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Abstract

This paper proposes a quantile regression estimator for a heterogeneous panel model with
lagged dependent variables and interactive effects. The paper adopts the Common Correlated
Effects (CCE) approach proposed by Pesaran (2006) and Chudik and Pesaran (2015) and
demonstrates that the extension to the estimation of dynamic quantile regression models is
feasible under similar conditions to the ones used in the literature. We establish consistency and
derive the asymptotic distribution of the new quantile regression estimator. Monte Carlo studies
are carried out to study the small sample behavior of the proposed approach. The evidence
shows that the estimator can significantly improve on the performance of existing estimators as
long as the time series dimension of the panel is large. We present an application to the
evaluation of Time-of-Use pricing using a large randomized control trial.
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1. Introduction

In the last decade, the literature on linear panel data models has made significant progress on
the estimation of models with multi-factor error structure. Recent papers have focused on the
estimation of models with a fixed number of unobserved factors (see e.g. Pesaran (2006), Bai
(2009), Pesaran and Chudik (2014), Moon and Weidner (2015, 2017), Chudik and Pesaran (2015)).
The Common Correlated Effects (CCE) approach of Pesaran (2006) is robust to cross-sectional
dependence and slope heterogeneity, and it has been further developed to allow for possible unit
roots in factors and spatial forms of weak cross-sectional dependence (see e.g., Kapetanios, Pesaran,
and Yagamata (2011), Pesaran and Tosetti (2011) and Pesaran, Smith and Yagamata (2013)).
The estimation of dynamic panel data models is investigated in Chudik and Pesaran (2015) and
Moon and Weidner (2015, 2017). Moon and Weidner develop estimation approaches for models
with lagged dependent variables and cross-sectional dependence, but they assume homogeneous
coefficients. In an important paper, Chudik and Pesaran (2015) extend the approach developed by
Pesaran (2006) to dynamic panel data models with heterogeneous slopes, for situations where the
cross-sectional dimension (N) and the time-series dimension (7") are relatively large. This method
however does not offer the possibility of estimating heterogeneous distributional effects, which is
an important consideration for practice. For instance, the effect of a policy can be heterogeneous
throughout the conditional distribution of the response variable, and therefore, it might not be well

summarized by the average treatment effect.

Quantile regression, as introduced in the seminal work by Koenker and Bassett (1978), provides
a convenient way to estimate distributional effects of policy variables, although in general these
type of heterogeneous treatment effects are identified and estimated under the assumption that the
slope coefficients are the same over all cross-sectional units. This condition is used in a number
of different approaches that have been recently developed for the estimation of panel quantile
regression models. The recent literature include work by Koenker (2004), Lamarche (2010), Galvao
(2011), Rosen (2012), Galvao, Lamarche and Lima (2013), Chernozhukov, Fernandez-Val, Hahn and
Newey (2013) and Chernozhukov, Fernandez-Val, Hoderlein, Holzmann and Newey (2015), Harding
and Lamarche (2014, 2017), Arellano and Bonhomme (2016), among others. Slope heterogeneity
in quantile regression is investigated in Galvao and Wang (2015). In related work, Ando and
Bai (2017) and Chen, Dolado and Gonzalo (2017) investigate quantile factor models. With the
exception of Galvao (2011) and Arellano and Bonhomme (2016), the literature has focused on
estimating static models. Moreover, the panel quantile regression literature does not address cross-

sectional dependence with the exception of Harding and Lamarche (2014) that adopt the approach
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proposed by Pesaran (2006) to estimate a static model with interactive effects. This paper extends
the panel quantile literature to dynamic models with heterogeneous slopes and multi-factor error

structure when both 7" and N are large.

