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implied volatility versus alternative methods 
 
 

Abstract 
 
This paper compares volatility forecasts for the RTS Index (the main index for the Russian stock 
market) generated by alternative models, specifically option-implied volatility forecasts based 
on the Black-Scholes model, ARCH/GARCH-type model forecasts, and forecasts combining 
those two using a mixing strategy based either on a simple average or a weighted average with 
the weights being determined according to two different criteria (either minimizing the errors or 
maximizing the information content). Various forecasting performance tests are carried out 
which suggest that both implied volatility and combination methods using a simple average 
outperform ARCH/GARCH-type models in terms of forecasting accuracy. 
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1. Introduction 
Derivatives, and options in particular, have become increasingly sophisticated financial instruments 

designed to deal with the uncertainty resulting from volatile asset prices. A popular method for 

forecasting their volatility is the option-implied volatility (IV) approach introduced by Black and 

Scholes (1972), who analysed the efficiency of options market and derived the most commonly 

applied formula for the estimation of European option prices. The evidence on the forecasting 

performance of implied volatility is rather mixed, partly because of the different forecasting 

techniques used by researchers. Doidge and Wei (1998) reported that in the case of the Canadian 

stock market non-simultaneity of prices and a non-competitive trading environment led to a poor 

performance of the IV estimator. Canina and Figlewski (1993) and Day and Lewis (1992) showed 

that for S&P 100 stock index implied volatility does not contain any valuable information, and 

mentioned model misspecification and expiration day effects as possible reasons; they also 

concluded that the Treasury bill rate is not a good proxy for the rate faced by an options arbitrageur. 

In contrast, other studies found that IV forecasts outperform time series volatility forecast. For 

example, Christensen and Prabhala (1998) reached this conclusion for the S&P 100 stock index, and 

argued that using non-overlapping samples was the reason for the efficiency and unbiasedness of IV 

forecasts. Neely (2005) detected a strong linkage between changes in implied volatility and 

important economic events for the three-month eurodollar interest rates. 

This paper focuses on volatility forecasting in the case of the RTS Index, one of the most traded 

stock indices in Russia for which no previous evidence is available. Specifically, it carries out 

various tests to compare the volatility forecasts generated by alternative models, namely option-

implied volatility forecasts based on the Black-Scholes model, ARCH/GARCH-type model 

forecasts, and forecasts combining the former two using a mixing strategy based either on a simple 

average or a weighted average with the weights being determined according to two different criteria 

(either minimizing the errors or maximizing the information content).  

The rest of the paper is organised as follows: Section 2 outlines the methodology; Section 3 

presents the forecasting performance results; finally, Section 4 offers some concluding remarks.  
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2. Methodology 

2.1 Sampling procedure 

We choose the RTS Index as the underlying asset for a number of reasons. First, existing 

studies have typically analysed the forecasting performance of implied volatility in the case of the 

main American and European markets, whilst there is no evidence concerning the Russian one. 

Second, the RTS Index is one of the most representative ones for the Russian market. It is a free-

float capitalization-weighted composite index of Russian stocks of the largest and dynamically 

developing issuers traded on the Moscow Exchange. The stocks included are the 50 most liquid 

ones, which are reviewed on a quarterly basis (see the Moscow Exchange website, 

https://www.moex.com/en/index/rtsi). Third, options on the RTS Index futures contracts are plain 

vanilla, which is one of the assumptions of the Black-Scholes model. 

The RTS Index was launched on 1 September 1995. It is calculated on a real time basis and is 

denominated in US dollars. The options included have the following characteristics: 

• They are futures-style options on RTS Index futures contracts; 

• Expiration occurs on the third Thursday of every quarter (March, June, September, 

December). On the Moscow Exchange there are RTS options that expiry quarterly, 

monthly and even weekly; however, the present study focuses only on options with 

quarterly expiration because of their high liquidity; 

• They are American-style options, i.e. they allow holders to exercise them at any time 

prior to and including the maturity date. 

