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Population density and urban air quality 
 
 

Abstract 
 
We use panel data from Germany to analyze the effect of population density on urban air 
pollution (nitrogen oxides, particulate matter and ozone). To address unobserved heterogeneity 
and omitted variables, we present long difference/fixed effects estimates and instrumental 
variables estimates, using historical population and soil quality as instruments. Our preferred 
estimates imply that a one-standard deviation increase in population density increases air 
pollution by 3-12%. 
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1 Introduction

Are bigger and more densely populated cities better or worse places to live? Over the last
centuries, the world has become more and more urbanized, as agglomeration benefits have
drawn households to bigger cities. The urban economics literature on these agglomeration
benefits is huge. Yet, in order to predict equilibrium and optimal sizes of cities, robust
evidence is needed on the costs as well as the benefits of agglomeration, and much less
seems to be known about these costs than about agglomeration economies.1 Kahn (2010)
documents that in the US, larger cities have longer commute times, higher pollution levels
and higher crime rates. In this paper, we analyze one particular element of the costs of
agglomeration, namely, the effect of population density on air pollution. As we document
below, there is hardly any evidence that credibly estimates the causal effect of density
on pollution. We aim to fill this gap.

Air pollution is an acute phenomenon in many cities worldwide. Megacities in de-
veloping countries suffer from particularly high pollution levels. But even in developing
countries, where urban air pollution has fallen over the last decades, high pollution lev-
els keep occurring. German cities have been subject to a variety of legal proceedings
against transgressions of pollution thresholds, and the same is true of other European
cities. Therefore, the relation between urban structure and pollution concentration is an
important policy issue.

Air quality is obviously an important determinant of city life. Air pollution causes
severe health problems, most notably heart diseases, strokes, chronic obstructive pul-
monary disease, lung cancer, and respiratory infections.2 According to the WHO, in
2010 air pollution caused 600,000 premature deaths in Europe alone and costs Euro-
pean economies US$ 1.575 trillion per year (WHO, 2015). The European Environment
Agency estimates that in Germany, particulate matter (PM2.5) caused 66,000 premature
deaths in 2013.3 This shows the potential economic benefits of using policies to reduce
air pollution. The first best policy would be to internalize pollution externalities, e.g.
through Pigovian taxes or pollution licenses, but absent first-best prices, the effect of
urban structure on pollution is obviously relevant for social welfare.

The pollutants we study are produced in a variety of industrial and non-industrial
processes. Nitrogen oxides are produced in various combustion processes but are pre-
dominantly produced by traffic with a share of about 38%. Other sources are agriculture,
as well as power generation plants and combustion processes in different industries. Par-
ticulate matter is produced by various industrial processes as well as burning of fossil

1Ahlfeldt and Pietrostefani (2019) contain a nice synthesis of the research on benefits and costs of
population density.

2While evidence of the health effects of NO2 is rather scarce, there is wide evidence on the health
effects of particulate matter (see e.g. Pope III and Dockery (2006) for a summary).

3See https://www.eea.europa.eu/themes/air/country-fact-sheets/germany.
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fuels for heating or energy production.4 Apart from combustion processes, they also
arise through dispersion of dust on streets and tire wear of cars. Ground level ozone is
created by chemical reactions between oxygen and nitrogen oxides (emitted for instance
by cars) and volatile organic compounds (VOCs, which arise e.g. in paints or in gasoline
exhausts). Thus, human activity is the major source of bad air quality. Adverse health
effects are the main reason to worry about pollutant exposure (World Health Organiza-
tion, 2003). For particulate matter, all levels of exposure may lead to negative health
effects but long-term threshold levels of 20 (PM10) and 10 (PM2.5) µg/m3 were set by
the WHO in order to significantly reduce adverse health effects. High levels of particu-
late matter affect the human respiratory system and lung. NO2 is a toxic gas, which is
damaging to human health at explicitly high levels of more than 200 µg/m3 in the short
run. Furthermore, nitrogen dioxide is a precursor for several other pollutants including
ozone, which have been shown to have adverse health effects (World Health Organization
et al., 2006). While older studies mainly found health effects of NO2 on animals (World
Health Organization et al., 2006), more recent studies also find significant health effects
on humans (Costa et al., 2014).

The effect of city size or population density on air quality has only recently become
the subject of research in economics and other disciplines, and the findings have partly
been contradictory (see the next section). In addition, much of the empirical literature
uses cross-sectional data, sometimes from several countries, which thwarts the causal
interpretation of estimated coefficients. In this paper, we estimate the effect of population
density on ground-level pollution (NO2, PM10, PM2.5, and O3) for German cities, using
rich panel data from 2002 to 2015. We start by presenting OLS estimates. However,
these may be biased due to omitted variables or reverse causality, so we also estimate
fixed effects (and long difference) regressions to control for unobserved heterogeneity that
affects density and pollution. We also run instrumental variables (IV) regressions, using
historical population density as well as soil quality as instruments for current population
density (see Combes et al., 2010). According to our preferred estimates, a one-standard
deviation increase in population density increases PM10 concentration by about 3% and
NO2 concentration by about 12%. Thus, this is one of the first papers to estimate the
causal effect of population density on pollution.

The paper is structured as follows. The next section reviews the related literature.
Section 3 presents some theoretical considerations on the link between population density
and pollution concentration. Section 4 presents the data and estimation methods. Our
regression results are shown in Section 5, and the last section concludes.

4There are also natural sources such as volcanoes, dust storms or wildfires.
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2 Related literature

We contribute to the growing literature that examines the interaction of city structure
and environmental pollution. On the theoretical side, Borck and Pflüger (2015) analyze
the channels through which population size affects pollution. In general, pollution may
increase or decrease with population size (see also the model in the next section). Larson
and Yezer (2015) also simulate the energy implications of city size and density. They
find that per-capita energy use is relatively invariant to city size when growth is driven
by wages but falls modestly with growth induced by better amenities.

On the empirical side, several recent contributions have looked at the relation be-
tween city size or density and pollution. Some papers have looked at household energy
consumption and mostly found residents of denser cities consume less energy per capita
(Glaeser and Kahn, 2010; Blaudin de Thé et al., 2018). The reason is that, as ana-
lyzed by the theoretical literature, residents of densely populated cities consume less fuel
due to the availability of public transport systems and shorter commutes, and use less
residential energy because dwellings are smaller and high-rise apartment buildings are
more energy efficient. Indeed, per capita fuel consumption and automobile utilization
have been found to be significantly lower in more densely populated cities due to the
availability of public transport and shorter commutes to work on average (Newman and
Kenworthy, 1989; Karathodorou et al., 2010), and public transport has been found to
reduce pollution (Bauernschuster et al., 2017; Borck, 2017). Gudipudi et al. (2016) use
U.S. data from 2000 and find that per capita CO2 emissions decrease with city size.
Oliveira et al. (2014) use the same dataset and the same method, but a slightly different
definition of cities. They find per capita CO2 emissions increase with city size. Both
of these papers use cross-sectional data. Borck and Tabuchi (2018) use panel data from
US metropolitan areas. They find that per capita CO2 emissions decrease with city size.
Bart (2010) examines urban sprawl in European cities and argues that urban sprawl
leads to a strong increase in CO2 emissions caused by transport.

Another set of papers examines the effect of population size and other explanatory
factors on air quality, mostly particulate matters, sulphur dioxide and nitrogen oxides.
In an early study, Glaeser (1998) finds that particulate matter levels increase with city
size and calculates the costs of a city increasing in size from 500,000 to 5,000,000 people
to lie between $38 and $185 per person annually. Lamsal et al. (2013) examine cities
on different continents in 2005 and find significant positive relationships between pop-
ulation and NOX emissions on all continents. Sarzynski (2012) uses OLS regressions
on a sample of cities worldwide in 2005 and finds that the number of inhabitants in a
city is significantly positively correlated with NOX, while urban density has a significant
negative effect on emissions. Ewing et al. (2003) find a negative correlation between
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density and mean annual NOX and VOC emissions. Stone (2008) finds a positive corre-
lation between urban sprawl and the number of exceedances of yearly ozone standards.
Ahlfeldt and Pietrostefani (2019) use a cross-section of 343 cities worldwide to study the
effect of population density on particulate (PM2.5) concentration and find an elasticity
of around 0.125. Hilber and Palmer (2014) analyze pollution using panel data from 75
metropolitan areas in 45 OECD and non-OECD countries. Using fixed effects and con-
trolling for a rich set of explanatory variables, they find that an increase of population
density leads to negative effects for PM10 and NO2 concentrations and therefore an im-
provement in air quality. Carozzi and Roth (2019) study the effect of population density
on PM2.5-concentration in the US and find a statistically significant positive elasticity of
0.13, which is slightly larger than the effect we find.

To our knowledge, the only two papers other than ours that seriously tackle causality
are the unpublished paper by Carozzi and Roth (2019) and the now defunct working
paper by Hilber and Palmer (2014). While Carozzi and Roth (2019) use IV (and fixed
effects) estimates with geological instruments, Hilber and Palmer (2014) use fixed effects
regressions. Even fixed effects, however, may be biased if there are time varying omitted
variables that affect density and pollution. The only paper besides ours that also uses
instrumental variables is Carozzi and Roth (2019) who study the effect of population
density on particulate pollution in US cities. The instruments they use – aquifers, earth-
quake risk, and soil drainage capacity – differ slightly from ours. Moreover, their main
analysis is based on satellite data while ours is based on monitor readings. The latter
presumably measure pollution more accurately and also contain other pollutants besides
particulates. On the other hand, the placing of monitors may be non-random which
could bias the estimates.5 Even if the method is similar, the two papers present esti-
mates from the US and Germany, two countries with different city systems and energy
use and pollution patterns. Finally, our paper contains data on other pollutants as well
(PM10, NO2, and O3), so the findings of the studies can be viewed as complementary.

In summary, we think that many existing contributions to the literature have only
limited value in identifying causal effects of population on pollution. In fact, in a survey
of the economics of density, Ahlfeldt and Pietrostefani (2019) argue that pollution is one
of the areas where more evidence on the effects of density is needed.

5To mitigate the latter problem, we will include some station characteristics, such as distance to city
center, station type, distance to main roads in our regressions (see below). Interestingly, Carozzi and
Roth (2019) also use monitor reading data as a sensitivity check and find a slightly reduced effect of
density on pollution.
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3 Theoretical considerations

In this section, we present results from a simple urban economic model of city structure
and pollution, building on Borck and Brueckner (2018), Borck and Pflüger (2015), Borck
and Tabuchi (2018) and Larson and Yezer (2015). More details are in Appendix A.
Consider a circular monocentric city with N workers who commute to the CBD for
work. Households have utility v(c, q) over consumption, c, and square meters of housing
floor space, q. A household who lives at x km from the CBD incurs commuting costs
tx and pays land rent p(x). Mobility ensures that all households attain the same utility
level throughout the city.

Housing is produced by profit maximizing developers using capital and land. They
pay land rent r(x) at distance x and an invariant price i per unit of capital. In equilibrium,
land rent at the city border, r(x̄) must equal the opportunity cost of land rA. This
canonical model produces a city where in the city center buildings are tall, dwellings
small and population density high.

We assume that emissions equal the sum of emissions from commuting and residen-
tial energy.6 Commuting emissions are assumed to be proportional to the sum of total
commuting distances for all households, weighted by the emissions intensity of commut-
ing; likewise, residential emissions are assumed proportional to total residential energy
demand (itself assumed proportional to housing floor space), weighted by the emissions
intensity of energy use.7 Pollution concentration in a city is the sum of total emissions
divided by land area.8

Suppose that city population rises. Then, the city expands spatially, and population
density rises. Average commuting distances increase, which increases traffic emissions.
On the other hand, residents will reside in smaller dwellings. This effect will tend to
decrease per capita energy use, while total housing supply and thus total residential
energy use increases. As a result, total pollution will rise. Numerical simulations show
that pollution concentration also rises (see Appendix A).

We can also show (using numerical simulation) that making the city denser by re-
stricting its spatial extension (through increasing agricultural land rents) increases pollu-
tion concentration. This happens even though the denser city has less total commuting
and lower residential energy use, as competition for central land increases and makes

6Borck and Pflüger (2015) in addition consider emissions from industrial and agricultural production,
and intercity goods transport, while Borck (2017) considers the effect of modal choice between public
and private transport.

7Borck and Brueckner (2018) propose a model where instead emissions from residential energy use
are proportional to the building’s surface area, which leads to scale economies in residential energy use,
since taller buildings have a lower surface per unit of floor space. Note also that we abstract from
congestion, see e.g. Larson and Yezer (2015).

8This assumption is for simplicity. In reality, how emissions diffuse over space and time is obviously
a more complicated process.
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dwellings smaller. But the city area decreases even more, so pollution concentration
rises. This model therefore predicts that the concentration of pollution from transport
and residential energy rises with density.9

However, this model ignores some possible countervailing forces. First, due to their
larger density, bigger cities tend to have a more extensive supply of public transit. Since
transit typically produces lower emissions per person kilometer than automobiles, this
would tend to decrease traffic emissions, all else equal. And second, in denser cities
households especially in the city center tend to live in high-rise buildings that are more
energy efficient than the detached single family homes that dominate in sparsely pop-
ulated cities (see Borck and Brueckner, 2018). All in all, concentration in bigger cities
might conceivably fall with population density. In the next sections, we will examine the
empirical relation between density and air pollution.

4 Data and estimation

4.1 Data

We use administrative panel data from Germany for the period 2002 - 2015. While we
have hourly data on all emissions monitor stations in Germany, our regional data, in
particular population density, is available on a yearly basis for the roughly 400 German
counties (Landkreise).

4.1.1 Emissions and weather data

We obtained hourly emission data from the German Environmental Agency (Umwelt-
bundesamt, UBA) for the years 2002 - 2015. These data are collected via a net of mea-
surement stations throughout Germany for different pollutants. Measurement stations
are special monitors that lie either at streets and transport axes and measure pollution
caused mainly by vehicles (traffic stations), or are dispersed throughout cities to record
the overall level of city pollution at representative places (background stations). There
are also stations close to industrial sites (industrial stations), but these are less numer-
ous than traffic and background stations. The UBA also classifies the areas in which the
stations are located into rural, urban and suburban areas, which we explicitly control for
in our analysis. Pollutants taken into account in this paper are nitrogen dioxide (NO2),
particulate matter with diameter less than 10 µm (PM10), particulates with diameter of
less than 2.5 µm (PM2.5), and ozone (O3).

9Note that, unlike Glaeser and Kahn (2010) we focus on pollution concentration rather than per
household emissions.
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The availability of average hourly emissions enables us to control for differences in
emission patterns, for example due to differences between peak and off-peak periods and
workdays versus weekends. These variables are added to our regressions as indicator
variables for each day and each hour respectively. Furthermore, hourly emission data
can be matched to weather information in more detail than lower frequency data, so
we are better able to control for weather effects on emissions. The specific matching
approach and the importance of taking into account weather variables are explained in
the next subsection.

We have an unbalanced panel of stations, and keep only stations with more than two
years of observations so we can apply long difference and fixed effects estimations. In
order to rule out the possibility that results are driven by cyclical forces that differently
affect stations, we add a month dummy to our set of control variables.

We furthermore delete outliers from the sample. These are values above 500 µg/m3

for particulate matter, which only occur if there is a large fire or another idiosyncratic
source of high pollution that is not related to population density.

Air pollution thresholds. In addition to pollution concentration levels, we will also
look at extreme values, in particular, instances of transgressions of official thresholds.