We adopt a CCE approach and focus on estimation and inference of mean quantile coefficients. We
allow for the possibility that unobserved factors and included regressors are correlated and we study
the conditions under which the slope coefficients are estimated consistently. An important condition
is that one plus the number of cross-sectional averages must be larger than the number of unobserved
factors. Another important condition, which is similar to a condition used in Chudik and Pesaran
(2015), is that a large number of lags of cross section averages used to approximate the factors needs
to be included in the individual-specific equations of the panel. Under standard regularity conditions
including T tending to infinity at a faster rate than N as in Kato, Galvao and Montes-Rojas (2012),
we show that the average quantile estimator is consistent and asymptotically Gaussian. Moreover,
we investigate the finite sample performance of the proposed approach in comparison with the
method for dynamic models developed by Galvao (2011). Using a comprehensive set of Monte Carlo
experiments, we find that the proposed estimator has a satisfactory performance under different

dynamic specifications when T is relatively large.

We apply the method to estimate how consumers respond to time-of-use (TOU) electricity pricing
and different type of technologies that allow communication between customers and utility com-
panies. The use of a quantile-specific demand equation allows us to estimate the short and long
run impacts of different enabling technologies, while including three key features of the problem:
dynamics, slope heterogeneity and cross-sectional dependence. We use a data set of more than
6.5 million observations obtained from a large randomized control trial which includes N = 779

customers observed over T = 8639 time intervals.

Our findings suggest that smart thermostats are particularly effective relative to other enabling
technologies and the differential effects are more pronounced at the lower tail of the conditional
distribution of energy consumption. Smart thermostats, in addition of providing real time infor-
mation on consumption and pricing, allow households to respond to price changes in advance by
programming temperature settings for different times of the day. We also find that treated house-
holds appear to reduce overall consumption as a result of these technologies relative to the control
group, but the average response does not truly summarize the distributional effect of the tech-
nologies. We also investigate the long-run effect of a change in energy price for different enabling

technologies across different age and income groups.
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The paper is organized as follows. The next section introduces the model and the proposed estima-
tor. It also establishes the asymptotic properties of the estimator. Section 3 provides simulation
experiments to investigate the small sample performance of the proposed estimator. Section 4
demonstrates how the estimator can be used in practice by exploring an application of electric-
ity pricing and smart technology. Section 5 concludes. Mathematical proofs are provided in the

Appendix and additional Monte Carlo results are offered in an online Supplement.

Notations: Generic positive finite constants are denoted by K,, K, .. ., and can take different values
at different instances and are bounded in N and T (the panel dimensions). The largest and the
smallest eigenvalues of the N x N real symmetric matrix A = (a;;) are denoted by (max(A) and
Cmin(A), respectively, and its spectral (or operator) norm by ||A| = I}(I/E,LQX(A’A). 2% denotes
almost sure convergence, by convergence in the ¢; norm, 2, convergence in probability, and
LN convergence in distribution. We denote ||x|1 = >, |z;| as the ¢; norm of vector x. All

asymptotics are carried out under N and T" — oo, jointly.

2. Model and assumptions

We consider a dynamic panel data model for ¢ = 1,2,...,N and t = 1,2,...,T, where y;; € R
is the response variable for cross-sectional unit ¢ at time ¢ and y;;—1 denotes a lagged dependent

variable. Consider the following conditional panel quantile function:
Qvi, (T1Yit—1,Xit, 0:(7), 1) = (1) + Ni(T)yir—1 + x3,8i(7) + £ (1), (2.1)

where 7 is a quantile in the interval (0,1), 8;(7) = (a;(7), Ai(7), Bi(7),~/(7))" and the conditional
quantile function is defined as Qv,, (T|yit—1,Xit, 0;(7), £) := inf{y : P(Yir < ylyir—1,Xit, 0;(7),£) >
7}. The variable x;; is a p, X 1 vector of regressors specific to cross-sectional unit 7 at time ¢,
Bi(7) is the associated regression coefficients, f; is an r x 1 vector of unobserved factors, ~;(7)
is a vector of latent factor loadings, and «;(7) is an individual effect potentially correlated with
the regressor variables, x;;. The term f/7;(7) can be interpreted as a quantile-specific function

capturing unobserved heterogeneity that was not adequately controlled by the inclusion of x;;.