The frequency is daily and the sample period goes from 5 January 2014 to 31 October 2018. This is 

a sufficiently long span of data for carrying out appropriate tests; moreover, it includes the Russian 

financial crisis of 2014-2015, which is particularly interesting for testing the predictive power of 

implied volatility. Finally, as a proxy for the risk-free rate we use daily observations on the 1-month 

MosPrime Rate. This rate is calculated by the National Foreign Exchange Association together with 

Thomson Reuters on the basis of the offer rates of deposits denominated in rubles quoted by the 

leading money market participants to the superior financial institutions (see the Central Bank of the 

Russian Federation website cbr.ru/eng/hd_base/mosprime). Given the findings of the existing 

literature, the analysis is based on non-overlapping samples, and uses the closest expiration term of 

the option series and the prices of option contracts at the end of each trading day. 
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2.2. Implied volatility forecasts 

A European-style call (put) option gives the right, but not the obligation, to purchase (sell) an 

asset at a strike price at maturity date (Poon and Granger, 2003). For pricing such options the well-

known Black–Scholes formula can be used (Black and Scholes, 1973). This is a partial differential 

equation, based on the idea that one can hedge by trading the underlying asset, which involves 

modelling a call option price C  or a put option price P as follows (see Hull, 2008): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
2
𝜎𝜎2𝑆𝑆2 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆 𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
− 𝑟𝑟𝑟𝑟 = 0, where      (1) 

where V (S,t) is the price of an option as a function of time and stock prices; 

𝑡𝑡 ∈ [0;𝑇𝑇] stands for time in years; 

S is the price of the underlying asset; 

r is the annualized continuously compounded risk-free interest rate; 

𝜎𝜎 is the volatility of the underlying asset. 

According to the Black and Scholes model and using Itô's lemma, the logarithm of the price 

of the underlying asset should have the following dynamic specification: 

    𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 = (𝜇𝜇 − 𝜎𝜎2

2
)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝜎𝜎      (2) 

or alternatively: 

    𝑑𝑑𝑑𝑑𝑆𝑆𝜕𝜕 = 𝑑𝑑𝑑𝑑𝑆𝑆0 ∙ 𝑒𝑒
�𝜇𝜇−𝜎𝜎

2

2 �𝜕𝜕+𝜎𝜎𝑊𝑊𝑡𝑡 , where     (3) 

where lnSt is the natural logarithm of the price level of the underlying asset; 

lnS0 is the natural logarithm of the initial price level of the underlying asset; 

μ is the mean value; 

σ is the standard deviation; 

Wt is a standard Wiener process (Brownian motion). 

In other words, the logarithm of the price of the underlying asset is assumed to follow a 

normal distribution with parameters 𝜇𝜇 and 𝜎𝜎.  

In the case of the American-style options on RTS Index futures contracts considered in the 

present study, the standard Black and Scholes model should be modified as follows. First, the 

equality defined before for European-style options becomes an inequality of the following form: 
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⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
2
𝜎𝜎2𝑆𝑆2 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆 𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
− 𝑟𝑟𝑟𝑟 ≤ 0

𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑑𝑑 𝑡𝑡𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡𝑟𝑟𝑏𝑏 𝑐𝑐𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑑𝑑𝑐𝑐:
𝑟𝑟(𝑆𝑆,𝑇𝑇) = 𝐻𝐻(𝑆𝑆)
𝑟𝑟(𝑆𝑆, 𝑡𝑡) ≥ 𝐻𝐻(𝑆𝑆)

, where      (4) 

𝐻𝐻(𝑆𝑆) - the payoff of the option when the price of the underlying asset is S. 

Second, for futures contract the spot price of the underlying asset is replaced by the 

discounted futures price (Black, 1976): 

𝑆𝑆 = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕)𝐹𝐹           (5) 

The model discussed above allows to determine the option price as a function of a number of 

variables: 

• Ft – the current price of the futures contract; 

• X – the strike price of the option; 

• r – the risk-free interest rate; 

• T-t – time remaining to maturity; 

• 𝜎𝜎 – volatility of the underlying asset over the time remaining to maturity. 

Note that Ft , X, r and (T-t) can be observed, and that the option price is also known, either as 

a quote or because there was a transaction; here we use the price from real trades. Using backward 

induction, one can derive the volatility implied by the formula above which is used by market 

participants to determine the quote; this is the variable being examined. 

