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1 Introduction

Detecting the presence of economic agents, whose behavior influences a large number of peers,
has become a relevant issue in several areas of economics. For example, in banking and finance
it is of interest to consider formal ways of identifying whether particular financial institutions
are dominant and present systemic risks. At times of economic and financial crises it is often of
interest to know if a certain corporation, particularly among financial institutions, is so large
and interconnected that their failure could lead to cascade effects with associated systemic risk
for the economy as a whole. Such units are often referred to as ‘too big to fail’ and their
existence is debated in the press and in public policy forums, although empirical evidence in
support of such claims is often lacking. In cases where information on the interconnections
across the units exist, it is possible to use such information to detect the most influential
unit in the network and examine its degree of dominance. An important example is input-
output data used to analyse the role that individual production units, such as industrial sectors,
play in propagating shocks across the economy. A major recent contribution in this area is
by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) who suggest using the shape
parameter of a power law assumed for the degree sequence of a network to measure the extent
to which variations in aggregate volatility are affected by shocks to individual units within
the network. Further developments are provided by Acemoglu, Akcigit, and Kerr (2016) and
Acemoglu, Autor, Dorn, Hanson, and Price (2016). In related work, Pesaran and Yang (2016)
propose extremum estimators based on outdegrees of a network to detect and identify the
identity of the dominant units in the network and to estimate their degrees of pervasiveness.
In cases where information on network connections is not available, it is still possible to

identify the dominant units in a network, if there is a suffi cient number of time series obser-
vations (T ) on all the units (N) in the network. In this paper we suppose that such time
series observations are available and address the problem of jointly determining the number as
well as the identity of units in the network that are dominant, in the sense that they influence
almost all other units in the network. The central hub in a Star network provides a simple
example of a dominant unit. We identify dominant units by considering statistical significance
of the correlations across the units once possible effects of external influences on the network
have been filtered out. The presence of dominant units is also closely related to the notion of
‘too big to fail’often used in the context of financial and production networks. However, it is
important to bear in mind that the two concepts are not identical. For example, a unit that is
too big to fail may become influential mainly in crisis periods, implying a nonlinear behaviour
that our linear model may not be best equipped to handle.
Our approach shares some features with previous contributions on the same subject (see

e.g. Bai and Ng, 2006; Parker and Sul, 2016; Brownlees and Mesters, 2018) but significantly
improves on existing research in a number of respects. First, we allow for the possibility that
the network under consideration does not include any dominant unit in the first place. This
is a leading case of interest and, in fact, some of our empirical work confirms its practical
importance. Secondly, we do not require a priori information on a potential list of dominant
units or observations on network linkages. This is a key advantage relative to contributions
in the production network literature which relies on the availability of input-output tables.
Third, our detection procedure can determine dominant units from a large number of potential
candidates, even in the presence of external common factors that could potentially influence all
the units (including the dominant units) in the network. Finally, our procedure applies even if
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N > T , which is an important consideration in practice where in many applications of interest
the number of time series observations is limited either because of unavailability of data or due
to structural breaks.
A major implication of the existence of dominant units is that the data can be represented

by a factor model where variation in the dominant units is perfectly explained by the true
factors. This view on dominant units reflects the fact that an influential unit can be viewed
as a common factor for all other units in the network. Consequently, factor estimates obtained
from the dataset will have close to perfect explanatory power for true dominant units. Using
this result, we consider the residual variance from regressions of individual units on the factor
estimates as a metric that quantifies the explanatory ability of the estimated factors. Based on
ideas from multiple testing we then construct thresholds that determine whether the residual
variance estimated for a given unit is suffi ciently small to identify that unit as dominant. We
find that thresholding residual variances across the units provides a powerful approach with a
number of desirable characteristics and good small sample performance.
A further defining characteristic of our work is to consider refinements that again make

use of multiple testing to allow for the possibility that identified dominant units may not be
fully pervasive - that is they may only affect a subset of cross-sectional units. This further
distinguishes our work from existing methods which either do not pay much attention to such
weak cross-sectional dependence structures or are unclear about the motivation and nature of
these structures. The use of multiple testing focuses on the possibility that some units selected
as dominant might only affect a majority of the units in the network rather than being fully
pervasive with non-zero effects on all units. We feel that local to zero representations of factor
loadings, which are sometimes used in the literature, where the size of the loadings depend on
the sample size and tend to zero as this size rises, are less persuasive as a model for economic
networks than the weak dependence formulation that we consider in this paper.
Monte Carlo simulations suggest that our refined thresholding method performs very well

in finite-sample, and most importantly, it reliably detects the absence of dominant units from a
dataset with many potential candidates. Furthermore, if influential cross section units are part
of the model specification, our detection methodology succeeds in jointly detecting their total
number and their identities. The proposed method also works well even if N is much larger
than T , and unlike other methods proposed in the literature, its false discovery rate is very low
and tends to zero as N and T →∞.
The proposed detection procedure is applied to sectoral indices of U.S. industrial production

(already investigated in the literature), as well as to the rates of change of real GDP and real
equity prices across the world’s largest economies over the period 1979Q2-2016Q4. Unlike
other detection methods proposed in the literature, we do not find convincing evidence that
there are dominant sectors within the U.S. industrial production, or that there exist dominant
economies or equity markets in the global system, once we adequately allow for the presence
of common factors. Finally, we apply the new method to real U.S. house price changes across
the 48 mainland states, and find evidence that New York is dominant, in contrast to the other
methods that select states such as New Hampshire, Nevada, North Carolina, Maryland and
Virginia (just to mention a few) and not New York as dominant.
The paper is structured as follows. Section 2 presents a review of the existing literature.

Section 3 provides the main setup of our approach and details our theoretical results. Further
refinements are discussed in Section 5. Sections 6 and 7 present simulation and empirical ev-
idence on the relative performance of our method compared to existing ones. Formal proofs
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and additional simulation results are relegated to Appendix A and an online supplement, re-
spectively.
Notation: Generic positive finite constants are denoted by C when large, and c when small.

They can take different values at different instances. →p denotes convergence in probability as
N, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ‖A‖ and ‖A‖F denote the spectral
and Frobenius norm of matrix A. If {fn}∞n=1 is any real sequence and {gn}

∞
n=1 is a sequences

of positive real numbers, then fn = O(gn), if there exists C such that |fn| /gn ≤ C for all n.
fn = o(gn) if fn/gn → 0 as n→∞. If {fn}∞n=1 and {gn}

∞
n=1 are both positive sequences of real

numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive finite constants C0 and C1, such
that infn≥n0 (fn/gn) ≥ C0, and supn≥n0 (fn/gn) ≤ C1.

2 Related literature

Asset pricing models have motivated the earliest approaches aimed at determining whether a
given set of observed time series coincides with one of the estimated common factors (principal
components) from a large panel dataset. Bai and Ng (2006) regress each observed candidate
series onto the estimated factors and propose statistics to test the equality between the model
fit from the aforementioned regression and the observed values of a list of (assumed) potential
influential variables. The framework considered by these authors is one where economic theory
reduces the number of potential influential variables to a small, fixed number of economic
indicators that are not part of the large dataset at hand. Consequently, using their framework
to identify dominant units in large datasets without any means of reducing the number of
candidates is problematic. This pitfall was recognized by Parker and Sul (2016) who provide an
alternative approach to that suggested by Bai and Ng (2006) and consider the identification of
dominant units in a large dataset as a special case.1 Parker and Sul focus on the idiosyncratic
components of the estimated factor model and identify an observed series as a dominant unit
if it can replace at least one of the estimated factors in the factor model without introducing
common factors in the idiosyncratic components.2 In order to address multiple testing concerns,
a rule of thumb is suggested to restrict the number of potential dominant units. However, this
only mitigates the problem rather than providing a full solution. A more general solution
is provided by Brownlees and Mesters (2018), who use the sample concentration matrix of
all the units in the network to identify as dominant units those units whose concentration
matrix column norms are considerably larger than those of the remaining units.3 Under certain
regularity conditions, Brownlees and Mesters show that their procedure consistently partitions
the units into dominant and non-dominant by ordering column norms in descending order and
choosing the maximum ratio between two successive, ordered column norms.
While suggesting a consistent detection procedure without needing to estimate the common

factors in the data, Brownlees and Mesters (2018) require the number of time periods to be
larger than the number of cross-section units (T > N), and assume that there exists at least

1In Parker and Sul (2016) a dominant unit is referred to as the dominant leader.
2Further empirical applications of the Parker and Sul method (in a simpler form) are provided by Gaibulloev,

Sandler, and Sul (2013) and Greenaway-McGrevy, Mark, Sul, and Wu (2018). Soofi-Siavash (2018) also considers
a version of the Parker and Sul method which is applicable to any cross-section unit taken as potentially
dominant, and provides an application to the industrial sectors in the U.S..

3Brownlees and Mesters (2018) employ the term granular unit to denote a dominant unit.
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one dominant unit in the network. These two requirements result in considerable restrictions
in empirical practice. First, many datasets, notably those involving aggregate economic indica-
tors, have a number of cross section units that is approximately as large as the number of time
periods, if not larger. Even if the time dimension of the dataset is suffi ciently large, sub-samples
of interest (due to structural breaks) might be too short to allow for a separate investigation.
Second, it is crucial to allow for the possibility that none of the units in the network is particu-
larly influential. The relevance of this case is given by recent contributions that track the effect
of sector-specific shocks on aggregate fluctuations. For example, application of a structural
model to data on U.S. industrial production leads Foerster, Sarte, and Watson (2011, p.21) to
conclude that "[. . . ] linkages alone and uncorrelated sector-specific shocks implies noticeably
less co-movement across sectors than in U.S. data." Further evidence is given in Pesaran and
Yang (2016) who develop an estimator for the degree of dominance of the most pervasive unit
in a network. Their application on U.S. input-output tables reveals that there is "[. . . ] some
evidence of sector-specific shock propagation, but [that] such effects do not seem suffi ciently
strong and long-lasting [. . . ]" in the sense that the aggregate effect of sectoral shocks vanishes
as the number of sectors in the economy increases. Finally, while the two studies cited above
allow for the absence of dominant units, they crucially rely on the availability of input-output
matrices as a measure of linkages between cross-sections. Comparable information may not
always be available, thus making it impossible to use the techniques in these studies. By con-
trast, the approach proposed in the current paper is applicable to any large dimensional panels
without requiring the presence of a minimum number of dominant units in the panel.

3 Panel data models with dominant units

Suppose T time series observations are available on N cross section units denoted by xit, for
i = 1, 2, . . . , N and t = 1, 2, . . . , T . We are interested in determining the number and identity
of dominant or pervasive units (if any), in this panel. To define the concept of a dominant unit,
we proceed by specifying that all cross section units can be modeled using unobserved common
factors. More formally, we consider the following data generating process (DGP)

xat = Ahht + Aggt, (1)

xbt = Baxat + Bggt + ut, (2)

for t = 1, 2, . . . , T , where xat and xbt are m× 1 and n× 1 vectors of observations at time t on
the dominant and non-dominant units, respectively. Thus N = m+ n.
The m dominant units, xa,jt, j = 1, 2, ...,m affect the non-dominant units, xb,it, i = m +

1,m+ 2, ...., N via the n×m matrix of loading coeffi cients Ba = (ba,ij), where n = N −m. For
xa,jt to be a dominant unit we must have

N∑
i=m+1

|ba,ij| = 	 (n) , j = 1, 2, ...,m. (3)

In other words, for a unit to be dominant it must have non-zero effects on almost all other units
in the panel or network. Following Chudik, Pesaran, and Tosetti (2011), we could also consider
units that are not dominant but still quite influential. Suppose that there exists an ordering
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of the non-dominant units such that unit xa,jt only affects the non-dominant units, xb,it, whose
index i ≤ bnαjc, where αj (0 < αj ≤ 1) is an exponent parameter that measures the degree of
the dominance of xa,jt in the panel.4 This requirement can be written equivalently as

N∑
i=m+1

|ba,ij| = 	 (nαj) , for j = 1, 2, ...,m, (4)

which is a natural generalization of (3). The unit xa,jt with αj < 1 can be viewed as a weak
factor, but as argued in Bailey, Kapetanios, and Pesaran (2016) and Bailey, Kapetanios, and
Pesaran (2018), for xa,jt to have pervasive effects on other units we need αj to be reasonably
close to unity. Clearly, the values of αj ≤ 1/2 can be ruled out since for such values, xa,jt
becomes so weak that it loses many of the standard characteristics, associated with factor
variables. In practice we might need to focus on exponents that fall in the range 2/3 < αj ≤ 1
before we can be confident that unit xa,jt has non-negligible impacts on other units in the
network. In terms of the general definition (4), for all elements of xat to be dominant it is
required that αj = 1 for j = 1, 2, ...,m, and dominant units can be regarded as strong factors.
While our theory focuses on αj = 1, j = 1, 2, ...,m, it can be extended to αj ≤ 1, using ideas
in the above cited papers. It is also possible to estimate the exponent αj once the unit xa,jt is
selected as dominant/influential. However, such extensions are beyond the scope of the present
paper.
The k × 1 vector gt contains common "external" factors affecting both dominant and non-

dominant units via the m × k and the n × k loading matrix Ag and Bg, respectively. The
dominant units can also be viewed as "internal" factors. Lastly, the m× 1 vector ht as well as
the n×1 vector ut model stochastic variation that originates in the dominant and non-dominant
units, respectively. To simplify the exposition we abstract from deterministic effects such as
intercepts or linear trends and without loss of generality assume that xit have zero means and
finite variances. Define now the p×1 vector ft = (h′t,g

′
t)
′ = (f1t, f2t, . . . , fpt)

′ where p = m+k.5

Using this vector, the dominant unit model (1)-(2) can be written as a restricted static factor
model, given by

(
xat
xbt

)
=

(
Aa

Ab

)
ft +

(
0
ut

)
= Aft + vt, (5)

where Aa = (Ah,Ag) and Ab = (BaAh, BaAg + Bg). Additionally, denote by ai the i-th row
of A = (A′a,A

′
b)
′. Since a dominant unit is de facto a common factor, then m ≤ p. It is also

shown in Chudik, Pesaran, and Tosetti (2011), that p must be a fixed integer to ensure that
V ar(xit) is bounded in N . Accordingly, we assume that 0 ≤ m ≤ p < pmax, where pmax is an
upper bound on p.
We shall also make the following assumptions:

Assumption 1

1. ft is a covariance-stationary stochastic process with E (ftf
′
t) = Ip.

4bac denotes the integer part of a.
5The magnitude of m relative to k is immaterial as long as both are fixed.
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2. There exist suffi ciently large positive constants C0 and C1 and sf > 0 such that

sup
t

Pr (|fjt| > a) ≤ C0 exp (−C1asf ) for each j = 1, 2, . . . , p.

3. T−1
∑T

t=1 ftf
′
t →p Ip and 1

T

∑T
t=1

[
‖ft‖j − E

(
‖ft‖j

)]
→p 0, j = 3, 4.

Assumption 2

1. Aa and Ab are parameter matrices, the former satisfying Rank (Aa) = m ≥ 0.

2. infi ‖ai‖ > c, and supi ‖ai‖ < C, and for any N = n+m (m being a finite integer)

λmax

(
n−1

N∑
i=m+1

aia
′
i

)
< C <∞, (6)

λmin

(
n−1

N∑
i=m+1

aia
′
i

)
> c > 0. (7)

Assumption 3

1. The n× 1 vector ut is defined by
ut = Hεt, (8)

where
εt = (εm+1,t, εm+2,t, . . . , εNt)

′ ∼ IID (0, In) , (9)

and supi T
−1∑T

t=1

∑T
t′=1 |Cov(εit, εit′)| < C <∞.

2. There exist suffi ciently large positive constants C0 and C1 and sε > 0 such that

sup
i,t

Pr (|εit| > a) ≤ C0 exp (−C1asε) .

3. H = (hij) is an n × n matrix with fixed coeffi cients, with bounded row and column sum
norms, formally ‖H‖1 = supj

∑n
i=1 |hij| < C, and ‖H‖∞ = supi

∑n
j=1 |hij| < C. Further-

more, λmin(HH′) > c > 0.

Assumption 4 ft and εis are independent for all i, s, t.

Remark 1 Most of the above assumptions relate closely to those made in the literature on the
large dimensional factor models (see Remark 2 below). Restricting the covariance matrix of ft
to be the identity matrix is an innocuous simplification, since the factors are identified only
up to a p-dimensional rotation. However, since the methodology proposed in this article goes
beyond estimation in a large-dimensional factor model, some of the assumptions made above
are slightly stronger than those made in the literature. Covariance stationarity of the common
factors is one such restriction but does not rule out conditional heteroskedasticity. Our use of
results from the multiple testing literature assumes that the probability distributions of εit and
fit have exponentially decaying tails. While this assumption is standard in high-dimensional

6



statistics, it implies that all moments of εit and fit exist and thus sharpens our assumptions
beyond those required for the estimation of unobserved factors. This assumption simplifies the
theoretical analysis. It can be relaxed, considerably in the case of fit, and replaced with moment
assumptions, at the cost of more complex proofs. We choose to avoid this complexity as we
are mainly focused on suggesting and analyzing a new methodology. Furthermore, to establish
consistency of our proposed criterion, we assume εit to be independently distributed across i
and t.6 Still, dependence between the elements of the unit-specific component ut is allowed
for by Assumption 3 which admits weak cross-section correlation. The rank condition on Aa

in Assumption 2 ensures that m is identified and that xat is dominant. Assumption 2 implies
strong factors in the sense that the fraction of cross-section units affected is asymptotically non-
negligible. This is a standard property of latent factors in the related literature, as is Assumption
4. On this see, for example, Assumptions L and LFE in Bai and Ng (2008).

Remark 2 A further consideration concerns how the above assumptions relate to those of the
standard factor model literature as set out, for example, in Bai (2003). As noted above our
assumptions are stricter, and therefore imply the assumptions made by Bai (2003). In partic-
ular, Assumption 1 implies Assumption A of Bai (2003), Assumption 2 implies Assumption B
of Bai (2003) and Assumptions 3 and 4 imply Assumptions C, D, E and F1-F2 of Bai (2003)
while we note that we have no need for Assumptions F3-F4 of Bai (2003).

As shown in the next section, it is possible to consistently estimate the parameters of the
static factor model (5), even if the variance matrix of the N × 1 vector vt =

(
0′m×1,u

′
t

)′
,

containing the idiosyncratic errors is singular when m > 0. In our theoretical derivations and
Monte Carlo simulations we only require that pmax ≥ p is known and base our analysis on pmax
principal components of xit for i = 1, 2, . . . , N and t = 1, 2, . . . , T .

4 Identification of dominant units via thresholding of
error variances

The idea behind our detection procedure is simple. It exploits the fact that there is a clear
separation between the fit of dominant and non-dominant units in terms of the factors, ft for
suffi ciently large sample sizes. The fit is expected to be perfect for the dominant units but not
for the non-dominant units, as N and T →∞. With this in mind we first extract the first pmax
principle components (PC) of the observations xit for i = 1, 2, . . . , N ; t = 1, 2, . . . , T . We then
compute the residual sum of squares from the regressions of xit, for i = 1, 2, . . . , N on f̂t, where
f̂t is the PC estimator of ft with p = pmax. Specifically, we compute

σ̂2iT =
x′iMF̂xi

T
, for i = 1, 2, . . . , N, (10)

where xi = (xi1, xi2, . . . , xiT )′,

MF̂ = IT − F̂
(
F̂′F̂

)−1
F̂′, (11)

6This assumption can be relaxed considerably by requiring εit to follow a martingale difference process over
t, or even to be a strong mixing process with suffi ciently small mixing coeffi cients.
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and F̂ = (f̂ 1, f̂ 2 . . . , f̂T )′. We then determine a threshold, C2NT > 0, such that if, and only
if, Nσ̂2iT < C2NT then unit i is selected as dominant. Below we proceed by analyzing the
asymptotic properties of σ̂2iT , and sketching steps that lead to a procedure that consistently,
namely with probability tending to one, selects only dominant units. Formal proofs are given
in the Appendix. But first we provide an overview of the literature on estimation of F and A
and their asymptotic properties that we need for establishing our main theoretical results.