The model can be considered to be semi-parametric since the functional form of the conditional
distribution of Yj; given (yi—1,x;,0;(7),f{)" is left unspecified and no parametric assumption is
imposed on the relation between the regressors and the latent variables in the model. The p, x 1

vector of regressors is assumed to follow the general linear process

xit = pi + Dify + vy, (2.2)
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where p; is an individual effect, I'; is a r X p, matrix of factor loadings in the x;; equation, and
v;; is a pp-dimensional vector assumed to follow a stationary process independently distributed of

other variables in the model.

Naturally, model (2.1) can accommodate additional lags of the dependent variable, deterministic
trends, time-invariant covariates, and lags of the exogenous covariates. These variations can be
incorporated at a cost of additional notational complexity. The conditional panel quantile model

(2.1) is fairly general and includes several recent panel data models as special cases:

Example 1. Let w;; = yir — o — \iyir—1 — X, 3; — f{~; be an identically independently distributed
(ii.d.) Gaussian random variable with the cumulative distribution function denoted by ®,,. Then,

if 7 = 0.5, the conditional median function in (2.1) becomes,
Qv (0.5]yit—1, Xit, 0:(7), ft) = E(yit|yit—1, Xit, 0i, ft), (2.3)

since (1) = a; + Qu(T) = a; + ®,1(0.5) = oy, Ni(7) = Ni, Bi(7) = (Bi, - -+, Bip.)’ = Bi, and
~i(T) = ;. Estimation of the conditional mean model (2.3) is discussed in a series of recent papers
by Chudik and Pesaran (2015) and Chudik, Mohaddes, Pesaran and Raissi (2017). The conditional
mean model E(y;|Xit, 0;, fi) is investigated in Pesaran (2006) and Bai (2009).

Example 2. Galvao (2011) proposes an instrumental variable approach for estimation of a dynamic
quantile regression model when both ~;(7) = 0 and I'; = 0. If ~;(7) = 0, Bi(7) = B(7), and
Ai(1) = A(7) for 1 < i < N, model (2.1) becomes the panel data model studied by Galvao (2011):

Qv (Tlyit—1, %3t 0 (7)) = ai(7) + M7)yie—1 + x38(). (2.4)

Example 3. Harding and Lamarche (2014) propose a quantile regression approach for the esti-
mation of model (2.1) with homogeneous slope coefficients in the static case where \;(7) = 0 for
1 <i<N.If \(r) =0and B;i(r) = B(r) for 1 <i < N, then equation (2.1) becomes the panel
quantile function studied by Harding and Lamarche (2014):

Q.. (lxit, %i(7), fr) = xiuB(7) + £iFi(7), (2.5)

where f; = (1,f!) and 4;(7) = (a;(7),7i(7)"). Moreover, if f; = 1 for 1 < ¢t < T, then equation
(2.5) becomes the model studied by Koenker (2004) and Lamarche (2010), where Qy;, (7|xit, a;) =
a; +x,8(7), and a; = o + ;.

Example 4. Consider for simplicity a panel version of the quantile autoregressive model introduced

by Koenker and Xiao (2006) with one lagged dependent variable: y;; = 00(vit) +6;(vit)yir—1, where
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v is a standard uniform random variable. This last equation leads to the same conditional quantile

equation (2.1) when the coefficients of x;; are set to zero, and +;(7) =0 for all 1 <i < N.

Due to the combination of cross-sectional error dependence (v; # 0), and dynamics (A; # 0) in
equation (2.1), existing panel quantile regression approaches are inconsistent for the estimation of
(M, B]) fori=1,..., N. In this paper, we are interested in estimating the contemporaneous effect
of a change in x;; on the quantiles of the conditional distribution of the response variable as well as
its long run effect. For instance, in Section 4, we estimate an autoregressive panel quantile model
for energy consumption with interactive effects. Our primary focus is to identify and estimate the
effect of different technologies that enable households to respond to time-of-use pricing on energy

consumption, focusing on the distributional effect of the assigned technologies.