Thresholds set by the EU have entered into force in 2005 (PM10) and 2010 (NO2).
Global guidelines by the World Health Organization (WHO) were updated in 2005.
Threshold values and their transgressions may be of particular interest, as they are sup-
posed to be based on evidence on the health effects of pollution. If health effects increase
non-linearly after the threshold is crossed, analyzing these transgressions is of particular
interest. Even without any nonlinear health effects, insofar as the thresholds are legally
binding, jurisdictions have a special interest in them since in case of transgressions they
may be sued, as local and state governments in Germany and other EU countries have
been recently. Note, however, that some of the thresholds defined by political institutions
lie somewhat higher than the ones suggested by the WHO.

The World Health Organization (WHO) has published guidelines for pollution con-
centration levels based on potential health threats (Tab. 1). For PM10, these are 20
µg/m3 for the annual mean concentration and 50 µg/m3 for the 24-hour mean concen-
tration. PM2.5 is more aggressive to human health, so the thresholds are lower. The
WHO recommends the annual mean pollution level to lie below 10µg/m3 and the 24-
hour mean to be lower than 25µg/m3. For NO2, the guidelines contain an annual mean
value of 40µg/m3 and a one-hour mean value of 200 µg/m3.10 Even though the WHO
stresses the importance of thresholds for health impacts, to our knowledge there is no

10The guidelines set by EU are less strict but binding for its member states. The EU has published
an annual threshold of 40 µg/m3 and a 1-hour threshold of 200 µg/m3 for NO2. The latter is allowed to
be exceeded up to 18 times per year. For PM10, there is an annual threshold value of 40 µg/m3, while
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Table 1: WHO thresholds of NO2 and PM10

NO2 PM10 PM2.5
Annual mean 40µg/m3 20µg/m3 10µg/m3

24-hour mean 50µg/m3 25µg/m3

Hourly mean 200µg/m3

research which explicitly analyzes these thresholds. The literature on potentially non-
linear effects of pollution on health – e.g. when crossing a particular threshold – is scarce
and the issue has recently been debated in the public. Still, we think that analyzing
threshold transgressions is interesting, because of potentially increasing health effects
and the focus of public attention on these thresholds.

Weather data. Ambient concentration of emissions is affected by weather conditions.
As Auffhammer et al. (2013) argue, it is necessary to include all available weather vari-
ables in a regression, since weather variables are themselves correlated over time and
space.11 Particulate matter for example is literally washed away on very rainy days
or blown out of the city on very windy ones. The concentration of NO2 on the other
hand depends on temperature and sunlight as it is one crucial precursor of ozone (O3)
formation, which depends on sunshine and therefore occurs mainly on hot and sunny
days in summer.12 The German Meteorological Service (DWD in German) provides free
access to the data of its various weather and precipitation stations. This allows us to get
hourly data on temperature, air pressure, rainfall, snowfall, sunshine, and wind. While
Auffhammer and Kellogg (2011) and Wolff (2014) control for daily weather, we are able
to match hourly weather variables with hourly emissions. The matching of emissions
monitors and weather stations is described in Appendix B.

4.1.2 Other control variables.

We can include various additional control variables in our regressions. An important
determinant of recorded pollution concentration levels is the physical location of a moni-

the 24-hour-mean should lie below 50µg/m3 with an allowance of 35 exceedances annually. For PM2.5
there is only an annual threshold of 25µg/m3.

11It might be that some weather variables are themselves affected by population density, for instance,
if denser cities are hotter or more or less windy. Therefore, we also ran regressions without weather
controls. However, we do not find that weather changes our results, which is why all of our outcomes
include weather controls (results without weather are available upon request).

12As Auffhammer and Kellogg (2011) note, ozone creation needs a certain amount of NO2 and of
other volatile organic compounds. If climatic preconditions are not given, NO2 levels therefore stay high.
Furthermore, at great heat, plants are less able to absorb ozone, which increases ozone concentration in
the air on very hot days.
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toring station. We can control for a set of station-specific factors such as the distance to
the central business district (CBD),13 whether the station lies in an urban or a suburban
area and the station type (traffic, background, or industry, see Section 4.1.1).

In Germany, over the course of the past 15 years, many cities introduced low emission
zones (Umweltzonen). Those zones were established in order to lower high levels of
particulate matter by restricting city access to cars that have particle filters.14 Using
maps, we assign to each monitoring station an indicator for whether or not it lies in a low
emission zone. Including the emissions zone indicator makes sense as policy schemes that
differ between cities affect city level pollution. For instance, Gehrsitz (2017) and Wolff
(2014) found that such badges significantly lower PM10-levels (but not other pollutants)
within cities after their introduction. However, if the implementation of low emission
zones is a political reaction to high pollution caused by higher density, then the actual
effect we want to measure would suffer from downward bias. This is why we will include
this control variable in robustness regressions only.

In order to control for economic drivers of pollution, we can control for district level
GDP, unemployment rate and average private household income within a district. More-
over, we collected the share of voters for the Green Party, in order to control for the
potential sorting of ‘green’ households into cities.

For reasons explained below, our main results are from regressions that control only
for station type, distance to the CBD and urban status. However, to check for the
robustness of our results, we include the other control variables in sensitivity checks.

Even though we have information on whether a monitoring station is measuring traffic
or background pollution, outcomes especially of background stations could be driven by
their distance to big street axes.15 Therefore, in additional specifications, we control for
the distance of a measuring station to the next major road (Bundesstraße or a street of
similar size).

Lastly, we can also control for the presence of coal-fired power stations in a district
and the distance of a monitoring station to a coal-fired power station.16 Since burning
coal is a major source of air pollution, this might take out some variation that is caused
by the presence of coal mines.

13Our main geographic units are districts, which often contain several cities or towns. Therefore, we
define the CBD as the centroid of the most densely populated municipality within a district. For district
free cities, the CBD is defined as the centroid of the city.

14There are three different levels of low emission zones: green, yellow and red with green being the
most and yellow the least restrictive. Thus, these zones differ in the quality of the particulate filters of
cars. We have the exact dates when a red, yellow or green low emission zone was implemented.

15To construct the distance, we use maps provided by the Federal Office of Cartography and Geodesy
( c©GeoBasis-DE / BKG - 2018).

16Since we do not have exact geo-coordinates of those power stations, we calculated the distance of
the monitoring station to the centroid of the closest postal code region that accommodates a coal-firing
power plant. Postal code regions are relatively small administrative units, with more than 8200 in our
sample (compared to about 400 districts) and an average size of about 65 square kilometers.
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4.1.3 Descriptives

Table 2: Descriptives

NO2 PM10 PM2.5 O3

Overall Stations 623 531 146 409
Background 360 290 79 340
Industrial 43 44 15 26
Traffic 220 197 52 43

Districts 269 247 108 251
Urban Districts 88 85 51 72

Labor market regions 128 125 77 126
Stations in LEZ 92 94 26 34
Whole Sample

Mean Pollution 28.11 22.52 14.43 46.90
S.D. Pollution 15.17 5.767 3.026 9.934
Mean Popdensity 2593.0 2531.1 2384.6 2254.9
S.D. popdensity 1341.6 1332.5 1328.9 1266.5

Sample in 2015
Mean Pollution 25.87 19.00 12.93 49.72
S.D. Pollution 14.72 3.824 1.716 8.583
Mean Popdensity 2569.8 2477.5 2326.0 2215.0
S.D. popdensity 1419.3 1362.8 1323.3 1385.4

Table 2 shows monitoring stations in our sample in 2015 and how they are distributed.
The coverage of monitoring stations varies widely with NO2 being measured by the most
extensive net of monitoring stations, while PM2.5 is measured by less than 147 monitors
as monitoring of this pollutant only started in the mid 2000s with an extending network
since then. The number of monitoring stations within the samples is also reflected in the
number of districts (Landkreise), which are our main regional unit of analysis. In Ger-
many, there are over 404 districts including urban districts.17 Instead of using districts,
we also use labor market regions as defined by Kosfeld and Werner (2012) in order to
check whether our results are driven by the geographical delineation of cities (there are
141 labor market regions of which we cover up to 128 in our analyses. The regions not
covered do not contain a monitoring station for any pollutant). These are defined as
metropolitan regions made up of several districts with large commuting flows between
them (see Kosfeld and Werner (2012)). As can be seen from the table, most of these
contain at least one monitoring station for NO2, while PM2.5 stations are only present

17The German administrative system distinguishes between districts (Landkreise) and district-free
cities or urban districts (kreisfreie Städte). The latter are entities where the ‘district’ consists of a single
(large) city, while Landkreise contain several jurisdictions. The table shows the number of districts,
including those urban districts, which are covered by monitoring stations. In the main analysis, we use
both types, but in a sensitivity check, we also rerun our main regressions for district-free cities only.
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in about half of the labor market regions. Furthermore, the variation in pollution levels
for NO2 is relatively high compared to particulate matter.

For a first visual impression about the relation between population density and air
pollution, Figure 1 shows quintiles of NO2 and PM10 concentrations, while Figure 2 shows
quintiles of population densities in 191018 — which we will use as an instrument in the
subsequent parts of the paper — and in 2015 for districts. The small districts in the
maps are mostly urban municipalities, which are more densely populated than other parts
of the country. These areas also show high concentrations of pollution. Furthermore,
the historical industrial regions in West Germany and the automotive center around
Stuttgart show high values of PM10 and NO2. The figures also reveal pollution patterns
that are clearly not related to high population densities. For instance, PM10 shows high
concentration levels in less urbanized districts in East Germany. These high levels might
be caused by the proximity to coal-fired power stations in these areas. We will control
for the presence of coal fired power plants in the robustness section of the paper.19

Figure 3 shows the variation of pollution over time and across pollutants. It depicts
the distribution of emission levels by rank of the station for the years 2003 and 2015,
for both NO2 and PM10. The horizontal red lines show annual threshold levels for NO2

and PM10.20 For PM10, we see a clear downward trend in emission levels. While in
2003 (green dots) most of the stations exceeded the WHO thresholds and some also the
EU threshold (which is the same for the annual mean of PM10 and NO2), in 2015 only
the WHO threshold was exceeded by a few stations while all stations fell below the EU
threshold. For NO2, the picture is different. While there is a slight reduction of emissions
at the bottom end of the distribution, threshold violations have not actually fallen. The
widespread violations of threshold levels have led to treaty violation proceedings against
the German government as well as individual lawsuits against city governments. This
is also the driving force behind the recent political discussion in Germany to ban Diesel
cars from cities.

Figure 4 divides the sample into low and high density areas at the median. Except for
PM2.5(not shown), all pollutants followed a similar trend between the density groups, but
at different levels. Especially PM10 experienced an overall decline over the time period
observed. PM2.5, which is more harmful than PM10, increased slightly in low-density

18The authors would like to thank Uli Schubert from gemeindeverzeichnis.de for sharing his data on
population in 1910.

19It is not immediately clear whether this variable should be included in the regressions: on the one
hand, the energy mix might itself be driven by population, so one might want to leave the presence of
coal fired power plants out. On the other hand, part of the location of these plants may be driven by the
exogenous presence of coal mines. We therefore include coal fired power plants only in the robustness
section; as will be seen, including this variable does not affect our results.

20See Section 4.1.1 above for a description of the thresholds.

11

http://www.gemeindeverzeichnis.de/gem1900/gem1900.htm?gem1900_2.htm


areas and experienced a decline in high-density areas, such that absolute levels in 2015
were almost identical in the two types of districts.

(a) NO2 (b) PM10

Figure 1: Mean NO2 (left) and PM10 (right) concentration levels

4.2 Estimation

4.2.1 Basic regressions

We now turn to estimating the model. While the pollution monitor readings are hourly
data, our main variable of interest, population density, is available only annually. There-
fore, and in order to reduce computational burdens, we first regress hourly pollution on
hourly weather data, as well as time indicators (hour of day, day of week and month dum-
mies). Following Auffhammer et al. (2013), the extensive set of weather and weather-
interaction variables includes the hourly level of precipitation, sunshine, wind-speed,
cloudiness, and temperature at weather stations, as well as quadratic terms for all of
these variables and a cubic temperature variable. We also interact temperature with
wind. We include as further controls an indicator for working days (Monday until Fri-
day), an indicator for hour of day in order to control for special pollution patterns
throughout the day (e.g. increased traffic during rush hours), and an indicator for the
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(a) 1910 (b) 2015

Figure 2: Development of population densities over time
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Figure 4: Pollution in high and low density areas over time

month of year for seasonal effects. We then take the residuals from this regression and
aggregate them by year and district.

We then proceed with these estimated residuals and start with a simple OLS model
and regress hourly pollution outcomes on a set of control variables. Our main regressor
of interest is population density, which is available in yearly intervals at the district level.
Our first regression equation is

ln(Yit) = β + ρ ln(Dit) + γXit + αt + εit, (1)

where Yit denotes the residual concentration level (for a particular pollutant) in year t at
station i. Like Henderson (1996), our main results stem from single measurement stations
which are assigned to the closest weather station (see above). Emissions are regressed on
a set of control variables X. Those are attributes of the monitoring station like the station
area (urban, suburban or rural) and station type (background, traffic, or industrial). We
also control for the distance of an emission station to the center of the most densely
populated municipality within a district. Effectively, our measure of pollution is then
the pollutant concentration at the CBD. This should be a representative measure of
city pollution. We also include year dummies αt in order to control for business cycles
and other time varying effects. District-level population density is denoted Dit. Our
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parameter of interest is then ρ, which measures the elasticity of pollution concentration
with respect to population density.

We can add economic controls at the district level like GDP, mean household income,
and the unemployment rate. We can also control for whether the station lies within
an environmental zone with a red, yellow or green badge. The share of green party
voters is used as a control for the sorting of households with ‘green’ preferences into
low- or high-emission cities. There is also the concern that the presence of coal-fired
power plants might cause bad air quality in some regions. Therefore, we constructed an
indicator which equals one if such a power plant is located within the same district as the
monitoring station. Apart from that we calculated the distance of a measuring station
to the closest coal-fired power plant.

We cluster standard errors on the labor market region-year level in our OLS regres-
sions. According to Cameron and Miller (2015, p. 333), the consensus is to be conser-
vative and avoid bias by using “bigger and more aggregate clusters when possible, up to
and including the point at which there is concern about having too few clusters”. Com-
pared to using clusters at district-year level, significance of the results does not change.
However, we prefer using labor market regions as otherwise we have too few observations
(monitoring stations) within some clusters.

In choosing whether to include control variables, we face two issues. On the one hand,
leaving important drivers out of the regression will lead to omitted variable bias. On the
other hand, some of these variables may be endogenous and therefore constitute “bad
controls” that should be left out of the regression. For instance, income may be affected
by density through agglomeration effects (even though the large empirical literature tends
to find modest agglomeration economies, e.g. Combes et al., 2010). This also holds for
many other potential controls. Green voting clearly may differ with a district’s urbanity
and also responds to local pollution. Coal fired power plants may be present in large
districts with large energy demand. Therefore, we choose to present our basic regressions
with controls only for the urban/suburban/rural indicator, station type and distance to
the CBD. As a sensitivity check, we analyze in Appendix C how our results change when
we successively add controls.

OLS estimates would be unbiased and consistent as long as population density is not
correlated with the error term, conditional on controls. However, this seems unlikely. For
instance, densely populated cities may differ from less densely populated ones in their
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geography, industrial structure, or other unobserved variables that affect emissions.21

Therefore, we also estimate long difference and fixed effects regressions of the form

∆ ln(Yit) = ρ∆ ln(Dit) + γ∆Xit + ∆αt + ∆ε̃it, (2)

where ∆ ln Y ≡ ln YT − ln YF and so on. We run a long-difference estimation where
t = F is 2002 and t = T is the year 2015, while in other regressions, we include all years
in the sample to estimate fixed effects. Our main long difference regressions control for
unobserved heterogeneity at the district level, but we also consider long differences at
the station level (see Appendix C). In addition to the controls described above, we again
add year dummies αt to the estimation. An alternative to long differences would be fixed
effects regressions using the entire sample. We prefer the long-difference estimator since
the yearly within variation of population density is small. However, we also perform
fixed effects regressions and the results differ only slightly in the size of the estimated
coefficients.