The amended call and put option prices are the following: 

  
𝐶𝐶𝐵𝐵𝑆𝑆(𝑇𝑇 − 𝑡𝑡,𝑋𝑋,𝐹𝐹𝜕𝜕, 𝑟𝑟,𝜎𝜎) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) ∙ (𝐹𝐹𝜕𝜕 ∙ 𝑁𝑁(𝑑𝑑1) − 𝑋𝑋 ∙ 𝑁𝑁(𝑑𝑑2))    (6) 

𝑃𝑃𝐵𝐵𝑆𝑆(𝑇𝑇 − 𝑡𝑡,𝑋𝑋,𝐹𝐹𝜕𝜕, 𝑟𝑟,𝜎𝜎) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) ∙ (𝑋𝑋 ∙ 𝑁𝑁(−𝑑𝑑2) − 𝐹𝐹𝜕𝜕 ∙ 𝑁𝑁(−𝑑𝑑1)), where   (7) 

𝑑𝑑1 =
ln�𝐹𝐹𝑡𝑡𝑋𝑋 �+(𝑇𝑇−𝜕𝜕)∙𝜎𝜎

2

2
𝜎𝜎∙�(𝑇𝑇−𝜕𝜕)

  and 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎 ∙ √𝑇𝑇 − 𝑡𝑡 

CBS – call option price; 

PBS – put option price; 

N(d) – standard normal distribution function. 

Under the assumption of market efficiency the market price and that implied by the Black and 

Scholes equations should be the same, i.e. 

𝐶𝐶𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝜕𝜕 = 𝐶𝐶𝐵𝐵𝑆𝑆(𝑇𝑇 − 𝑡𝑡,𝑋𝑋, 𝑆𝑆0, 𝛾𝛾, 𝑟𝑟,𝜎𝜎𝐼𝐼𝜕𝜕) and 𝑃𝑃𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝜕𝜕 = 𝑃𝑃𝐵𝐵𝑆𝑆(𝑇𝑇 − 𝑡𝑡,𝑋𝑋, 𝑆𝑆0, 𝛾𝛾, 𝑟𝑟,𝜎𝜎𝐼𝐼𝜕𝜕). 
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This equality is the basis for calculating implied volatility and then assessing its forecasting 

properties. Note that the Black and Scholes (1973) model is based on the following assumptions:  

• the volatility of the underlying asset, σ, is constant; 

• the risk-free interest rate, r, is known and constant over time; 

• the underlying price follows the log-normal distribution; 

• the index pays no dividends; 

• there are no transaction costs or taxes; 

• the underlying asset is divisible; 

• there are no restrictions for short-selling; 

• there is continuous trading without arbitrage. 

These are "ideal conditions" and violation of any of them will result in some inaccuracy in the 

estimated theoretical price. In practice at least some of them are not satisfied. For instance, consider 

the assumption of constant volatility. Options with different strikes but with the same time to 

maturity typically give different values for the implied volatility for the same underlying asset; in 

particular, options either deep in-the-money or out-of-the-money tend to produce higher values for 

the implied volatility; this phenomenon is known as "volatility smile". Let us analyse it in the 

specific case of the RTS options considered here, which expire quarterly (on the 3rd Thursday of 

March, June, September, December). Figures 1 to 4 show the relationship between implied 

volatility and the central strike, i.e. the strike closest to the settlement price of RTS futures, on two 

different dates, in the case of call and put options respectively. The tick size for the RTS option 

contract is 2500, so shift +1 stands for the central strike + 2500. 

 
Figure 1. Volatility smile of the call RTS option on the 16th of November 2017 
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Figure 2. Volatility smile of the call RTS option on the 15th of May 2017 

 
Figure 3. Volatility smile of the put RTS option on the 16th of November 2017 

 
Figure 4. Volatility smile of the put RTS option on the 15th of May 2017 

Poon and Granger (2003)  and Christensen and  Prabhala (1998) highlight four possible 

reasons for this “puzzle”: 

Distributional assumptions. In the Black and Scholes model the price of the underlying asset 

is assumed to follow the lognormal distribution (3). However, numerous studies provide evidence 

of leptokurtic tails (see, e.g., Blattberg and Gonedes, 1974; Fama, 1965), which results in 

overestimating the implied volatility at very low and very high strikes. 

Stochastic volatility. The underlying asset might have its own dynamics and volatility. To 

avoid this type of problem researchers tend to use at-the-money options for forecasting. 

Market microstructure and measurement errors. The no-arbitrage, zero transaction cost and 

continuous trading conditions of an ideal trading environment are normally not met in practice, 

which leads to market inefficiencies and option prices deviating from their theoretical price.  