2.1. Estimation

We consider consistent estimation of the parameters of interest by estimating the dynamic quantile
regression model with interactive effects defined by (2.1). To this end, we make the the following

assumptions:

Assumption 1. For all 0 < 7 < 1, the conditional quantile function in equation (2.1) sat-
isfies P(ui(T) < Olyi—1,%it, 0:(7), fr) = 7, where uy(7) = yir — Qv;, (T|Yit—1, %, 0i(7), fi) s
tdentically and independently distributed over ¢ and identically distributed over t, conditional on
(Yit—1, Xit, 0:(7T), ft)-

Assumption 2. The r x 1 vector of common factors f; = (fit, fat,-- -, frt) is a covariance station-
ary process with absolute summable autocovariances, distributed independently of u;(7) and vy for

all i, t, and 7.

Assumption 3. The factor loadings v;(T) = ~v(7) + Ny and vec[L';] = vec[T'] + nry are distributed
independently of w;i(7) and vy for all i and j with means v(7) and T'(7), and bounded variances.
The error terms my; and mr; are independent of each other. Moreover, these random variables
are independently and identically distributed over i with zero means and covariances €2, and Qr,

respectively, with ||| < K and ||Qr| < K.

Assumption 4. The variables Xit = (Tit 1, Tit2, - - -, Titp, ) € X C RP* and uy (1) are independently
distributed. The regressors x; are generated according to equation (2.2), and the vector of errors
v in (2.2) follows a stationary process with mean zero, finite covariance matriz, and finite fourth

order cumulants, and summable autocovariances (uniformly in i).
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Assumption 5. The p, + 1-dimensional vector of slope coefficients 9;(1) = [Ni(7), Bi(T)]" follows

the random coefficient representation:
Ai(T) AT) + (1 = (A7) i (2.6)
Bi(t) = B(7) +vig,

where B(1) < K, sup; |vix| < 1, and |A\(7)| < 1 for all T € (0,1), and

v, = < vix ) ~ IID (0,9y), (2.7)

ViB
with ||| < K, Qy is a symmetric positive definite matriz. Furthermore, for each T € (0,1),
EX(T)ai(1)F) = ai(r), BO(T)Bi(7)|Fr) = bi(r), EQXUT)%(1)|F) =alr),  (2.8)

forl1=0,1,2,.... where Fy = (£, fi—1,.. s Xit, Xit—1,...,0 = 1,2,...,N), and a;(7), by(7) and c;(7)
are exponentially decaying in l, such that |a;(7)| < Kap', [|bi(7)|| < Kpp!, and ||c)(7)|| < Kep! for
some positive p < 1. The parameters \;(7) and B;(T) are independently distributed over i, and v;

is independently distributed of ~v;(7), Ti(7), ui(7), vly, and £ for all i, t and 7.

Assumption 6. Let C(7) = E(C;(7)) = (v(7),T"), and suppose that p, > r—1, and the (p,+1) xr

dimensional matriz C(7) has full column rank, for all values of 0 < 7 < 1.

Assumption 1 is similar to Assumption A3 in Ando and Bai (2017) and Assumption 4.iii in Chen,
Dolado and Gonzalo (2017). The assumption is slightly weaker than other assumptions in the
literature since it can allow for forms of serial dependence, as explicitly stated later in Assumptions
9 and 11. In general, the other assumptions are similar to those in Pesaran (2006) and Chudik and
Pesaran (2015). One key difference is that we require certain conditions on the quantile coefficients.
Another difference is that it is common to assume that there exists an /N-dimensional vector of
non-stochastic weights that satisfy granularity conditions, namely that they are of order N~!. Such
effects are important in small samples but do not affect the asymptotic results established below
in Section 2.2. Therefore, without loss of generality, we consider the case of equal weights 1/N.
Assumption 5 introduces heterogeneous slope coefficients assuming that deviations of 9;(7) with
respect to ¥(7) are mean-zero random variables independently distributed of other variables in the
model. Specification (2.6) ensures that sup; . [Ai(7)] < 1, so long as sup; |v;z| < 1, and [A(7)] < 1
for all 7 € (0,1). A convenient distribution for v; is a beta distribution defined on (0,1). The
moment conditions in (2.8) are required for consistent estimation of f; (up to a non-singular r x r
transformation) from cross section averages of z;; = (yi,x},;)’ and their lagged values. These

conditions are met when \;(7) is independently distributed of a;(7), B;(7) and ;(7) and E (Ai(7))
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decays exponentially in /. This last condition is met, for example, if \;(7) is distributed over i

uniformly on [—b,b] for any bin 0 < b < 1.