Long difference estimation will be unbiased if the unobserved heterogeneity that af-
fects density and pollution is time invariant. However, if there are time varying factors
which affect emissions and are correlated with density changes over time, the long differ-
ence estimates will be biased. For instance, it may be that sorting leads to large cities
getting ‘greener’ over time. In this case, density may still be correlated with the error
term. Moreover, density and pollution may be simultaneously determined. For instance,
households may migrate out of very polluted cities, which leads to endogeneity of pop-
ulation density. Moreover, as the variation of density and pollution within only is low,
fixed effects estimates may suffer from imprecise estimates. Therefore, we also estimate
instrumental variables (IV) regressions:

ln(Dit) = θ +B1Wit +B2Xit +B3Zit + ηit (3)

ln(Yit) = ϑ+ ρ ̂ln(Dit) + A1Wit + A2Xit + ε̂it (4)

Here, in the first stage regression (3), density is regressed on one or more instrumental
variable(s). The IV will be valid if the instrument strongly predicts density but is not
correlated with the error term in the second-stage regression (4). Like Combes et al.
(2010), we use both historical population data and soil quality as instruments.

The use of historical population data follows a long tradition starting with Ciccone
and Hall (1996). We use the log of historical population density from 1910.22 Historical

21For instance, Stuttgart, one of the most densely populated cities, lies in a valley which makes it
prone to high pollution concentrations.

22See, e.g. Koh et al. (2013) and Redding and Sturm (2008) who use similar historical data for
Germany. Note that there is no consistent population data for earlier years covering all districts, so
instead of using incomplete data going further back in time we choose 1910 to have a complete IV.
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population data are relevant, since urban population tends to be strongly persistent over
time. The exclusion restriction requires that historical density is correlated with current
emission levels only through its effect on current density. We believe this to be the case,
since pollution in the early 20th century was driven largely by industry. Today’s urban
pollution is much more driven by automobile traffic, which was close to non-existent
in 1910. The German emperor Wilhelm II is purported to have said around 1900: “I
believe in horses. Automobiles are just a phenomenon of temporary importance” (our
translation). Furthermore, industry structures have changed dramatically over time, so
that correlation between historical density and current pollution seems unlikely. However,
in order to control for the possibility that industry structures persist over time, we also
control for the share of workers in industry and crafts in 1925.23 Appendix B describes
how we constructed the corresponding variables.

Following Combes et al. (2010), in addition to historical population densities, we
instrument current population densities with data on soil characteristics. Some soil
materials are better suited for construction to support a large number of households.
Furthermore, in the past households were attracted to settle in areas with fertile land.
Henderson et al. (2018) argue that agricultural variables are the most important drivers of
agglomeration, especially in developed countries. Therefore, soil characteristics should be
important determinants of historical and current population patterns.24 For these vari-
ables, the exclusion restriction may be easier to justify (Combes et al., 2010). First, geol-
ogy is largely determined by nature and should thus be independent of human economic
activity. Second, since agriculture accounts for less than 5% of current employment, soil
characteristics should not be important drivers of current pollution levels.

We include the same 12 variables from the European Soil Database (ESDB) used
by Combes et al. (2010), who look at French regions. WE consider only variables that
tend not to be influenced by human activity and therefore should be exogenous to it.
In particular, we use soil characteristics that describe the mineralogy of the topsoil and
the subsoil as well as the dominant parent material of the soil. The dominant parent
material describes the bedrock of the soil, which is the underlying geological material.
Mineralogy captures the presence of minerals in the different layers of soil. We also
include information about the water capacity of the topsoil and the subsoil, depth to
rock, soil erodibility class, topsoil organic carbon content, soil profile differentiation,
and the hydrological class, which describes the circulation and retention of underground
water. The last variable we use is the ruggedness of a district, which is the difference
of the mean of maximum altitudes of all the rasters within a district and the mean of
minimum altitudes across all rasters within the same district. More detail on these data

23Unfortunately, data for earlier years is not available for this variable on district level.
24Note, however, that soil characteristics are a narrower determinant of current population than

historical population, see Combes et al. (2010).
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can be found in Appendix B. In all of our instrumental variable regressions we cluster
standard errors at labor market region level. Since all our instruments are time invariant,
we do not cluster at year level here.

4.2.2 Threshold regressions

To test whether extreme values of PM10, PM2.5 or NO2 correlate with population density,
we run further regressions. We use the same basic approach as in Section 4.2.1 for
annual thresholds, but now our dependent variable is a dummy variable which is one
when the threshold value was violated and zero otherwise. Annual thresholds account
for constant long-term exposure to air pollution. However, there might be elevated
pollutant-concentrations throughout a year, which also tend to have more severe health
effects. Thus, we furthermore examine whether densely populated areas tend to have
more days with threshold violations (24-hour means). Therefore, we created dummy
variables which equal one when a station exceeded a predetermined number of days
within a year. The outcome is therefore the probability of population density exceeding
the pollution thresholds by a certain number of days within a year. The thresholds we
look at are those set by the WHO air pollution guidelines shown in Table 1. The number
of days we choose are motivated by the number of days with thresholds exceedances
allowed by the EU. The hourly NO2 threshold is allowed to be exceeded up to 18 times
during a year and the PM10 threshold for 35 days. As there is no short-term threshold for
PM2.5 in the EU, there are also no allowed daily violations. Thus, we take the same value
of exceedances for this pollutant as for PM10. Furthermore, we look at the probability
of violations on a certain number of days just below the EU allowances (15 and 10 days
for NO2 30 and 25 days for PM10, and for PM2.5.) Local governments might try to
take short-term measures to avoid illegal threshold violations, but still be subject to high
pollution levels, so looking at threshold violations just below the allowances if of interest.

We then use a linear probability models (LPM) to estimate our outcomes of interest.
With this approach, we can easily apply instrumental variable regressions. We think that
the LPM does a decent job in estimating the probabilities, as the occurrence of trans-
gressing the threshold is relatively dispersed over the sample. However, we also run probit
regressions to account for potential non-linearities in the probability of transgressions.

5 Results

5.1 Basic results

OLS regressions. We present our basic cross-sectional OLS results in columns (1)
and (5) of Tab. 3 and Tab. 4. The tables present coefficients for our parameter of
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Table 3: OLS and IV regressions for NO2 and PM10

NO2 PM10

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV Density 1910 IV Soil IV 1910 & Soil OLS IV Density 1910 IV Soil IV 1910 & Soil

log(pop density) 0.281∗∗∗ 0.184∗∗∗ 0.284∗∗∗ 0.244∗∗∗ 0.0747∗∗∗ 0.102∗∗∗ 0.0596∗ 0.0718∗∗∗

(0.0137) (0.0518) (0.0570) (0.0519) (0.00691) (0.0244) (0.0362) (0.0245)
Distance to CBD -0.00384∗∗∗ -0.00556∗∗∗ -0.00380∗∗∗ -0.00461∗∗∗ 0.000692∗∗ 0.000871 0.000457 0.000406

(0.000466) (0.00158) (0.00145) (0.00153) (0.000284) (0.000858) (0.000865) (0.000818)
Suburban 0.345∗∗∗ 0.340∗∗∗ 0.344∗∗∗ 0.335∗∗∗ 0.103∗∗∗ 0.0923∗∗∗ 0.104∗∗∗ 0.0933∗∗∗

(0.0152) (0.0462) (0.0451) (0.0462) (0.00882) (0.0233) (0.0246) (0.0236)
Urban 0.513∗∗∗ 0.541∗∗∗ 0.512∗∗∗ 0.521∗∗∗ 0.168∗∗∗ 0.142∗∗∗ 0.174∗∗∗ 0.153∗∗∗

(0.0185) (0.0579) (0.0589) (0.0600) (0.01000) (0.0297) (0.0306) (0.0287)
Industrial 0.0888∗∗∗ 0.0886∗∗ 0.0888∗∗ 0.0877∗∗ 0.136∗∗∗ 0.131∗∗∗ 0.136∗∗∗ 0.131∗∗∗

(0.0133) (0.0414) (0.0357) (0.0379) (0.0126) (0.0362) (0.0362) (0.0360)
Traffic 0.661∗∗∗ 0.669∗∗∗ 0.661∗∗∗ 0.665∗∗∗ 0.260∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.262∗∗∗

(0.0126) (0.0409) (0.0392) (0.0407) (0.00670) (0.0182) (0.0177) (0.0182)
N 5575 5301 5575 5301 4648 4407 4648 4407
R2 0.749 0.744 0.749 0.749 0.469 0.459 0.468 0.463
Districts 269 269 269 269 247 247 247 247
Soil Characteristics No No Yes Yes No No Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: OLS and IV regressions for PM2.5 and O3

PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV Density 1910 IV Soil IV 1910 & Soil OLS IV Density 1910 IV Soil IV 1910 & Soil

log(pop density) 0.0315∗∗ 0.0710 0.0351 0.0208 -0.176∗∗∗ -0.0863∗∗∗ -0.187∗∗∗ -0.133∗∗∗

(0.0160) (0.0558) (0.0566) (0.0458) (0.00938) (0.0308) (0.0434) (0.0315)
Distance to CBD 0.00105 0.00134 0.00111 0.000585 0.00274∗∗∗ 0.00404∗∗∗ 0.00257∗∗∗ 0.00339∗∗∗

(0.000641) (0.00154) (0.00147) (0.00135) (0.000297) (0.000988) (0.000958) (0.000945)
Suburban 0.168∗∗∗ 0.160∗∗∗ 0.167∗∗∗ 0.165∗∗∗ -0.167∗∗∗ -0.167∗∗∗ -0.166∗∗∗ -0.162∗∗∗

(0.0226) (0.0502) (0.0474) (0.0511) (0.0111) (0.0344) (0.0339) (0.0335)
Urban 0.209∗∗∗ 0.177∗∗∗ 0.207∗∗∗ 0.209∗∗∗ -0.225∗∗∗ -0.247∗∗∗ -0.221∗∗∗ -0.233∗∗∗

(0.0244) (0.0549) (0.0571) (0.0537) (0.0119) (0.0380) (0.0397) (0.0378)
Industrial 0.0699∗∗∗ 0.0744∗ 0.0697∗ 0.0760∗ -0.0688∗∗∗ -0.0430 -0.0709∗∗ -0.0522∗

(0.0202) (0.0410) (0.0396) (0.0405) (0.0115) (0.0342) (0.0295) (0.0290)
Traffic 0.115∗∗∗ 0.115∗∗∗ 0.116∗∗∗ 0.110∗∗∗ -0.233∗∗∗ -0.239∗∗∗ -0.233∗∗∗ -0.240∗∗∗

(0.0162) (0.0391) (0.0386) (0.0400) (0.0162) (0.0399) (0.0374) (0.0384)
N 795 758 795 758 3776 3588 3776 3588
R2 0.246 0.223 0.246 0.228 0.437 0.416 0.436 0.431
Districts 109 109 109 109 251 251 251 251
Soil Characteristics No No Yes Yes No No Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

interest, log of population density, as well as our basic controls (distance to the CBD,
whether the station lies in an urban or suburban area – rural is the reference category –,
and the traffic and industrial station dummy –the reference category being background).

As shown by the OLS regression in column (1) of Tab. 3, the density elasticity of NO2

concentration is 0.28 and the estimate is significant at 1%. The mean value of population
density in 2015 was 2590.2 with a standard deviation of 1337.6. Thus, a one standard
deviation increase in population density within a city increases the NO2 concentration
by 1.13 µg/m3, or 12.4 percent of the mean concentration.

For PM10, we find a smaller elasticity of 0.075, which is significant at 1% (column
(5) of Tab. 3). A one standard deviation increase in population density increases the
PM10 concentration by 0.057 µg/m3 or 3.2%. For PM2.5, the estimated elasticity is 0.03
which is significant at the 5% level (column (1) of Tab. 4). Note, however, that a net of
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monitoring stations for this pollutant has only recently been established, so the power of
the estimates for PM2.5 is small.

Ozone seems to be negatively correlated with population density. This is probably
due to the fact that the chemical prerequisites for ozone formation are more favorable
outside large cities.25

IV regressions. We now turn to the IV regression results. Tab. B.1 shows the results
of the first stage regressions using historical population densities, the soil IV and both
sets of instruments together. The F-statistics imply that our instruments are strong.

While judging from the overidentification tests alone, we cannot determine which
instrument is more likely to be exogenous, we do think that the exclusion restriction is
prima facie more credible for the soil characteristics, as argued above. While we are
somewhat more confident about the soil IV, we keep both instruments in the regressions
for comparison.

The IV results have the same sign and are roughly similar to the OLS results in mag-
nitude. However, there are slightly different patterns when using historic density, using
soil characteristics or both instruments jointly. In the case of the historical instruments,
the changes in the point estimates are larger than for the soil IV. The point estimate
decreases in our NO2 regressions to 0.184 and increases to 0.102 in the PM10 regressions,
but remains highly significant in both cases.

When we use the soil characteristics as instruments, the density coefficient increases
slightly in the NO2 regressions and decreases slightly in the PM10regressions (Tab. 3
columns (3) and (7)). For PM2.5, the density coefficient is of similar magnitude as the
OLS one using the soil IV, but is less precisely estimated (Tab. 4 column (3)).26 For
O3, the coefficient with the soil IV is slightly larger in absolute value than the OLS
coefficient (Tab. 4 column (9)). According to the estimates, the density elasticity is
0.284 for NO2, 0.060 for PM10, and 0.035 for PM2.5. Thus, a one standard deviation
increase of population density increases the NO2 concentration by 12.55% at the mean,
and the PM10 concentration by 2.51%. In general, the IV results using soil characteristics
as instruments are fairly similar to the OLS results. In summary, it seems that the bias
from omitted variables in OLS regressions is small, a point also made by Combes et al.
(2010).

25This is because nitrogen monoxide (NO), which is contained in car exhaust fumes, reacts with ozone
to NO2. Ozone is therefore split into O2 and NO2 such that ozone pollution in city centres is significantly
lower. On the other hand, the ozone precursors are transported out of cities by wind and contribute to
the formation of ozone away from their actual sources. See https://www.umweltbundesamt.de/daten/
luft/ozon-belastung#textpart-1.