Investor risk preferences. In the Black and Scholes model investor risk preferences are 

irrelevant in option pricing. However, in practice these affect option prices, and in turn their 

volatility.   
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2.3 Comparisons of Historical and IV Forecasts 

IV Forecasts  

IV forecasts are market-based volatility forecasts reflecting the expectations of market 

participants and are therefore an ex-ante measure. In order to compute the ex-post volatility over the 

remaining time to maturity the sample standard deviation for daily index returns can be used: 

     𝜎𝜎𝜕𝜕 = � 1
𝑁𝑁−1

∙ ∑ (𝑅𝑅𝜕𝜕 − 𝑅𝑅�)2𝑁𝑁
𝜕𝜕=1 ,     (8) 

where     

R is the mean RTS index return; 

N is the total number of observations. 

Canina and Figlewski (1993) suggested a forecasting horizon of 35 days, whilst Doidge and 

Wei (1998) assumed that the optimal number of days to compute the historical variance is 100. The 

calculations in the present study are based on 75 trading days or a quarter, arguably a time horizon 

more relevant to investors who trade options with quarterly expiration as in the case of this paper. 

Usually this type of investors rollover at the maturity date, when they reinvest a mature contract 

into a new issue of the same underlying asset.   

To assess the information content of the implied volatility the following regression can be run 

(Figure 5-6. A): 

     𝜎𝜎𝜕𝜕𝐴𝐴𝐴𝐴𝜕𝜕 = 𝑡𝑡0 + 𝑡𝑡1 ∙ 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕 + 𝑒𝑒𝜕𝜕𝐼𝐼𝜕𝜕     (9) 

where 𝜎𝜎𝜕𝜕𝐴𝐴𝐴𝐴𝜕𝜕 stands for actual volatility, and 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕 for implied volatility. Three hypotheses can 

then be tested. The first one is whether or not implied volatility is informative about future 

volatility; in this case the coefficient on 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕 should be different from zero: 

H0: 𝛼𝛼1 ≠ 0 

The second hypothesis of interest is whether or not forecasts based on implied volatility are 

unbiased. This implies that the coefficient on 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕 should be 1, while the constant term should be 0: 

H0: �
𝛼𝛼0 = 0
𝛼𝛼1 = 1 

Finally, one can test whether the implied volatility is an efficient forecasting measure. In that 

case, the error term should follow a white noise process and be uncorrelated with 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕: 

H0: �
𝑒𝑒𝜕𝜕~𝑊𝑊𝑁𝑁

𝐶𝐶𝑏𝑏𝐶𝐶(𝑒𝑒𝜕𝜕,𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕) = 0 
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If all three hypotheses are satisfied and the model is found to be data congruent, the estimated 

coefficients and the residuals can then be used in mixed strategies for forecasting the actual 

volatility index. 

 

ARCH/GARCH-type Forecasts 

Next we analyse forecasts based on historical data generated from ARCH/GARCH models. 

As a first step we use the standard GARCH framework introduced by Engle (1982) and Bollerslev 

(1986). In line with most of the existing literature, a parsimonious GARCH(1,1) specification is 

assumed to be sufficient to capture the stochastic behaviour of the volatility index. 

The GARCH(1,1) model consists of 2 equations, one of which is a conditional mean equation 

(10), and the other a conditional variance equation (11):  

     𝑅𝑅𝜕𝜕 = 𝜃𝜃0 + 𝜃𝜃1 ∙ 𝑅𝑅𝜕𝜕−1 + 𝜖𝜖𝜕𝜕     (10) 

     𝜎𝜎𝜕𝜕2 = 𝛼𝛼0 + 𝛼𝛼1 ∙ 𝜖𝜖𝜕𝜕−12 + 𝛽𝛽1 ∙ 𝜎𝜎𝜕𝜕−12     (11) 

𝜖𝜖𝜕𝜕|Ψ𝜕𝜕−1~𝑁𝑁(0,𝜎𝜎𝜕𝜕2),  

where 

• Ψ t-1 is the information set that contains all information which is available at time t-1; 
• N(0, σt ) is the normal distribution function. 

In order to obtain a well-defined process two restrictions should be satisfied. The first one 

rules out non-stationarity, and it requires the sum of the coefficients to be inside the unit circle: 

𝛼𝛼1 + 𝛽𝛽1 < 1. The second ensures non-negativity of volatility, and it implies that all coefficients 

should not be less than 0: (𝛼𝛼0,𝛼𝛼1,𝛽𝛽1) ≥ 0. 