Moreover, it is worth mentioning that the full rank Assumption 6 ensures the large N representation

of the unobserved factors. Under Assumption 1, we write,
Yir = @i(T) + Ni(T)yie—1 + X Bi(7) + £5i(7) + wir (1), (2.9)

where u;(7) is a random variable whose 7-th conditional quantile is equal to zero, and it is assumed
that y;; has started a long time in the past. Note that by Assumption 5, (1 — ;L) is invertible
for all i = 1,2,..., N, where L is the lag operator. Then equation (2.9), after pre-multiplying by
(1 — X\L)™L, can be written as,

Yit :Z/\i-(T +Z)\l T)Xit— l—I—ZAZ T)f l—i—Z/\ T)wip—1( (2.10)
1=0

We now derive a large N representation for a linear combination of the latent factors following
Pesaran (2006) and Chudik and Pesaran (2015). Denote the last term of the above equation by
&it(7), and note that it can be written as &;(7) = Xi(7)&it—1(7) +ui(7), which is a stationary AR(1)
process for all 1 < i < N, since by Assumption 5 sup; , [Ai(7)] < p < 1. Also, since for each ¢
and 7, the errors, u;(7), and \;(7) are assumed to be cross-sectionally independent, it then readily
follows that (see Pesaran (2006))

N
= N1 &ulr) = Op(N71/?),
i=1

Similarly, consider the cross section averages of the other terms of (2.10), and note that under

Assumption 5, for the first term we have (recall that by Assumption 5 {a;} is absolute summable)

Z [ 12)\1 )] = ial(T) +Op(N_1/2).
1=0

=0

Similarly, conditional on F; we have (noting that by Assumption 5 b;(7) and ¢;(7) are absolute

summable)

bg(T)it—l + Op(N_l/Z)a

Nk

l =1

%[ St

=0 i=1

o~
Il
o

¢j(7)fit + Op(N~2).

Mg

T
=
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Hence, overall

gt = a(1,7) + b(L,7)%; + (L, 7)'f; + O, (N~Y/?), (2.11)
where a(1,7) = > 2 a(7),b(L,7) =32, by(7)L!, and c(L,7) = Yoooc(r)L

Similarly, taking cross-sectional averages of equation (2.2), we obtain,
=+ T'f + O (N7YV?), (2.12)

where i = N~! Ef\il p; and T' = E(T;). See also Assumptions 5 and 6. Combining (2.11) and
(2.12), we have
C(L,7)f = A(L, )z — d(7) + Op(N/?), (2.13)

where z; = (g1, X}),

[ a(l,7) [ (L, 7Y (1 —=b(L,7)
d(r) = ( i ) , C(L,T) = ( I" ) , A(L,7) = < 0 I, > .

Pre-multiplying both sides of (2.13) by C(L,7)" and assuming that rank of C(L,7) is equal to the
number of factors r we obtain the following result for f;:

f, = fo(7) + G(L, 7)z: + O,(N~/?), (2.14)
where fo(7) = —(C(1,7)'C(1,7))"*C(1,7)'d(7) and G(L,7) = (C(L,7)C(L, 7)) 'C(L,7)A(L,T)
is an 7 X (pg + 1) distributed lag matrix. Integrating out 7 on the right hand side of (2.14) and
defining fy = fo fo(7)dr and G(L fo (L, 7)dT, we have that

f, = fo + G(L)2; + O,(N~1/2). (2.15)
Finally, substituting the representation of the factors in equation (2.9), we obtain
Yit = Boi(T) + Ni(T)yir—1 + Bi(T)Xit + 8i(L, 7)'Zy + it (1) + Op(N~1/3), (2.16)

where o;(7) = (1) +7}(7)fo, 8:(L, 7) = v/(1) 32720 GiL! = 3272 () L, 8a(7) = (87, ,(7), 67, (7)),
0iy,1(T) is a reduced form coefficient for the cross-sectional average of y;—;, diz;(7) is a reduced
form coefficient for the cross-sectional average of x;—;, and z;—; = (%—,%X;_;)" isa (pp +1) x 1

dimensional vector.