26Note, however, that due to the small sample size, statistical power of our PM2.5 regressions in general
is rather low (see Fig. B.1).
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Table 5: Long Difference estimations from 2002 to 2015 and Fixed effects estimations
with all years

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
FE All years LD 2002-15 FE All years LD 2002-15 FE All years LD 2002-15 FE All years LD 2002-15

log(pop density) 0.347∗∗∗ 0.379∗∗ -0.0225 -0.101 0.311 0.624 0.242 0.340
(0.132) (0.175) (0.0907) (0.157) (0.224) (1.645) (0.156) (0.236)

Distance to CBD -0.0109∗∗∗ -0.00951∗∗∗ -0.00344∗∗ -0.00226 -0.000518 -0.00115 0.00539∗∗∗ 0.00292
(0.00220) (0.00259) (0.00146) (0.00233) (0.00396) (0.00599) (0.00153) (0.00217)

Suburban 0.377∗∗∗ 0.355∗∗∗ 0.0913∗∗∗ 0.0152 0.0208 0.0547 -0.164∗∗∗ -0.155∗∗

(0.0652) (0.0902) (0.0337) (0.0565) (0.0838) (0.178) (0.0557) (0.0743)
Urban 0.614∗∗∗ 0.590∗∗∗ 0.179∗∗∗ 0.119∗∗ 0.117 0.166 -0.246∗∗∗ -0.263∗∗∗

(0.0453) (0.0472) (0.0367) (0.0548) (0.0939) (0.174) (0.0609) (0.0751)
Industrial 0.136∗∗∗ 0.158∗∗∗ 0.127∗∗∗ 0.0473 0.0554 -0.0115 -0.0820∗ -0.0773

(0.0395) (0.0416) (0.0420) (0.0513) (0.0421) (0.0892) (0.0448) (0.0783)
Traffic 0.726∗∗∗ 0.680∗∗∗ 0.275∗∗∗ 0.262∗∗∗ 0.261∗∗∗ 0.231∗∗ -0.211∗∗∗ -0.225∗∗

(0.0335) (0.0405) (0.0152) (0.0239) (0.0311) (0.101) (0.0447) (0.0862)
N 5575 781 4648 545 795 135 3776 549
R2 0.895 0.894 0.761 0.804 0.794 0.932 0.823 0.833
Districts 269 258 247 235 109 105 251 248
Standard errors in parantheses are clustered at labor market region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Fixed effects and long differences. Fixed effects regressions may be a proper
response to unobserved heterogeneity that causes cities to be more or less dense and
more or less polluted at the same time. For instance, if dense cities provide amenities
which attract ‘green’ households and these households influence local pollution policies,
the correlation of density and pollution might be driven by household selection. Using
fixed effects at the district level could mitigate this selection bias. However, the within
variation in density and pollution is much lower than the between variation, so fixed
effects take out a lot of the interesting variation and the coefficient of interest is less
precisely estimated. Therefore, we present long-difference estimates for the years 2002-
2015 as well as districts fixed effects outcomes in Table 5. Fixed effects have the advantage
of providing more observations (all years between 2002 and 2015), while the within
variation of density and pollution is lower than for the long differences.

As Table 5 shows, the estimated coefficient on population density becomes insignif-
icant in all but the NO2 regressions. This seems to be the case because of the lower
precision of the estimates due to the lower within variation of population densities. The
coefficient in the NO2 regression is 0.379 for the long difference regressions and 0.347
when looking at district fixed effects, and both coefficients are highly significant.

We also ran station fixed effects regressions, which are presented in table B.3. The
magnitude of the coefficient in the NO2 regressions is very similar to the one in the OLS
and IV regressions.
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5.2 Sensitivity.

We perform a number of robustness checks to see how sensitive the results are to various
specifications. Results are in Appendix C.

First, we check how sensitive the results are to the inclusion of controls. We start with
population density as the only explanatory variable and successively add further control
variables to the OLS regressions. Results are shown in Tables B.4 to B.7. Looking at
the results for NO2, we see that including year fixed effects hardly changes the results
(column 2). Adding station-specific control variables (urban/suburban, distance to CBD,
station type; column 3) cuts the coefficient on population density in half. The presence
of a coal-fired power plant may be a driving element for air pollution in some regions as
pollution from these plants may be transported over long distances (Zhou et al., 2006).
When we include an indicator for the existence of a coal-fired power plant in the district,
the coefficient remains the same (column 4 of Tab. B.4). In column (5) we replace
the indicator variable with a measure of the distance to the closest coal-firing power
station. This variable may be better able to capture possible spillovers from coal firing
power plants. Stations close to such coal-fired power plants might be more affected by its
polluting output compared to monitoring stations further away. The density coefficient is
slightly reduced. Adding control variables (log GDP per capita, log of average household
income and share of unemployment in a district) in column (6) lowers the coefficient
a little further, while adding the vote share of green party voters, an indicator for low
emission zone and distance to the next major street (column 7) lower the coefficient only
to a minor degree. Column (8) finally adds an indicator for the state (Bundesland) in
order to control for state-specific policies. The outcomes remain rather stable in size
across the range of included control variables, and always remains highly significant. In
summary, once we add a basic set of control variables which account for station-specific
attributes, the coefficient does not change significantly anymore.

The picture is similar for our PM10 outcomes. Here, however, adding economic indi-
cators and variables like green party voters, environmental zone indicator and distance
to street increases the coefficient (columns (6) and (7) in Tab. B.5), while adding state
indicators reduces it again; the coefficient remains highly significant throughout all of
the specifications.

For PM2.5 (Tab. B.6), the density coefficient becomes insignificant as soon as we add
indicators for the presence of coal-fired power plants or when adding state fixed effects
(column 4, 5 and 8).27 However, looking at the sample distribution of our data in Figure
B.1, we see that the PM2.5 sample fails to cover many of the regions that are in the PM10

and the NO2 sample. In particular, many of the densely populated areas like Hamburg,
27When we control for distance to the next postal code with a coal-fired plant, the coefficient is remains

marginally significant.
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Berlin, Munich and large parts of North Rhine-Westphalia are missing. It does seem,
though, that the density effect on PM2.5 is partly driven by the presence of coal-fired
power plants in denser districts.

For O3, the picture is similar to the NO2 outcomes (Tab. B.7): as soon as we add
control variables, the coefficient is cut in half but remains highly significant throughout
our specifications. In contrast to the other pollutants, however, the density coefficient is
negative, so high density cities seem less affected by O3.

In Tables B.8 to B.11 we redo this exercise with our IV estimates, but now we only
successively add a larger subset of controls at a time. The picture for the IV outcomes
is very similar to the OLS ones.

An interesting issue is whether the effects of population density are heterogeneous
between different definitions of cities and areas of interest. To investigate this issue, we
restrict the sample to district-free cities (kreisfreie Städte). The administrative bound-
aries of such districts include only one city (with the smallest city in our sample having
35.000 inhabitants), whereas ‘regular’ districts typically include several smaller cities and
towns. As Tables B.12 and B.13 show, the coefficients on population density almost dou-
ble in size. Thus, it seems that the effect of population density on air pollution may be
more pronounced in urban and more populous districts.

Next, we consider a different geographical definition of “cities”. Districts, whether
regular ones or district-free cities, suffer from the disadvantage that they are confined
within administrative boundaries. This obviously makes for an arbitrary city definition.
An alternative definition is based on economic relations between cities, usually measured
by commuting. We therefore rerun our basic regressions for German labor market regions
(Arbeitsmarktregionen) as defined by Kosfeld and Werner (2012). There are 141 labor
market regions defined by significant commuting flows between cities within the region.
Of these regions, up to 128 are covered by our analyses. Results are shown in Tab. B.14
and B.15. The results are very close to the estimates for districts. For PM2.5, the IV
results turn significant (using the historical IV), while the soil IV returns insignificant
coefficients for both particulates. This seems to be caused in part by the lower number
of labor market regions compared to districts, which reduces the variation in density and
hence also leads to lower precision of the estimates.

Our population density variable so far has been defined as the total district population
divided by total built up area. However, some papers have used other measures of
agglomeration (see e.g. Ahlfeldt and Pietrostefani (2019) for a discussion). We therefore
rerun our basic regressions with different density measures, see Tab. B.16–B.19. In
particular, instead of population density, we now use the population density over the
entire area (instead of built up area only), total population or the total employment per
km2 (all in logs). As is to be expected, the results differ somewhat from our main results
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quantitatively but not qualitatively. Using the alternative population density measure
(density over the entire district area) cuts the coefficients in half for all pollutants. The
coefficient on population is a bit smaller than the one for density in the case of NO2 but
larger for PM10 and PM2.5. Obviously, population can be large in a large district with low
population density, so the interpretation of the coefficient here is somewhat different. If
we look at employment density – which might be a better measure of economic activity –
coefficients are again close to the ones from our baseline results, especially when looking
at NO2. Between models (OLS or IV with our different instruments) the coefficients are
relatively stable for almost all of the independent variables we look at.

An interesting question is whether the effect of density on pollution is driven by
traffic or ‘background’ activities such as residential energy use or perhaps industrial
fumes that disperse over the entire city area. In Tab. B.20, we interact population
density with the station type indicator. The density coefficient now corresponds to the
effect of population density on pollution at background stations; it remains positive for
NO2 and particulates. Intuitively, we find that the density effect on air pollution seems
more pronounced at traffic and industrial stations.28

Finally, we control for the historical share of workers in industry and crafts, with
results shown in Table B.21. This measure controls for the employment structure of
an area in 1925. One concern with lagged population variables is that there may be
unobserved factors driving both past and current population patterns. For instance,
cities that grew in the past because of the presence of e.g. heavy industry may still
have a large share of industrial plants with higher pollution than an economy based on
services. Thus, pollution today and in the past may be higher in such areas compared
to those with different employment structures. To mitigate this concern, we control for
past employment structure in the IV regressions using the historic population density
instrument.29 In the uneven columns, we included the share of total employed individuals
in industry and crafts, while even columns include only workers (i.e. exclude individuals
working in administration or those who are self-employed, which is supposedly more
common in crafts than in industry). Thus, the second measure is supposed to better
capture the industrial employment in the region. Whatever control we include, the
results are barely affected.

28Results for O3 show that the effect is not significantly different at traffic stations compared to
background stations but is significantly lower at industrial sites. Results are available upon request.

29It would be desirable to control for employment in differentiated industrial sectors, but we could
not find these kind of variables over our sample of regions and time.
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5.3 Threshold results

We now turn to the analysis of threshold violations. These have been the primary
focus of recent policy debates, since German (and other European) cities and national
governments have been sued for threshold violations.

For a first visual impression, Figures 5 and 6 show the number of transgressions of
the daily mean threshold of PM10 (50µg/m3 ), and the NO2 yearly mean (20 µg/m3)) by
population density decile. The histograms suggest a clear positive association between
density and threshold transgressions. In the right panel, we also show the same graph
with total population, which shows a rather non-linear relationship: while there is no
clear connection between city size and threshold violations, the twenty percent largest
cities show more violations, especially when looking at NO2 pollution.30.

In Table 6, we present results for the probability that the yearly mean was exceeded
for NO2, PM10 and PM2.5. We concentrate here on linear probability models (LPM),
again using the historical and the soil IVs in some specifications. For PM2.5, there is
no significant relation between density and annual threshold violations. For NO2 and
PM10, in contrast, all results are positive and highly significant. The probability that
the annual NO2-threshold of 40 µg/m3 is transgressed, is significantly higher in more
densely populated areas. Coefficients (except for the one when using soil characteristics as
instruments) are similar in NO2 and PM10 regressions. We also repeat these estimations
using probit IV models and get very similar results (see Tab. B.22).

Results for the transgressions of the 24-hour mean are shown in Table 7. The table
shows that the probability of specific numbers of days with very high pollution readings
is significantly higher in denser areas, even though the point estimate is relatively small,
at 0.026. The lower we set the number of days, the higher the probability. In the case
of PM10, the probability is also significantly higher with the point estimate at 0.05.
For PM2.5, we find an insignificant effect of density on threshold violations (note again,
however, the smaller sample size). As shown in Tab. B.23, using a probit model does
not change the results.

In summary, the evidence suggests that threshold violations occur more frequently in
more densely populated cities.

30For PM2.5, corresponding figures do not show a clear pattern.
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Figure 5: Histograms of PM10 daily mean threshold transgressions by deciles of popula-
tion density and population
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Figure 6: Histograms of NO2 Yearly mean threshold transgressions by deciles of popula-
tion density and population

Table 6: Probability of transgression of annual thresholds

NO2 PM10 PM2.5
(1) (2) (3) (4) (5) (6) (7) (8) (9)
LPM LPM Historical IV LPM Soil IV LPM LPM Historical IV LPM Soil IV LPM LPM Historical IV LPM Soil IV

log(pop density) 0.148∗∗∗ 0.119∗∗∗ 0.235∗∗∗ 0.0984∗∗∗ 0.120∗∗∗ 0.0695∗ -0.0112 -0.0242 -0.0131
(0.0232) (0.0334) (0.0408) (0.0216) (0.0248) (0.0367) (0.0160) (0.0173) (0.0211)

distance to CBD 0.00143∗ 0.00102 0.00271∗∗∗ 0.00143 0.00145 0.000970 0.000296 -0.0000769 0.000265
(0.000818) (0.000932) (0.000921) (0.00102) (0.00107) (0.00110) (0.000806) (0.000807) (0.000857)

suburban -0.0376∗ -0.0302∗ -0.0412 0.221∗∗∗ 0.211∗∗∗ 0.222∗∗∗ 0.193∗∗∗ 0.142∗∗∗ 0.193∗∗∗

(0.0191) (0.0179) (0.0271) (0.0403) (0.0401) (0.0408) (0.0648) (0.0517) (0.0627)
urban -0.0378 -0.0241 -0.0623∗ 0.278∗∗∗ 0.255∗∗∗ 0.287∗∗∗ 0.210∗∗∗ 0.163∗∗∗ 0.211∗∗∗

(0.0244) (0.0265) (0.0337) (0.0466) (0.0471) (0.0476) (0.0707) (0.0597) (0.0658)
industrial -0.0000506 -0.00163 0.00383 0.264∗∗∗ 0.261∗∗∗ 0.263∗∗∗ 0.0426 0.0341∗ 0.0427∗

(0.0206) (0.0186) (0.0281) (0.0422) (0.0427) (0.0421) (0.0256) (0.0195) (0.0251)
traffic 0.549∗∗∗ 0.564∗∗∗ 0.544∗∗∗ 0.311∗∗∗ 0.313∗∗∗ 0.312∗∗∗ 0.00812 0.00629 0.00791

(0.0427) (0.0456) (0.0436) (0.0303) (0.0320) (0.0302) (0.0139) (0.0117) (0.0134)
N 5663 5383 5663 4817 4565 4817 795 758 795
R2 0.494 0.505 0.484 0.423 0.420 0.422 0.235 0.172 0.235
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Standard errors in parantheses are clustered at labor market region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Probability of transgressing thresholds by specific number of days

NO2 PM10 PM2.5
(1) (2) (3) (4) (5) (6) (7) (8) (9)
>17 >14 >9 >34 >29 >24 >34 >29 >24

log(pop density) 0.0255∗ 0.0277∗∗ 0.0312∗∗ 0.0503∗∗∗ 0.0625∗∗∗ 0.0546∗∗ -0.0334 -0.00681 -0.00931
(0.0132) (0.0138) (0.0147) (0.0171) (0.0196) (0.0224) (0.0389) (0.0348) (0.0276)

distance to CBD 0.000295 0.000330 0.000354 0.000840 0.000633 0.000476 0.000367 0.000719 0.00124
(0.000242) (0.000247) (0.000282) (0.000701) (0.000733) (0.000868) (0.00219) (0.00148) (0.00135)

suburban -0.00563 -0.00595 -0.00730 0.0135 0.0251 0.0519∗ 0.376∗∗∗ 0.316∗∗∗ 0.275∗∗∗

(0.00526) (0.00550) (0.00575) (0.0200) (0.0240) (0.0268) (0.0844) (0.0807) (0.0787)
urban -0.00938 -0.0100 -0.0117∗ 0.0148 0.0246 0.0579∗ 0.394∗∗∗ 0.341∗∗∗ 0.311∗∗∗

(0.00591) (0.00620) (0.00640) (0.0225) (0.0285) (0.0314) (0.0872) (0.0853) (0.0768)
industrial 0.00835 0.00858 0.00789 0.114∗∗ 0.129∗∗ 0.167∗∗∗ 0.0623 0.113∗∗ 0.0559

(0.00627) (0.00656) (0.00705) (0.0452) (0.0542) (0.0637) (0.0543) (0.0436) (0.0358)
traffic 0.0439∗∗ 0.0470∗∗ 0.0592∗∗∗ 0.239∗∗∗ 0.270∗∗∗ 0.306∗∗∗ 0.161∗∗∗ 0.140∗∗∗ 0.0699∗∗

(0.0176) (0.0182) (0.0198) (0.0219) (0.0245) (0.0236) (0.0465) (0.0404) (0.0317)
N 5663 5663 5663 4817 4817 4817 795 795 795
R2 0.053 0.057 0.063 0.268 0.298 0.333 0.311 0.253 0.219
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Standard errors in parantheses are clustered at labor market region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

6 Conclusion

In this paper, we have used panel data for German districts to estimate the effect of pop-
ulation density on air pollution. To mitigate concerns about unobserved heterogeneity
and omitted variables, we used both long difference regressions and instrumental vari-
ables. Our preferred estimates come from the IV regressions, where we instrumented
population density with historical population and/or soil characteristics. We find that
increasing population density by one standard deviation increases PM10 by about 3 per-
cent and NO2 by around 12 percent. The results for PM2.5 are mostly insignificant due
to the lower number of observations, while for O3, OLS and IV results imply that denser
cities are less prone to ozone pollution.

