0 =

ˆ +∞

τ̂

τ
X[0] (τ)

X̄0

dG (τ)

τ
2
=

ˆ τ̂
2

0

τ
X[0,1]◃2 (τ)

X
2

dG (τ) , τ 2 =

ˆ τ̂

τ̂
2

τ
X0,1◃2 (τ)

X2

dG (τ) and τ̄2 =

ˆ +∞

τ̂

τ
X1◃2 (τ)

X̄2

dG (τ) ,

this is rewritten as

dV

dT
= −(τ 0X0 + τ̄0X̄0 + τ

2
X

2
+ τ 2X2 + τ̄2X̄2)

+ n

[(
1−G

(
τ̂

2

))
v (p0) + v (p2)

]
+ n

ˆ τ̂
2

0

v (p2 + 2τ∆T ) dG (τ) .

Neglecting volume effects (the terms in the second line), we obtain

dV

dT
= −

(
τ 0X0 + τ̄0X̄0 + τ

2
X

2
+ τ 2X2 + τ̄2X̄2

)
. (16)

In line with previous findings, as the service becomes less frequent and the DTS increases
for patrons of s0 and s2, welfare is reduced by an aggregate measure of their value of time.
This includes the impact on passengers using s0 with low and high value of time, and that
on passengers using s2 with low, intermediate, and high value of time. Although it is
clear that an increase in frequency around the expensive service would benefit passengers
with any level of income, the market segmentation expressed by (16) would be extremely
useful to appraise the extent of the benefit to passengers with different levels of income.
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C Aggregate monetary and non-monetary price
Consider the price pattern p0 = p1 = ph > p2 = pl and passengers with t∗ ∈ [t0, t2].

We will compare first the aggregate monetary price and next the aggregate non-monetary
cost in cases U.4 and I.4. In all computations we will omit n, for shortness; hence, all
findings are to be intended up to a scaling factor of n.

C.1 Aggregate monetary price

C.1.1 Case U.4
The aggregate monetary price of passengers using s1is given by

ˆ ∞

τ̂

(ˆ t1

t0

p1dt
∗
)
dG (τ) = p1

ˆ ∞

τ̂

(ˆ t1

t0

dt∗
)
dG (τ)

= p1∆T

ˆ ∞

τ̂

dG (τ)

= p1 (1−G (τ̂))∆T.

For passengers using s2 it is given by
ˆ τ̂

0

(ˆ t1

t0

p2dt
∗
)
dG (τ) +

ˆ ∞

0

(ˆ t2

t1

p2dt
∗
)
dG (τ)

= p2

(ˆ τ̂

0

dG (τ) +

ˆ ∞

0

dG (τ)

)
∆T

= p2 (1 +G (τ̂))∆T.

Overall, the aggregate monetary price for uninformed passengers is given by

p1 (1−G (τ̂))∆T + p2 (1 +G (τ̂))∆T = 2pl∆T +∆p (1−G (τ̂))∆T.

C.1.2 Case I.4
The aggregate monetary price of passengers using s0 is computed as follows:

ˆ τ̂

τ̂
2

(ˆ t1−∆p
2τ

t0

p0dt
∗

)
dG (τ) +

ˆ +∞

τ̂

(ˆ t0+t1
2

t0

p0dt
∗

)
dG (τ)

= p0

[ˆ τ̂

τ̂
2

(
t1 −

∆p

2τ
− t0

)
dG (τ) +

∆T

2

ˆ +∞

τ̂

dG (τ)

]

= p0

[(
G (τ̂)−G

(
τ̂

2

))
∆T − ∆p

2

ˆ τ̂

τ̂
2

dG (τ)

τ
+ (1−G (τ̂))

∆T

2

]

= ph

[
G (τ̂)−G

(
τ̂

2

)
− τ̂

2

ˆ τ̂

τ̂
2

dG (τ)

τ
+

1

2
(1−G (τ̂))

]
∆T.
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For passengers using s1 it is given by

ˆ +∞

τ̂

(ˆ t1+
∆T
2 (1− τ̂

τ )

t0+t1
2

p1dt
∗

)
dG (τ)

= p1

ˆ +∞

τ̂

[
t1 +

∆T

2

(
1− τ̂

τ

)
− t0 + t1

2

]
dG (τ)

= p1∆T

ˆ +∞

τ̂

(
1− τ̂

2τ

)
dG (τ)

= ph

(
1−G (τ̂)− τ̂

2

ˆ +∞

τ̂

dG (τ)

τ

)
∆T.