Then we also examine the forecasts obtained using a number of alternative ARCH/GARCH 

specifications suggested in the literature: 

• GJR-GARCH (Glosten, Jagannathan and Runkle (1993)), which captures asymmetries 

in the ARCH process since there is empirical evidence that negative shocks have a 

stronger impact on returns volatility than positive shocks, which is known as the 

"leverage effect"; 

• T-ARCH (Glosten (1993), Zakoian (1994)), which is similar to GJR GARCH, but 

uses the standard deviation instead of the conditional variance; 

• TS-ARCH (Taylor (1986), Schwert (1989)), which is a standard GARCH 

specification, but again using the standard deviation rather than the variance; 
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• EGARCH (Nelson (1991), which implies an exponential rather than quadratic 

leverage effect; 

• IGARCH, which restricts the parameters of the standard GARCH model to sum up to 

one. 

After obtaining the estimates for volatility based on the different ARCH/GARCH 

specifications, one can then run the same regression as before to assess the information content of 

the historical volatility for predicting the ex-post volatility (Figure 5-6. B): 

    𝜎𝜎𝜕𝜕𝐴𝐴𝐴𝐴𝜕𝜕 = 𝑡𝑡2 + 𝑡𝑡3 ∙ 𝜎𝜎𝜕𝜕𝐺𝐺 + 𝑒𝑒𝜕𝜕𝐺𝐺       (12) 

where 𝜎𝜎𝜕𝜕𝐺𝐺  stands for the ARCH/GARCH-type volatility estimate. As before, the estimated 

coefficients and the residuals are then used in the mixed strategies. 

  Our preferred specification, which minimizes the information criteria (AIC, BIC) and 

maximizes the R-squared, is the IGARCH model; therefore this is the one used in the forecasting 

comparison exercise. 

Table 1. Comparison of the ARCH-type Models for Call Options 

 

Table 2. Comparison of the ARCH-type Models for Put Options 
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Mixed Strategies 

Mixed strategies aim at producing more accurate forecasts than those based on either implied 

volatility or ARCH/GARCH-type models, both of which have been shown to perform relatively 

poorly (see, e.g., Beckers (1981), Canina and Figlewski (1993), Doidge and Wei (1998)). The idea 

is to combine the information provided by the two approaches considered so far in order to obtain 

better forecasts. 

To begin with, we apply the simple method developed by Vasilellis and Meade (1996). An 

equal weight is assigned to each of the two volatility measures (Figure 5-6. C): 

𝜔𝜔𝜕𝜕
𝐺𝐺 = 𝜔𝜔𝜕𝜕

𝐼𝐼𝜕𝜕 = 0.5 

    𝜎𝜎𝜕𝜕
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀 𝑤𝑤𝑀𝑀𝑠𝑠𝑤𝑤ℎ𝜕𝜕𝑀𝑀𝑡𝑡 = 𝜔𝜔𝜕𝜕

𝐺𝐺 ∙ 𝜎𝜎𝜕𝜕𝐺𝐺 + 𝜔𝜔𝜕𝜕
𝐼𝐼𝜕𝜕 ∙ 𝜎𝜎𝜕𝜕𝐼𝐼𝜕𝜕,    (13) 

where    

σtG is volatility estimated using the IGARCH(1,1) model at time t; 

σtIV is volatility estimated using the Black and Scholes model at time t. 

It is a simple average of the two measures that assumes that they are both equally informative 

and that their respective informational content is constant over time. 

By contrast, below we give a larger weight to the procedure with the lowest error term 

(𝑒𝑒𝜕𝜕𝐼𝐼𝜕𝜕 from (9) and 𝑒𝑒𝜕𝜕𝐺𝐺  from(12)), where the weight 𝜔𝜔𝜕𝜕 of each method is calculated using the share 

of its inverse error (1 𝑒𝑒𝜕𝜕� ) in the cumulative inverse error term (Figure 5-6. D): 

      𝜔𝜔𝜕𝜕
𝐺𝐺 =

1
𝑀𝑀𝑡𝑡
𝐺𝐺�

1
𝑀𝑀𝑡𝑡
𝐼𝐼𝐼𝐼� +1

𝑀𝑀𝑡𝑡
𝐺𝐺�
     (14) 