4.1 Consistent estimation of A and F by principal components

Let X = (x1,x2, . . . ,xN) be the T × N matrix of observations on xit for i = 1, 2, . . . , N ; t =
1, 2, . . . , T . It is well known that the T × T matrix XX′ and the N ×N matrix X′X have the
same eigenvalues. Denote the first p largest eigenvalues of these two matrices by (ρ̂1, ρ̂2, . . . , ρ̂p)

and the associated orthonormal eigenvectors of XX′ and X′X by the T × p matrix P̂ and the
N × p matrix Q̂, respectively, and note that by construction P̂′P̂ = Ip, and Q̂′Q̂ = Ip, where
Ip is an p× p identity matrix. Consider now the following PC estimators of F and A:

Â =
√
NQ̂, (12)

F̂ =
1√
N

XQ̂ =
1

N
XÂ. (13)

Given orthonormality of the eigenvectors Q̂, note that N−1Â′Â = Ip. The factor estimator
(13) satisfies

F̂′F̂

T
= D̂NT , (14)

where D̂NT = (NT )−1Diag (ρ̂1, ρ̂2, . . . , ρ̂p). This follows since T−1F̂′F̂ = (NT )−1Q̂′X′XQ̂,
and noting that Q̂ are orthonormal eigenvectors of X′X. Alternative estimators of A and F,
suggested by Bai and Ng (2002), are given by

F̃ =
√
T P̂, (15)

Ã =
1

T
X′F̃, (16)

where (15) satisfies T−1F̃′F̃ = Ip. Bai and Ng (2002) also consider the following transformation7

F̃= F̂

(
F̂′F̂

T

)−1/2
= F̂D̂

−1/2
NT , (17)

where the last step follows from equation (14). In the first instance and to proceed with the
derivation of our dominant unit detection procedure, we discuss the relationships between Â,
F̂ and Ã, F̃, and show that they are equivalent in the context of this paper. This equivalence
result considerably simplifies the derivations and proofs since the probability limit results in
Bai and Ng (2002), as well as the additional results established in the Appendix, relate to F̃

7Note the typo in the corresponding equation in Bai and Ng (2002).
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and Ã, whilst for the derivations of our proposed thresholding criterion, it is much simpler to
work in terms of F̂ and Â.
We first note that F̃ and F̂ only differ by the non-singular rotation matrix D̂

−1/2
NT . Then,

using (17) it readily follows that

MF̂ = IT − F̂
(
F̂′F̂

)−1
F̂ = MF̃ = IT − F̃

(
F̃′F̃

)−1
F̃′, (18)

and hence

σ̂2iT =
x′iMF̂xi

T
=

x′iMF̃xi
T

.

It is helpful to bear in mind the following relationship between the two sets of estimators
(
F̃, Ã

)
and

(
F̂, Â

)
. Note that, by Lemma A.3 in Bai (2003), D̂NT

p→ D, where D is a diagonal matrix

with finite elements (see the proof of Lemma A.1 in Bai (2003)). It follows that∥∥∥D̂NT

∥∥∥
F

= Op (1) . (19)

Further, F̃Ã
′
= F̂Â

′
holds since the common component of X, i.e. FA′, is uniquely determined

by the separation assumption which requires f ′tai to be strongly cross-sectionally dependent
whilst vit is cross-sectionally weakly correlated. (See Assumptions 2 and 3). Hence, recalling
the relation (17) we must have

F̂=F̃D̂
1/2

NT , and Â=ÃD̂
−1/2
NT . (20)

Using the estimators (15)—(16), Bai and Ng (2002) show in their equation (5) that

1

T

∥∥∥F̃− FHNT

∥∥∥2
F

= Op

(
1

δ2NT

)
, (21)

where δ2NT = min(N, T ), and HNT is a non-singular p × p matrix that could depend on N
and T , so long as its probability limit exists and is non-singular. Using (21) and the fact that∥∥H−1NT∥∥ = Op(1) holds by the properties of HNT , then

1

T

∥∥∥F− F̃QNT

∥∥∥2
F

= Op

(
1

δ2NT

)
, (22)

where QNT = H−1NT , noting that this matrix is non-singular and satisfies ‖QNT‖F = Op(1).

Setting QNT = D̂
1/2
NT , and noting the relation between F̃ and F̂, we also have T−1

∥∥∥F− F̂
∥∥∥2
F

=

Op

(
δ−2NT

)
, and more generally,

1

T

∥∥∥F− F̂SNT

∥∥∥2
F

= Op

(
1

δ2NT

)
, (23)

for any non-singular p× p matrix SNT that satisfies ‖SNT‖F = Op (1). It is obvious that (21) is
an important, well known, result that plays an important role in our analysis. However, we need
further basic results that, to some limited extent, go beyond those existing in the literature.
We provide those in the following proposition. To simplify the exposition and without loss
of generality, we set SNT = Ip. Since only the product FA′ is identified, this restriction is
innocuous and implies the normalization N−1A′A = Ip.
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Proposition 1 Under Assumptions 1—4, and setting SNT = Ip, we have∥∥∥F0 − F̂
∥∥∥
F

= Op

(√
T

δNT

)
, (A)

∥∥∥A0 − Â
∥∥∥
F

= Op

(√
N

δNT

)
, (B)

∥∥∥V (A0 − Â
)∥∥∥

F
= Op

(√
NT

δNT

)
, (C)

‖VA0‖F = Op

(√
NT

)
, (D)∥∥∥A′0 (A0 − Â

)∥∥∥ = Op

(
N

δNT

)
, (E)

where F̂ and Â are defined by (13) and (12), and A0 denotes the true value of A, and δ2NT =
min(N, T ).

The above proposition follows from Lemmas 3-6 set out in the Appendix. For general
rotation matrices HNT ,QNT and SNT , Proposition 1 can be used to obtain∥∥∥∥∥∥

V
(
Ã−A0H

−1
NT

)
N

∥∥∥∥∥∥
F

= Op

(√
T

N

1

δNT

)
. (24)

The matrixHNT has been introduced into the expression above in order to ensure compatibility
with the results (21) and (23). Again, V

(
Ã−A0H

−1
NT

)
= V

(
ÃHNT −A0

)
H−1NT , so that∥∥∥V (ÃHNT −A0

)∥∥∥
F
≤ ‖HNT‖F

∥∥∥V (Ã−A0H
−1
NT

)∥∥∥
F
,

and letting HNT = D̂
−1/2
NT S−1NT , we have∥∥∥V (A0 − ÃD̂

−1/2
NT S−1NT

)∥∥∥
F
≤ Op (1)Op

[∥∥∥V (Ã−A0H
−1
NT

)∥∥∥
F

]
.

Recall that Â = ÃD̂
−1/2
NT by equation (20). Hence,

∥∥∥V (A0 − ÂS
−1
NT

)∥∥∥
F

= Op

[∥∥∥V (Ã−A0D̂
1/2
NTSNT

)∥∥∥
F

]
= Op

(√
NT

δNT

)
, (25)

by the equality H−1NT = D̂
1/2
NTSNT and application of result (24). This concludes our discussion

of principal components estimators. The preceding results will be extensively used in the next
section under the simplifying assumption S−1NT = Ip .
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4.2 Thresholding of σ̂2iT
We begin by considering the asymptotic properties of σ̂2iT , defined by (10). Using (5), we have
xi = F0ai, where F0 is the T ×m matrix of observations on the true factors. Hence, when unit
i is dominant we have

σ̂2iT =
a′iF

′
0MF̂F0ai
T

,

=
a′i

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
ai

T
, (26)

by noting that F′0MF̂F0 =
(
F0 − F̂SNT

)′
MF̂

(
F0 − F̂SNT

)
, for any positive definite matrix,

SNT . Now, using (5) and post-multiplying both sides by A0 we also have

XA0

N
=

F0A
′
0A0

N
+

VA0

N
= F0 +

VA0

N
,

where to derive the last step we have made use of the normalization N−1A′0A0 = Im. Further-
more, since F̂ = N−1XÂ by equation (13), then

(
F0 − F̂

)
=

X
(
A0 − Â

)
N

− VA0

N
,

and

MF̂F0 = MF̂

X
(
A0 − Â

)
N

− VA0

N

 .
Using (5) here to substitute out X,

MF̂F0 = MF̂

F0A
′
0

(
A0 − Â

)
N

+
V
(
A0 − Â

)
N

−MF̂

(
VA0

N

)
(27)

=
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
N

+
MF̂V

(
A0 − Â

)
N

−MF̂

(
VA0

N

)
.

Using the above results in (26), σ̂2iT can be written as

Nσ̂2iT = Bi1 +Bi2 + . . .+Bi6. (28)
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where

Bi1 =
a′iA

′
0V
′MF̂VA0ai
NT

, (29)

Bi2 = 2
a′iA

′
0V
′MF̂V

(
A0 − Â

)
ai

NT
, (30)

Bi3 = 2
a′iA

′
0V
′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
, (31)

Bi4 =
a′i

(
A0 − Â

)′
V′MF̂V

(
A0 − Â

)
ai

NT
, (32)

Bi5 = 2
a′i

(
A0 − Â

)′
V′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
, (33)

Bi6 =
a′i

(
A0 − Â

)′
A0

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
. (34)

If unit i is not dominant, then it is easy to see that (28) is augmented by two extra terms, given
by8

Bi7 =
Nv′iMF̂vi

T
, (35)

Bi8 =
Na′iF

′
0MF̂vi
T

=
Na′i

(
F0−F̂

)′
MF̂vi

T
, (36)

which will be formally taken into account in the proof of Theorem 1 set out in Section A.2 of
the Appendix. Here, we simply note that Bi7 = Op (N) and Bi8 = op (N).
Using Lemma 1, in the Appendix, we have, assuming that xit is a dominant unit,

Nσ̂2iT = Bi1 +Op

(
1

δNT

)
+Op

(√
N

δ2NT

)
. (37)

Consider now Bi1 and note that

Bi1 =
a′iA

′
0V
′MF̂VA0ai
NT

≤ d′iV
′Vdi

NT
,

where di = A0ai. If xit is a dominant unit,

Pr
(
Nσ̂2iT > C2NT

)
≤ Pr

(
d′iV

′Vdi
NT

> C2NT

)
+ o (1) , (38)

if
√
N/δ2NT → 0. Note that √

N

δ2NT
=

{ √N
T
if T ≤ N

1√
N
otherwise

,

8Note that in the absence of any dominant units vi = ui. In general, we use vi (and V) in line with the
general factor model given by (5).
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and so the condition for the remainder term to vanish is
√
N
T
→ 0, as N, T →∞. It is possible

that this condition can be relaxed if one finds a tighter upper bound for
∥∥∥A′0 (A0 − Â

)∥∥∥ than
result (E) in Proposition 1, and if stationarity is imposed on E (vitvit′), where V = (vit). For
now, we adhere to Assumptions A-F of Bai (2003), and require that

√
N
T
→ 0, as N, T → ∞.

Under these conditions, we focus on the first probability term in (38) and note that

d′iV
′Vdi =

T∑
t=1

(
N∑
j=1

vjtdij

)2
=

T∑
t=1

(d′ivt)
2
,

where di = A0ai = (di1, di2, . . . , diN)′. Note that if the panel contains m dominant units,
vt = (01×m,u

′
t)
′, where ut = Hεt. See (8). Partition di = (d′i1,d

′
i2)
′, where di1 and di2 are the

m× 1 and n× 1 sub-vectors of di (recall that n = N −m). Hence

d′iV
′Vdi =

T∑
t=1

(d′i2ut)
2

=

T∑
t=1

(d′i2Hεt)
2
,

where by assumption H is an n×n matrix with bounded row and column absolute sum norms,
and εt =

(
εm+1,t, εm+2,t, . . . , εN,t

)
∼ IID (0, In). Using the above results we can now write

d′iV
′Vdi

NT
=
( n
N

) 1

T

T∑
t=1

(
d′i2Hεt√

n

)2
=
( n
N

) 1

T

T∑
t=1

(ϕ′iεt)
2
, (39)

where ϕi = n−1/2H′di2 = (ϕi1, ϕi2, . . . , ϕin)′. Let

η2in = ϕ′iϕi =
1

n
d′i2HH′di2 =

1

n
d′i2Σudi2, (40)

where Σu = E (utu
′
t) = HH′ and by assumption is time-invariant.9 We also have

sup
i
η2in ≤ sup

i

(
n−1d′i2di2

)
λmax (Σu) , and inf

i
η2in ≥ inf

i

(
n−1d′i2di2

)
λmin (Σu) ,

where by assumption 0 < c < λmin (Σu) ≤ λmax (Σu) < C < ∞. Noting that, in view of (6)
and (7), we have

sup
i

(
n−1a′iA

′
bAbai

)
≤ sup

i
‖ai‖2 λmax

(
n−1

N∑
j=m+1

aja
′
j

)
< C <∞, (41)

and

inf
i

(
n−1a′iA

′
bAbai

)
≥ inf

i
‖ai‖2 λmin

(
n−1

N∑
j=m+1

aja
′
j

)
> c > 0, (42)

we also have supi (n
−1d′i2di2) < C, and infi (n

−1d′i2di2) > 0, and overall

9However, one can still allow for conditionally time-varying covariances.
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sup
i
η2in < C, and inf

i
η2in > 0, for all n.

Now using (39) in (38) and applying Lemma A11 in the online supplement to Chudik, Kapetan-
ios, and Pesaran (2018), we have

Pr
[
nσ̂2iT >

( n
N

)
C2NT

]
≤ Pr

[
T∑
t=1

(ϕ′iεt)
2
> T

( n
N

)
C2NT

]
+ o (1)

≤
T∑
t=1

Pr
[
(ϕ′iεt)

2
>
( n
N

)
C2NT

]
+ o (1) . (43)

Additionally, letting ϕ′iεt =
∑n

j=1 ϕijεjt, we can write

Pr
[
(ϕ′iεt)

2
>
( n
N

)
C2NT

]
= Pr

(
|ϕ′iεt| >

( n
N

)1/2
CNT

)
= Pr

(∣∣∣∣∣
n∑
j=1

ϕijεjt

∣∣∣∣∣ > ( nN )1/2CNT
)
.

In order to proceed from the above expression, we note that under Assumption 3, V ar
(∑n

j=1 ϕijεjt

)
=∑n

j=1 ϕ
2
ij = η2in, and

Pr (|εjt| > a) ≤ C0 exp (−C1as)
for all a > 0, s > 0 and some fixed constants C0 and C1. This allows us to apply Lemma A3 of
Chudik, Kapetanios, and Pesaran (2018) to obtain

Pr

(∣∣∣∣∣
n∑
j=1

ϕijεjt

∣∣∣∣∣ > CNT

)
≤ exp

[
− (1− π)2C2NT

2η2in

]
, (44)

for some 0 < π < 1 and CNT = O
(
nλ
)
, with 0 < λ < s+1

s+2
(note that n/N = 1 −m/N ≈ 1),

where using (44) in (43) and assuming that unit i is dominant yields

Pr
(
Nσ̂2iT >

( n
N

)
C2NT

)
≤ T exp

[
− (1− π)2C2NT

2η2in

( n
N

)]
+ o (1) ,

for some 0 < π < 1 and η2in as defined by (40). Hence,

Pr
[
Nσ̂2iT ≤

( n
N

)
C2NT | i is dominant

]
≥ 1− exp

[
log (T )− (1− π)2C2NT

2η2in

( n
N

)]
,

and
Pr
[
Nσ̂2iT >

( n
N

)
C2NT | i is dominant

]
→ 0,

as N, T →∞, and
√
N
T
→ 0, and if (note that n/N → 1)

log (T )− (1− π)2C2NT
2η2in

→ −∞.
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This last condition is satisfied if (again setting n/N to unity)

C2NT >
2 log (T ) η2in

(1− π)2
,

or if
C2NT = 2Cη2in log (T ) ,

for some C > 1. Accordingly, i can be selected as a dominant unit if, for some C > 1,
σ̂2iT ≤

2Cη2in log(T )

N
.

We note further that in the Appendix we formally show that all remainder terms in (37),
will not exceed the threshold, with probability approaching one if the unit is dominant. We also
show that Bi7 = Op (N) and Bi8 = op (N) , and further, using (52), that the residual variance,
σ̂2iT , will exceed the threshold with probability approaching one if the unit is not dominant.
An important issue relates to the estimation of η2in. Since n = N − m and in practice m

is not known, at the estimation stage we assume m = 0, and note that under m = 0, then
η2iN = 1

N
a′iA

′
0ΣuA0ai for which a consistent estimator can be obtained using the PC estimators

of ai and A0, and a suitable threshold estimator of Σv. Recall that when Σu = HH′ and
since by assumption H is a row and column bounded (see Assumption 3), then Σu is also row-
bounded and hence satisfies usual sparsity conditions assumed in the literature on estimation
of large covariance matrices (see, e.g., El Karoui, 2008 or Bickel and Levina, 2008). Then, η2iN
can be consistently estimated by

η̂2iN = N−1â′iÂ
′Σ̃uÂâi, (45)

where Â is given by (12), âi is the OLS estimator of ai in the regression of xi (the selected
dominant unit) on F̂, where the latter is given by (13), and Σ̃u = (σ̃ij) is a consistent estimator
of Σu. Here we use the multiple testing estimator of Bailey, Pesaran, and Smith (2018) given
by

σ̃ij = σ̂ijI

(
ρ̂ij >

cπ (N)√
T

)
, cπ (N) = Φ−1

(
1− π

2N δ

)
,

σ̂ij =
1

T

T∑
t=1

ûitûjt, ρ̂ij =
σ̂ij

σ̂
1/2
ii σ̂

1/2
jj

,

where ûit, t = 1, 2, . . . , T are the OLS residuals from the regression of xit (the selected domi-
nant unit) on F̂ (including an intercept in all regressions), Φ−1 (·) is the inverse of cumulative
distribution function of a standard normal variate, π is the nominal size for the multiple testing
procedure, which we set to 1%, and δ is set to 1.5, which allows for possible departures from
Gaussian errors, uit. Other estimators can also be used such as the universal thresholding by
El Karoui (2008) and Bickel and Levina (2008), and the adaptive thresholding by Cai and Liu
(2011).
Our threshold detection algorithm, referred to as σ2 thresholding, can be summarized as

follows:

Algorithm 1 Let xi be the T × 1 vector of observations on the i-th unit in the panel, and
X = (x1,x2, . . . ,xN) be the T × N matrix of observations on all the N units in the panel.
Suppose that p ≤ pmax, where pmax is selected a priori to be suffi ciently large. Compute F̂ =
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1√
N

XQ̂, where Q̂ is the N × pmax matrix whose columns are the orthonormal eigenvectors of
X′X, such that N−1Q̂′Q̂ = Ipmax. Compute âi, v̂it and σ̂2iT to be the OLS estimator, residual
and residual variance of the regression of xi on F̂, namely

âi =
(
F̂′F̂

)−1
F̂′xi,

ûi = (ûi1, ûi2, . . . , ûiT )′ = MF̂xi =

[
IT − F̂

(
F̂′F̂

)−1
F̂′
]

xi,

σ̂2iT = T−1x′iMF̂xi.