For passengers using s2 it is given by

ˆ τ̂
2

0

(ˆ t2

t0

p2dt
∗
)
dG (τ) +

ˆ τ̂

τ̂
2

(ˆ t2

t1−∆p
2τ

p2dt
∗

)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

−∆p
2τ

p2dt
∗

)
dG (τ)

= p2

[
2

ˆ τ̂
2

0

dG (τ) +

ˆ τ̂

τ̂
2

(
∆T +

∆p

2τ

)
dG (τ) +

ˆ +∞

τ̂

(
∆T

2
+

∆p

2τ

)
dG (τ)

]
∆T

= p2

[
2G

(
τ̂

2

)
+G (τ̂)−G

(
τ̂

2

)
+

1

2
(1−G (τ̂)) +

τ̂

2

ˆ +∞

τ̂
2

dG (τ)

τ

]
∆T

= pl

[
1 + 2G

(
τ̂

2

)
+G (τ̂) + τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

]
∆T

2
.

Overall, the aggregate monetary price of informed passengers amounts to

ph

[
G (τ̂)−G

(
τ̂

2

)
− τ̂

2

ˆ τ̂

τ̂
2

dG (τ)

τ
+

1

2
(1−G (τ̂))

]
∆T

+ ph

(
1−G (τ̂)− τ̂

2

ˆ +∞

τ̂

dG (τ)

τ

)
∆T

+ pl

[
1 + 2G

(
τ̂

2

)
+G (τ̂) + τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

]
∆T

2

= ph

(
3− 2G

(
τ̂

2

)
−G (τ̂)− τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2

+ pl

(
1 + 2G

(
τ̂

2

)
+G (τ̂) + τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2
.
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Using ph = pl +∆p, this further becomes

(pl +∆p)

(
3− 2G

(
τ̂

2

)
−G (τ̂)− τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2

+ pl

(
1 + 2G

(
τ̂

2

)
+G (τ̂) + τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2

= 2pl∆T +∆p

(
3− 2G

(
τ̂

2

)
−G (τ̂)− τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2
.

C.1.3 Comparison between U.4 and I.4
The aggregate monetary price is at least as high in case U.4 as in case I.4 if and only

if

2pl∆T +∆p (1−G (τ̂))∆T

≥ 2pl∆T +∆p

(
3− 2G

(
τ̂

2

)
−G (τ̂)− τ̂

ˆ +∞

τ̂
2

dG (τ)

τ

)
∆T

2
,

which is equivalent to

3− 2G

(
τ̂

2

)
−G (τ̂)− τ̂

ˆ +∞

τ̂
2

dG (τ)

τ
≥ 2 (1−G (τ̂))

and so to
1 +G (τ̂)− 2G

(
τ̂

2

)
≥ τ̂

ˆ +∞

τ̂
2

dG (τ)

τ
. (17)

Observing that

τ̂

ˆ +∞

τ̂
2

dG (τ)

τ
= τ̂

ˆ τ̂

τ̂
2

dG (τ)

τ
+ τ̂

ˆ +∞

τ̂

dG (τ)

τ

= 2

ˆ τ̂

τ̂
2

dG (τ)

τ/ τ̂
2

+

ˆ +∞

τ̂

dG (τ)

τ/τ̂

≤ 2

ˆ τ̂

τ̂
2

dG (τ) +

ˆ +∞

τ̂

dG (τ)

= 2

(
G (τ̂)−G

(
τ̂

2

))
+ 1−G (τ̂)

= 1 +G (τ̂)− 2G

(
τ̂

2

)
,

it is clear that (17) is satisfied.
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C.2 Aggregate non-monetary cost

C.2.1 Case U.4
The aggregate non-monetary cost of passengers using s1 is given by

ˆ ∞

τ̂

τ

(ˆ t1

t0

(t1 − t∗) dt∗
)
dG (τ) =

ˆ ∞

τ̂

τ

(
t1∆T −

ˆ t1

t0

t∗dt∗
)
dG (τ) .

Computing
ˆ t1

t0

t∗dt∗ =
t21 − t20

2

=
t1 + t0

2
∆T

=

(
t0 +

∆T

2

)
∆T,

we can rewrite
ˆ ∞

τ̂

τ

(
t1∆T −

ˆ t1

t0

t∗dt∗
)
dG (τ)

= ∆T

ˆ ∞

τ̂

τ

(
t1 − t0 −

∆T

2

)
dG (τ)

=
(∆T )2

2

ˆ ∞

τ̂

τdG (τ) .