      𝜔𝜔𝜕𝜕
𝐼𝐼𝜕𝜕 =

1
𝑀𝑀𝑡𝑡
𝐼𝐼𝐼𝐼�

1
𝑀𝑀𝑡𝑡
𝐼𝐼𝐼𝐼� +1

𝑀𝑀𝑡𝑡
𝐺𝐺�
     (15) 

Alternatively, one can assign weights using a different criterion, i.e. by maximizing the 

information content rather than minimizing the error term. In this case, the weights will be a 

function of the standardized estimated coefficients a1 and a3 from equations (6) and (9) respectively, 

namely (Figure 5-6. E):  

      𝜔𝜔𝜕𝜕
𝐺𝐺 = 𝑀𝑀3

𝑀𝑀3+𝑀𝑀1
      (16) 
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      𝜔𝜔𝜕𝜕
𝐼𝐼𝜕𝜕 = 𝑀𝑀1

𝑀𝑀3+𝑀𝑀1
      (17) 

Actual and implied volatility in each case are shown in Figure 5 and 6 for call and put options 

respectively: 

 
Figure 5. Regressions for Actual Volatility of the RTS Index Based on Data from Call Options 
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Figure 6. Regressions for Actual Volatility of the RTS Index Based on Data from Put Options 

 

3. Forecasting Performance Comparisons 

In order to assess the forecasting performance of the different methods considered above the 

sample is split into two: the first part of the sample period (from 5 January 2014 to 31 December 

2016) is used to obtain in-sample estimates of the model parameters, and then out-of-sample 

forecasts (for the period from 1 January 2017 to 31 October 2018) are generated using a rolling 

window and are compared to the actual volatility measures. 

Visual inspection of the estimated residuals in percentage terms (see Figure 8) suggests that 

predicted volatility is overestimated compared to the actual one by all methods. 
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Figure 7. Error Term of Linear Regressions Based on Data from Call Options 

 
Figure 8. Error Term of Linear Regressions Based on Data from Put Options 
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The following forecasting performance tests are then carried out:  

• Mean absolute error: 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∙ ∑ |𝑒𝑒𝑠𝑠|𝑛𝑛

𝑠𝑠=1 ; 

• Mean absolute percentage error:  𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 = 100
𝑛𝑛
∙ ∑ � 𝑀𝑀𝑖𝑖

𝜎𝜎𝑖𝑖
𝐴𝐴𝐴𝐴𝑡𝑡�𝑛𝑛

𝑠𝑠=1 ; 

• Root mean square error:  𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑛𝑛
∙ ∑ 𝑒𝑒𝑠𝑠2𝑛𝑛

𝑠𝑠=1 ,  

where n is the number of predicted values, and N the total number of observations. 

The results for call and put options are shown in Table 3 and 4, respectively. 

 

Table 3. Forecasting Tests for RTS Call Options 

 

Table 4. Forecasting Tests for RTS Put Options 

The test statistics suggest that the implied volatility forecasts outperform the IGARCH 

forecasts, and that the combined forecasts based on the simple average of the former two are at 

times even more accurate.  
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5. Conclusions 

This paper compares the volatility forecasts for the RTS Index (the main index for the Russian 

stock market) generated by alternative models, specifically, option-implied volatility forecasts 

based on the Black-Scholes model, IGARCH (1.1) forecasts (where this is the preferred 

specification selected from a variety of ARCH/GARCH models), and combined forecasts based on 

a mixing strategy with the weights being determined using either a simple average or a weighted 

average method (with the latter either minimizing the errors or maximizing the information 

content). Various forecasting performance tests are carried out which show that both implied 

volatility forecasts or mixing strategy forecasts based on a simple average of IV and IGARCH 

forecasts have higher predictive power than IGARCH forecasts for the volatility of the underlying 

asset. 

These findings are of interest not only to academics but also to financial market participants 

for designing hedging strategies for which volatility forecasts are needed. They provide evidence 

that the widely used ARCH/GARCH models do not perform particularly well in terms of 

forecasting accuracy; practitioners should exploit the information from the options market to 

forecast the volatility of stock indices. Implied volatility (despite its computational complexity, the 

lower liquidity of the derivatives market compared to the spot one, and the strict assumptions of the 

Black and Scholes model) has some important informational content that should not be disregarded, 

and either by itself or in combination with IGARCH forecasts can generate more accurate volatility 

forecasts. 
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