Then, select unit i to be dominant if

σ̂2iT ≤
2η̂2iN log T

N
, (46)

where η̂2iN is given by (45).

The following theorem provides a formal summary statement of the preceding analysis.

Theorem 1 Suppose that observations on xit, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T are
generated according to the general linear factor model given by (1) and (2) with m dominant
units. Let ID be the set of indices of the dominant units, and IND its complement, with ID
allowed to be an empty set. Denote by ÎD and ÎDN their estimates based on the threshold
criteria (46). Let Assumptions 1-4 hold and

√
N
T
→ 0. Then as N and T → ∞, jointly, we

have

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

This theorem establishes that the proposed error variance threshold criterion is consistent,
in the sense that it correctly selects the dominant (if any) and the non-dominant units asymp-
totically.

Remark 3 Note that both the theoretical exposition above and the formal arguments of the
Appendix apply both to the case of no external factors as well as the case where all units are
affected by a finite number of external factors, represented by gt in (1) and (2).

5 A sequential, multiple testing version of the σ2 thresh-
olding

The σ2 thresholding procedure, has good but not exceptional small sample properties as we
illustrate in the online supplement to this article. However, it provides a basis for further de-
velopment. The first point to note is that while the method is good at detecting the presence
of dominant units, in general it tends to pick too many units as dominant. Finite sample
adjustments are needed to achieve a more conservative detection outcome. A simple and effec-
tive refinement of the main method is a sequential algorithm that detects dominant units one
at a time. Considering a sequential algorithm suggests the use of dominant units that have
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been identified at earlier steps of the procedure as observed factors. This reduces the number
of unobserved factors to be estimated given a maximum number of considered factors, pmax.
Therefore, the static factor model (5) employed to conduct σ2 thresholding is replaced by the
augmented factor model

xit = f∗′t a∗i + x∗′atb
∗
ai + vit, t = 1, 2, . . . , T ; i = 1, . . . N1, (47)

where x∗at is a r×1 vector of identified dominant units (the row t of the T×r matrixX∗a), f
∗
t is a

pmax− r vector of unobserved common factors and vit constitutes the idiosyncratic variation of
unit i at time point t. With regards to the procedure of Section 4.2, the role of σ2 thresholding
is not to determine the number and the identities of the dominant units directly. Instead, σ2

thresholding is used to determined whether or not there is evidence of remaining dominant units
in the data, given the dominant units that have been identified. Being initiated with r = 0
(i.e. no identified dominant units), N1 = N − r = N and some chosen value of pmax subject to
the condition pmax ≥ m+ 1, the sequential algorithm, referred to as S − σ2 thresholding is an
iteration of the following two steps:

Algorithm 2 1. Conduct σ2 thresholding using model (47), with m∗ = pmax − r estimated
factors. Let m̃ be the estimated number of dominant units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r dominant units.

2. If m̂ > 0, obtain i∗ = arg mini σ̂
2
i . Append xi∗ to X∗a and drop xi∗ from X. Update r to

r + 1 and N1 to N1 − 1.

The two steps are repeated until either m̃ = 0 in the first step or r = pmax at the end
of step 2. The number of dominant units is then m̂ = r and their identities correspond to
the indices of the columns in the initial T × N vector X that are found in the T × r matrix
X∗a = (x∗a1; . . . ; x

∗
aT )′.

Effectively the method constructs residuals of the remaining units on the selected units and
repeats the selection on these residuals. The use of residuals in the algorithm’s steps requires
further theoretical refinements. These are discussed in Section A.3 of the Appendix where it is
shown that our proposed threshold is valid only if N < T , which is a more restrictive condition
than that of Theorem 1. In particular, we prove the following result, in Section A.3 of the
Appendix.

Corollary 1 Suppose that observations on xit, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T are
generated according to the general linear factor model given by (1) and (2) with m dominant
units. Let ID be the set of indices of the dominant units, and IND its complement, with ID
allowed to be an empty set. Denote by ÎD and ÎDN their estimates based on S−σ2 thresholding.
Let Assumptions 1-4 hold and N

T
→ 0. Then as N and T →∞, jointly, we have

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

If N ≥ T, then an alternative threshold could be considered. This is given by

σ̂2iT ≤
2σ̂2iu log T

T
,
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where σ̂2iu = T−1
∑T

t=1 (xit −X∗′atγ̂
∗
i )
2, with γ̂∗i being the estimated vector of slope coeffi cients

from a regression of MF̂xi on MF̂X∗a. This is justified in Section A.3. As its small sample
properties are inferior to those of our main procedure we do not pursue this further in the main
paper but only in the online supplement. However, it is important to note that it provides a
theoretical justification for our general methodology when N > T.
Finally, the sequential algorithm can be supplemented with an additional multiple testing

hurdle in order to reduce the risk of falsely detecting a dominant unit in small samples. Anal-
ogous to the plain sequential algorithm discussed above, the extended algorithm is initiated
with r = 0 , N1 = N and some chosen value of pmax subject to the condition pmax ≥ m+ 1. It
consists of the following five steps which are repeated until the estimated number of dominant
units m̃ in the first step is equal to zero:

Algorithm 3 1. Conduct σ2 thresholding using model (47) and m∗ = pmax − r estimated
factors. Let m̃ be the estimated number of dominant units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r dominant units.

2. If m̃ > 0, obtain i∗ = arg mini σ̂
2
i . For each j = 1, . . . i∗ − 1, i∗ + 1, . . . , N1 estimate the

model
xjt = xi∗tγ

∗
j + f∗′t a∗j + x∗′atb

∗
aj + vjt, t = 1, 2, . . . , T, (48)

where the unobserved factors f∗t are estimated by the eigenvectors associated to the pmax−
r − 1 largest eigenvalues of X−i∗X

′
−i∗ with X−i∗ = (x1; . . . ; xi∗−1; xi∗+1; . . . ; xN1).

3. Carry out N1 − 1 individual t tests to check the statistical significance of the slope para-
meters γ̂∗j for all j 6= i in (48), using the multiple testing critical value, Φ−1

[
1− π

2(N1−2)

]
,

where the nominal size of the individual tests, π, is chosen by the investigator. In our
analysis we set π = 0.01.

4. LetM denote the number of rejections among these N1−1 tests. If log(M)/ log(N) ≤ 1/2,
stop and conclude that there are r dominant units.

5. If log(M)/ log(N) > 1/2, append xi∗ to X∗a and eliminate xi∗ from X. Update r to r + 1
and N1 to N1 − 1

We refer to this algorithm as Sequential-MT σ2 thresholding or SMT − σ2 thresholding for
short. Note that the rule log(M)/ log(N) ≤ 1/2, orM ≤ N1/2 is motivated by that fact that if a
factor enters onlyM units, whereM = o(N1/2), then, it is considered to be a very weak factor,
and under certain conditions, it is not detectable using principal components - see, e.g., Bailey,
Kapetanios, and Pesaran (2016). Again, after stopping the sequential algorithm, the number
of dominant units is m̂ = r and their identities correspond to the indices of the columns in the
initial T ×N vector X that are found in the T × r matrix X∗a = (x∗a1; . . . ; x

∗
aT )′. The additional

multiple testing step ends up being very effective in small samples and is therefore our preferred
approach. While we do not provide a fully rigorous proof for the consistency properties of the
multiple testing step we refer the reader to Chudik, Kapetanios, and Pesaran (2018) where a
full analysis of multiple testing, within a multiple regression setting, is provided. From that
analysis and, in particular, Theorem 1 of that paper, it readily follows that the multiple testing
step selects with probability approaching one, as N, T →∞, only dominant units.
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6 A Comparative analysis of detection procedures by
Monte Carlo simulations

Using Monte Carlo simulations we now investigate the small sample performance of our new
method relative to the methods proposed by Parker and Sul (2016, henceforth PS) and Brown-
lees and Mesters (2018, BM in the following).10 The PS method yields identical outcomes
irrespective of whether the observations are standardized to have in sample zero means and
unit variances or not. Our proposed method, being based on residuals, is not affected by
demeaning of the observations and the scaling is done through the determination of the unit-
specific thresholds, and hence standardization will not be an issue. In contrast, BM’s detection
method can be quite sensitive to standardization in finite samples, although asymptotically
it should not matter whether the individual series in the panel are standardized. The BM
method is also applied either including all the N units, or only the N/2 most connected units
when selecting the dominant units.11 Accordingly, we consider four variants of the BM method:
modified and unmodified with and without standardization. We shall refer to these variants as
BM and BM (standardized) when only the N/2 most connected units are considered at the
selection stage, and unmodified BM and unmodified BM (standardized) when all the N units
are included when selecting the dominant units. In the paper we focus on the modified version
of BM, and give the results for their unmodified version in the online supplement. It is clear
that fewer units will be detected when the modified version is used, even though the effect of
standardization is less clear cut. Amongst the various σ2 thresholding procedures discussed, we
focus on SMT−σ2 thresholding as described by Algorithm 3.12

In accordance with the formal presentation in Section 3, we simulate the dominant unit
model as

xta = µa + Λagt + ht, (49)

xtb = µb + Bxta + Λbgt + ut, (50)

for t = 1, 2, . . . , T . The N ×1 vector of fixed effects, µ = (µa;µb)
′, are drawn from IIDU(0, 1).

The k0 × 1 vectors gt, for t = 1, 2, . . . , T , representing the unobserved common factors, are
generated as gt = R

1/2
g (g∗,t − 2τ k)/2, where τ k = (1, 1, . . . , 1)′, g∗,t is a k × 1 vector generated

as IIDχ2(2), R
1/2
g is the square root of the k0 × k0 matrix Rg defined by

Rg = (1− ρg)Ik + ρgτ kτ
′
k,

where ρg represents the pair-wise correlation coeffi cients of the distinct (i, j) elements of gt,
assumed to be the same across all i and j = 1, 2, .., k. Specifically, Cov(gt) = Rg. Similarly,
the m0 × 1 vector ht is generated analogously as

ht = R
1/2
h (h∗,t − 2τm)/2, Rh = (1− ρh)Im + ρhτmτ

′
m,

10The detection methods of Parker and Sul and Brownless and Mesters are described in some detail in the
online supplement.
11In their simulation analysis BM seem to be using the unmodified version of their method without standard-

ization, whilst in their empirical applications they apply the modified version after standardization. See Section
6 of Brownlees and Mesters (2018).
12Simulation results for other two variants of σ2 thresholding, described by Algorithms 1 and 2, are provided

in the online supplement.

19



where h∗,t ∼ IIDχ2(2). It follows that Cov(ht) = Rh, and ρh represents the pair-wise correla-
tions of the elements of ht, assumed to be the same across all pairs. The m0 × k0 matrix Λa

and the n × k0 matrix Λb are obtained as IIDU(0, 1). The correlation coeffi cients ρg and ρh
are drawn from U(0.2, 0.8), and are allowed to vary across replications.
The importance of the dominant units for the non-dominant units is represented by the

(N −m0)×m0 loading matrix B = (bij). To allow for the possibility of both strong and weak
dominant units, bij are generated as

bij

{
∼ IIDU(0, 1) if i ≤ b(N −m0)

αc
= 0 otherwise.

, for i = 1, 2, . . . , N −m0; j = 1, 2, . . . ,m0, (51)

where as introduced in (4), α is the exponent that measures the degree of dominance of xta in
the panel. For the sake of simplicity, all dominant units are assumed to have the same degree
of dominance so that a subscript on α is redundant. When α = 1 the units are dominant, in
the sense that they have non-zero effects on all the N −m0 non-dominant units. This is the
standard case in the common factor literature and ensures that limN→∞(N − m0)

−1B′B is a
positive definite m0×m0 matrix. This condition clearly breaks down when α < 1. As we noted
before, xta are then referred to as influential units.13

The errors ut = (uit) are generated as heterogeneous first order autoregressive processes

uit = ρiuit−1 + (1− ρ2i )1/2εit, for t = −49, . . . , 0, 1, 2, . . . , T ; i = 1, 2, . . . , N −m0,

where ρi ∼ IIDU(0.2, 0.5). The errors εit are allowed to be cross-sectionally weakly cor-
related. To achieve this we set εt = (ε1t, ε2t, . . . , εnt)

′ = Σ1/2R
1/2
u ζt, n = N − m, with

Σ = diag(σ11, σ22, . . . , σnn), and

Ru =


1 ρu ρ2u . . . ρn−1u

ρu 1 ρu . . . ρn−2u

ρ2u ρu 1 . . . ρn−3u
...

...
...

. . .
...

ρn−1u ρn−2u ρn−3u . . . 1

 .

We set ρu = 0.5, σii = σ∗,ii/4+0.5, and σ∗,ii ∼ IIDχ2(2), thus ensuring that E(σii) = 1. Lastly,
ζit = (ζ∗,it − 2)/2, where ζ∗,it ∼ IIDχ2(2). In order to avoid dependence of ut on its starting
values we discard the first 50 observations. All random variables are redrawn at the start of
each replication of the simulation experiments.
We carry out all the different experiments for the following N and T combinations:

N ∈ {50, 100, 200, 500} and T ∈ {60, 110, 210, 250} .

TheseN and T values allow for both cases where T > N , which is required for the BM procedure
to be applicable, as well as when T < N , which often arises in empirical applications, and can
be considered using our proposed method and the PS procedure.

13A unit is viewed as weakly dominant if it affects a number of cross section units, but the number of the
units that it affects does not rise as fast as the total number of units in the panel (network). See also Chudik,
Pesaran, and Tosetti (2011).
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The above setup allows us to control the number of dominant units, m0, the number of
external factors, k0, as well as the degree of dominance of the dominant unit, α. We consider
all m0 ≤ 2 and k0 ≤ 2 combinations, namely

{m0, k0} = {0, 0} , {0, 1} , {0, 2}, {1, 0} , {1, 1} , {1, 2}, {2, 0} , {2, 1} , {2, 2} .

In cases where m0 > 0, we experiment with two values of α = 1 and α = 0.8. Our theoretical
derivations relate to the case of strongly dominant units, namely when α = 1. However, in
practice it is more likely that the dominant units are not strong, but still quite influential,
which we represent by the choice of α = 0.8. In the production network literature where the
degree of the dominance can be computed from input-ouput tables, α is estimated to lie in the
region of 0.7− 0.8. See Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Pesaran
and Yang (2016, Definition 1).
Finally, all simulations in this section are conducted with 2, 000 replications.

6.1 MC results

The first scenario to consider is one without any dominant units (m0 = 0). The results for
SMT−σ2 and the PS procedures are summarized in Table 1, which gives the empirical frequency
of correctly estimatingm0 to be 0. This table does not include the detection procedure proposed
by BM, since the BM method pre-assumes that m0 > 0, and therefore always incorrectly selects
at least one dominant unit. As can be seen from this table, the SMT−σ2 thresholding performs
very well, even in the presence of external common factor (namely when k0 > 0), so long as N
is suffi ciently large. It is only outperformed by the PS procedure when N is small (N = 50)
and there are external factors (k0 > 0). Table 2 reports the average number of non-dominant
units (across replications) that are falsely selected as dominant by SMT−σ2, PS and BM. In
this regard, SMT−σ2 and PS perform perfectly when there are no external factors (k0 = 0),
and register a small number of incidence of false discovery when k0 = 1, and N relatively
small. However, the PS procedure seems to break down when the number of external factors is
increased to k0 = 2, and its average number of false discoveries reaches 41 with N = 500 and
T = 250. However, the SMT−σ2 thresholding continues to perform well even for k0 = 2. As
can be seen from Table 2, the average number of false discoveries of SMT−σ2 thresholding is at
most 0.7 over all values of N and T , and tends to zero as N is increased. By contrast, the BM
procedure will always falsely selects non-dominant units as dominant even for panels with N
and T large (subject to T > N). The average number of false discoveries for the BM procedure
lies in range of 3 to 4, and is unaffected by standardization. However, modification of the BM
procedure seems to play a crucial role in controlling the number of false discoveries. If we use
the unmodified version of BM the average number of false discoveries rise dramatically and can
reach around 100 for N = 200 and T = 250, with standardization only helping marginally. See
Section S5 of the online supplement for details.

Consider now cases where the DGP contains one or two dominant units. Table 3 reports the
empirical frequency of correctly estimating the number and the identity of the dominant units
by all the three detection procedures. The top panel of the table gives the results for all the three
detection procedures when there is one dominant unit (m0 = 1), with and without external
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Table 1: Empirical frequency of correctly identifying the absence of a dominant unit

SMT−σ2 PS
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 100 100 100 100 50 99.4 99.2 99.6 99.8
100 100 100 100 100 100 100 100 100 100
200 100 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 88.4 86.4 82.7 80.3 50 53.2 92.0 97.3 97.7
100 94.1 92.3 90.7 88.9 100 75.5 98.5 100 100
200 99.8 99.2 99.4 99.2 200 90.6 100 100 100
500 100 100 100 100 500 92.9 100 100 100

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 61.6 55.9 47.7 44.3 50 81.0 80.1 69.5 69.5
100 84.0 74.5 64.2 60.9 100 86.6 85.7 63.1 57.4
200 98.6 97.7 94.2 94.1 200 82.5 66.1 46.3 39.7
500 100 100 100 99.9 500 99.4 46.8 22.6 17.6

Notes: SMT−σ2 thresholding is implemented using Algorithm 3, with pmax =
m0 + k0 + 1, where m0 is the true number of dominant units (if any) and k0 is
the number of external factors. Threshold in the σ2 thresholding step is given by
σ̂2iT ≤ 2η̂2iNN

−1 log(T ). PS refers to the Parker and Sul (2016) method by setting
the number of potential dominant units to N/10 per estimated factor, with the num-
ber of factors selecting using ICp2 criterion of Bai and Ng (2002). See also online
supplement.

factors, namely for k0 = 0, 1 and 2. The lower part of the table gives the empirical frequencies
when m0 = 2, and k0 = 0, 1 and 2. For the BM procedure we are only able to provide results
when T > N . The relative performance of the three detection procedures very much depends
on whether the observations are affected by an external factor, and the relative sizes of N and
T . For example, the PS method works very well only if m0 = 1 and k0 = 0, and breaks down
completely if there are external factors or if there is more than one dominant unit. The BM
method performs well when it is known that m0 ≥ 1 and T > N . By contrast, our proposed
method works reasonably well for all values of m0 and k0, and continues to be applicable even
if T < N . Amongst the three methods considered only the SMT−σ2 thresholding method
is able to select the true dominant units with probability approaching unity as both N and
T become large. Not surprisingly, the small sample performance of SMT−σ2 thresholding
deteriorates as the number of common factors, be it dominant units or external factors, is
increased. In Table 4 we again consider the average number of false discoveries. The results
are similar to the ones obtained earlier, with SMT−σ2 procedure performing best overall. It is
also interesting to note that standardization of observations affect the BM procedure adversely.
This is particularly pronounced when m0 = 2. Again, the modification of the BM procedure is
critical for its performance. When the BM procedure is applied without modification we again
obtain a large number of false discoveries, as can be seen from the results in Section S5 of the
online supplement.
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Table 2: Average number of non-dominant units falsely selected as dominant (m0 = 0)

k0 = 0 k0 = 1 k0 = 2
SMT−σ2 SMT−σ2 SMT−σ2

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.1 0.2 0.2 0.2 50 0.4 0.5 0.6 0.7
100 0 0 0 0 100 0.1 0.1 0.1 0.1 100 0.2 0.3 0.4 0.4
200 0 0 0 0 200 0 0 0 0 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

PS PS PS
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.9 0.2 0.2 0.1 50 0.7 1.2 1.8 1.8
100 0 0 0 0 100 0.3 0 0 0 100 1.0 1.4 3.7 4.2
200 0 0 0 0 200 0.1 0 0 0 200 3.2 6.7 10.7 12.0
500 0 0 0 0 500 0.1 0 0 0 500 0 26.2 38.4 41.0

BM BM BM
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 4.1 3.7 4.7 4.9 50 3.9 4.0 4.5 4.9 50 3.9 3.8 4.5 4.7
100 n/a 3.6 3.6 4.1 100 n/a 3.5 3.7 4.2 100 n/a 3.7 3.6 4.0
200 n/a n/a 3.2 3.1 200 n/a n/a 3.2 3.0 200 n/a n/a 3.1 3.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

BM (standardized) BM (standardized) BM (standardized)
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 4.1 3.4 3.3 3.2 50 3.9 3.3 3.6 3.9 50 3.6 3.4 3.5 3.6
100 n/a 4.1 3.0 2.9 100 n/a 3.4 3.4 3.4 100 n/a 3.2 3.3 3.4
200 n/a n/a 3.4 2.8 200 n/a n/a 3.0 2.8 200 n/a n/a 3.0 2.7
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: The SMT−σ2 and PS methods are as described in the notes to Table 1. BM refers to the modified detection method
used in Section 6 of Brownlees and Mesters (2018). BM (standardized) stands for application of BM to data that have been
recentered and rescaled so that each cross-section specific time series has an average of zero and a variance of one. BM methods
are not applicable (n/a) if T < N .