For passengers using s2 the aggregate non-monetary cost amounts to

ˆ τ̂

0

τ

(ˆ t1

t0

(t2 − t∗) dt∗
)
dG (τ) +

ˆ ∞

0

τ

(ˆ t2

t1

(t2 − t∗) dt∗
)
dG (τ)

Computing
ˆ t1

t0

(t2 − t∗) dt∗ = t2∆T − t21 − t20
2

=
3

2
(∆T )2

and
ˆ t2

t1

(t2 − t∗) dt∗ = (t1 +∆T )∆T −
(
t1 +

∆T

2

)
∆T

=
(∆T )2

2
,
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we can rewrite
3

2
(∆T )2

ˆ τ̂

0

τdG (τ) +
(∆T )2

2

ˆ ∞

0

τdG (τ) .

Overall, the aggregate non-monetary cost of uninformed passengers is given by

(∆T )2

2

ˆ ∞

τ̂

τdG (τ) +
3

2
(∆T )2

ˆ τ̂

0

τdG (τ) +
(∆T )2

2

ˆ ∞

0

τdG (τ)

=

(
3

2
(∆T )2 +

(∆T )2

2

)ˆ τ̂

0

τdG (τ) +

(
(∆T )2

2
+

(∆T )2

2

)ˆ ∞

τ̂

τdG (τ)

= 2 (∆T )2
ˆ τ̂

0

τdG (τ) + (∆T )2
ˆ ∞

τ̂

τdG (τ) .

C.2.2 Case I.4
The aggregate non-monetary cost of passengers using s0 is given by

ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

∥t∗ − t0∥ dt∗
)
dG (τ) +

ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

∥t∗ − t0∥ dt∗
)
dG (τ)

Computing

ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

∥t∗ − t0∥ dt∗
)
dG (τ)

=

ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

(t∗ − t0) dt
∗

)
dG (τ)

=

ˆ τ̂

τ̂
2

τ

[
1

2

((
t1 −

∆p

2τ

)2

− t20

)
− t0

(
∆T − ∆p

2τ

)]
dG (τ)

=

ˆ τ̂

τ̂
2

τ

[
1

2

(
(∆T )2 − ∆p

τ
∆T +

(∆p)2

4τ 2

)]
dG (τ)

=
1

2

ˆ τ̂

τ̂
2

τ

(
∆T − ∆p

2τ

)2

dG (τ)

and
ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

∥t∗ − t0∥ dt∗
)
dG (τ)

=

[ˆ t0+t1
2

t0

t∗dt∗ − t0

(
t0 + t1

2
− t0

)] ˆ +∞

τ̂

τdG (τ)

=
(∆T )2

8

ˆ +∞

τ̂

τdG (τ) ,

81



we can rewrite
ˆ τ̂

τ̂
2

τ

(ˆ t1−∆p
2τ

t0

∥t∗ − t0∥ dt∗
)
dG (τ) +

ˆ +∞

τ̂

τ

(ˆ t0+t1
2

t0

∥t∗ − t0∥ dt∗
)
dG (τ)

=
1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ) +
(∆T )2

8

ˆ +∞

τ̂

τdG (τ) .

For passengers using s1 the aggregate non-monetary cost is given by

ˆ +∞

τ̂

(ˆ t1+t2
2

−∆p
2τ

t0+t1
2

τ ∥t∗ − t1∥ dt∗
)
dG (τ)

=

ˆ +∞

τ̂

τ

(ˆ t1

t0+t1
2

(t1 − t∗) dt∗

)
dG (τ) +

ˆ +∞

τ̂

τ

(ˆ t1+t2
2

−∆p
2τ

t1

(t∗ − t1) dt
∗

)
dG (τ) .

Computing

ˆ +∞

τ̂

τ

(ˆ t1

t0+t1
2

(t1 − t∗) dt∗

)
dG (τ) =

(∆T )2

8

ˆ +∞

τ̂

τdG (τ)

and
ˆ +∞

τ̂

τ

(ˆ t1+t2
2

−∆p
2τ

t1

(t∗ − t1) dt
∗

)
dG (τ)

=
1

2

ˆ +∞

τ̂

τ

[(
t1 + t2

2
− ∆p

2τ

)2

− t21 − t1

(
∆T − ∆p

τ

)]
dG (τ)

=
1

2

ˆ +∞

τ̂

τ

[
1

4

(
∆T − ∆p

τ

)2

+ t1

(
∆T − ∆p

τ

)
− t1

(
∆T − ∆p

τ

)]
dG (τ)