The study thus contributes to our knowledge about the economic costs of agglomer-
ation. The benefits of agglomeration due to labor market pooling, spillovers, matching
etc. are by now well documented. However, there is much less robust evidence on the
costs of agglomeration.31 Thus, our study makes some headway towards a more complete
picture of agglomeration benefits and costs.
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Appendix

A A model

Consider a circular monocentric city where N residents commute to the CBD for work.
A resident household living at x km from the CBD incurs round-trip commuting costs
tx. Household utility is v(c, q) = c1−αqαE−β, where c is non-housing consumption, q
consumption of housing floor space in square meters, and E is the concentration of local
pollution in the city. Households are completely mobile in the city, so they achieve utility
level u regardless of their location.

The household maximizes utility subject to the budget constraint, w = c − tx + pq,
where w is wage income and p the price of housing per sq meter. Maximizing utility
subject to the budget constraint gives the household’s optimal housing demand q =
αu

1
α e

β
α (y − tx)1− 1

α , and the bid rent, i.e. the maximum willingness to pay per unit of
housing floor space, p = u−1/α(y − tx) 1

αE− β
α .

Housing floor space is produced by profit maximizing developers, using capital K and
land L as inputs. We assume a Cobb-Douglas production function written in intensive
form h = Sθ, where S = K/L is structural density (capital deployed per unit of land)
and h is the amount of floor space per unit of land. We normalize the price of capital to
one. The developer maximizes profits per unit of land

π = Sθ − S −R,

where R is the land rent paid to (absentee) landowners. Solving the developers’ problem
gives structural density, S = θ

1
1−θu

1
α(θ−1) (y − tx)

1
α−αθE

β
α(θ−1) , and the land rent function

at distance x, R =
(
θ

θ
1−θ − θ

1
1−θ

)
u

1
α(θ−1) (y − tx)

1
α−αθE

β
α(θ−1) .

The equilibrium in the closed city is defined by the two equations

R(x̄, u, E) = RA (A.1)∫ x̄

0

h(x, u, E)
q(x, u, E)dx = N, (A.2)

where x̄ is the distance from the city border to the CBD and RA is the agricultural land
rent.

Solving (A.1) and (A.2) gives the residents utility level u() and the city border,
x̄(), both of which can not be solved analytically. Pollution is composed of pollution
from commuting and residential energy use, weighted by the respective emissions factors.
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Letting the emissions intensities of commuting and housing be eC and eH , total emissions
are

E = eCC + eHH (A.3)

C =
∫ x̄

0
xD(x)2πxdx (A.4)

H =
∫ x̄

0
h(x)2πxdx. (A.5)

Finally, assume for simplicity that the concentration of air pollution is given by total
emissions divided by land area.32 Then concentration is given by C = E/(πx̄2).

How then does concentration change with population density? There are two ways of
inducing an increase in density in the model. First, we could increase population, which
would increase the city border and lead to an increase of density over the entire city
area. Consequently, total pollution from transport rises, as residents face longer average
commutes. While residents live in smaller dwellings due to the increased pressure on the
housing market, total residential energy use in the simulation rises. Finally, total land
area rises, but in our example, concentration rises as pollution increases faster than land
area.

Secondly, suppose the agricultural land rentRA rises. This reduces the city border and
increases density in the entire city. Now, pollution falls as residents face shorter average
commutes and average dwelling size falls, again due to increased competition for central
land. However, pollution falls less than land area in the simulation, so concentration
rises in our example again.

32In reality, concentration is given by emissions per cubic meter of air, but we can slightly simplify by
assuming all pollution is at ground level and thus concentration equals emissions over land area.
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Figure A.1: Effect of population increase on pollutant concentration
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Figure A.2: Effect of land rent increase on pollutant concentration
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B Data

Weather. Since weather and emission stations are usually not at the exact same spot,
we have to match emissions and weather stations such that we get the most accurate
information about the weather at each emission station. Following the approach of
Auffhammer and Kellogg (2011), for each emission station we searched for the ten closest
weather and precipitation stations within a range of 50 kilometers and a maximum station
altitude difference of 200 meters.33 Out of those stations, we choose a primary station
which is the closest weather or precipitation station to the emission station with at least
50 percent of hourly observations non-missing. All emission stations that could not be
assigned a primary station were deleted from the sample. Throughout a year, there are
gaps between recordings such that many weather and precipitation stations do not have
a full record of observations. Such missing observations were imputed by regressing the
non-missing values of, say, sunshine on the sunshine records of all the other adjacent
stations. The estimated coefficients of those other stations were then used to impute
values for missing observations.

About 80 percent of particulate matter and nitrogen dioxide emission stations were
matched to the closest available weather station and less than four percent (PM10) and
two percent (NO2) of emission stations were matched to a weather station ranked 5th or
higher regarding the ranking of distance between the two station types. In both cases
(PM10 and NO2), less than 1 percent of emission stations could not be assigned a weather
station.

Historical industry data. To construct the historical data for workers in industry
and crafts, we proceeded as follows. We had maps for administrative units now and
in 1925 and for 1925 the total number of workers in industry and crafts as well as the
total population of a historical district. Due to the fact that administrative assignment
changed over time, we had to assign historical administrative units to current units. If
the historical area matched with current districts by more than 60 percent of the area,
those areas were assigned the recent district. In many cases this is true for more than
one historical district. For example, southern and northern Dithmarschen correspond to
the current Dithmarschen. In these cases, we just summed the number of workers and
the number of inhabitants in 1925 and assigned the sum to the current administrative
unit. From these variables we then calculated the shares of workers in industry and crafts
over the whole resident population. A number of current districts could not be assigned
to workers because there were no historical districts matching by at least 60 percent of

33There are many more precipitation stations in Germany (more than 4000) than stations which
provide information on all other weather variables other than rainfall and snowfall (a little more than
700). This is why we separately merged precipitation and weather stations to each emission station.
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the area. This is true for example for Wolfsburg, a city that was established after 1925
and did not exist back then. Other cases like Mainz or Worms were larger districts in
the past and were assigned as district-free cities after 1925. In such cases, the recent
district almost completely lies within a historical district and we assigned the value of
the respective historical district. As these are only relatively few cities and districts, we
performed this matching by eyeballing the maps and looking which area fits best to the
current district.

Geology. We use the same 12 variables from the European Soil Database (ESDB)
used by Combes et al. (2010).34 The data comes in raster format of 1km×1km rasters,
which we aggregate to the district level. For each district we use for instance the value
of the dominant parent material which occurs most often within the district. Especially
in urban areas like Berlin, we need to impute some of the values because of the lack of
information in the data. In such cases, the dominant value often is described as a non-soil
or just missing. In these cases we use the second most common value occurring within
the district. The variables we use describe the mineralogy of the topsoil and the subsoil
as well as the dominant parent material of the soil at different levels of aggregation.
The dominant parent material describes the bedrock of the soil, which is the underlying
geological material. At the broader level of aggregation, these are e.g. sedimentary rocks,
igneous or metamorphic rocks, while the finer level of aggregation further classifies them.
For instance, sedimentary rocks may consist of different types of limestone (hard, soft,
marly, chalky etc.), marlstone or other types of stones. Mineralogy captures the presence
of minerals in the different layers of soil (the topsoil being usually 5 to 15 cm deep and
the subsoil being the intermediate layer between the topsoil and the bedrock).

We also include information about the water capacity of the topsoil (from low to very
high) and the subsoil (from very low to very high), the depth to rock (from shallow to
very deep), the soil erodibility class (from very weak to very strong), the topsoil organic
carbon content (from low to very high), the soil profile differentiation (no differentiation,
low and high differentiation) and the hydrological class, which consists of four categories
describing the circulation and retention of underground water. The last variable we use
is the ruggedness of a district, which is calculated as the difference between the mean of
maximum altitudes of all the rasters within a district and the mean of minimum altitudes
across all rasters within the same district.

We include the information on mineralogy, hydrological class and parent material
as dummies in the regressions. All other variables, which differ in the quality of a
characteristic (e.g. from low to high) remain in their continuous form.

34These data can be freely downloaded for research purposes from the European Soil Data Centre
(Panagos et al., 2012).
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C Further results and robustness checks

Table B.1: First stage regressions for the historical population density 1910, the soil IV,
and the IV including density in 1910 and soil (NO2 and PM10)

NO2 PM10

(1) (2) (3) (4) (5) (6)
Density 1910 Soil Density 1910 + Soil Density 1910 Soil Density 1910 + Soil

logdensity1910 0.241∗∗∗ 0.245∗∗∗ 0.254∗∗∗ 0.258∗∗∗

(0.0136) (0.0195) (0.0130) (0.0182)
N 5301 5575 5301 4407 4648 4407
R2 0.744 0.749 0.749 0.459 0.468 0.463
Districts 269 269 269 247 247 247
Soil Characteristics No Yes Yes No Yes Yes
First-stage Statistic 312.8 20.62 57.95 385.4 13.96 110.4
Overidentification 30.52 32.83 37.39 37.36
Hansen p-stat 0.439 0.377 0.136 0.167
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.2: First stage regressions for the historical population density 1910, the soil IV,
and the IV including density in 1910 and soil (PM2.5 and O3)

PM2.5 O3

(1) (2) (3) (4) (5) (6)
Density 1910 Soil Density 1910 + Soil Density 1910 Soil Density 1910 + Soil

logdensity1910 0.248∗∗∗ 0.296∗∗∗ 0.257∗∗∗ 0.265∗∗∗

(0.0242) (0.0322) (0.0133) (0.0197)
N 758 795 758 3588 3776 3588
R2 0.223 0.246 0.228 0.416 0.436 0.431
Districts 109 109 109 251 251 251
Soil Characteristics No Yes Yes No Yes Yes
First-stage Statistic 105.3 59.11 176.6 374.1 42.63 81.32
Hansen p-stat 0.135 . 0.0599 0.0918
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.3: Station fixed effects for all pollutants including control variables

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.290∗∗∗ 0.286∗∗ 0.00294 0.0241 0.336∗ 0.338 0.268∗∗ 0.0144

(0.0942) (0.119) (0.0912) (0.109) (0.193) (0.225) (0.106) (0.127)
Av. GDP 0.120∗ 0.0566 -0.108 -0.0858

(0.0624) (0.0548) (0.148) (0.0519)
Av. Income 0.238∗ 0.148 0.00201 -0.152

(0.132) (0.149) (0.533) (0.160)
Unemployment share 0.612∗ 0.452 0.528 0.654∗∗

(0.369) (0.372) (1.061) (0.317)
Green Voters -0.457 -1.328∗∗∗ 0.863 -0.243

(0.333) (0.493) (1.369) (0.364)
Env. Zone -0.00340 -0.0167∗∗∗ -0.00577 0.00836

(0.00591) (0.00597) (0.00854) (0.00697)
N 5575 4905 4648 4137 795 719 3776 3438
R2 0.094 0.107 0.010 0.028 0.075 0.102 0.040 0.043
Districts 269 269 247 247 109 109 251 251
Controls No Yes No Yes No Yes No Yes
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Standard errors in parantheses are clustered at district level
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Sample of PM10 (b) Sample of PM2.5

Figure B.1: Districts included into PM10 and PM2.5 regression analyses
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Table B.4: OLS regression for NO2

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.588∗∗∗ 0.591∗∗∗ 0.281∗∗∗ 0.281∗∗∗ 0.239∗∗∗ 0.229∗∗∗ 0.266∗∗∗ 0.215∗∗∗

(0.0176) (0.0176) (0.0137) (0.0141) (0.0144) (0.0126) (0.0146) (0.0164)
Distance to CBD -0.00384∗∗∗ -0.00390∗∗∗ -0.00415∗∗∗ -0.00354∗∗∗ -0.00195∗∗∗ -0.00236∗∗∗

(0.000466) (0.000465) (0.000449) (0.000430) (0.000434) (0.000427)
Suburban 0.345∗∗∗ 0.343∗∗∗ 0.345∗∗∗ 0.354∗∗∗ 0.279∗∗∗ 0.335∗∗∗

(0.0152) (0.0151) (0.0151) (0.0144) (0.0179) (0.0178)
Urban 0.513∗∗∗ 0.512∗∗∗ 0.524∗∗∗ 0.573∗∗∗ 0.471∗∗∗ 0.489∗∗∗

(0.0185) (0.0185) (0.0182) (0.0167) (0.0210) (0.0201)
Industrial 0.0888∗∗∗ 0.0853∗∗∗ 0.0750∗∗∗ 0.115∗∗∗ 0.106∗∗∗ 0.110∗∗∗

(0.0133) (0.0143) (0.0132) (0.0135) (0.0150) (0.0145)
Traffic 0.661∗∗∗ 0.660∗∗∗ 0.660∗∗∗ 0.651∗∗∗ 0.615∗∗∗ 0.633∗∗∗

(0.0126) (0.0127) (0.0126) (0.0121) (0.0115) (0.0119)
Steinkohle -0.00413

(0.0144)
Braunkohle 0.0505∗∗

(0.0212)
Distance to coal plant -0.00152∗∗∗

(0.000183)
Av. GDP -0.0110 0.0403∗∗∗ 0.0292

(0.0154) (0.0154) (0.0180)
Av. Income 0.401∗∗∗ 0.395∗∗∗ 0.243∗∗∗

(0.0508) (0.0546) (0.0564)
Unemployment share -1.153∗∗∗ -1.372∗∗∗ -0.611∗∗

(0.192) (0.211) (0.240)
Green Voters -1.081∗∗∗ -0.873∗∗∗

(0.155) (0.155)
Env. Zone 0.0461∗∗∗ 0.0557∗∗∗

(0.00760) (0.00792)
Distance to Street -0.118∗∗∗ -0.100∗∗∗

(0.0112) (0.0109)
N 5575 5575 5575 5575 5575 5489 4905 4905
R2 0.303 0.305 0.749 0.749 0.754 0.767 0.771 0.795
Districts 269 269 269 269 269 269 269 269
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No No No
Distance to coal plant No No No No Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.5: OLS regression for PM10

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.163∗∗∗ 0.164∗∗∗ 0.0747∗∗∗ 0.0642∗∗∗ 0.0766∗∗∗ 0.120∗∗∗ 0.133∗∗∗ 0.0774∗∗∗

(0.00637) (0.00637) (0.00691) (0.00763) (0.00760) (0.00809) (0.00996) (0.00986)
Distance to CBD 0.000692∗∗ 0.000542∗ 0.000706∗∗ 0.000320 0.000408 -0.000665∗∗