The above findings continue to hold when the DGP contains influential units instead of
dominant units. Table 5 reports the results for models with influential rather than strong
dominant units, where the exponent of cross-sectional dependence of the dominant unit(s), is
set to α = 0.8 instead of α = 1. (see (51) for a definition of α). Not surprisingly, the empirical
frequency of correctly identifying the true influential units is generally lower as compared to
the case where the dominant units are strong. Nevertheless, SMT−σ2 thresholding and BM
procedure perform reasonably well even in this case. Of course, the BM method is applicable
only in the case of panels with T > N and if it is known that m0 > 0. In cases where both BM
and SMT−σ2 thresholding are applicable, the proposed method seems to perform somewhat
better, particularly when T − N is not that large. Finally, considering the average number of
non-dominant units, falsely selected, in Table 6 we again note very similar patterns to those
present in Table 4, with SMT−σ2 again performing best.

7 Empirical Applications

In this section we present empirical applications that showcase our proposed detection method-
ology. We consider three different applications, and report the dominant units (if any) selected
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by SMT−σ2 thresholding, as well as the methods of Parker and Sul (2016) and Brownlees and
Mesters (2018). As in the MC section, we focus on the modified version of the BM procedure
(where selection is based only on the N/2 most connected units), but report results with and
without standardization of the individual time series.14

7.1 U.S. industrial production

We begin with a panel of monthly observations on production of N = 138 industrial sectors
of the U.S. economy over the period 1972m1-2007m12. This data set has been compiled by
Foerster, Sarte, and Watson (2011), and used by Brownlees and Mesters (2018) to study the
presence of dominant production sectors in the U.S.15 As noted previously, by construction
BM method will end up finding at least one dominant sector. In fact, Brownlees and Mesters
(2018) find between 2 and 5 dominant sectors, predominantly related to the production of
light motor vehicles and aluminum products. They arrive at these results by applying their
modified detection procedure to sectoral growth rates after standardization. In addition to
determining which sectors are dominant, the authors rank different sectors according to their
level of dominance by ordering the column norms of the inverse sample covariance matrix. A
comparison of this ranking with one based on the explanatory power of estimated common
factors on sector-specific series is provided, revealing substantial differences in the suggested
list of highly influential sectors.
We apply all the three detection methods to the full dataset as well as to the two sub-

samples, 1972m1—1983m12 and 1984m1—2007m12, investigated in Foerster, Sarte, and Watson
(2011). For application of the PS method we selected the number of factors using the ICp2
criterion of Bai and Ng (2002). We set the maximum number of factors to 10 and obtain
1 common factor for the full sample and the first sub-sample, and 2 common factors for the
second sub-sample. In application of the SMT−σ2 we do not need to estimate the number of
factors, but set a maximum value for p = m + k. To this end and to cover a wide range of
possible factors, and to check the robustness of the SMT−σ2 thresholding to the choice of pmax,
we tried all the values of pmax in the range {2, 3, 4, 5, 6}.
The results are summarized in Table 7. The top panel of the table gives the results for

the full sample, followed by the two sub-sample results. Starting with SMT−σ2 thresholding,
we find that no sector is identified as dominant, with the result being robust to the choice of
pmax and the sample period. This conclusion is in line with the estimates obtained by Pesaran
and Yang (2016) who make use of input-output tables for the whole U.S. economy. The PS
procedure arrives at the same outcome and does not detect any dominant sector when the full
sample is used, but identifies Plastic Products as dominant in the first sub-sample, and as many
as 19 sectors as dominant in the second sub-sample. The list of these 19 sectors is given at the
bottom of Table 7, and includes a diverse array of sectors such as Cheese, Breweries, Plastic
Products, Shipping Containers, and more.
The results from the application of the BM procedure are mixed and depend on whether the

observations are standardized, and the sample period considered.16 As can be seen from the

14Estimation results for unmodified BM without restrictions on the maximum number of dominant units can
be found in Section S6 of the online supplement.
15In their study, Foerster, Sarte, and Watson (2011) make use of a quarterly version of this data set, and BM

choose monthly frequency to ensure T > N , which their detection procedure requires.
16The detection outcomes also very much depend on whether one uses the modification of the BM procedure

or not. The results for unmodified BM is in the online supplement.
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last two columns of Table 7, for the full sample BM selects Fluid Milk as the dominant sector if
observations are not standardized, and selects Automobiles and Light Duty Motor Vehicles, and
Motor Vehicle Parts, as dominant when observations are standardized. For the two sub-samples
the results are much more dispersed, and only Motor Vehicle Parts is included in the list of
the dominant sectors for all sub-samples when the observations are standardized. Considering
that by construction BM will end up with at least one sector as dominant, and the Monte
Carlo evidence suggests that BM is particularly prone to false discovery when observations
are standardized, the detection outcome of the BM procedure for this application should be
approached with caution.
In addition to splitting the sample at the end of 1983, we also applied our detection method

to rolling samples with window sizes of 10, 12, 15 and 20 years, in order to obtain further
evidence on how the number and identity of dominant units could be subject to change. As
previously, the maximum admissible number of common factors and dominant units is set to
pmax ∈ {2, 3, 4, 5, 6}. For the sake of brevity, only SMT−σ2 thresholding is considered. The
results unanimously confirm our previous finding that there is no dominant sector in the U.S.
industrial production.

7.2 Are there dominant economies or equity markets in the global
economy?

In a second application, we use quarterly observations on real GDP and real equity prices
over a number of countries and equity markets spanning the period 1979Q2-2016Q4, providing
T = 151 observations for each country.17 Data on real GDP is available for 33 countries and
account for over 90 percent of global output. The equity price observations are available for 26
countries, and include all major equity markets.

7.2.1 Cross country output growths

A recent investigation of cross country correlation of real GDP growth rates is given in Cesa-
Bianchi, Pesaran, and Rebucci (2018), and shows that accounting for one common factor is
enough to reduce average pairwise cross country correlations to almost zero. Despite this
suggestive evidence for the presence of only one factor in GDP, we consider a wider set of
choices concerning the number of latent factors, and experiment with pmax ∈ {2, 3, 4, 5, 6}
when applying σ2 thresholding. As in the previous application, the results from the application
of SMT-σ2 thresholding are compared to the other two detection procedures (BM and BM
standardized as well as PS). The results are summarized in Table 8. In this application SMT−σ2
thresholding selects 1 country (France) as dominant in terms of GDP growth when pmax = 3, 4
or 5, and selects no dominant country if pmax = 2 or 6. Given the cross country growth evidence
provided by Cesa-Bianchi, Pesaran, and Rebucci (2018) it is more reasonable to rely on the
detection evidence when pmax = 2, which is compatible with assuming one common global
technology factor (i.e. k0 = 1) with one possible dominant country, say U.S., (with m0 = 1)
which gives pmax = 2. Also if we use the ICp2 criterion of Bai and Ng (2002) to select the
number of factors across country growth rates we also end up with one factor. (see footnote 1
of Table 8). So we conclude that there is no compelling evidence for the presence of a dominant

17Cross country data is taken from the latest vintage of the GVAR data set as described in Mohaddes and
Raissi (2018).
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country in terms of output growth, and the detection of France as a dominant economy when
pmax = 3, 4 and 5, is most likely a false discovery. This conclusion is also supported when we
consider the result obtained from the application of the PS procedure to the GDP growth series.
In contrast, BM procedure selects France and Spain as dominant economies when the growth
series are not standardized, and selects an additional 9 economies (a total of 11 economies out
of 33) as dominant, if observations are standardized. This outcome is diffi cult to interpret and
most likely reflects the tendency of the BM procedure to over-select as documented in the MC
section.

Table 8: Dominant unit detection methods applied to cross country rates of change of real GDP
(33 countries) and real equity prices (26 markets) over the period 1979Q2-2016Q4 (151 time
periods)

Rate of change of real GDP
Approach: SMT−σ2 PS BM BM (standardized)
pmax 2 {3, 4, 5} 6 1†

Number of dominant units: 0 1 0 0 2 11
Identities: France France Italy UK

Spain Spain Malaysia
France Belgium
USA Finland

Germany South Africa
Canada

Rate of change of real equity prices
Approach: SMT−σ2 PS BM BM (standardized)
pmax 2, 3, 4, 5, 6 2†

Number of dominant units: 0 6 6 1
Identities: France USA Netherlands

Germany Netherlands
Malaysia UK
Netherlands Canada
Singapore Switzerland
Thailand Germany

† This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Note: Data taken from the GVAR database (Mohaddes and Raissi, 2018).

7.2.2 Cross market rate of change of real equity prices

The results for the rate of change of real equity prices are summarized in the lower panel of
Table 8. In this application SMT−σ2 thresholding is the only method not identifying any of the
equity markets as dominant. Both PS and BM procedures select 6 markets as dominant, and
agree only on Germany and Netherlands as the dominant equity markets. Interestingly enough,
BM only selects Netherlands as dominant when observations are standardized. Once again we
find the BM detection method to be highly sensitive to standardization of observations.
Finally, it is important to bear in mind, that not finding a dominant unit does not mean

that the global economy is not subject to global shocks. Our results suggest that once we allow
for the possibility of global shocks, it is diffi cult to find convincing evidence that any country
can be singled out as dominant. This result is also compatible with the presence of influential
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economies such as U.S., China, Japan and Germany as having important global and regional
impacts in the world economy.

7.3 U.S. house price changes

It is well established that house price changes in the U.S. are governed by common national and
regional factors (see e.g. Holly, Pesaran, and Yamagata, 2010; Bailey, Holly, and Pesaran, 2016),
and it is of interest to investigate if any of these common factors are due to the dominance of
particular states amongst the 48 mainland states of the U.S.. To this end we consider state-
level quarterly data on real house prices over the 1975Q1—2014Q4 period (T = 160).18 In our
analysis we use the rate of change of real house prices, after seasonal adjustment, with nominal
house prices deflated by the state-level consumer price indices.

Table 9: Estimated U.S. states with dominant housing market

Approach: SMT−σ2 PS BM BM (standardized)
pmax 2 3 4, 5, 6 5†

Number of dom-
inant units:

1 2 0 2 4 6

Identities: New York Kentucky New Hampshire North Carolina Connecticut
New York Nevada Maryland New Hampshire

Virginia Massachusetts
Connecticut Maryland

Virginia
Rhode Island

†: This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Notes: Data taken from Freddie Mac House Price Indexes and Yang (2018).

To investigate whether house price changes in any of 48 mainland U.S. states could be
regarded as dominant or pervasive for the rest of the states, as in the previous applications,
we implement SMT−σ2 thresholding with pmax = {2, 3, 4, 5, 6}. The PS and BM methods are
applied as before. The results are summarized in Table 9. As can be seen there are significant
differences in the outcomes depending on the method used. In the case of SMT−σ2 thresholding
New York is identified as dominant when the maximum number of common factors is set to 2
and 3. No dominant unit is found for pmax ∈ {4, 5, 6}, and Kentucky is also selected as dominant
when pmax = 3, which could be false discovery. The BM procedure identifies many more states
as dominant with no clear geographical patterns. Without standardization, BM selects North
Carolina, Maryland, Virginia and Connecticut as dominant, whilst with standaridization three
additional states are selected as dominant, namely New Hampshire, Massachusetts and Rhode
Island. Connecticut is not selected when we use BM (standardized). We take these results
as weak evidence for the influential role of the north-eastern part of the United States with
New York being the most plausible candidate. By contrast, PS detects two dominant units in
two opposite corners of the U.S., namely New Hampshire and Nevada, thus providing a less
coherent picture compared to the other two approaches.

18House price data is taken from Freddie Mac House Price Indexes (http://www.freddiemac.com/research/
indices/house-price-index.html). State-level consumer price indexes were taken from Yang (2018) who
updated a previously constructed dataset of Bailey, Holly, and Pesaran (2016).
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8 Concluding remarks

Recent developments in network and panel literature have emphasized the importance of some
key units for interdependencies in networks. For example, financial networks can be resilient
with no units playing an unduly important (i.e. ’systemic’) role while others may have dominant
units that need close monitoring. There is a small literature on how to detect such units but
all existing methods are either not rigorously analyzed or have drawbacks such as assuming,
rather that ascertaining, the presence of at least one dominant unit, or considering networks
with a relatively small number of units in the network.
We contribute to this literature by proposing a new thresholding method which is rigorously

developed using theory on large factor models as well as recent developments on multiple testing.
It has good small sample properties and allows for the presence of no dominant units while being
able to detect weakly influential cross-section entities. Furthermore, our method is versatile in
that it can be applied for a wider combination of cross-sectional and time sample dimensions
and that it is able to handle the presence of external common factors.
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Appendix
This appendix is in two parts. Part A provides the proof of the main results, whilst Part B

states and proves a number of auxiliary lemmas needed in the main proofs.

A Proof of main results

A.1 Proof of Theorem 1

We need to show that

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

It suffi ces to show that

lim
N,T→∞

Pr

(
∩i∈ID

{
σ̂2iT ≤

2η̂2iN log T

N

})
= 1,

and

lim
N,T→∞

Pr

(
∪i∈IND

{
σ̂2iT ≤

2η̂2iN log T

N

})
= 0.

Let

η2iN =
a′iA

′
0ΣvA0ai
N

, and CiNT =
2η2iN log T

N
.

Then, we need to show equivalently that

lim
N,T→∞

Pr

(
∩i∈ID

{
σ̂2iT +

2 log T

N

(
η2iN − η̂2iN

)
≤ CiNT

})
= 1,

and

lim
N,T→∞

Pr

(
∪i∈IND

{
σ̂2iT +

2 log T

N

(
η2iN − η̂2iN

)
≤ CiNT

})
= 0.

Proceeding from (28), if i ∈ ID, we haveNσ̂2iT =
∑6

j=1Bij, where Bij are defined below equation
(28), and

Bij = op (1) , for all i, and j = 2, 3, . . . , 6,

as long as
√
N
T
→ 0. If i ∈ IND then Nσ̂2iT =

∑8
j=1Bij, where, recalling (35) and (36),

Bi7 =
Nv′iMF̂vi

T
, and Bi8 =

Na′iF
′
0MF̂vi
T

=
Na′i

(
F0−F̂

)′
MF̂vi

T
.

It is straightforward to show that Bi7 = Op (N). Further, Bi8 = Op

(
N

min(
√
N,T )

)
= op (N) . A

detailed analysis of Bi7 and Bi8 is provided in Section A.2. Terms Bij, j = 1, . . . , 6 depend on i
only through ai and it is assumed that supi ‖ai‖

2 < C <∞. Therefore, it follows immediately
that

lim
N,T→∞

Pr

(
sup
i
|Bij| ≤ DNT

)
= 1, j = 1, 2, . . . , 6,
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for any sequence DNT bounded away from zero. Further, we need to show that

lim
N,T→∞

Pr (∩i∈IND {|Bi7 +Bi8| > CiNT}) = 1, (52)

and it will be suffi cient (assuming NCiNT = o
(

min(
√
N, T )a

)
) to show that

lim
N,T→∞

∑
i∈IND

Pr
(
|Bi7| < min(

√
N, T )a

)
= 0,

and
lim

N,T→∞

∑
i∈IND

Pr
(
|Bi8| > min(

√
N, T )a

)
= 0,

for some 0 < a < 1. This result follows straightforwardly by noting from a direct application
of Lemma A7 of Chudik, Kapetanios, and Pesaran (2018) that

Pr
(∣∣v′iMFvi − Tσ2vi

∣∣ > TNCNT
)
≤ exp

(
−CTN2C2NT

)
= exp

[
−CTη4iN (log T )2

]
,

for some C > 0. It is easily seen that N exp
(
−CTη4iN (log T )2

)
= o(1), noting that supi (η4iN) >

0. A similar result obtains for Pr (|v′iMF̂vi − v′iMFvi| > TNCNT ), along the lines of our analy-
sis below for ηiN starting with (55).
To complete the proof it now suffi ces to show that

lim
N,T→∞

Pr (∩i=1,2,...,N {|Bi1| ≤ NCiNT}) = 1, (53)

and
lim

N,T→∞
Pr
(
∩i=1,2,...,N

{∣∣η2iN − η̂2iN ∣∣ ≤ η2iN
})

= 1, (54)

or limN,T→∞ Pr (supi |η2iN − η̂2iN | ≤ C) = 1,for some finite C > 0, since η2iN is uniformly bounded
away from zero and infinity. (53) follows from auxiliary Lemmas 3-6.
Consider now (54), and note that by equations (40) and (45), we have

η2iN − η̂2iN =
a′iA

′
0ΣvA0ai
N

− â′iÂ
′Σ̃vÂâi
N

. (55)

Then,∣∣η2iN − η̂2iN ∣∣ ≤
C1

∣∣∣∣a′iA′0ΣvA0 (ai − âi)

N

∣∣∣∣+ C2

∣∣∣∣∣∣
a′iA

′
0

(
Σ̃v −Σv

)
A0ai

N

∣∣∣∣∣∣+ C3

∣∣∣∣∣∣
a′iA

′
0Σv

(
Â−A0

)
ai

N

∣∣∣∣∣∣ ,
= Ai1 + Ai2 + Ai3,

where Ai2 and Ai3 depend on i only via ai. By the boundedness of ai, auxiliary Lemmas 3-6,
and Theorem 1 of Bailey, Pesaran, and Smith (2018), Ai2 = op (1) and Ai3 = op(1). Hence

lim
N,T→∞

Pr

(
sup
i
Ai2 ≤ C

)
= 1, and lim

N,T→∞
Pr

(
sup
i
Ai3 ≤ C

)
= 1.
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Now consider Ai1, and note that each element of N−1a′iA
′
0ΣvA0 is uniformly bounded. There-

fore, it suffi ces to show that limN,T→∞ Pr (supi ‖ai − âi‖ ≤ C) = 1.We have

ai − âi =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.