=
1

8

ˆ +∞

τ̂

τ

(
∆T − ∆p

τ

)2

dG (τ) ,

we can rewrite

1

8

[
(∆T )2

ˆ +∞

τ̂

τdG (τ) +

ˆ +∞

τ̂

τ

(
∆T − ∆p

τ

)2

dG (τ)

]
.
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For passengers using s2 the aggregate non-monetary cost is given by

ˆ τ̂
2

0

(ˆ t2

t0

τ ∥t∗ − t2∥ dt∗
)
dG (τ) +

ˆ τ̂

τ̂
2

(ˆ t2

t1−∆p
2τ

τ ∥t∗ − t2∥ dt∗
)
dG (τ)

+

ˆ +∞

τ̂

(ˆ t2

t1+t2
2

−∆p
2τ

τ ∥t∗ − t2∥ dt∗
)
dG (τ)

= 2 (∆T )2
ˆ τ̂

2

0

τdG (τ) +

ˆ τ̂

τ̂
2

τ

(ˆ t2

t1−∆p
2τ

(t2 − t∗) dt∗

)
dG (τ)

+

ˆ +∞

τ̂

τ

(ˆ t2

t1+t2
2

−∆p
2τ

(t2 − t∗) dt∗

)
dG (τ) .

Computing
ˆ t2

t1−∆p
2τ

(t2 − t∗) dt∗

= t2

(
∆T +

∆p

2τ

)
− 1

2
t22 +

1

2

(
t1 −

∆p

2τ

)2

=
1

2

(
∆p

τ
∆T +∆T 2 +

∆p2

4τ 2

)
=

1

2

(
∆T +

∆p

2τ

)2

and
ˆ t2

t1+t2
2

−∆p
2τ

(t2 − t∗) dt∗

=
t2
2

(
∆T +

∆p

τ

)
− 1

2
t22 +

1

2

(
t1 + t2

2
− ∆p

2τ

)2

=
1

2

(
∆p

2τ
∆T +

∆T 2

4
+

∆p2

4τ 2

)
=

1

2

(
∆p

2τ
∆T +

∆T 2

4
+

∆p2

4τ 2

)
=

1

8

(
∆T +

∆p

τ

)2

,

we can rewrite

2 (∆T )2
ˆ τ̂

2

0

τdG (τ) +
1

2

ˆ τ̂

τ̂
2

τ

(
∆T +

∆p

2τ

)2

dG (τ) +
1

8

ˆ +∞

τ̂

τ

(
∆T +

∆p

τ

)2

dG (τ) .
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Overall, the aggregate non-monetary cost of informed passengers amounts to

1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ) +
(∆T )2

8

ˆ +∞

τ̂

τdG (τ)

+
(∆T )2

8

ˆ +∞

τ̂

τdG (τ) +
1

8

ˆ +∞

τ̂

τ

(
∆T − ∆p

τ

)2

dG (τ)

+ 2 (∆T )2
ˆ τ̂

2

0

τdG (τ) +
1

2

ˆ τ̂

τ̂
2

τ

(
∆T +

∆p

2τ

)2

dG (τ)

+
1

8

ˆ +∞

τ̂

τ

(
∆T +

∆p

τ

)2

dG (τ)

= 2 (∆T )2
ˆ τ̂

2

0

τdG (τ) +
(∆T )2

4

ˆ +∞

τ̂

τdG (τ)

+
1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ) +
1

2

ˆ τ̂

τ̂
2

(
∆T +

∆p

2τ

)2

τdG (τ)

+
1

8

ˆ +∞

τ̂

(
∆T − ∆p

τ

)2

τdG (τ) +
1

8

ˆ +∞

τ̂

(
∆T +

∆p

τ

)2

τdG (τ) .

C.2.3 Comparison between U.4 and I.4
The aggregate non-monetary cost is at least as high in case I.4 as in case U.4 if and

only if

2 (∆T )2
ˆ τ̂

0

τdG (τ) + (∆T )2
ˆ ∞

τ̂

τdG (τ)

≥ 2 (∆T )2
ˆ τ̂

2

0

τdG (τ) +
(∆T )2

4

ˆ +∞

τ̂

τdG (τ)

+
1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ) +
1

2

ˆ τ̂

τ̂
2

(
∆T +

∆p

2τ

)2

τdG (τ)

+
1

8

ˆ +∞

τ̂

(
∆T − ∆p

τ

)2

τdG (τ) +
1

8

ˆ +∞

τ̂

(
∆T +

∆p

τ

)2

τdG (τ) .