Remark 1. Since fj is not identified and its value can be absorbed in the intercept term of equations
(2.11) and (2.12), in what follows, and without loss of generality, we set fy = 0, and note that under

this normalization 5y;(7) = a; (7).

Assumption 7. The infinite order distributed lag matriz function G(L) = Go + G1L + ... =
S 20 GiLY, where ||Gy|| < Kp! for all I and some positive p < 1 and constant K > 0.
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Assumption 7 follows from the exponential decay condition stated in Assumption 5 (see Lemma
A.1 in Chudik and Pesaran (2013)). Recall that G(L) is an infinite order distributed lag matrix

function with exponentially decaying coefficients and hence can be suitably truncated as

pr
yit = i(7) + N (T)yie1 +X0Bi(7) + D 7 16u(7) + ear(7), (2.17)
=0
where
() =ua(r)+ Y Z_,0u(r) + Op(N7V/2). (2.18)
l=pr+1

Note that by Assumption 7, ||8;(7)| < Kp' with 0 < p < 1, because ||v;(7)| < K as implied by
Assumption 3. It follows that,

o o0
> 7 du(n)|| < Koty |zl o
l=pr+1 =1

and by Lemma A.4. (result (A.18)) in Chudik and Pesaran (2015), this remainder term becomes
asymptotically negligible as N,T — oo.

The total number of parameters for the augmented part of (2.17) is (py + 1)(pr + 1). The error
term e (7) includes uy(7), a term O, (N -1/ 2) associated with approximating f; with cross-section
averages, and an error component due to the truncation of the underlying infinite order distributed
lag function §;(7, L). Moreover, the number of lags is denoted by pr and it is assumed that pr, = pr
for all ¢ for the simplicity of exposition. It is also assumed that the number of lags to approximate
the factors is known and that F(A!) decays exponentially which is satisfied by Assumption 5, and
B; and A; are independently distributed, although this is not required.

Equation (2.16) leads to a conditional quantile function that is naturally different than equation
(2.1) since f; is unknown and we use a large N representation for f;. The following condition is
needed for identification of the parameter of interest (\;(7),3.(7))" in equations (2.9) and (2.17).

Assumption 8. Consider (2.9) and its approzimate version (2.17), let Wi = (yir—1,x}y, 1, £])" and
Xit = (Yit—1,X}, 1,24, 21, Z_p,) s and define 6;(7) = (8:1(7),0i2(7)'s ..., 0ipy (7)) Then
for all 7 € (0,1), (Ni(7), Bi(7), ai(7),7i(7)) € int A x Bx AxG, a compact and convex set, and
(Ni(7), Bi(7), i (7),0:(7)) € int A x Bx A x D, which is compact and convex. Also define,

II(\i(7), Bi(7), (1), 7i(T)) == E(Wuthr(yir — Xi(T)yir—1 — x3:8i(1) — (1) — £7i(7))),

JAi(7), Bi(7), i(7),%i(7)) := a0u07) 5’-(7;{90@(7) ,7{(T))H()\i(7)»ﬂz‘(7)7Oéi(T)>’Yi(T)),
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where Y, (u) =7 — I(u < 0) is the quantile influence function, and

II(\i(7), Bi(7), ai(7), 6i(7)) = = E (Xz'twr(yz't = Xi(T)yit—1 — x3Bi(1) — () — Zzéz&'z(ﬂ)) ;
1=0
0

JNi(7), Bi(1), (1), 85(7)) = 3 II(\i(7), Bi(T), ai(7), 85(T)).