So we need to show that

lim
N,T→∞

Pr

(
sup
i

∥∥∥∥∥
T∑
t=1

ftvit

∥∥∥∥∥ ≤ TC

)
= 1, (56)

and

lim
N,T→∞

Pr

[
sup
i

∥∥∥∥∥
T∑
t=1

xit

(
f̂t − ft

)∥∥∥∥∥ ≤ TC

]
= 1. (57)

(56) follows easily. We focus on (57). For example, by (A1) of Bai (2003) we note that

f̂jt − fjt =
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt, (58)

where γlt = γN,lt = N−1
∑N

i=1E(vitvil), ζlt = N−1v′lvt − γlt, κlt = N−1f ′lA
′
0vt, and ξlt = κtl. So

we need to show the following (C changes from instance to instance).

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlγlt

)∣∣∣∣∣ ≤ TC

]
= 1, (59)

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlζlt

)∣∣∣∣∣ ≤ TC

]
= 1, (60)

and

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlκlt

)∣∣∣∣∣ ≤ TC

]
= 1. (61)

We proceed in turn.

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlγlt

)∣∣∣∣∣ > TC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
γlt

∣∣∣∣∣ > TC

]
+

Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xitfjlγlt

∣∣∣∣∣ > TC

)
= A11i + A12i.

36



We have, for some 0 < a < 1,

A11i = Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
γlt

∣∣∣∣∣ > TC

)
≤

Pr


1

T 1/2

[
min(N,T )a

T

∑T
l=1

(
f̂jl − fjl

)2]1/2 [
1
T

∑T
t=1

∑T
l=1 γ

2
lt

]1/2
supi

[
min(N,T )−a

T

∑T
t=1 x

2
it

]1/2
> C


≤ Pr

 1

T 1/2

[
min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2]1/2 [ 1

T

T∑
t=1

T∑
l=1

γ2lt

]1/2
> C

+

Pr

sup
i

(
min (N, T )−a

T

T∑
t=1

x2it

)1/2
> C

 .
But using Theorem 1 in Bai and Ng (2002),

1

T 1/2

[
min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2]1/2 [ 1

T

T∑
t=1

T∑
l=1

γ2lt

]1/2
= op (1) ,

and using Lemma 2 to show

Pr

sup
i

(
min (N, T )−a

T

T∑
t=1

x2it

)1/2
> C

 = o (1) .

Hence, it follows that A11i = o(1). Next

A12i = Pr

(
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

xitfjlγlt

∣∣∣∣∣ > C

)
≤ Pr

(∥∥∥∥∥ 1

T 2

T∑
t=1

T∑
l=1

ftfjlγlt

∥∥∥∥∥ > C

)
+

Pr

(
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

vitfjlγlt

∣∣∣∣∣ > C

)
.

But

Pr

(∥∥∥∥∥ 1

T 2

T∑
t=1

T∑
l=1

ftfjlγlt

∥∥∥∥∥ > C

)
= o (1) ,

We have

Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

vit

(
1

T

T∑
l=1

fjlγlt

)∣∣∣∣∣ > C

]
.

By the independence of fjt and vit and the martingale difference (m.d.) property of vit,(
1
T

∑T
l=1 fjlγlt

)
vit is also m.d., and by the martingale difference exponential inequality of

Lemma A3 of Chudik, Kapetanios, and Pesaran (2018),

Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

vit

(
1

T

T∑
l=1

fjlγlt

)∣∣∣∣∣ > C

]
= o (1) .
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Next, for (60),

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlζlt

)∣∣∣∣∣ > TC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
ζlt

∣∣∣∣∣ > TC

]
+

Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xitfjlζlt

∣∣∣∣∣ > TC

)
= A21i + A22i.

But

A21i = Pr

[
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
ζlt

∣∣∣∣∣ > C

]
≤

Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2]1/2
sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2itζ
2
lt

]1/2
> C

 ≤
Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2]1/2
> C

+

Pr

{
sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2itζ
2
lt

]
> C

}
.

As before

Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2]1/2
> C

 = o (1) .

Then,

Pr

{
sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2itζ
2
lt

]
≤ C

}

≤ Pr

sup
i

(min (N, T )−2a

T 2

T∑
t=1

T∑
l=1

x4it

)1/2(
1

T 2

T∑
t=1

T∑
l=1

ζ4lt

)1/2 ≤ C

 ≤
Pr

(
1

T 2

T∑
t=1

T∑
l=1

ζ4lt ≤ C

)
+

Pr

[
sup
i

(
1

T

T∑
t=1

x4it

)
≤ C min (N, T )2a

]
.

But since T−2
∑T

t=1

∑T
l=1 ζ

4
lt = op (1) , then Pr

(
T−2

∑T
t=1

∑T
l=1 ζ

4
lt > C

)
= o(1), and using

Lemma 2 we obtain

Pr

[
sup
i

(
1

T

T∑
t=1

x4it

)
> C min (N, T )2a

]
= o(1).

A very similar analysis can be applied to (61), proving the required result.
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A.2 Analyzing terms Bi7 and Bi8 for non dominant units

We consider the terms Bi7 and Bi8, defined in (35) and (36), and wish to show that Bi8 =
op (Bi7). We note that

Bi7 =
Nv′iMF̂vi

T
= N

(
v′iMFvi

T

)
+
Nv′i (MF̂ −MF ) vi

T

and since T−1v′iMFvi = Op(1), so clearly Bi7 = Op (N). Consider now Bi8, and note that by
expression (27),

MF̂F0 =
MF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
N

+
MF̂V

(
A0 − Â

)
N

− MF̂VA0

N
.

Hence

v′iMF̂F0ai =
v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

N

+
v′iMF̂V

(
A0 − Â

)
ai

N
− v′iMF̂VA0ai

N

=
Bi81

N
+
Bi82

N
− Bi83

N
.

We examine Bi81, Bi82 and Bi83. For Bi81 we have∣∣∣v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

∣∣∣ ≤ ‖vi‖ ‖MF̂‖
∥∥∥F0−F̂

∥∥∥∥∥∥A′0 (A0 − Â
)∥∥∥ ‖ai‖ .

Recall that by Assumption 2, ‖ai‖ = Op (1), whereas results (A) and (E) yield∥∥∥F0−F̂
∥∥∥
F

= Op

( √
T√

min (N, T )

)
,

and ∥∥∥A′0 (A0 − Â
)∥∥∥

F
= Op

(
N√

min (N, T )

)
.

Furthermore, sinceMF̂ is an idempotent matrix we also have ‖MF̂‖ = Op (1). Lastly, note that

‖vi‖ = Op

(√
T
)
holds by Assumption 3 and the fact that vi = ui for any non dominant unit,

i. Consequently,

|Bi81| =
∣∣∣v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

∣∣∣ = Op

(
NT

min (N, T )

)
.

Next,
|Bi82| =

∣∣∣v′iMF̂V
(
A0 − Â

)
ai

∣∣∣ ≤ ‖vi‖ ‖MF̂‖
∥∥∥V (A0 − Â

)∥∥∥ ‖ai‖ .
Again, recall that by result (C),∥∥∥V (A0 − Â

)∥∥∥
F

= Op

( √
NT√

min (N, T )

)
.

39



So

|Bi82| =
∣∣∣v′iMF̂V

(
A0 − Â

)
ai

∣∣∣ = Op

(
T
√
N√

min (N, T )

)
.

Next,
|Bi83| = |v′iMF̂VA0ai| ≤ ‖vi‖ ‖MF̂‖ ‖VA0‖ ‖ai‖ .

Here, result (D) yields ‖VA0‖F = Op

(√
NT

)
, and |Bi83| = Op

(√
NT

)
. Overall,

Bi8 =
1

T
(Bi81 +Bi82 −Bi83)

= Op

(
N

min (N, T )

)
+Op

( √
N√

min (N, T )

)
+Op

(√
N
)

= op (N) .

A.3 Analysis of sequential σ2 thresholding

Consider the extension to a model of the form

xit = a′ift + b′zt, for i = 1, 2, . . . ,m,

xit = a′ift + b′zt + uit, for i = m+ 1,m+ 2, . . . , N,

where zt is a known and observed vector of variables. We wish to repeat the analysis for
xit − b′zt but use OLS regression of xit on zt to obtain the OLS coeffi cient b̂ and construct
xit − b̂′zt. Repeating our earlier analysis without zt, we note that Nσ̂2iT contains now a
further term that potentially dominates other previously analyzed terms. This term is given

by
N(b̂−b)

′
Z′Z(b̂−b)
T

. A possibility is to modify Nσ̂2iT and consider min(N, T )σ̂2iT instead. So

we consider
(
b̂− b

)′
Z′Z

(
b̂− b

)
. We simplify the analysis by using a scalar zt. We wish to

bound Pr

[(
b̂− b

)′
Z′Z

(
b̂− b

)
> CT

]
. We have

Pr

[(
b̂− b

)′
Z′Z

(
b̂− b

)
> CT

]
= Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2t

∣∣∣∣∣∣ > CT

 ≤
Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2t

∣∣∣∣∣∣ > CT

 .

Using our derivations in the previous sections of the appendix, we have

Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2t

∣∣∣∣∣∣ > CT

 ≤ Pr

(∣∣∣∣∣
T∑
t=1

z2t − σ2z

∣∣∣∣∣ > C/CT

)
+

Pr

(∣∣∣∣∣ 1√
T

T∑
t=1

ztvit

∣∣∣∣∣ > C
1/2
T

)
. (62)
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The right hand side of (62) can be bounded using a martingale difference exponential inequality,
as before, thus providing justification for a criterion of the following form. Select unit i to be
dominant if

σ̂2iT ≤
2η̂2iN log T

N
, if T ≥ N

σ̂2iT ≤
2σ̂2iu log T

T
, if T < N,

where σ̂2iu = 1
T

∑T
t=1

(
xit − b̂′zt

)2
.

B Auxiliary Lemmas

This section provides statements and proofs of the lemmas used in the paper. First we provide
a lemma handling the remainder terms of Nσ̂2iT . We have

Lemma 1 Let i denote a dominant unit, Assumptions 1-4 hold and
√
N
T
→ 0. Then,

Nσ̂2iT =
a′iA0V

′MF̂VA0ai
NT

+Op

(
1

δNT

)
+Op

(√
N

δ2NT

)
,

where δ2NT = min(N, T ).

Proof. Since unit i is dominant then using (28) we note that

Nσ̂2iT =
a′iA0V

′MF̂VA0ai
NT

+
6∑
j=2

Bij,

where Bij for j = 2, 3, ..., 6 are given by (30)-(34) which we reproduce here for convenience

Bi2 = 2
a′iA

′
0V
′MF̂V

(
A0 − Â

)
ai

NT
,

Bi3 = 2
a′iA

′
0V
′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
,

Bi4 =
a′i

(
A0 − Â

)′
V′MF̂V

(
A0 − Â

)
ai

NT
,

Bi5 = 2
a′i

(
A0 − Â

)′
V′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
,

Bi6 =
a′i

(
A0 − Â

)′
A0

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
.

First, note that

‖Bi2‖ ≤
2

NT
‖ai‖2 ‖A′0V′‖ ‖MF̂‖

∥∥∥V (A0 − Â
)∥∥∥ .
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But ‖MF̂‖ = 1, since MF̂ is an idempotent matrix. Furthermore, supi ‖ai‖
2 < C, by Assump-

tion 2. Together with (C) and (D) of Proposition 1, these two results imply

‖Bi2‖ =
1

NT
Op

(√
NT

)
Op

(√
NT

δNT

)
= Op

(
1

δNT

)
.

Similarly, using (A), (D) and (E) of Proposition 1,

‖Bi3‖ ≤
C

NT
‖A′0V′‖

∥∥∥F0 − F̂
∥∥∥∥∥∥A′0(A0 − Â

)∥∥∥
=

1

NT
Op

(√
NT

)
Op

(√
T

δNT

)
Op

(
N

δNT

)

= Op

(√
N

δ2NT

)
.

Next,

‖Bi4‖ ≤
C

NT

∥∥∥V (A0 − Â
)∥∥∥2 = Op

(
1

δ2NT

)
,

follows from (C). Using this latter result, as well as (A) and (E), we also obtain

‖Bi5‖ ≤
C

NT

∥∥∥V (A0 − Â
)∥∥∥∥∥∥F0 − F̂

∥∥∥∥∥∥A′0(A0 − Â
)∥∥∥

=
1

NT
Op

(√
NT

δNT

)
Op

(√
T

δNT

)
Op

(
N

δNT

)

= Op

(√
N

δ3NT

)
.

Finally,

‖Bi6‖ ≤
C

NT

∥∥∥A′0(A0 − Â
)∥∥∥2 ∥∥∥F0 − F̂

∥∥∥2
=

1

NT
Op

(
N2

δ2NT

)
Op

(
T

δ2NT

)
= Op

(
N

δ4NT

)
,

by the same intermediate results. Summarizing the order results above and noting that
√
N
T
→ 0,

we have

Nσ̂2iT =
a′iA

′
0V
′MF̂VA0ai
NT

+Op

(
1

δNT

)
+Op

(√
N

δ2NT

)
,

proving the required result.

Lemma 2 Let Assumptions 1-4 hold. Then,

Pr

[
sup
i

(
1

T

T∑
t=1

xjit

)
> C

]
= o(1), j = 1, 2, 3, 4.
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Proof. We will prove the case for j = 4 only. The cases for j = 1, 2, 3 follow straightforwardly.
We have

xit = a′ift + vit = ϕit + vit,

So

x4it = ϕ4it + 4ϕ3itvit + 6ϕ2itv
2
it + 4ϕitv

3
it + v4it =

5∑
j

Ajit.

So

Pr

[
sup
i

(
1

T

T∑
t=1

x4it

)
> C

]
= Pr

[
sup
i

[
5∑
j=1

(
1

T

T∑
t=1

Ajit

)]
> C

]

≤ Pr

[
5∑
j=1

sup
i

(
1

T

T∑
t=1

Ajit

)
> C

]

≤
5∑
j=1

Pr

[
sup
i

(
1

T

T∑
t=1

Aijt

)
> πjC

]
=

5∑
j=1

Bj,

where πj > 0, and
∑5

j=1 πj = 1. We examine each Bj in turn. We have that for suffi ciently
large finite constant C, there exists some constant C1 such that

Pr

[
sup
i

(
1

T

T∑
t=1

Ai1t

)
> π1C

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

(a′ift)
4

∣∣∣∣∣ > π1C

]

= Pr

[(
sup
i
‖ai‖4

) ∣∣∣∣∣ 1

T

T∑
t=1

‖ft‖4
∣∣∣∣∣ > π1C

]

≤ Pr

[∣∣∣∣∣
T∑
t=1

[
‖ft‖4 − E

(
‖ft‖4

)]∣∣∣∣∣ > Tπ1C1

]
.

However, since by Assumption 1, 1
T

∑T
t=1

[
‖ft‖4 − E

(
‖ft‖4

)]
= op (1),

Pr

[∣∣∣∣∣
T∑
t=1

‖ft‖4 − E
(
‖ft‖4

)∣∣∣∣∣ > Tπ1C1

]
= o (1) ,

for any finite C1 > 0. For B2 − B5 it is suffi cient to note that Ajit, j = 2, . . . , 5 are martingale
difference processes since ϕit and vit are independent and v

j
it − E

(
vjit
)
, for j = 1, 2, 3, 4 are

martingale difference processes by the serial independence of εt (see Assumption 3). Therefore,
by the martingale difference exponential inequality Lemma A3 of Chudik, Kapetanios, and
Pesaran (2018), we have that for j = 1, . . . , 4, and for a suffi ciently large finite constant, C,
there exist some constants C1 and C2 such that

Pr

[
sup
i

(
1

T

T∑
t=1

Aijt

)
> πjC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

Aijt − E (Aijt)

∣∣∣∣∣ > πjC1

]
≤ exp (−C2T ) ,

proving the result.
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The rest of the lemmas in this section prove the results of Proposition 1 in the main text.
The five results A—E are analysed in separate lemmas due to the length of the proofs. It is also
important to note that the required assumptions for the subsequent lemmas are considerably
weaker than those needed for consistency of the σ2 thresholding procedure. The minimal
conditions needed, which are satisfied by Assumptions 1—4 in the main text, as noted in Remark
2, are as follows:

1. E||ft||4 ≤ C < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σf for some m ×m positive definite matrix Σf . A0

has bounded elements. Further ||N−1A′0A0−D|| → 0, as N →∞, where D is a positive
definite matrix.

2. E(vit) = 0, E|vit|8 ≤ C where vt = (v1t, . . . , vNt)
′ The variance of vt is denoted by Σv. fs

and vt are independent for all s, t.

3. For τi,j,t,s ≡ E(vitvjs) the following hold

• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ C.

•
∑T

l=1 |1/N
∑N

i=1 τi,i,s,l| ≤ C for all s.

• N−1
∑N

i=1

∑N
j=1 |τi,j,s,s| ≤ C.

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ C.

• For every (t, s), E|(N)−1/2
∑N

i=1(visvit − τi,i,s,t)|4 ≤ C.

• For each t, 1√
N

∑N
i=1 aivit →d N (0,Γt) where Γt = limN→∞

∑N
i=1

∑N
j=1E

(
aia
′
jvitvjt

)
.

The above list is essentially the set of assumptions in Bai (2003). Analogous to the definition
in Section A.1, let γst = γN,st = 1

N

∑N
i=1 τi,i,t,s.

Lemma 3 Under Assumptions 1—4∥∥∥∥∥∥
V
(
Â−A0

)
N

∥∥∥∥∥∥
F

= Op

( √
T√

N min(N, T )

)
= Op

(√
T

N

)
+Op

(
1√
N

)
.

Proof.
We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
. (63)
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We have

1

N2

∥∥∥V (Â−A0

)∥∥∥2
F

=
1

N2

T∑
t=1

N∑
i=1

v2i (âi − ai)
′ (âi − ai)

≤ 1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

f ′sfsv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N2

T∑
t=1

N∑
i=1

v2it

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2
F

+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

1

N2

T∑
t=1

N∑
i=1

v2it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
=

1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
+

1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)
+

1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)
+

1

N2

T∑
t=1

N∑
i=1

v2it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]

=
5∑
i=1

Ci

We have

C1 =
1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T

T∑
s=1

f ′sfsv
2
is

)
=

1

N2

N∑
i=1

(
1

T

T∑
s=1

f ′sfsv
2
is

)(
1

T

T∑
t=1

v2it

)
= Op

(
N−1

)
.

Also

C2 =
1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)

=
1

N2

1

T

T∑
t=1

N∑
i=1

v2it

[
1√
T

T∑
s=1

visf
′
s

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
N−1

)
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Next, we have

C3 =
1

T 2N2

T∑
t=1

N∑
i=1

v2it

(
T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)

=
m∑
j=1

[
1

T 2N2

T∑
t=1

N∑
i=1

v2it

(
T∑
s=1

x2is

(
f̂js − fjs

)2)]
≤

max
j

1

T 2N2

T∑
t=1

N∑
i=1

v2it

(
T∑
s=1

x2is

(
f̂js − fjs

)2)
.

But

1

T 2N2

T∑
t=1

N∑
i=1

v2it

(
T∑
s=1

x2is

(
f̂js − fjs

)2)
=

1

TN2

T∑
s=1

N∑
i=1

(
1

T

T∑
t=1

v2it

)
x2is

(
f̂js − fjs

)2
=

1

TN2

T∑
s=1

N∑
i=1

zis

(
f̂js − fjs

)2
,

where zit =
(
1
T

∑T
s=1 v

2
is

)
x2it. Note that supi,tE (z2it) <∞. Then, by a similar analysis to term

A1 in (64) of Lemma 5,
C3 = Op

(
N−1 min(N, T )−1

)
.