(0.000284) (0.000290) (0.000287) (0.000268) (0.000307) (0.000280)
Suburban 0.103∗∗∗ 0.102∗∗∗ 0.103∗∗∗ 0.118∗∗∗ 0.0957∗∗∗ 0.0944∗∗∗

(0.00882) (0.00882) (0.00882) (0.00873) (0.0105) (0.0102)
Urban 0.168∗∗∗ 0.167∗∗∗ 0.168∗∗∗ 0.171∗∗∗ 0.148∗∗∗ 0.166∗∗∗

(0.01000) (0.0101) (0.0101) (0.00987) (0.0128) (0.0117)
Industrial 0.136∗∗∗ 0.130∗∗∗ 0.136∗∗∗ 0.124∗∗∗ 0.126∗∗∗ 0.130∗∗∗

(0.0126) (0.0127) (0.0125) (0.0121) (0.0137) (0.0114)
Traffic 0.260∗∗∗ 0.262∗∗∗ 0.260∗∗∗ 0.254∗∗∗ 0.250∗∗∗ 0.250∗∗∗

(0.00670) (0.00681) (0.00671) (0.00659) (0.00710) (0.00656)
Steinkohle 0.0274∗∗∗

(0.00910)
Braunkohle 0.0202

(0.0209)
Distance to coal plant 0.0000731

(0.000141)
Av. GDP -0.117∗∗∗ -0.0861∗∗∗ -0.0395∗∗∗

(0.0104) (0.0113) (0.0115)
Av. Income 0.125∗∗∗ 0.155∗∗∗ 0.0458

(0.0361) (0.0410) (0.0400)
Unemployment share 0.761∗∗∗ 0.538∗∗∗ -0.274∗

(0.123) (0.143) (0.150)
Green Voters -0.959∗∗∗ -0.961∗∗∗

(0.128) (0.125)
Env. Zone 0.00602 0.00361

(0.00547) (0.00479)
Distance to Street -0.0359∗∗∗ -0.0157∗∗

(0.00721) (0.00615)
N 4648 4648 4648 4648 4648 4570 4137 4137
R2 0.142 0.143 0.469 0.470 0.469 0.498 0.491 0.587
Districts 247 247 247 247 247 247 247 247
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No No No
Distance to coal plant No No No No Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.6: OLS regression for PM2.5

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.0898∗∗∗ 0.0912∗∗∗ 0.0315∗∗ 0.00289 0.0298∗ 0.0550∗∗∗ 0.0665∗∗∗ 0.00197

(0.0109) (0.0110) (0.0160) (0.0157) (0.0176) (0.0207) (0.0204) (0.0174)
Distance to CBD 0.00105 0.000617 0.00104 0.000810 0.00103 -0.000435

(0.000641) (0.000628) (0.000659) (0.000609) (0.000642) (0.000498)
Suburban 0.168∗∗∗ 0.167∗∗∗ 0.167∗∗∗ 0.176∗∗∗ 0.116∗∗∗ 0.0935∗∗∗

(0.0226) (0.0226) (0.0230) (0.0218) (0.0283) (0.0205)
Urban 0.209∗∗∗ 0.207∗∗∗ 0.209∗∗∗ 0.200∗∗∗ 0.138∗∗∗ 0.135∗∗∗

(0.0244) (0.0245) (0.0245) (0.0244) (0.0319) (0.0244)
Industrial 0.0699∗∗∗ 0.0534∗∗∗ 0.0681∗∗∗ 0.0717∗∗∗ 0.0363 0.0526∗∗∗

(0.0202) (0.0200) (0.0207) (0.0195) (0.0251) (0.0197)
Traffic 0.115∗∗∗ 0.120∗∗∗ 0.115∗∗∗ 0.128∗∗∗ 0.120∗∗∗ 0.136∗∗∗

(0.0162) (0.0165) (0.0160) (0.0166) (0.0190) (0.0164)
Steinkohle 0.0969∗∗∗

(0.0170)
Braunkohle 0.188∗∗∗

(0.0265)
Distance to coal plant -0.0000853

(0.000292)
Av. GDP -0.0526∗∗ -0.0492∗∗ -0.0143

(0.0245) (0.0242) (0.0196)
Av. Income 0.0601 -0.0652 -0.464∗∗∗

(0.0864) (0.0857) (0.0800)
Unemployment share 1.222∗∗∗ 0.422 -1.594∗∗∗

(0.376) (0.380) (0.367)
Green Voters -0.960∗∗∗ -0.00407

(0.281) (0.222)
Env. Zone 0.0275∗∗∗ 0.0313∗∗∗

(0.00853) (0.00654)
Distance to Street -0.0478∗∗∗ -0.00819

(0.0167) (0.0114)
N 795 795 795 795 795 773 719 719
R2 0.068 0.069 0.246 0.278 0.246 0.280 0.307 0.600
Districts 109 109 109 109 109 109 109 109
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No No No
Distance to coal plant No No No No Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.7: OLS regression for O3

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) -0.269∗∗∗ -0.271∗∗∗ -0.176∗∗∗ -0.159∗∗∗ -0.141∗∗∗ -0.131∗∗∗ -0.149∗∗∗ -0.0722∗∗∗

(0.00994) (0.00998) (0.00938) (0.00988) (0.00918) (0.00909) (0.0121) (0.0136)
Distance to CBD 0.00274∗∗∗ 0.00314∗∗∗ 0.00274∗∗∗ 0.00214∗∗∗ 0.00155∗∗∗ 0.00137∗∗∗

(0.000297) (0.000306) (0.000291) (0.000261) (0.000279) (0.000293)
Suburban -0.167∗∗∗ -0.159∗∗∗ -0.168∗∗∗ -0.175∗∗∗ -0.159∗∗∗ -0.187∗∗∗

(0.0111) (0.0111) (0.0111) (0.0110) (0.0124) (0.0138)
Urban -0.225∗∗∗ -0.220∗∗∗ -0.235∗∗∗ -0.276∗∗∗ -0.262∗∗∗ -0.278∗∗∗

(0.0119) (0.0121) (0.0118) (0.0114) (0.0146) (0.0146)
Industrial -0.0688∗∗∗ -0.0505∗∗∗ -0.0635∗∗∗ -0.111∗∗∗ -0.110∗∗∗ -0.0688∗∗∗

(0.0115) (0.0122) (0.0108) (0.0121) (0.0129) (0.0140)
Traffic -0.233∗∗∗ -0.236∗∗∗ -0.231∗∗∗ -0.220∗∗∗ -0.222∗∗∗ -0.266∗∗∗

(0.0162) (0.0163) (0.0155) (0.0140) (0.0148) (0.0148)
Steinkohle -0.0342∗∗∗

(0.0127)
Braunkohle -0.169∗∗∗

(0.0302)
Distance to coal plant 0.00133∗∗∗

(0.000150)
Av. GDP -0.00445 -0.0285∗ -0.0677∗∗∗

(0.0138) (0.0146) (0.0160)
Av. Income -0.243∗∗∗ -0.246∗∗∗ -0.148∗∗

(0.0600) (0.0611) (0.0581)
Unemployment share 1.450∗∗∗ 1.839∗∗∗ 1.173∗∗∗

(0.158) (0.174) (0.185)
Green Voters 0.770∗∗∗ 0.673∗∗∗

(0.147) (0.161)
Env. Zone 0.00449 0.00618

(0.00719) (0.00673)
Distance to Street 0.0530∗∗∗ 0.0355∗∗∗

(0.00763) (0.00791)
N 3776 3776 3776 3776 3776 3722 3438 3438
R2 0.258 0.260 0.437 0.443 0.452 0.499 0.511 0.562
Districts 251 251 251 251 251 251 251 251
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes Yes Yes
Coal plant in district No No No Yes No No No No
Distance to coal plant No No No No Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.8: Different specifications for NO2 regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV IV Soil OLS IV IV Soil OLS IV IV Soil

log(pop density) 0.588∗∗∗ 0.570∗∗∗ 0.520∗∗∗ 0.239∗∗∗ 0.129∗∗ 0.214∗∗∗ 0.266∗∗∗ 0.226∗∗∗ 0.302∗∗∗

(0.0176) (0.0889) (0.0662) (0.0144) (0.0612) (0.0615) (0.0146) (0.0820) (0.0916)
Distance to CBD -0.00415∗∗∗ -0.00590∗∗∗ -0.00450∗∗∗ -0.00195∗∗∗ -0.00233∗ -0.00175

(0.000449) (0.00155) (0.00141) (0.000434) (0.00136) (0.00127)
Suburban 0.345∗∗∗ 0.340∗∗∗ 0.347∗∗∗ 0.279∗∗∗ 0.271∗∗∗ 0.279∗∗∗

(0.0151) (0.0461) (0.0443) (0.0179) (0.0516) (0.0498)
Urban 0.524∗∗∗ 0.554∗∗∗ 0.533∗∗∗ 0.471∗∗∗ 0.474∗∗∗ 0.466∗∗∗

(0.0182) (0.0578) (0.0562) (0.0210) (0.0640) (0.0626)
Industrial 0.0750∗∗∗ 0.0700∗ 0.0737∗∗ 0.106∗∗∗ 0.106∗∗∗ 0.105∗∗∗

(0.0132) (0.0387) (0.0357) (0.0150) (0.0407) (0.0377)
Traffic 0.660∗∗∗ 0.668∗∗∗ 0.661∗∗∗ 0.615∗∗∗ 0.620∗∗∗ 0.615∗∗∗

(0.0126) (0.0418) (0.0395) (0.0115) (0.0371) (0.0356)
Distance to coal plant -0.00152∗∗∗ -0.00217∗∗∗ -0.00169∗∗∗

(0.000183) (0.000678) (0.000646)
Av. GDP 0.0403∗∗∗ 0.0699 0.0225

(0.0154) (0.0632) (0.0590)
Av. Income 0.395∗∗∗ 0.352∗∗ 0.373∗∗

(0.0546) (0.138) (0.157)
Unemployment share -1.372∗∗∗ -1.408∗∗∗ -1.503∗∗

(0.211) (0.496) (0.614)
Green Voters -1.081∗∗∗ -0.940 -1.230∗∗

(0.155) (0.581) (0.573)
Env. Zone 0.0461∗∗∗ 0.0482∗∗∗ 0.0430∗∗∗

(0.00760) (0.0139) (0.0140)
Distance to Street -0.118∗∗∗ -0.116∗∗∗ -0.115∗∗∗

(0.0112) (0.0369) (0.0358)
N 5575 5301 5575 5575 5301 5575 4905 4631 4905
R2 0.303 0.305 0.299 0.754 0.748 0.753 0.771 0.771 0.771
Districts 269 269 269 269 269 269 269 269 269
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No No No Yes Yes Yes Yes Yes Yes
Coal plant in district No No No No No No No No No
Distance to coal plant No No No Yes Yes Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.9: Different specifications for PM10 regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV IV Soil OLS IV IV Soil OLS IV IV Soil

log(pop density) 0.163∗∗∗ 0.208∗∗∗ 0.127∗∗∗ 0.0766∗∗∗ 0.111∗∗∗ 0.0626 0.133∗∗∗ 0.166∗∗∗ 0.109∗

(0.00637) (0.0201) (0.0344) (0.00760) (0.0298) (0.0441) (0.00996) (0.0464) (0.0578)
Distance to CBD 0.000706∗∗ 0.000929 0.000509 0.000408 0.000269 0.000267

(0.000287) (0.000861) (0.000925) (0.000307) (0.000861) (0.000881)
Suburban 0.103∗∗∗ 0.0921∗∗∗ 0.104∗∗∗ 0.0957∗∗∗ 0.0903∗∗∗ 0.0952∗∗∗

(0.00882) (0.0232) (0.0245) (0.0105) (0.0278) (0.0286)
Urban 0.168∗∗∗ 0.140∗∗∗ 0.172∗∗∗ 0.148∗∗∗ 0.136∗∗∗ 0.151∗∗∗

(0.0101) (0.0298) (0.0314) (0.0128) (0.0380) (0.0369)
Industrial 0.136∗∗∗ 0.134∗∗∗ 0.135∗∗∗ 0.126∗∗∗ 0.121∗∗∗ 0.127∗∗∗

(0.0125) (0.0354) (0.0361) (0.0137) (0.0382) (0.0376)
Traffic 0.260∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.250∗∗∗ 0.249∗∗∗ 0.250∗∗∗

(0.00671) (0.0184) (0.0177) (0.00710) (0.0195) (0.0189)
Distance to coal plant 0.0000731 0.000365 -0.0000225

(0.000141) (0.000464) (0.000504)
Av. GDP -0.0861∗∗∗ -0.100∗∗ -0.0740∗∗

(0.0113) (0.0474) (0.0377)
Av. Income 0.155∗∗∗ 0.131 0.169

(0.0410) (0.104) (0.111)
Unemployment share 0.538∗∗∗ 0.392 0.629

(0.143) (0.342) (0.431)
Green Voters -0.959∗∗∗ -1.164∗∗∗ -0.851∗∗

(0.128) (0.376) (0.418)
Env. Zone 0.00602 0.00201 0.00847

(0.00547) (0.00915) (0.00996)
Distance to Street -0.0359∗∗∗ -0.0261 -0.0374∗

(0.00721) (0.0217) (0.0226)
N 4648 4407 4648 4648 4407 4648 4137 3896 4137
R2 0.142 0.131 0.135 0.469 0.459 0.468 0.491 0.479 0.490
Districts 247 247 247 247 247 247 247 247 247
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No No No Yes Yes Yes Yes Yes Yes
Coal plant in district No No No No No No No No No
Distance to coal plant No No No Yes Yes Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.10: Different specifications for PM2.5 regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV IV Soil OLS IV IV Soil OLS IV IV Soil

log(pop density) 0.0898∗∗∗ 0.108∗∗∗ 0.0759∗∗ 0.0298∗ 0.0739 0.0447 0.0665∗∗∗ 0.0582 0.0706
(0.0109) (0.0311) (0.0385) (0.0176) (0.0620) (0.0631) (0.0204) (0.0671) (0.0859)

Distance to CBD 0.00104 0.00135 0.00126 0.00103 0.000809 0.00105
(0.000659) (0.00156) (0.00156) (0.000642) (0.00153) (0.00147)

Suburban 0.167∗∗∗ 0.162∗∗∗ 0.166∗∗∗ 0.116∗∗∗ 0.116∗∗ 0.116∗∗

(0.0230) (0.0528) (0.0483) (0.0283) (0.0577) (0.0576)
Urban 0.209∗∗∗ 0.177∗∗∗ 0.200∗∗∗ 0.138∗∗∗ 0.135∗∗ 0.137∗∗

(0.0245) (0.0558) (0.0560) (0.0319) (0.0653) (0.0688)
Industrial 0.0681∗∗∗ 0.0781∗ 0.0690 0.0363 0.0368 0.0365

(0.0207) (0.0434) (0.0420) (0.0251) (0.0489) (0.0491)
Traffic 0.115∗∗∗ 0.115∗∗∗ 0.117∗∗∗ 0.120∗∗∗ 0.120∗∗∗ 0.121∗∗∗

(0.0160) (0.0378) (0.0371) (0.0190) (0.0449) (0.0459)
Distance to coal plant -0.0000853 0.000162 -0.0000167