Let us first rewrite this inequality as

2 (∆T )2
ˆ τ̂

τ̂
2

τdG (τ) +
3

4
(∆T )2

ˆ +∞

τ̂

τdG (τ)

≥ 1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ) +
1

2

ˆ τ̂

τ̂
2

(
∆T +

∆p

2τ

)2

τdG (τ)

+
1

8

ˆ +∞

τ̂

(
∆T − ∆p

τ

)2

τdG (τ) +
1

8

ˆ +∞

τ̂

(
∆T +

∆p

τ

)2

τdG (τ) .
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Computing

1

2

ˆ τ̂

τ̂
2

(
∆T − ∆p

2τ

)2

τdG (τ)

=
1

2

ˆ τ̂

τ̂
2

(
(∆T )2 +

(∆p)2

4τ 2
− ∆p

τ
∆T

)
τdG (τ)

=
1

2

[
(∆T )2

ˆ τ̂

τ̂
2

τdG (τ) + ∆p

ˆ τ̂

τ̂
2

(
∆p

4τ
−∆T

)
dG (τ)

]

and

1

2

ˆ τ̂

τ̂
2

(
∆T +

∆p

2τ

)2

τdG (τ)

=
1

2

ˆ τ̂

τ̂
2

(
(∆T )2 +

(∆p)2

4τ 2
+

∆p

τ
∆T

)
τdG (τ)

=
1

2

[
(∆T )2

ˆ τ̂

τ̂
2

τdG (τ) + ∆p

ˆ τ̂

τ̂
2

(
∆p

4τ
+∆T

)
dG (τ)

]
,

we can rewrite

(∆T )2
ˆ τ̂

τ̂
2

τdG (τ) +
3

4
(∆T )2

ˆ ∞

τ̂

τdG (τ)

≥ (∆p)2

4

ˆ τ̂

τ̂
2

dG (τ)

τ

+
1

8

ˆ +∞

τ̂

(
∆T − ∆p

τ

)2

τdG (τ) +
1

8

ˆ +∞

τ̂

(
∆T +

∆p

τ

)2

τdG (τ) .

Further computing

1

8

ˆ +∞

τ̂

(
∆T − ∆p

τ

)2

τdG (τ)

=
1

8

ˆ +∞

τ̂

(
(∆T )2 +

(∆p)2

τ 2
− 2

∆p

τ
∆T

)
τdG (τ)

=
1

8

[
(∆T )2

ˆ +∞

τ̂

τdG (τ) + ∆p

ˆ +∞

τ̂

(
∆p

τ
− 2∆T

)
dG (τ)

]
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and

1

8

ˆ +∞

τ̂

(
∆T +

∆p

τ

)2

τdG (τ)

=
1

8

ˆ +∞

τ̂

(
(∆T )2 +

(∆p)2

τ 2
+ 2

∆p

τ
∆T

)
τdG (τ)

=
1

8

[
(∆T )2

ˆ +∞

τ̂

τdG (τ) + ∆p

ˆ +∞

τ̂

(
∆p

τ
+ 2∆T

)
dG (τ)

]
,

with some manipulation we further rewrite

2

ˆ τ̂

τ̂
2

τ

τ̂
dG (τ) +

ˆ ∞

τ̂

τ

τ̂
dG (τ) ≥

ˆ ∞

τ̂
2

dG (τ)

τ/ τ̂
2

. (18)

We see that
ˆ ∞

τ̂
2

dG (τ)

τ/ τ̂
2

≤
ˆ ∞

τ̂
2

dG (τ)

= 1−G

(
τ̂

2

)
and that

ˆ ∞

τ̂

τ

τ̂
dG (τ) ≥

ˆ ∞

τ̂

dG (τ)

= 1−G (τ̂) .

We also see that

2

ˆ τ̂

τ̂
2

τ

τ̂
dG (τ) =

ˆ τ̂

τ̂
2

2
τ

τ̂
dG (τ)

≥
ˆ τ̂

τ̂
2

dG (τ)

= G (τ̂)−G

(
τ̂

2

)
because 2 τ

τ̂
∈ [1, 2], hence 2 τ

τ̂
≥ 1 for τ ∈

[
τ̂
2
, τ̂
]
. Since

G (τ̂)−G

(
τ̂

2

)
+ 1−G (τ̂) ≥ 1−G

(
τ̂

2

)
⇔ 0 ≥ 0,

which clearly holds as an equality, (18) is satisfied.
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