Further,

C4 =
1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ 1

N2

T∑
t=1

N∑
i=1

v2it


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2(

1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

∥∥∥f̂s′ − fs′
∥∥∥2
F

)1/2


≤ 1

N2

T∑
t=1

N∑
i=1

v2it


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2{

1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2
F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

)]}1/2


≤
(

1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2
F

)
 1

N2

T∑
t=1

N∑
i=1

v2it

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′ |
)1/2 .

But

sup
i
E

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2
= O (1) ,
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and therefore  1

N2

T∑
t=1

N∑
i=1

v2it

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2 = Op

(
TN−1

)
.

Further,

E

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2
F

)
= O

[
min(N, T )−1

]
,

and overall we have C4 = Op

(
T

N min(N,T )

)
. Finally,

1

N2

T∑
t=1

N∑
i=1

v2it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]

=

[
1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T

T∑
s=1

visf
′
s

)][
1

T

T∑
s=1

xis′
(
f̂s′ − fs′

)]
.

But using Lemma A.1 of Bai (2003) and supi,tE (x2it) <∞,∥∥∥∥∥ 1

T

T∑
s=1

xis′
(
f̂s′ − fs′

)∥∥∥∥∥
F

= Op

[
min(N, T )−1

]
,

and
1

N2

T∑
t=1

N∑
i=1

v2it

(
1

T

T∑
s=1

visf
′
s

)
= Op

(
TN−1

)
.

So, we have

1

N2

T∑
t=1

N∑
i=1

v2it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
TN−1 min(N, T )−1

]
,

and hence∥∥∥∥∥∥
V
(
Â−A0

)
N

∥∥∥∥∥∥
F

= Op

(
N−1/2

)
+Op

( √
T√

N min(N, T )

)
= Op

( √
T√

N min(N, T )

)
.

Lemma 4 Under Assumptions 1—4,∥∥∥F̂− F0

∥∥∥2
F

T
= Op

(
1

min(N, T )

)
.

Proof.
Since

1

T

∥∥∥F̂− F0

∥∥∥2
F

=
1

T

T∑
t=1

∥∥∥f̂t − ft

∥∥∥2
F
,

then the required result follows immediately from Theorem 1 of Bai and Ng (2002).
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Lemma 5 Under Assumptions 1—4,∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
F

= Op

(√
N

T

)
+Op

(
1√
T

)
+Op

(
N1/4

T 3/4

)
.

Proof. We have that∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
2

F

=

N∑
i=1

m∑
j=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2
≤ max

j

N∑
i=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2
.

But,

N∑
i=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2
=

1

T 2

N∑
i=1

T∑
t=1

v2it

(
f̂jt − fjt

)2
+

2

T 2

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
f̂jt − fjt

)(
f̂js − fjs

)
= A1 + A2. (64)

By equation (58) we can write

f̂jt − fjt =
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt,

where ζlt = N−1v′lvt − γlt, κlt = N−1f ′lA
′
0vt, and ξlt = κtl. We have

1

T 2

N∑
i=1

T∑
t=1

v2it

(
f̂jt − fjt

)2
≤ 4

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlγlt

)2
+

4

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlζlt

)2
+

4

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlκlt

)2
+

4

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlξlt

)2
= A11 + A12 + A13 + A14.

Now,

A11 =
1

T 4

N∑
i=1

T∑
t=1

v2it

(
T∑
l=1

f̂jlγlt

)2
≤
(

1

T

T∑
l=1

f̂ 2jl

)
1

T 3

N∑
i=1

T∑
t=1

v2it

(
T∑
l=1

γ2lt

)
.

But T−1
∑T

l=1 f̂
2
jl = Op(1), and

∑T
l=1 γ

2
lt < C. Hence

N∑
i=1

T∑
t=1

v2it

(
T∑
l=1

γ2lt

)
≤ C

N∑
i=1

T∑
t=1

v2it = Op (TN) .
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So

A11 =
1

T 4

N∑
i=1

T∑
t=1

v2it

(
T∑
l=1

f̂jlγlt

)2
= Op

(
NT−2

)
.

Next

A12 =
1

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlζlt

)2
=

1

T 4

N∑
i=1

T∑
t=1

v2it

(
T∑
l=1

f̂jlζlt

)2

=
1

T 4

(
T∑
l=1

T∑
u=1

f̂jlf̂ju

T∑
t=1

ζltζut

(
N∑
i=1

v2it

))
≤

N

T 2

[
1

T 2

T∑
l=1

T∑
u=1

(
f̂jlf̂ju

)2]1/2 1

T 2

T∑
l=1

T∑
u=1

[
T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2it

)]2
1/2

≤ N

T 2

(
1

T

T∑
l=1

f̂ 2jl

) 1

T 2

T∑
l=1

T∑
u=1

[
T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2it

)]2
1/2

.

But

E

( T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2it

))2 ≤ T 2N−2.

So

A12 =
N

T 2
·Op (1) ·

√
T 2N−2 = Op

(
T−1

)
.

Next,

A13 =
4

T 2

N∑
i=1

T∑
t=1

v2it

(
1

T

T∑
l=1

f̂jlκlt

)2
=

4

N2T 2

N∑
i=1

T∑
t=1

v2it
1

T 2

(
T∑
l=1

f̂jlf
′
lA
′
0vt

)2
≤(

1

T

T∑
l=1

f̂ 2jl

)(
1

T

T∑
l=1

‖fl‖2
)

4

NT 2

T∑
t=1

(
1

N

N∑
i=1

v2it

)
‖A′0vt‖

2

=

(
1

T

T∑
l=1

f̂ 2jl

)(
1

T

T∑
l=1

‖fl‖2
)

4

T 2

T∑
t=1

(
1

N

N∑
i=1

v2it

)∥∥∥∥A′0vt√
N

∥∥∥∥2 = Op

(
T−1

)
.

Similarly for A14. So, overall

A1 = Op

(
NT−2

)
+Op

(
T−1

)
= Op

(
N

T min(N, T )

)
.

Next we consider A2, and note that
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(
f̂jt − fjt

)(
f̂js − fjs

)
=

(
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt

)

×
(

1

T

T∑
l=1

f̂jlγls +
1

T

T∑
l=1

f̂jlζls +
1

T

T∑
l=1

f̂jlκls +
1

T

T∑
l=1

f̂jlξls

)

=
1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltγus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltζus+

2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltξus+

1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltζus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltξus+

1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juκltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juκltξus +
1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juξltξus.

Therefore

A2 =
2

T 2

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
f̂jt − fjt

)(
f̂js − fjs

)
=

10∑
i=1

A2i.

Denoting equality in order of probability by A ∼ B, we proceed term by term noting that
A23 ∼ A24, A26 ∼ A27 and A28 ∼ A210. So the terms to consider are A21, A22, A23, A25, A26,
A28 and A29. Starting with A21 we have

A21 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltγus

)

=
2

T 4

N∑
i=1

T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

vitvisγltγus

)

≤ 2

T 2

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2)1/2
[
1
T 3

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 vitvisγltγus

)2]1/2


=

 2

T 2

N∑
i=1

 1

T 2

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltγus

)21/2

(

1

T

T∑
u=1

f̂ 2ju

)
.

But, due to summability of γlt

E

( T∑
t=1

T∑
s=1

vitvisγltγus

)2 ≤ T C.
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Noting further that, again due to summability of γlt, the double sum over l and u will only
have terms bounded away from zero if l and u are close we obtain

E

 1

T 2

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltγus

)2 = O (1) ,

and hence A21 = Op (NT−2). Consider now

A22 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltζus

)

=
2

T 4

N∑
i=1

T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

vitvisγltζus

)

≤ 2

T 3/2

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2)1/2
[
1
T 3

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 vitvisγltζus

)2]1/2


≤

 2

T 3/2

N∑
i=1


 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltζus

)21/2

×( 1

T

T∑
u=1

f̂ 2ju

)
.

But

E

( T∑
t=1

T∑
s=1

vitvisγltζus

)2 ≤ T 2N−1.

Further, due to summability of γlt the double sum over l and t will only have terms bounded
away from zero if l and t are close so

E

 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltζus

)2 = O
(
N−1

)
, (65)

and as a result A22 = Op

(
N1/2T−3/2

)
. Next, and similarly to the previous terms

A23 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltκus

)
≤

≤

 2

T 3/2

N∑
i=1


 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltκus

)21/2

( 1

T

T∑
u=1

f̂ 2ju

)
,
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which again, by a manipulation similar to that used for (65), yields A23 = Op

(
N1/2T−3/2

)
.

Next,

A25 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juζltζus

)

=
2

T 4

N∑
i=1

[
T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)]

≤ 2

T

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2)1/2
[
1
T 4

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 ζltζusvitvis

)2]1/2


≤ 2

T

N∑
i=1


(

1

T

T∑
u=1

f̂ 2ju

) 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)21/2
 .

But, by absolute summability of the autocovariance of vit,

E

( T∑
t=1

T∑
s=1

ζltζusvitvis

)2 ≤ CT 2E
(
ζ4lt
)
≤ CT 4N−2.

So  1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)21/2 = Op

(
N−1

)
,

2

T

N∑
i=1


(

1

T

T∑
u=1

f̂ 2ju

) 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)21/2
 = Op

(
T−1

)
,

and A25 = Op (T−1). Next

A26 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juζltκus

)
≤

≤

 2

T

N∑
i=1


 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisζltκus

)21/2

( 1

T

T∑
u=1

f̂ 2ju

)
.

But

E

( T∑
t=1

T∑
s=1

vitvisζltκus

)2 ≤ T 2N−2,

and

E

 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisζltκus

)2 = O
(
N−2

)
.
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So A26 = Op (T−1). Similarly, we obtain A28 = Op (T−1) and A29 = Op (T−1). Collecting the
terms, we have

A2 = Op

(
NT−2

)
+Op

(
N1/2T−3/2

)
+Op

(
T−1

)
.

Thus ∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
2

F

= Op

(
NT−2

)
+Op

(
T−1

)
+Op

(
N1/2T−3/2

)
,

and hence ∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
F

= Op

(
N1/2T−1

)
+Op

(
T−1/2

)
+Op

(
N1/4T−3/4

)
.

Lemma 6 Under Assumptions 1—4,∥∥∥Â−A0

∥∥∥2
F

N
= Op

(
1

min(N, T )

)
,

and ∥∥∥A′0 (Â−A0

)∥∥∥
F

= Op

(
N√

min(N, T )

)
. (66)

Proof. We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.

53



This result can be used to obtain

1

N

∥∥∥(Â−A0

)∥∥∥2
F

=
1

N

N∑
i=1

(âi − ai)
′ (âi − ai)

≤ 1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N

N∑
i=1

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2
F

+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ |

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

2

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

))
=

1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)
+

2

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

))

=
5∑
i=1

Ci.

We have

C1 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
= Op

(
T−1

)
.

Also

C2 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)

=
1

N

1

T

N∑
i=1

[
1√
T

T∑
s=1

visf
′
s

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
T−1

)
,
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and

C3 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)

=
1

min(N, T )NT

N∑
i=1

(
min(N, T )

T

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)
= Op

(
T−1 min(N, T )−1

)
,

noting that by Lemma A.1 of Bai (2003) and supi suptE (x2it) <∞,

sup
i
E

(
min(N, T )

T

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)2
= O(1).

Further,

C4 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ 1

N

N∑
i=1


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2(

1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

∥∥∥f̂s′ − fs′
∥∥∥2
F

)1/2


≤ 1

N

N∑
i=1


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2{

1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2
F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

)]}1/2


≤
(

1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2
F

) 1

N

N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2 .

But

sup
i
E

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2
= O (1) ,

and so

1

N

N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2 = Op (1) .

Further,

E

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2
F

)
= O

[
min(N, T )−1

]
.

So, overall C4 = Op

(
1

min(N,T )

)
. Finally, noting by Lemma A.1 of Bai (2003) (or can be proven

by first principles) that

sup
i

E
[

1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]2
1/2

= Op

[
min(N, T )−1

]
,
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we have

C5 =
1

N

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
min(N, T )−1

]
,

So overall
1

N

∥∥∥Â−A0

∥∥∥2
F

= Op

(
1

min(N, T )

)
.

To prove (66), recall that by equation (63),

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.

Define B = A′0A0. Note that every element of B is O (N) and so every element of N−1B is
bounded. We have∥∥∥A′0 (Â−A0

)∥∥∥2
F

= Tr

[(
Â−A0

)
A′0A0

(
Â−A0

)′]
=

N∑
i=1

(âi − ai)
′B (âi − ai)

≤
N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)
+

‖B‖F

 N∑
i=1

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2
F

+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ |

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
sB
(
f̂s′ − fs′

)]
=

N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is

)
+

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)
+

‖B‖F

[
N∑
i=1

(
1

T 2

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)]
+

‖B‖F

[
N∑
i=1

(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ | ×∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)]
+

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
sB
(
f̂s′ − fs′

)]

=
5∑
i=1

C̃i.

We have

C̃1 =

N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is

)
= Op

(
NT−1

)
.

56



Also

C̃2 =

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)

=
1

T

N∑
i=1

[
1√
T

T∑
s=1

visf
′
sB

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
NT−1

)
and

C̃3 = ‖B‖F
N∑
i=1

(
1

T 2

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)

= ‖B‖F
1

min(N, T )T

N∑
i=1

(
min(N, T )

T

T∑
s=1

x2is

∥∥∥f̂s − fs

∥∥∥2
F

)
= Op

[
N2T−1 min(N, T )−1

]
.

Further,

C̃4 = ‖B‖F
N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ ‖B‖F
N∑
i=1


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

)1/2(
1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

∥∥∥f̂s′ − fs′
∥∥∥2
F

)1/2


≤ ‖B‖F
N∑
i=1


(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

)1/2{
1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2
F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2
F

)]}1/2


≤ ‖B‖F

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2
F

)
N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
)1/2 ,

and it follows that C̃4 = Op

(
N2

min(N,T )

)
. Finally, since

sup
i

E
[

1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]2
1/2

= Op

(
min(N, T )−1

)
,

we have

C̃5 = ‖B‖F
N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
N2 min(N, T )−1

]
.

So overall ∥∥∥A′0 (Â−A0

)∥∥∥2
F

= Op

(
N2

min(N, T )

)
.
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and ∥∥∥A′0 (Â−A0

)∥∥∥
F

= Op

(
N√

min(N, T )

)
,

proving the required result.
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This online supplement contains additional theoretical, simulation and empirical results that
complement the main paper. It is composed of five sections. Section S1 gives a more detailed
description of the steps required to implement the various variants of the basic σ2 thresholding
method proposed in the paper. A summary of other approaches proposed in the literature for
the detection of dominant units is given in Section S2. The finite sample performance of the
different variants of the σ2 thresholding (that are not considered in Section 6 of the paper) is
discussed in Section S3. Two additional σ2 thresholding schemes, based on the difference and
the ratio of two successive ordered error variance estimates, are considered in Section S4 and
their small sample properties investigated using Monte Carlo simulations. Finally, Sections S5
and S6 report simulation and empirical results using an unmodified version of BM procedure.

S1 Variants of the basic σ2 thresholding Methods

This section provides a step by step description of the various refinements of the basic σ2

thresholindg advanced in Section 5 of the paper. Let xi be the T × 1 vector of observations
on the i-th unit in the panel, and X = (x1,x2, . . . ,xN) be the T × N matrix of observations
on all the N units in the panel. Suppose that p ≤ pmax, where pmax is selected a priori to be
suffi ciently large. Denote by X∗a the T × r matrix containing all dominant units that have been
identified at a given step of the two algorithms described below. Analogously, let the T × N1
matrix X∗b = (xb,1; . . . ; xb,N1) contain observations for the N1 = N − r remaining cross-section
units that have not been identified as dominant. Furthermore, let

MX∗a =

{
IT , if r = 0,

IT −X∗a(X
∗′
a X∗a)

−1X∗′a , if r > 0.
.

Given the sequential nature of the two algorithms described below, the values of r,N1,X
∗
a and

X∗b and the dimensions of the latter two matrices change as the algorithm proceeds. Further-
more, X∗a and X∗b represent an estimated partition of the data into dominant and non-dominant
units which is to be distinguish from the true partition X = (Xa; Xb).

Algorithm 4 (Sequential σ2 thresholding)

1. Set r = 0.

1



2. Compute F̂ = 1√
N

MX∗aX
∗
bQ̂, where Q̂ is the N × (pmax − r) matrix whose columns are

the orthonormal eigenvectors of X∗′b MX∗aX
∗
b , such that N

−1Q̂′Q̂ = Ipmax. For each i = 1,
compute âi, v̂it and σ̂2iT to be the OLS estimator, residual and residual variance of the
regression of x∗b,i on F̂, namely

âi =
(
F̂′F̂

)−1
F̂′x∗b,i,

v̂i = (v̂i1, v̂i2, . . . , v̂iT )′ = MF̂x∗b,i =

[
IT − F̂

(
F̂′F̂

)−1
F̂′
]

x∗b,i,

σ̂2iT = T−1x∗′b,iMF̂x∗b,i.

3. Compute

η̂2iN =
â′iÂ

′Σ̃vÂâi
N

,

for every i = 1, 2, . . . , N where Σ̃v is the multiple testing estimator of Σv by Bailey,
Pesaran, and Smith (2018), as described in Section 4.2 of the main paper. If for all i,

σ̂2iT >
2η̂2iN log T

N
,

then stop the algorithm and conclude that there are m̂ = r dominant units whose identities
are given by the indices of the columns in X that coincide with columns in X∗a. Otherwise,
proceed to step 4.

4. Let i∗ = arg mini σ̂
2
i . Update X∗a = (X∗a; xb,i∗) and eliminate xb,i∗ from X∗b . Update,

r := r + 1 and N1 := N1 − 1 and return to step 2.

Algorithm 5 (Sequential-MT σ2 thresholding )

1. Set r = 0.

2. Compute F̂ = 1√
N

MX∗aX
∗
bQ̂, where Q̂ is the N × (pmax − r) matrix whose columns are

the orthonormal eigenvectors of X∗′b MX∗aX
∗
b , such that N

−1Q̂′Q̂ = Ipmax. For each i = 1,
compute âi, v̂it and σ̂2iT to be the OLS estimator, residual and residual variance of the
regression of x∗b,i on F̂, namely

âi =
(
F̂′F̂

)−1
F̂′x∗b,i,

v̂i = (v̂i1, v̂i2, . . . , v̂iT )′ = MF̂x∗b,i =

[
IT − F̂

(
F̂′F̂

)−1
F̂′
]

x∗b,i,

σ̂2iT = T−1x∗′b,iMF̂x∗b,i.

3. Compute

η̂2iN =
â′iÂ

′Σ̃vÂâi
N

,

2



for every i = 1, 2, . . . , N where Σ̃v is the multiple testing estimator of Σv by Bailey,
Pesaran, and Smith (2018), as described in Section 4.2 of the main paper. If for all i,

σ̂2iT >
2η̂2iN log T

N
,

then stop the algorithm and conclude that there are m̂ = r dominant units whose identities
are given by the indices of the columns in X that coincide with columns in X∗a. Otherwise,
proceed to step 4.

4. Let i∗ = arg mini σ̂
2
i . For each j = 1, . . . i∗ − 1, i∗ + 1, . . . , N1 estimate the model

MX∗axb,j = MX∗axb,i∗γ
∗
j + f∗′t a∗j + vj,

where f∗t is a pmax− r− 1 vector of unobserved factors which we estimate as in step 2 but
using MX∗aX

∗
b,−i∗ with Xb,−i∗ = (xb,1; . . . ; xb,i∗−1; xb,i∗+1; . . . ; xb,N1) instead of MX∗aX

∗
b .