(0.000292) (0.000740) (0.000725)
Av. GDP -0.0492∗∗ -0.0380 -0.0516

(0.0242) (0.0631) (0.0610)
Av. Income -0.0652 -0.0520 -0.0663

(0.0857) (0.172) (0.167)
Unemployment share 0.422 0.540 0.404

(0.380) (0.872) (0.785)
Green Voters -0.960∗∗∗ -0.922 -0.979

(0.281) (0.684) (0.774)
Env. Zone 0.0275∗∗∗ 0.0279∗ 0.0271

(0.00853) (0.0153) (0.0170)
Distance to Street -0.0478∗∗∗ -0.0454 -0.0479

(0.0167) (0.0368) (0.0352)
N 795 758 795 795 758 795 719 682 719
R2 0.068 0.066 0.066 0.246 0.223 0.245 0.307 0.289 0.307
Districts 109 109 109 109 109 109 109 109 109
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No No No Yes Yes Yes Yes Yes Yes
Coal plant in district No No No No No No No No No
Distance to coal plant No No No Yes Yes Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.11: Different specifications for O3 regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV IV Soil OLS IV IV Soil OLS IV IV Soil

log(pop density) -0.269∗∗∗ -0.217∗∗∗ -0.282∗∗∗ -0.141∗∗∗ -0.0463 -0.130∗∗∗ -0.149∗∗∗ -0.0639 -0.213∗∗∗

(0.00994) (0.0427) (0.0393) (0.00918) (0.0326) (0.0438) (0.0121) (0.0621) (0.0819)
Distance to CBD 0.00274∗∗∗ 0.00391∗∗∗ 0.00286∗∗∗ 0.00155∗∗∗ 0.00187∗∗ 0.00127

(0.000291) (0.000972) (0.000966) (0.000279) (0.000810) (0.000872)
Suburban -0.168∗∗∗ -0.167∗∗∗ -0.169∗∗∗ -0.159∗∗∗ -0.150∗∗∗ -0.159∗∗∗

(0.0111) (0.0347) (0.0340) (0.0124) (0.0375) (0.0367)
Urban -0.235∗∗∗ -0.258∗∗∗ -0.238∗∗∗ -0.262∗∗∗ -0.267∗∗∗ -0.251∗∗∗

(0.0118) (0.0379) (0.0390) (0.0146) (0.0442) (0.0489)
Industrial -0.0635∗∗∗ -0.0402 -0.0616∗∗ -0.110∗∗∗ -0.0982∗∗∗ -0.111∗∗∗

(0.0108) (0.0298) (0.0276) (0.0129) (0.0331) (0.0319)
Traffic -0.231∗∗∗ -0.235∗∗∗ -0.231∗∗∗ -0.222∗∗∗ -0.231∗∗∗ -0.221∗∗∗

(0.0155) (0.0373) (0.0346) (0.0148) (0.0317) (0.0322)
Distance to coal plant 0.00133∗∗∗ 0.00189∗∗∗ 0.00141∗∗∗

(0.000150) (0.000520) (0.000506)
Av. GDP -0.0285∗ -0.102∗ 0.00502

(0.0146) (0.0529) (0.0567)
Av. Income -0.246∗∗∗ -0.304 -0.199

(0.0611) (0.200) (0.197)
Unemployment share 1.839∗∗∗ 1.529∗∗∗ 2.066∗∗∗

(0.174) (0.504) (0.578)
Green Voters 0.770∗∗∗ 0.554 1.036∗

(0.147) (0.524) (0.546)
Env. Zone 0.00449 -0.00386 0.0117

(0.00719) (0.0143) (0.0144)
Distance to Street 0.0530∗∗∗ 0.0540∗∗ 0.0506∗∗

(0.00763) (0.0253) (0.0250)
N 3776 3588 3776 3776 3588 3776 3438 3250 3438
R2 0.258 0.241 0.257 0.452 0.431 0.452 0.511 0.510 0.506
Districts 251 251 251 251 251 251 251 251 251
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No No No Yes Yes Yes Yes Yes Yes
Coal plant in district No No No No No No No No No
Distance to coal plant No No No Yes Yes Yes No No No
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.12: Regression results for district-free cities

NO2 PM10

(1) (2) (3) (4) (5) (6)
OLS IV Historical IV Soil OLS IV Historical IV Soil

log(pop density) 0.537∗∗∗ 0.419∗∗ 0.553∗∗∗ 0.181∗∗∗ 0.419∗∗∗ 0.217∗∗∗

(0.0286) (0.184) (0.108) (0.0142) (0.140) (0.0648)
Distance to CBD -0.0281∗∗∗ -0.0240∗∗ -0.0288∗∗∗ -0.00230∗∗ -0.0122∗∗ -0.00391

(0.00245) (0.0100) (0.00795) (0.00104) (0.00546) (0.00335)
Suburban 0.365∗∗∗ 0.354∗∗∗ 0.363∗∗∗ 0.0839∗∗∗ 0.0457 0.0770∗∗

(0.0358) (0.0982) (0.0997) (0.0147) (0.0560) (0.0300)
Urban 0.504∗∗∗ 0.538∗∗∗ 0.501∗∗∗ 0.125∗∗∗ 0.0422 0.112∗∗∗

(0.0328) (0.0969) (0.0960) (0.0132) (0.0735) (0.0268)
Industrial 0.279∗∗∗ 0.265∗∗∗ 0.280∗∗∗ 0.176∗∗∗ 0.194∗∗∗ 0.181∗∗∗

(0.0223) (0.0662) (0.0700) (0.0200) (0.0712) (0.0639)
Traffic 0.614∗∗∗ 0.611∗∗∗ 0.614∗∗∗ 0.274∗∗∗ 0.272∗∗∗ 0.273∗∗∗

(0.0137) (0.0410) (0.0399) (0.00752) (0.0212) (0.0203)
N 2661 2506 2661 2305 2148 2305
R2 0.700 0.705 0.700 0.466 0.390 0.464
Districts 88 88 88 85 85 85
Weather Yes Yes Yes Yes Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.13: Regression results for district-free cities

PM2.5 O3

(1) (2) (3) (4) (5) (6)
OLS IV Historical IV Soil OLS IV Historical IV Soil

log(pop density) 0.0625∗∗ 0.246 0.0645 -0.309∗∗∗ 0.0724 -0.372∗∗∗

(0.0247) (0.170) (0.0707) (0.0232) (0.181) (0.0910)
Distance to CBD 0.00865∗∗ 0.00491 0.00861 0.00488∗∗∗ -0.0103 0.00713

(0.00393) (0.00635) (0.00706) (0.00187) (0.00915) (0.00530)
Suburban 0.294∗∗∗ 0.171 0.293∗∗∗ -0.191∗∗∗ -0.181∗∗ -0.191∗∗∗

(0.0470) (0.124) (0.0770) (0.0214) (0.0727) (0.0634)
Urban 0.358∗∗∗ 0.216 0.357∗∗∗ -0.259∗∗∗ -0.318∗∗∗ -0.252∗∗∗

(0.0460) (0.132) (0.0775) (0.0212) (0.0853) (0.0636)
Industrial 0.0896∗∗∗ 0.0832∗∗ 0.0896∗∗∗ -0.268∗∗∗ -0.152∗∗∗ -0.282∗∗∗

(0.0277) (0.0410) (0.0340) (0.0138) (0.0534) (0.0389)
Traffic 0.131∗∗∗ 0.131∗∗∗ 0.131∗∗∗ -0.253∗∗∗ -0.271∗∗∗ -0.252∗∗∗

(0.0176) (0.0348) (0.0358) (0.0202) (0.0582) (0.0503)
N 433 430 433 1301 1194 1301
R2 0.262 0.185 0.262 0.325 0.195 0.320
Districts 51 51 51 72 72 72
Weather Yes Yes Yes Yes Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.14: Labor Market Regions Regressions (NO2 and PM10)

NO2 PM10

(1) (2) (3) (4) (5) (6)
OLS IV Historic IV Soil OLS IV Historic IV Soil

log(pop density) 0.315∗∗∗ 0.231∗∗∗ 0.300∗∗∗ 0.0966∗∗∗ 0.125∗∗∗ 0.0765
(0.0656) (0.0729) (0.0864) (0.0246) (0.0220) (0.0511)

Distance to CBD -0.00729∗∗∗ -0.00755∗∗∗ -0.00733∗∗∗ -0.0000962 0.0000146 -0.000174
(0.00150) (0.00147) (0.00151) (0.000707) (0.000713) (0.000702)

Urban 0.565∗∗∗ 0.576∗∗∗ 0.567∗∗∗ 0.181∗∗∗ 0.176∗∗∗ 0.184∗∗∗

(0.0501) (0.0502) (0.0515) (0.0268) (0.0264) (0.0269)
Traffic 0.670∗∗∗ 0.671∗∗∗ 0.670∗∗∗ 0.265∗∗∗ 0.266∗∗∗ 0.265∗∗∗

(0.0365) (0.0372) (0.0363) (0.0168) (0.0166) (0.0169)
N 5575 5575 5575 4648 4648 4648
R2 0.748 0.744 0.748 0.476 0.473 0.475
Labor Market Regions 128 128 128 125 125 125
Weather Yes Yes Yes Yes Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.15: Labor Market Regions Regressions (PM2.5 and O3)

PM2.5 O3

(1) (2) (3) (4) (5) (6)
OLS IV Historic IV Soil OLS IV Historic IV Soil

log(pop density) 0.0731∗ 0.110∗∗∗ 0.0684 -0.233∗∗∗ -0.190∗∗∗ -0.325∗∗∗

(0.0399) (0.0408) (0.0704) (0.0451) (0.0561) (0.0676)
Distance to CBD 0.000749 0.000844 0.000736 0.00425∗∗∗ 0.00442∗∗∗ 0.00389∗∗∗

(0.00119) (0.00116) (0.00118) (0.00101) (0.00101) (0.00109)
Urban 0.206∗∗∗ 0.193∗∗∗ 0.207∗∗∗ -0.259∗∗∗ -0.263∗∗∗ -0.251∗∗∗

(0.0441) (0.0439) (0.0444) (0.0359) (0.0354) (0.0372)
Traffic 0.116∗∗∗ 0.118∗∗∗ 0.115∗∗∗ -0.253∗∗∗ -0.249∗∗∗ -0.263∗∗∗

(0.0378) (0.0368) (0.0367) (0.0349) (0.0354) (0.0351)
N 795 795 795 3776 3776 3776
R2 0.263 0.258 0.263 0.463 0.459 0.446
Labor Market Regions 77 77 77 126 126 126
Weather Yes Yes Yes Yes Yes Yes
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

48



Table B.16: Alternative independent variables for NO2

Alternative population density Log of population Log of Employed per area
(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil

logaltdensity 0.112∗∗∗ 0.0754∗∗∗ 0.104∗∗∗

(0.00577) (0.0203) (0.0234)
logpopulation 0.0961∗∗∗ 0.117∗∗ 0.0773∗∗

(0.00752) (0.0518) (0.0308)
logempldensity 0.211∗∗∗ 0.149∗∗∗ 0.244∗∗∗

(0.00890) (0.0374) (0.0417)
Distance to CBD -0.00430∗∗∗ -0.00579∗∗∗ -0.00456∗∗∗ -0.00898∗∗∗ -0.00915∗∗∗ -0.00884∗∗∗ -0.00333∗∗∗ -0.00500∗∗∗ -0.00256∗

(0.000478) (0.00158) (0.00150) (0.000451) (0.00152) (0.00142) (0.000476) (0.00163) (0.00146)
Suburban 0.343∗∗∗ 0.339∗∗∗ 0.345∗∗∗ 0.360∗∗∗ 0.346∗∗∗ 0.362∗∗∗ 0.338∗∗∗ 0.335∗∗∗ 0.332∗∗∗

(0.0154) (0.0477) (0.0459) (0.0155) (0.0483) (0.0464) (0.0151) (0.0459) (0.0452)
Urban 0.518∗∗∗ 0.541∗∗∗ 0.524∗∗∗ 0.573∗∗∗ 0.557∗∗∗ 0.580∗∗∗ 0.508∗∗∗ 0.533∗∗∗ 0.492∗∗∗

(0.0185) (0.0586) (0.0579) (0.0175) (0.0627) (0.0534) (0.0183) (0.0577) (0.0594)
Industrial 0.0630∗∗∗ 0.0714 0.0650 0.0666∗∗∗ 0.0562 0.0717 0.0979∗∗∗ 0.0926∗∗ 0.0991∗∗∗

(0.0143) (0.0451) (0.0405) (0.0179) (0.0572) (0.0534) (0.0139) (0.0417) (0.0382)
Traffic 0.658∗∗∗ 0.667∗∗∗ 0.659∗∗∗ 0.674∗∗∗ 0.683∗∗∗ 0.674∗∗∗ 0.655∗∗∗ 0.664∗∗∗ 0.653∗∗∗

(0.0129) (0.0417) (0.0401) (0.0128) (0.0414) (0.0400) (0.0126) (0.0406) (0.0396)
N 5575 5301 5575 5575 5301 5575 5528 5254 5528
R2 0.738 0.735 0.738 0.721 0.721 0.720 0.745 0.743 0.744
Districts 269 269 269 269 269 269 269 269 269
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.17: Alternative independent variables for PM10

Alternative population density Log of population Log of Employed per area
(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil

logaltdensity 0.0281∗∗∗ 0.0424∗∗∗ 0.0268∗

(0.00321) (0.0106) (0.0146)
logpopulation 0.0519∗∗∗ 0.0715∗∗∗ 0.0408∗∗∗

(0.00317) (0.0186) (0.0158)
logempldensity 0.0367∗∗∗ 0.0815∗∗∗ 0.0330

(0.00528) (0.0221) (0.0300)
Distance to CBD 0.000489∗ 0.000734 0.000446 -0.000851∗∗∗ -0.00111 -0.000769 0.000339 0.00107 0.000256

(0.000287) (0.000882) (0.000860) (0.000259) (0.000682) (0.000708) (0.000293) (0.000948) (0.000942)
Suburban 0.103∗∗∗ 0.0911∗∗∗ 0.103∗∗∗ 0.106∗∗∗ 0.0967∗∗∗ 0.106∗∗∗ 0.109∗∗∗ 0.0944∗∗∗ 0.110∗∗∗

(0.00899) (0.0240) (0.0251) (0.00872) (0.0231) (0.0239) (0.00910) (0.0240) (0.0257)
Urban 0.171∗∗∗ 0.142∗∗∗ 0.172∗∗∗ 0.176∗∗∗ 0.150∗∗∗ 0.180∗∗∗ 0.176∗∗∗ 0.136∗∗∗ 0.178∗∗∗

(0.0102) (0.0303) (0.0310) (0.00991) (0.0292) (0.0285) (0.0102) (0.0310) (0.0318)
Industrial 0.129∗∗∗ 0.122∗∗∗ 0.130∗∗∗ 0.121∗∗∗ 0.109∗∗∗ 0.124∗∗∗ 0.134∗∗∗ 0.131∗∗∗ 0.134∗∗∗

(0.0125) (0.0362) (0.0352) (0.0131) (0.0364) (0.0367) (0.0130) (0.0379) (0.0381)
Traffic 0.259∗∗∗ 0.259∗∗∗ 0.259∗∗∗ 0.261∗∗∗ 0.266∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.260∗∗∗ 0.261∗∗∗

(0.00675) (0.0186) (0.0180) (0.00660) (0.0176) (0.0172) (0.00686) (0.0193) (0.0183)
N 4648 4407 4648 4648 4407 4648 4601 4360 4601
R2 0.462 0.453 0.462 0.486 0.477 0.484 0.454 0.436 0.454
Districts 247 247 247 247 247 247 247 247 247
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.18: Alternative independent variables for PM2.5

Alternative population density Log of population Log of Employed per area
(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil

logaltdensity 0.0111 0.0298 0.0201
(0.00757) (0.0234) (0.0248)

logpopulation 0.0475∗∗∗ 0.0657 0.0324
(0.00742) (0.0470) (0.0246)

logempldensity 0.00307 0.0482 -0.00198
(0.0112) (0.0452) (0.0441)