5. Apply individual significance tests to the N1−1 estimated slope parameters γ̂∗1 , . . . , γ̂
∗
i∗−1, γ̂

∗
i∗+1, . . . , γ̂

∗
N1

using the critical value Φ−1
[
1− π

2(N1−1)

]
with Φ−1(·) denoting the inverse normal CDF,

and π is set to 0.01.

6. LetM denote the number of rejections among these N1−1 tests. If log(M)/ log(N) ≤ 1/2,
stop and conclude that there are m̂ = r dominant units whose identities are given by the
indices of the columns in X that coincide with the columns of X∗a. Otherwise proceed to
step 7.

7. Update X∗a = (X∗a; xb,i∗) and eliminate xb,i∗ from X∗b . Update, r := r+1 and N1 := N1−1
and return to step 2.

S2 Dominant unit detection procedures proposed in the
literature

S2.1 Brownlees and Mesters (BM) procedure

The model considered in (Brownlees and Mesters, 2018, BM in the following) has an equivalent
reformulation of our dominant unit model, formally given by

xta
m×1

= ft, (67)

xtb
n×1

= Bxta + ut, (68)

where the covariance matrix of ft may be any positive definite matrix. Brownlees and Mesters
(2018) also allow for the presence of unobserved common factors, but we will be abstracting
from such factors to simplify the exposition.
The number of dominant units19 and their identities are estimated from the precision matrix

(i.e. the inverse covariance matrix) of the observed data X. Formally, let

K̂ =
(
T−1X′X− xx′

)−1
,

19Brownlees and Mesters (2018) employ the term granular shocks instead of dominant units.
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where x = (x1; . . . ;xN)′, and xi = T−1
∑T

t=1 xit. Additionally, let K̂ =
(
k̂1 . . . k̂N

)
. BM

then compute κ̂i = ||k̂i||, i = 1, 2, . . . , N, where ||k̂i|| =

√
k̂′ik̂i. These N vector norms are

then ordered in a descending manner, denoted as κ̂(1), κ̂(2), . . . , κ̂(N). The estimated number of
dominant units is then

m̂ = arg max
j=1,2,...,N−1

κ̂(j)
κ̂(j+1)

,

and the dominant units are determined as columns with the norms κ̂(1), κ̂(2), . . . , κ̂(m̂). Monte
Carlo simulations and empirical applications in the main paper employ a slight modification
of this procedure, also used in Section 6 of Brownlees and Mesters (2018), whereby the above
maximimzation problem is solved with respect to the first N/2 ratios instead of all N−1 ratios.
Supplementary simulation results obtained without this modification are reported in Sections
S5 and S6.
BM detection method is subject to two main shortcomings. First, estimation of the precision

matrix requires T > N . Second, by construction the estimated number of dominant units is
at least one. Consequently, it is impossible to use the BM procedure to investigate whether
there is in fact any dominant unit in the panel data set under consideration. As an illustration
consider the simple factor specification

xit = βift + uit, (69)

where ft ∼ (0, 1) is the common factor, βi is the factor loading with sup
i
|βi| < K, and uit is the

unit-specific component which we assume to be IID (0, σ2) over all i and t, i = 1, 2, . . . , N ; t =
1, 2, . . . , T . Assuming that σ2 > 0 ensures that there is no dominant unit in this model. Let
xt = (x1t, x2t, . . . , xNt)

′, β = (β1, β2, . . . , βN) , and ut = (u1t, u2t, . . . , uNt) , and write (69) as

xt = βft + ut, (70)

and note that
Cov (xt) = Σ = ββ′ + σ2IN . (71)

Then,

K=
(

k1 k2 · · · kN
)

=Σ−1 =
(
σ2IN + ββ′

)−1
=

1

σ2

(
IN −

δδ′

1 + δ′δ

)
, (72)

where δ = (δ1, δ2, . . . , δN)′ and δi = βi/σ. Then, it is easily seen that

‖ki‖2 =
1

σ4

[(
1− δδ′

1 + δ′δ

)2
+
δ2i
∑N

j 6=i δ
2
j

(1 + δ′δ)
2

]
. (73)

Suppose that β′ β = σ2δ′δ = Θ (Nα) , with α = 1, signifying ft to be strong. Then, ‖ki‖2 =
1
σ4
δ2i

δδ′

(1+δ′δ)2
, and hence, as N →∞,

lim
N→∞

‖ki‖
‖ks‖

=
|δi|
|δs|

=
|βi|
|βs|

, (74)
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and ‖ki‖ is maximized for the unit with the largest factor loading in absolute value.
The same result holds if we allow the variance of uit to vary over i. In such a case the

relevant measure is |βi| /σ2i , where σ2i = V (uit), with 0 < σ2i < K. Thus, the column norms of
the concentration matrix measure the relative importance of the common factors for the units
in the panel, and is not informative about the importance of the unit for the rest of the units
in the panel (network).

S2.2 Parker and Sul (PS) procedure

The dominant leader framework of (Parker and Sul, 2016, henceforth PS) is primarily aimed at
investigating whether a time series external to the dataset at hand is one of the latent factors
driving the observed data. However, this framework can be represented in terms of the model
(67)—(68) by simply including the potential dominant unit(s) into the dataset (see also Parker
and Sul, 2016, p.229). The dominant leader framework also deals with approximate dominant
leaders which will not be considered here.
The key idea of PS is whether a known potential dominant unit can replace one of the

factor estimates obtained from the factor model representation of the dominant unit model. If
so, then this candidate unit is identified as dominant.
PS assume a priori knowledge of a fixed number r of potential dominant units, denoted

as G = (g1, . . . ,gr). Each time series in the dataset is standardized and the true number of
factors in the data is determined. In order to avoid a subjective choice, we let pmax = #̂(X)
where #̂(X) denotes the number of factors in X minimizing the the ICp2 criterion of Bai and
Ng (2002).20 Subsequently, the factor estimates F̂ are obtained as

√
T times the eigenvectors

corresponding to the pmax largest eigenvalues of N−1XX′. Now, for each potential dominant
unit g`, ` = 1, . . . , pmax, Parker and Sul consider the pmax regression models

xit = γi,1gt,` + αi,2f̂t,2 + . . .+ αi,pmax f̂t,pmax + η
(1)
it ,

xit = αi,1f̂t,1 + γi,2gt,` + . . .+ αi,pmax f̂t,pmax + η
(2)
it ,

...

xit = αi,1f̂t,1 + αi,2f̂t,2 + . . .+ γi,pmaxgt,` + η
(pmax)
it ,

for i = 1, 2, . . . , N . Let Ĥ(1) =
(
η̂
(1)
1t , . . . , η̂

(1)
Nt

)
, . . . , Ĥ(pmax) =

(
η̂
(m̂0)
1t , . . . , η̂

(pmax)
Nt

)
denote the

OLS residuals of the pmax regression models above. If at least one among #̂
(
Ĥ(1)

)
, . . . , #̂

(
Ĥ(pmax)

)
is equal to zero then g` is considered as a dominant unit.
PS suggest a further step if any of the units in the dataset is selected as dominant. For each

unit xi, the authors consider the pmax regression models

f̂t,1 = c
(1)
1,ixit + c

(1)
2,i f̂t,2 + . . .+ c

(1)
pmax,i

f̂t,pmax + ζ
(1)
t ,

f̂t,2 = c
(2)
1,i f̂t,1 + c

(2)
2,ixit + . . .+ c

(2)
pmax,i

f̂t,pmax + ζ
(2)
t ,

...

f̂t,m̂0 = c
(pmax)
1,i f̂t,1 + c

(pmax)
2,i f̂t,2 + . . .+ c

(pmax)
pmax,i

xit + ζ
(pmax)
t .

20In application of the Bai-Ng selection procedure, we set the maximum number of factors to 10.
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The coeffi cients of determination R21,i, . . . , R
2
pmax,i for these pmax regression equations are ob-

tained. Having done this for every i = 1, 2, . . . , N , the R2 values for the first model above,
denoted by R21,1, . . . , R

2
1,N , are ordered in a descending manner. The units with the coeffi cient

of determination R21,(1), . . . , R
2
1,(r∗) are chosen as r

∗ potential dominant units. This procedure
is repeated for the remaining pmax − 1 models as set out above, providing in total r = r∗pmax
potential dominant units (duplicates included). A guideline for the choice of r∗ is “[. . . ] around
10% of the size of N .”(Parker and Sul, 2016, p.232).
The PS procedure is subject to two limitations. First, Parker and Sul (2016, p.230) ac-

knowledge that treating all units in the sample as potential dominant units may lead to a
non-negligible probability of making a Type I error. However, this problem is not solved by
restricting the number of potential dominant units to 10% of the number of cross-sections.
Second, the performance of the procedure depends crucially on the choice of m, the number of
factors, and how well it is estimated. If m is underestimated not all true dominant units may
be chosen. If it is overestimated, non-dominant units may falsely be identified as dominant.

S3 Finite sample performance of alternative σ2 thresh-
olding methods

As discussed in Section 5 of the paper, it is possible to apply certain refinements to the σ2

thresholding method in order to improve its finite sample properties. Our preference for the
sequential-MT σ2 thresholding is based on its finite sample performance relative to a number of
other modified versions of the basic method. This section provides simulation results to support
our choice.

The σ2 thresholding variations considered are as follows:

1. σ2 thresholding, as described by Algorithm 1 in the paper.

2. S−σ2 thresholding, as described by Algorithm 4 given above, or Algorithm 2 in the paper.

3. Sequential-MT σ2 thresholding with an alternative threshold. This method coincides with
Algorithm 5 except for the application of the threshold specified in Section A.3 for the σ2

thresholding step.

We conduct simulation experiments identical to those in Section 6 of the paper, and report
the performance of σ2 thresholding, as discussed in Section 4.2, as well as S−σ2 thresholding,
and the SMT−σ2 thresholding with an alternative scaling, as set out above. As before, our
performance measures are (a) the percent probability of correctly determining only the true
dominant units, and (b) the average number of units falsely selected as dominant.
Tables S3.1 and S3.2 report results for the case where there is no dominant unit. The

performance of the four measures considered differs only with respect to whether they involve a
multiple testing hurdle or not. Algorithms that include this extra step perform better, especially
when the DGP includes an external factor. This observation suggests that the multiple testing
hurdle makes a noticeable contribution to minimizing the probability of falsely discovering a
dominant unit.
Noticeable differences between all four algorithms begin to emerge when the number of

dominant units is at least equal to one. As reported in Table S3.3, the performance of σ2
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thresholding declines considerably when the total number of factors, both dominant units and
external factors, is larger than one. This problem is somewhat mitigated if one considers S−σ2
thresholding. However, this method often fails to correctly detect the true dominant units
when T > N , and there are external factors affecting the observations. The multiple testing
hurdle in SMT−σ2 thresholding addresses this problem and leads to substantial performance
gains, thus making it our method of choice. Finally, considering the alternative scaling of the
threshold value (variant 3 above) leads to ambiguous results: improved performance is obtained
when N is much larger than T , in the case where there are two dominant units and at least
one external factor. However, the opposite result is obtained if N is only twice as large as T .
For this reason, we discard the alternative thresholding even though it certainly has benefits in
samples where N − T is suffi ciently large.
Summary results for the number of units falsely detected as dominant are reported in Table

S3.4, and suggest that all the four methods generally perform well in this respect and do not
severely overestimate the number of dominant units. However, there is some evidence of false
discovery when k0 = 2, and N and T are relatively small.
Qualitatively similar results are obtained when we consider Monte Carlo designs with weakly

dominant units. Table S3.5 summarizes the results when α = 0.8. As can be seen these results
are comparable to those reported in S3.3 for α = 1, the main difference being that with
weakly dominant units the probability of correctly determining the true dominant units is
lower. Additionally, all σ2 thresholding versions suffer from performance losses if N is too large
relative to T . This is to be expected since the fraction of cross section units that are unaffected
by dominant units increases in N . Finally, Table S3.6 reports the empirical frequency of false
discoveries in the case of weakly dominant units. Once again the results are similar to those
obtained for α = 1.
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Table S3.1: Empirical frequency of correctly identifying the absence of a dominant unit

σ2 thresholding S−σ2
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 96.1 93.5 93.6 92.6 50 96.1 93.5 93.6 92.6
100 99.0 98.1 96.3 96.6 100 99.0 98.1 96.3 96.6
200 99.8 99.6 99.5 98.9 200 99.8 99.6 99.5 98.9
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 60.9 47.8 41.5 40.4 50 60.9 47.8 41.5 40.4
100 89.8 80.8 71.4 68.9 100 89.8 80.8 71.4 68.9
200 99.3 98.6 97.6 97.0 200 99.3 98.6 97.6 97.0
500 100 100 100 99.9 500 100 100 100 99.9

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 35.1 24.0 17.1 15.8 50 35.1 24.0 17.1 15.8
100 77.3 60.4 43.9 39.7 100 77.3 60.4 43.9 39.7
200 98.3 95.7 90.9 89.3 200 98.3 95.7 90.9 89.3
500 100 100 100 99.8 500 100 100 100 99.8

SMT−σ2 SMT−σ2, alternative scaling
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 100 100 100 100 50 100 100 100 100
100 100 100 100 100 100 100 100 100 100
200 100 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 88.4 86.4 82.7 80.3 50 88.4 86.4 82.7 80.3
100 94.1 92.3 90.7 88.9 100 94.1 92.3 90.7 88.9
200 99.8 99.2 99.4 99.2 200 99.8 99.2 99.4 99.2
500 100 100 100 100 500 100 100 100 100

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 61.6 55.9 47.7 44.3 50 61.6 55.9 47.7 44.3
100 84.0 74.5 64.2 60.9 100 84.0 74.5 64.2 60.9
200 98.6 97.7 94.2 94.1 200 98.6 97.7 94.2 94.1
500 100 100 100 99.9 500 100 100 100 99.9

Notes: σ2 thresholding is implemented using Algorithm 1 in the main article, with
pmax = m0 + k0 + 1, where m0 is the true number of dominant units (if any) and
k0 is the number of external factors. S−σ2 and SMT−σ2 refer to Sequential σ2
thresholding and Sequential-MT σ2 thresholding, as implemented using Algorithms
2 and 3 in the main article, respectively. Threshold in the σ2 thresholding step of all
three algorithms is given by σ̂2iT ≤ 2η̂2iNN−1 log(T ). The threshold chosen for N > T
in the alternative version of SMT−σ2 is given by σ̂2iT ≤ 2σ̂2uiT−1 log(T ). See Section
A.3 for further details.
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Table S3.2: Average number of non-dominant units falsely selected as dominant (m0 = 0)

σ2 thresholding S−σ2
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 0 0.1 0.1 0.1 50 0 0.1 0.1 0.1
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 0.4 0.6 0.7 0.7 50 0.5 0.7 0.8 0.8
100 0.1 0.2 0.3 0.3 100 0.1 0.2 0.3 0.4
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 0.9 1.1 1.4 1.4 50 0.9 1.2 1.5 1.5
100 0.2 0.5 0.7 0.8 100 0.3 0.5 0.8 0.9
200 0 0 0.1 0.1 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0

SMT−σ2 SMT−σ2, alternative scaling
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 0.1 0.2 0.2 0.2 50 0.1 0.2 0.2 0.2
100 0.1 0.1 0.1 0.1 100 0.1 0.1 0.1 0.1
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 0.4 0.5 0.6 0.7 50 0.4 0.5 0.6 0.7
100 0.2 0.3 0.4 0.4 100 0.2 0.3 0.4 0.4
200 0 0 0.1 0.1 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S3.1.
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S4 Maximum difference and maximum ratio threshold-
ing

The idea of considering the maximum difference or the maximum ratio between two ordered sta-
tistics, has been recently suggested by Ahn and Horenstein (2013) and used by Brownlees and
Mesters (2018) in the context of detecting dominant units, can also be applied to σ2 threshold-
ing. Denote by σ̂2(1)T , σ̂

2
(2)T , . . . , σ̂

2
(N)T the ordered estimated error variances in ascending order

for a dataset with N cross section units and T time periods. Then the following two simple
algorithms can be considered:

Algorithm 6 (Max σ2−difference algorithm)

1. Conduct σ2 thresholding using pmax estimated factors. If the estimated number of dom-
inant units, denoted by m̃, is zero, stop and conclude that there is no dominant unit.
Otherwise, proceed with step 2.

2. Let the estimated number of dominant units be given by

m̂ = arg max
j=1,2,...,pmax

(
σ̂2(j+1)T − σ̂2(j)T

)
,

and the estimated identities by the indices of the units whose estimated error variances
are σ̂2(1)T , σ̂

2
(2)T , . . . , σ̂

2
(m̂)T .

Algorithm 7 (Max σ2−ratio algorithm)

1. Conduct σ2 thresholding using pmax estimated factors. If m̃ = 0, stop and conclude that
there is no dominant unit. Otherwise, proceed to step 2.

2. Let the estimated number of dominant units be given by

m̂ = arg max
j=1,...,pmax

(
σ̂2(j+1)T
σ̂2(j)T

)
,

and the estimated identities by the indices of the units whose estimated error variances
are σ̂2(1)T , σ̂

2
(2)T , . . . , σ̂

2
(m̂)T .

In Table S4.1 we report the performance of the two approaches described above using the
Monte Carlo set up described in Section 6 of the paper. The case m = 0 is left out since the
probability of correctly detecting the absence of dominant units is entirely determined by the
initial σ2 thresholding step of max difference and max ratio thresholding methods. Results for
models with at least one dominant unit show that the two algorithms, based on either the max-
imum difference or the maximum ratio, perform quite similarly to the SMT−σ2 thresholding.
However, the former two methods exhibit inferior performance in samples where N is small.
This comparative disadvantage is compensated by a superior performance in cases where there
are both external common factors and more than one dominant units. However, empirical evi-
dence for the presence of at least one dominant unit in the existing applied literature is rather
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limited.21 Furthermore, the relative advantage of max difference or max ratio thresholding
disappears when weakly dominant units are considered. As reported in Table S4.3, SMT−σ2
thresholding has a performance comparable to that of the two new algorithms considered here,
even when N is large and the number of dominant units is larger than 1.
Tables S4.2 and S4.4 report the average numbers of falsely selected dominant units, and

show that the max difference and max ratio thresholding procedures perform reasonably well.
But as compared to SMT−σ2 thresholding, the max thresholding approaches tend to show a
higher proportion of false discoveries, and overall we are led to favor SMT−σ2 thresholding
over the max difference and the max ratio thresholding.

21see e.g. Pesaran and Yang (2016) or Dungey and Volkov (2018) who find that the degree of dominance of
the most influential unit in their datasets is quite far from the value of 1 that would indicate a dominant unit
in the sense of a factor common to all cross-section units.
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Table S4.1: Empirical frequency of correctly identifying only the true strongly dominant units
(m > 0, α = 1)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 97.7 99.9 100 100 50 89.9 97.4 99.1 99.4 50 94.6 99.2 99.8 99.8
100 100 100 100 100 100 97.9 99.5 100 100 100 99.7 100 100 100
200 100 100 100 100 200 99.5 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 58.9 80.6 82.9 82.3 50 45.3 74.1 88.1 91.7 50 49.9 78.9 90.9 93.7
100 68.1 88.4 93.3 93.0 100 62.6 90.4 99.2 99.1 100 66.4 92.4 99.4 99.3
200 79.1 97.8 99.6 99.5 200 76.3 98.1 100 100 200 78.6 98.2 100 100
500 82.1 99.9 100 100 500 81.8 99.9 100 100 500 82.1 99.9 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 52.5 61.7 61.1 55.5 50 45.9 71.1 85.4 87.7 50 51.7 75.7 89.7 90.4
100 65.3 75.9 74.7 74.2 100 62.4 89.8 98.8 99.2 100 67.0 91.5 99.1 99.6
200 72.7 95.6 97.1 96.0 200 71.7 97.0 100 100 200 73.3 97.3 100 100
500 77.1 99.4 100 100 500 76.3 99.4 100 100 500 77.1 99.4 100 100

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 55.8 85.0 96.0 97.7 50 37.8 67.3 86.6 89.1 50 36.6 66.2 86.5 88.6
100 58.9 87.3 98.2 98.6 100 49.5 83.9 97.7 98.2 100 48.4 84.9 97.8 98.5
200 59.0 88.8 98.4 98.9 200 57.1 88.5 98.4 98.9 200 58.0 88.8 98.4 98.9
500 60.9 94.8 100 100 500 60.5 94.7 100 100 500 60.9 94.8 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 36.2 67.3 79.1 79.5 50 30.7 56.1 72.2 76.5 50 28.2 52.6 67.3 70.3
100 41.7 78.5 91.5 92.4 100 49.1 84.9 97.4 98.2 100 44.3 77.6 91.6 92.7
200 43.5 87.6 98.3 99.3 200 64.4 97.0 99.9 100 200 56.8 91.1 99.3 99.5
500 46.0 96.2 100 100 500 75.1 98.3 100 100 500 65.4 97.6 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 38.9 61.3 63.0 60.5 50 29.4 53.2 73.0 75.8 50 28.7 50.1 65.5 69.8
100 48.4 73.3 79.6 79.6 100 54.2 87.5 97.8 98.5 100 49.8 78.3 91.9 93.0
200 47.5 86.9 96.8 97.1 200 71.0 98.5 100 99.9 200 61.4 92.8 99.2 99.7
500 41.0 94.6 99.9 100 500 77.6 99.3 100 100 500 66.0 97.8 100 100

Notes : SMT−σ2 refers to SMT−σ2 thresholding, implemented with pmax = m0+k0+1 as described in Algorithm 5. max σ2−diff
and max σ2−ratio denote detection of dominant units via algorithms 6 and 7, conducted with pmax = m0 + k0 + 1.
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Table S4.2: Average number of non-dominant units falsely selected as dominant units (m0 > 0
and α = 1)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.1 0 0 0 50 0.1 0 0 0
100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.2 0.1 0.2 0.2 50 0.5 0.2 0.1 0.1 50 0.4 0.2 0.1 0
100 0.1 0.1 0.1 0.1 100 0.1 0 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.4 0.3 0.4 0.5 50 0.7 0.4 0.2 0.1 50 0.6 0.3 0.1 0.1
100 0.1 0.2 0.3 0.3 100 0.2 0.1 0 0 100 0.2 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.2 0.1 0.1 0.1 50 0.2 0.1 0 0
100 0 0 0 0 100 0.1 0 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.2 0.1 0.1 0.1 50 0.4 0.2 0.1 0.1 50 0.3 0.1 0.1 0
100 0 0 0 0 100 0.2 0.1 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.3 0.3 0.3 0.4 50 0.6 0.3 0.1 0.1 50 0.4 0.2 0.1 0.1
100 0.1 0.1 0.2 0.2 100 0.2 0.1 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes : See the notes to Table S4.1.
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Table S4.3: Empirical frequency of correctly identifying only the true weakly dominant (influ-
ential) units (m > 0, α = 0.8)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 51.2 80.6 95.4 97.5 50 47.4 74.6 88.0 89.9 50 50.4 77.8 90.8 92.6
100 87.2 98.9 100 100 100 75.6 95.0 99.2 99.5 100 79.3 97.3 99.8 99.9
200 97.5 100 100 100 200 91.6 99.4 100 100 200 94.1 99.9 100 100
500 97.7 100 100 100 500 96.3 100 100 100 500 97.5 100 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 37.4 65.2 79.1 78.9 50 26.3 49.6 73.1 77.4 50 28.9 53.5 76.9 81.0
100 65.1 90.5 93.7 93.5 100 48.9 84.7 98.0 98.1 100 52.8 88.2 99.3 99.1
200 84.6 99.4 99.6 99.5 200 72.0 98.1 100 100 200 76.0 99.4 100 100
500 82.7 99.9 100 100 500 80.2 99.7 100 100 500 81.9 99.9 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 37.7 53.3 58.2 54.5 50 28.2 50 70.9 74.1 50 32.0 54.3 75.5 78.6
100 64.2 79.7 75.3 74.4 100 50.3 83.1 97.6 98.2 100 54.5 87.9 98.6 99.4
200 82.7 98.2 97.1 96.0 200 71.3 98.0 99.8 100 200 75.8 99.2 100 100
500 80.9 100 100 100 500 77.5 99.9 100 100 500 79.6 100 100 100

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 6.6 31.6 63.7 67.3 50 14.1 27.0 39.2 41.5 50 13.4 25.7 38.6 40.2
100 13.7 57.4 89.2 92.6 100 13.0 36.8 62.4 68.1 100 12.6 35.9 60.4 66.2
200 7.7 48.2 88.1 92.0 200 5.4 36.0 78.7 85.1 200 4.8 34.8 77.0 84.0
500 0.9 23.0 71.0 79.3 500 0.6 20.1 70.6 79.1 500 0.5 19.9 70.6 79.2

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 8.9 32.0 60.6 63.7 50 9.6 21.6 32.3 34.1 50 9.5 20.7 31.6 33.1
100 16.5 61.3 88.8 91.5 100 13.6 37.8 60.6 65.3 100 13.3 36.4 58.7 63.9
200 11.4 61.8 94.7 97.1 200 9.8 44.1 82.5 87.7 200 8.9 42.7 80.7 86.2
500 1.8 32.3 84.6 91.7 500 0.9 28.4 83.7 91.5 500 0.9 27.9 83.7 91.7

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 13.3 33.5 50.1 50.4 50 9.7 18.7 32.9 36.7 50 9.4 18.8 32.2 36.3
100 26.6 65.3 79.3 80.2 100 16.6 39.2 67.5 72.8 100 15.3 38.3 65.3 70.9
200 17.6 75.7 96.1 96.6 200 13.1 51.2 88.0 91.8 200 12.5 50.4 86.4 90
500 2.4 36.5 89.2 93.8 500 1.6 33.0 88.5 93.6 500 1.7 31.9 88.4 93.6

Notes : See the notes to Table S4.1.
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Table S4.4: Average number of non-dominant units falsely selected as dominant units (m0 > 0
and α = 0.8)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.4 0.2 0.1 0.1 50 0.4 0.2 0.1 0.1
100 0 0 0 0 100 0.2 0.1 0 0 100 0.2 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.2 0.2 0.2 0.2 50 0.9 0.7 0.3 0.3 50 0.8 0.6 0.3 0.2
100 0.1 0.1 0.1 0.1 100 0.5 0.2 0 0 100 0.4 0.1 0 0
200 0 0 0 0 200 0.2 0 0 0 200 0.1 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.5 0.4 0.5 0.5 50 1.1 0.8 0.4 0.4 50 1.0 0.7 0.4 0.3
100 0.2 0.2 0.3 0.3 100 0.6 0.2 0 0 100 0.5 0.2 0 0
200 0 0 0 0 200 0.2 0 0 0 200 0.2 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.1 0.1 0 0 50 0.5 0.4 0.3 0.3 50 0.5 0.4 0.2 0.2
100 0 0 0 0 100 0.3 0.2 0.1 0.1 100 0.2 0.2 0.1 0.1
200 0 0 0 0 200 0.1 0.1 0 0 200 0.1 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.2 0.2 0.2 0.2 50 0.9 0.7 0.5 0.5 50 0.8 0.6 0.4 0.4
100 0.2 0.1 0.1 0.1 100 0.6 0.4 0.2 0.2 100 0.5 0.4 0.2 0.2
200 0 0 0 0 200 0.2 0.2 0.1 0 200 0.2 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.5 0.4 0.4 0.5 50 1.2 0.9 0.6 0.6 50 1.0 0.7 0.5 0.5
100 0.3 0.2 0.2 0.2 100 0.8 0.5 0.2 0.2 100 0.7 0.4 0.1 0.1
200 0.1 0 0 0 200 0.3 0.3 0.1 0 200 0.2 0.2 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes : See the notes to Table S4.1.
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S5 Simulation results for unmodified BM

In the paper we have used a modified version of BM’s detection method discussed in Section
6 of Brownlees and Mesters (2018), whereby only the N/2 most connected cross-section units
are considered when determining the number of dominant units. This section complements
the simulations in Section 6 of the paper and report results for BM without this modification
(henceforth unmodified BM ). When implementing this procedure, the number of dominant units
is determined from all N cross section units in the dataset. All other details of the simulation
exercise are as described in Section 6 of the paper.
Results on the probability of correctly determining the absence of dominant units from the

data are left out since BM selects at least one unit as dominant by construction. The results
for experiments with m0 > 0 are summarized in Table S5.1. As can be seen the average number
of units detected as dominant turns out to be much larger as compared to the modified BM.
In fact, more than half of the cross section units in the sample are, on average, found to be
dominant. In some cases, standardization of the data leads to a considerable decrease in the
number of detected units. However, the set of cross section units falsely identified as dominant
continues to be sizeable.
In cases where the data are driven by at least one dominant unit, unmodified BM method

exhibits a reasonable performance if T −N is large enough, and if the data is not standardized
(see Table S5.2). By contrast, standardizing individual-specific time series has severe conse-
quences for the probability of correctly detecting the true dominant units, especially in the
presence of external factors. As can be seen from Table S5.4, the same results obtain if the
true dominant units are weakly dominant. The average number of units falsely detected as
dominant can be substantial. See Table S5.3 and Table S5.5).
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Table S5.1: Average number of non-dominant units falsely selected as dominant (m0 = 0)

unmodifed BM unmodified BM (standardized)
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 29.7 31.2 36.4 36.9 50 29.3 23.2 26.0 29.5
100 n/a 61.7 69.0 71.9 100 n/a 60.7 46.3 49.0
200 n/a n/a 126.2 123.4 200 n/a n/a 126.0 93.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 28.7 31.6 37.1 37.4 50 26.0 17.2 14.3 14.6
100 n/a 60.6 67.9 73.1 100 n/a 54.8 29.8 26.2
200 n/a n/a 123.1 128.4 200 n/a n/a 111.1 78.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 30.5 31.4 36.1 37.6 50 25.8 17.8 13.9 12.6
100 n/a 61.6 69.3 72.1 100 n/a 52.2 25.4 24.8
200 n/a n/a 126.8 127.2 200 n/a n/a 105.5 72.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: unmodified BM refers to the detection method of Brownlees and Mesters (2018) as intro-
duced formally in Section 3 of their paper. unmodified BM (standardized) stands for application of
unmodified BM to data that have been recentered and rescaled so that each cross-section specific
time-series has an average of zero and a variance of one. BM methods are not applicable (n/a) if
T < N .
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Table S5.2: Empirical frequency of correctly identifying only the true strongly dominant units
(m0 > 0, and α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 48.4 98.3 100.0 100.0 50 47.0 98.2 99.7 99.9
100 n/a 73.6 100.0 100.0 100 n/a 69.3 100.0 100.0
200 n/a n/a 89.6 100.0 200 n/a n/a 87.4 100.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 42.1 96.7 99.9 99.9 50 25.6 74.7 90.7 93.1
100 n/a 67.3 100.0 100.0 100 n/a 47.6 99.0 99.8
200 n/a n/a 85.0 100.0 200 n/a n/a 69.4 99.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 36.7 95.4 99.6 99.8 50 12.8 45.1 62.7 65.4
100 n/a 63.6 100 100 100 n/a 29.6 94.4 96.0
200 n/a n/a 83.7 100 200 n/a n/a 53.3 98.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 23.6 91.7 99.4 99.7 50 5.4 40.8 68.7 72.4
100 n/a 46.0 100.0 100.0 100 n/a 16.7 94.9 98.4
200 n/a n/a 66.5 100.0 200 n/a n/a 38.1 97.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 17.1 85.1 97.9 98.5 50 1.4 7.5 16.5 17.7
100 n/a 36.9 99.9 100.0 100 n/a 5.6 58.5 63.1
200 n/a n/a 55.7 99.9 200 n/a n/a 14.8 75.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 15.55 79.5 96.3 97.35 50 0.2 1.0 2.2 1.6
100 n/a 33.1 99.95 99.85 100 n/a 1.5 22.8 28.7
200 n/a n/a 50.35 99.65 200 n/a n/a 5.8 46.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.3: Average number of non-dominant units falsely selected as dominant (m0 > 0, and
α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 14.7 0.3 0.0 0.0 50 12.5 0.0 0.0 0.0
100 n/a 16.0 0.0 0.0 100 n/a 15.4 0.0 0.0
200 n/a n/a 12.1 0.0 200 n/a n/a 12.3 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 17.6 0.6 0.0 0.0 50 19.1 2.9 0.5 0.3
100 n/a 19.6 0.0 0.0 100 n/a 26.0 0.0 0.0
200 n/a n/a 19.6 0.0 200 n/a n/a 30.0 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 18.5 1.1 0.1 0.1 50 23.7 10.0 5.3 4.7
100 n/a 21.6 0.0 0.0 100 n/a 37.6 0.7 0.3
200 n/a n/a 19.4 0.0 200 n/a n/a 49.1 0.4
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 11.7 0.4 0.0 0.0 50 16.9 2.2 0.4 0.5
100 n/a 8.2 0.0 0.0 100 n/a 19.6 0.0 0.0
200 n/a n/a 6.2 0.0 200 n/a n/a 18.2 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 13.0 1.1 0.1 0.0 50 21.4 10.0 6.8 6.3
100 n/a 13.7 0.0 0.0 100 n/a 33.7 1.0 0.7
200 n/a n/a 10.0 0.0 200 n/a n/a 42.5 0.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 13.8 1.1 0.2 0.2 50 26.0 19.2 17.8 18.2
100 n/a 13.7 0.0 0.0 100 n/a 44.0 8.3 6.3
200 n/a n/a 12.7 0.0 200 n/a n/a 67.3 4.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.4: Empirical frequency of correctly identifying only the true weakly dominant (influ-
ential) units (m0 > 0, and α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 15.8 63.2 87.6 90.4 50 21.9 69.3 85.3 87.8
100 n/a 30.1 99.0 100.0 100 n/a 37.8 98.4 99.4
200 n/a n/a 44.8 99.3 200 n/a n/a 54.9 99.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 1, k = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 13.3 59.8 87.1 89.3 50 9.7 31.1 45.4 45.1
100 n/a 27.5 98.8 99.6 100 n/a 21.7 82.0 84.9
200 n/a n/a 44.3 98.7 200 n/a n/a 37.5 89.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 1, k = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 13.3 59.0 84.6 88.7 50 5.9 13.5 15.9 17.4
100 n/a 25.6 98.8 99.5 100 n/a 12.9 52.8 59.7
200 n/a n/a 44.6 98.6 200 n/a n/a 24.3 75.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 4.6 43.8 74.9 79.4 50 1.4 4.9 9.0 11.5
100 n/a 10.8 94.3 98.0 100 n/a 3.1 43.7 50.9
200 n/a n/a 20.7 94.2 200 n/a n/a 10.3 64.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 2, k = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 4.2 41.6 70.2 76.5 50 0.2 0.6 0.7 0.7
100 n/a 10.2 94.3 96.4 100 n/a 1.3 11.9 11.8
200 n/a n/a 17.1 92.2 200 n/a n/a 3.3 29.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 2, k = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 3.2 39.1 68.8 73.5 50 0.0 0.1 0.0 0.0
100 n/a 9.1 92.1 95.9 100 n/a 0.4 1.5 1.4
200 n/a n/a 17.0 91.2 200 n/a n/a 1.4 9.4
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.5: Average number of non-dominant units falsely selected as dominant (m0 > 0, and
α = 0.8)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 25.1 10.1 4.4 3.3 50 19.2 2.7 0.3 0.2
100 n/a 43.5 0.3 0.0 100 n/a 32.7 0.0 0.0
200 n/a n/a 72.9 0.6 200 n/a n/a 46.5 0.1
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 26.8 12.0 4.3 3.5 50 21.2 7.3 3.3 2.8
100 n/a 44.1 0.4 0.3 100 n/a 38.7 1.1 0.4
200 n/a n/a 72.6 1.3 200 n/a n/a 59.4 2.2
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 25.5 12.2 5.2 3.9 50 23.1 11.7 8.8 8.1
100 n/a 46.8 0.7 0.3 100 n/a 43.6 7.0 4.4
200 n/a n/a 69.4 1.5 200 n/a n/a 72.1 8.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250
50 22.5 7.1 2.7 2.2 50 18.6 5.2 3.3 3.2
100 n/a 33.7 0.2 0.1 100 n/a 29.8 0.9 0.6
200 n/a n/a 48.2 0.4 200 n/a n/a 43.0 0.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250
50 22.1 8.5 3.3 2.5 50 20.2 9.5 6.5 6.6
100 n/a 35.4 0.4 0.1 100 n/a 35.5 4.6 3.5
200 n/a n/a 52.3 0.7 200 n/a n/a 56.8 5.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250
50 23.2 7.9 3.5 2.9 50 21.6 12.8 10.4 10.0
100 n/a 36.9 0.6 0.1 100 n/a 41.3 12.6 10.2
200 n/a n/a 56.3 0.7 200 n/a n/a 75.1 18.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S6.1: Dominant units in sector-wise industrial production in the U.S.

Approach: unmodified BM unmodified BM (standardized)
Number of domi-
nant units:

137 2

Identities: all except Automobiles and Light Duty Motor Vehicles
Iron Ore Mining Motor Vehicle Parts

Notes: Data taken from Foerster, Sarte, and Watson (2011).

Table S6.2: Dominant countries in terms of quarterly macroeconomic indicators

Approach: unmodified BM
Variable: log real GDP log real equity prices real GDP growth real equity price growth
Number of domi-
nant units:

31 25 2 25

Identities: all except all except France all except
Peru Argentina Spain Argentina
Turkey

Approach: unmodified BM (standardized)
Variable: log real GDP log real equity prices real GDP growth real equity price growth
Number of domi-
nant units:

27 24 11 1

Identities: all except all except * Netherlands
Brazil Argentina
Japan New Zealand
Peru

Saudi Arabia
Turkey

*: Italy; Spain; France; USA; Germany; Canada; UK; Malaysia; Belgium; Finland; South Africa.

Notes: Data taken from GVAR database (Mohaddes and Raissi, 2018).

S6 Empirical results for unmodified BM

In this section we provide results obtained if the unmodified BM procedure is used in our em-
pirical applications. The data sources and transformations are as described in Section 7 of the
paper. Again, unmodified BM method is applied to the data with and without standardization.
The results are summarized in Tables S6.1-S6.3, and suggest that unmodified BM grossly over-
estimates the number of dominant units in almost all applications, regularly detecting all but
one or two cross section units as dominant. The use of standardized data leads in all but one
case to a lower detected number of dominant. However, while the reduction can be quite sub-
stantial, in a number of applications the number of dominant units detected using standardized
data turn out to be quite large (6 or more in many of the applications).
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Table S6.3: Estimated U.S. states with dominant housing market

Approach: unmodified BM unmodified BM (standardized)
Number of domi-
nant units:

47 6

Identities: all except Connecticut Maryland
Nevada New Hampshire Virginia

Massachusetts Rhode Island
Notes: Data taken from Yang (2018) and Freddie Mac House Price Indexes.
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