Distance to CBD 0.000949 0.00127 0.00126 0.000356 -0.0000299 0.000420 0.000287 0.000942 0.000173
(0.000652) (0.00153) (0.00151) (0.000583) (0.00118) (0.00123) (0.000628) (0.00159) (0.00143)

Suburban 0.169∗∗∗ 0.160∗∗∗ 0.165∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.166∗∗∗ 0.186∗∗∗ 0.174∗∗∗ 0.188∗∗∗

(0.0227) (0.0511) (0.0480) (0.0218) (0.0476) (0.0451) (0.0226) (0.0497) (0.0475)
Urban 0.214∗∗∗ 0.182∗∗∗ 0.201∗∗∗ 0.190∗∗∗ 0.172∗∗∗ 0.203∗∗∗ 0.222∗∗∗ 0.176∗∗∗ 0.227∗∗∗

(0.0243) (0.0539) (0.0563) (0.0233) (0.0535) (0.0494) (0.0246) (0.0565) (0.0608)
Industrial 0.0685∗∗∗ 0.0703∗ 0.0664∗ 0.0555∗∗∗ 0.0557 0.0605 0.0659∗∗∗ 0.0698 0.0662

(0.0202) (0.0418) (0.0397) (0.0203) (0.0418) (0.0387) (0.0204) (0.0433) (0.0406)
Traffic 0.115∗∗∗ 0.116∗∗∗ 0.117∗∗∗ 0.124∗∗∗ 0.123∗∗∗ 0.120∗∗∗ 0.115∗∗∗ 0.114∗∗∗ 0.114∗∗∗

(0.0163) (0.0393) (0.0387) (0.0156) (0.0362) (0.0371) (0.0176) (0.0427) (0.0424)
N 795 758 795 795 758 795 774 737 774
R2 0.244 0.220 0.243 0.276 0.258 0.272 0.246 0.214 0.246
Districts 109 109 109 109 109 109 109 109 109
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.19: Alternative independent variables for O3

Alternative population density Log of population Log of Employed per area
(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil OLS IV density 1910 IV Soil

logaltdensity -0.0751∗∗∗ -0.0358∗∗∗ -0.0735∗∗∗

(0.00428) (0.0127) (0.0185)
logpopulation -0.0667∗∗∗ -0.0675∗∗ -0.0467∗

(0.00525) (0.0296) (0.0239)
logempldensity -0.130∗∗∗ -0.0672∗∗∗ -0.157∗∗∗

(0.00642) (0.0239) (0.0318)
Distance to CBD 0.00292∗∗∗ 0.00417∗∗∗ 0.00297∗∗∗ 0.00557∗∗∗ 0.00556∗∗∗ 0.00544∗∗∗ 0.00264∗∗∗ 0.00393∗∗∗ 0.00212∗∗

(0.000296) (0.000970) (0.000947) (0.000319) (0.000992) (0.000960) (0.000290) (0.000999) (0.000949)
Suburban -0.165∗∗∗ -0.167∗∗∗ -0.165∗∗∗ -0.180∗∗∗ -0.171∗∗∗ -0.183∗∗∗ -0.162∗∗∗ -0.166∗∗∗ -0.156∗∗∗

(0.0111) (0.0351) (0.0342) (0.0113) (0.0346) (0.0351) (0.0113) (0.0351) (0.0350)
Urban -0.222∗∗∗ -0.246∗∗∗ -0.223∗∗∗ -0.266∗∗∗ -0.257∗∗∗ -0.270∗∗∗ -0.218∗∗∗ -0.242∗∗∗ -0.205∗∗∗

(0.0119) (0.0386) (0.0396) (0.0118) (0.0392) (0.0382) (0.0120) (0.0383) (0.0401)
Industrial -0.0516∗∗∗ -0.0344 -0.0513∗ -0.0392∗∗∗ -0.0253 -0.0387 -0.0743∗∗∗ -0.0439 -0.0825∗∗

(0.0117) (0.0351) (0.0310) (0.0151) (0.0387) (0.0455) (0.0124) (0.0357) (0.0340)
Traffic -0.226∗∗∗ -0.236∗∗∗ -0.226∗∗∗ -0.234∗∗∗ -0.246∗∗∗ -0.232∗∗∗ -0.222∗∗∗ -0.234∗∗∗ -0.221∗∗∗

(0.0165) (0.0410) (0.0394) (0.0177) (0.0440) (0.0432) (0.0163) (0.0402) (0.0385)
N 3776 3588 3776 3776 3588 3776 3751 3563 3751
R2 0.427 0.407 0.427 0.389 0.389 0.386 0.430 0.415 0.426
Districts 251 251 251 251 251 251 251 251 251
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.20: Regressions including an interaction term for population density*station
type

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS IV Historic IV Soil OLS IV Historic IV Soil OLS IV Historic IV Soil

log(pop density) 0.255∗∗∗ 0.110∗ 0.235∗∗∗ 0.0548∗∗∗ 0.0899∗∗∗ 0.0145 0.0169 0.0579 0.00617
(0.0159) (0.0595) (0.0725) (0.00728) (0.0292) (0.0479) (0.0170) (0.0579) (0.0595)

Industrial*Density 0.127∗∗∗ 0.239∗∗∗ 0.143∗ 0.0387∗∗ 0.00970 0.0692 0.0574∗ 0.0416 0.0631
(0.0249) (0.0823) (0.0850) (0.0195) (0.0642) (0.0650) (0.0298) (0.0600) (0.0601)

Traffic*Density 0.0589∗∗ 0.192∗∗ 0.0774 0.0623∗∗∗ 0.0369 0.1000∗∗ 0.0412 0.0291 0.0501
(0.0230) (0.0768) (0.0821) (0.0113) (0.0359) (0.0454) (0.0331) (0.0821) (0.0797)

Distance to CBD -0.00380∗∗∗ -0.00565∗∗∗ -0.00402∗∗∗ 0.000607∗∗ 0.000786 0.000124 0.00111∗ 0.00131 0.000983
(0.000469) (0.00165) (0.00149) (0.000283) (0.000868) (0.000892) (0.000657) (0.00154) (0.00146)

Suburban 0.357∗∗∗ 0.368∗∗∗ 0.361∗∗∗ 0.109∗∗∗ 0.0946∗∗∗ 0.115∗∗∗ 0.177∗∗∗ 0.167∗∗∗ 0.179∗∗∗

(0.0158) (0.0482) (0.0473) (0.00909) (0.0242) (0.0276) (0.0238) (0.0538) (0.0521)
Urban 0.524∗∗∗ 0.573∗∗∗ 0.531∗∗∗ 0.176∗∗∗ 0.147∗∗∗ 0.191∗∗∗ 0.218∗∗∗ 0.184∗∗∗ 0.225∗∗∗

(0.0196) (0.0603) (0.0630) (0.0101) (0.0304) (0.0339) (0.0257) (0.0589) (0.0646)
Industrial -0.873∗∗∗ -1.722∗∗∗ -0.996 -0.157 0.0573 -0.388 -0.360 -0.237 -0.402

(0.193) (0.636) (0.655) (0.143) (0.465) (0.477) (0.224) (0.462) (0.465)
Traffic 0.200 -0.841 0.0551 -0.230∗∗ -0.0301 -0.525 -0.204 -0.111 -0.274

(0.182) (0.611) (0.649) (0.0908) (0.286) (0.358) (0.262) (0.657) (0.638)
N 5575 5301 5575 4648 4407 4648 795 758 795
R2 0.750 0.742 0.750 0.472 0.463 0.468 0.250 0.229 0.249
Districts 269 269 269 247 247 247 109 109 109
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) Density in 2015 (b) Districts with coal-fired plants

Figure B.2: Population densities in 2015 and districts with coal-fired plants
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Table B.21: IV regressions with historical population density including historical share
of workers in industry

NO2 PM10 PM2.5 O3

(1) (2) (3) (4) (5) (6) (7) (8)
log(pop density) 0.186∗∗∗ 0.170∗∗∗ 0.103∗∗∗ 0.0833∗∗∗ 0.0766 0.0356 -0.0969∗∗∗ -0.0815∗∗∗

(0.0533) (0.0550) (0.0240) (0.0291) (0.0522) (0.0488) (0.0292) (0.0316)
Distance to CBD -0.00550∗∗∗ -0.00578∗∗∗ 0.000972 0.000796 0.00146 0.00160 0.00371∗∗∗ 0.00415∗∗∗

(0.00153) (0.00159) (0.000850) (0.000858) (0.00161) (0.00143) (0.000960) (0.00101)
Suburban 0.335∗∗∗ 0.333∗∗∗ 0.0880∗∗∗ 0.0858∗∗∗ 0.158∗∗∗ 0.127∗∗∗ -0.168∗∗∗ -0.165∗∗∗

(0.0459) (0.0463) (0.0231) (0.0230) (0.0506) (0.0482) (0.0337) (0.0350)
Urban 0.537∗∗∗ 0.530∗∗∗ 0.141∗∗∗ 0.133∗∗∗ 0.173∗∗∗ 0.162∗∗∗ -0.249∗∗∗ -0.243∗∗∗

(0.0596) (0.0596) (0.0307) (0.0302) (0.0545) (0.0487) (0.0388) (0.0400)
Industrial 0.0710∗ 0.0804∗ 0.130∗∗∗ 0.111∗∗∗ 0.0587 0.0634∗ -0.0318 -0.0403

(0.0390) (0.0419) (0.0356) (0.0360) (0.0427) (0.0326) (0.0322) (0.0343)
Traffic 0.682∗∗∗ 0.674∗∗∗ 0.261∗∗∗ 0.261∗∗∗ 0.115∗∗∗ 0.140∗∗∗ -0.267∗∗∗ -0.237∗∗∗

(0.0428) (0.0420) (0.0188) (0.0178) (0.0399) (0.0388) (0.0383) (0.0411)
Share employed in Ind. 1.190∗∗ -0.0192 0.496 -1.588∗∗∗

(0.543) (0.280) (0.580) (0.388)
Share workers in Ind. 0.141 0.234∗∗∗ 0.444∗∗∗ -0.0448

(0.129) (0.0813) (0.128) (0.106)
N 5178 5178 4326 4326 749 749 3493 3493
R2 0.749 0.744 0.459 0.476 0.228 0.299 0.446 0.412
Districts 269 269 247 247 109 109 251 251
Standard errors in parantheses are clustered at labor market region - year (OLS) and labor market region (IV) level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.22: Probability of transgression of annual threshold thresholds using a probit
model

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Probit Probit Hist. IV Probit Soil IV Probit Probit Hist. IV Probit Soil IV Probit Probit Hist. IV Probit Soil IV

main
log(pop density) 1.477∗∗∗ 1.228∗∗∗ 1.840∗∗∗ 0.464∗∗∗ 0.633∗∗∗ 0.333 -0.260 -0.677∗ -0.435

(0.218) (0.252) (0.279) (0.105) (0.128) (0.264) (0.249) (0.392) (0.562)
distance to CBD 0.0191∗ 0.0133 0.0222∗∗ 0.00627 0.00752 0.00424 0.00926 -0.00320 0.00695

(0.0107) (0.0108) (0.0106) (0.00451) (0.00465) (0.00594) (0.0187) (0.0186) (0.0200)
suburban 0.129 0.0886 0.0289 0.811∗∗∗ 0.752∗∗∗ 0.820∗∗∗ 1.834∗∗∗ 1.617∗∗∗ 1.860∗∗∗

(0.486) (0.463) (0.532) (0.150) (0.145) (0.154) (0.475) (0.484) (0.480)
urban 0.792 0.763 0.501 1.052∗∗∗ 0.927∗∗∗ 1.094∗∗∗ 2.320∗∗∗ 2.202∗∗∗ 2.456∗∗∗

(0.497) (0.475) (0.575) (0.183) (0.184) (0.197) (0.658) (0.692) (0.768)
industrial 0.0418 0.127 -0.0390 1.184∗∗∗ 1.156∗∗∗ 1.177∗∗∗

(0.260) (0.281) (0.273) (0.191) (0.188) (0.193)
traffic 2.505∗∗∗ 2.514∗∗∗ 2.415∗∗∗ 1.691∗∗∗ 1.727∗∗∗ 1.693∗∗∗ 0.378 0.406 0.345

(0.250) (0.247) (0.261) (0.145) (0.144) (0.144) (0.468) (0.426) (0.452)
logpopdensity
distance to CBD -0.00448∗∗∗ -0.0127∗∗∗ -0.00551∗∗∗ -0.0127∗∗∗ -0.00174 -0.0148∗∗∗

(0.00142) (0.00217) (0.00134) (0.00234) (0.00267) (0.00439)
suburban 0.0251 0.00850 0.0497 0.0409 0.0904 0.114

(0.0535) (0.0906) (0.0526) (0.0868) (0.0948) (0.171)
urban 0.0589 0.190∗∗ 0.0683 0.216∗∗∗ 0.260∗∗ 0.409∗∗

(0.0529) (0.0787) (0.0499) (0.0739) (0.102) (0.167)
industrial -0.0626 -0.122∗ -0.0497 -0.143∗∗

(0.0542) (0.0695) (0.0646) (0.0700)
traffic 0.0133 0.0477 -0.00894 0.0646∗∗ 0.0111 -0.0182

(0.0273) (0.0299) (0.0273) (0.0329) (0.0557) (0.0618)
N 5663 5383 5663 4817 4565 4817 701 650 701
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Marginal Effects 0.2006 0.2532 0.1330 0.0924 0.0331 0.1110 -0.0132 0.0003 -0.0030
Standard errors in parantheses are clustered at labor market region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.23: Probability of transgressing thresholds by specific number of days using a
probit model

NO2 PM10 PM2.5

(1) (2) (3) (4) (5) (6) (7) (8) (9)
>17 >14 >9 >34 >29 >24 >34 >29 >24

main
log(pop density) 1.141∗∗∗ 1.219∗∗∗ 1.183∗∗∗ 0.377∗∗∗ 0.372∗∗∗ 0.266∗∗ -0.0978 0.00227 -0.0188

(0.435) (0.442) (0.408) (0.129) (0.114) (0.107) (0.142) (0.138) (0.142)
distance to CBD 0.00112 0.00692 0.00695 0.00647 0.00341 0.00180 0.00191 0.00356 0.00881

(0.0321) (0.0300) (0.0230) (0.00548) (0.00495) (0.00489) (0.00819) (0.00648) (0.00942)
suburban -0.254 -0.293 -0.250 0.303 0.362∗ 0.429∗∗ 1.264∗∗∗ 1.061∗∗∗ 1.059∗∗∗

(0.578) (0.587) (0.539) (0.226) (0.207) (0.168) (0.317) (0.280) (0.282)
urban 0.298 0.330 0.439∗∗ 1.318∗∗∗ 1.125∗∗∗ 1.224∗∗∗

(0.257) (0.243) (0.191) (0.335) (0.308) (0.307)
industrial -0.599 -0.636 -0.848∗∗ 0.953∗∗∗ 0.817∗∗∗ 0.804∗∗∗ 0.231 0.496∗∗ 0.303

(0.416) (0.421) (0.407) (0.250) (0.252) (0.250) (0.191) (0.213) (0.188)
traffic 1.503∗∗∗ 1.341∗∗∗ 1.267∗∗∗ 0.642∗∗∗ 0.695∗∗∗ 0.542∗∗∗

(0.105) (0.112) (0.103) (0.192) (0.184) (0.189)
N 2125 2125 2125 4817 4817 4817 795 791 791
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Districts 269 269 269 247 247 247 109 109 109
Marginal Effects 0.0528 0.0588 0.0788 0.0514 0.0643 0.0560 -0.0248 0.0005 -0.0032
Standard errors in parantheses are clustered at labor market region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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