(Xi(7), Bi(7), ai(7), 6;(7))

The Jacobian J(Ni(7),Bi(7), i(7),vi(T)) is continuous and full rank uniformly over A x B X
A x G, and the Jacobian J(Ni(7),Bi(7), os(7),8;(7)) is continuous and full rank wniformly over
A x B x AxD. The image of the parameter spaces A X Bx A x G and A x B x A x D are sim-
ply connected under the mappings (Ni(7), Bi(T), i(7),7i(7)) — II(Ni(7), Bi(T), i (T),vi(T)) and
(Ni(7), Bi(7), @i(7), 8i(7)) = TL(Ni(7), Bi(7), cvi(7), 85(7)).

The first part of Assumption 8 imposes compactness over the parameter space and it can be relaxed
since the quantile objective functions corresponding to equations (2.9) and its approximate version
(2.17) are convex in parameters. The second part is an identification condition that requires full
rank and continuity as in Chernozhukov and Hansen (2006) and Harding and Lamarche (2014).
It implies global identification of the parameters (\;(7),3;(7)") for all 7 € (0,1). Tt differs from
those conditions in Chernozhukov and Hansen (2006) and Harding and Lamarche (2014) in that
they reflect the specific nature of the identification problem in a panel quantile model with latent
factors. The last part of the assumption requires that the image of the parameter space Ax Bx AxG
and the image of the parameter space A x B x A x D are homotopic to a point, ruling out the

possibility of holes in the image of the sets.

The following theorem describes identification of the parameters (\;(7),3:;(7)’)’ in a quantile re-

gression model augmented with cross-sectional averages. The proof is presented in Appendix A.

Theorem 1 (Identification of 9;(7)). Under Assumptions 1-8, the parameter of interest 9;(1) =
(Ni(7), Bi(T)") is identified in equation (2.9) and equation (2.17) for each .

We now present an approach that can be used to estimate a dynamic quantile regression model
with interactive effects. The quantile regression procedure is similar in spirit to Pesaran (2006),
Harding and Lamarche (2014) and Chudik and Pesaran (2015). Define the parameter m;(7) :=
(Ni(7), Bi(T), i (7), 8i (7)) with 8;(7) = (i1 (7)', 8i2(T)', ..., ipp(T)"), and

Cit(T, ) = pr (yit = Xi(T)gir—1 — X Bi(r) — ai(m) = ) ifs_z(sil(T)) : (2.19)

=0
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where pr(u) = u(7 — I(u < 0)) is the standard quantile regression loss function. First, we minimize

the individual specific objective function (2.19) for m;(7),

T
wi(r) =arg min Y Cir(7,7;), (2.20)
i i t=pr+1

where II; is compact set in R®P=+D({r+2) - Therefore, the quantile regression estimator for het-
erogeneous effects in a dynamic panel quantile with interactive effects, 7r;(7), is based on the
cross-sectionally augmented regression (2.17). We also propose a quantile mean group estimator
for (1) := E((\i(7),Bi(7)")'). The estimator is,

1 . . 1 &
:N;ﬂi( NZ_: E; o 7i(1)), (2.21)

where o denotes Hadamard product, E; = (¢}, 0})" with ¢; denoting a p, + 1 dimensional vector of
ones and 0; a (py + 1)(pr + 1) dimensional vector of zeros. We denote the estimator defined in
(2.21) as quantile common correlated effects mean group estimator, QCCEMG. In what follows,
for convenience, we shorten the label simply to QMG. One could also consider a pooled version,
the common correlated effects pooled estimator proposed in Pesaran (2006). We can consider a

weighted average of the individual estimates with weights defined by the covariance matrix of 7;(7).

The interpretation of the estimator defined in (2.21) is associated with heterogeneous coefficients
modeled as ¥;(7) = ¥(7) + v;, where v; is a mean-zero error term independent of the regressors.
We are interested in 9¥(7), which motivates the average. Large N helps to understand the average
restriction and recover the parameter of interest. Furthermore, note that we need a panel with large
T, because of the short T bias involved in estimating quantile regressions with lagged dependent
variables, and the fact that we are approximating f; by current and past values of cross section

averages, z;, and we need both N and 7T to be large for this purpose.

2.2. Asymptotic Theory

This section investigates the large sample properties of the proposed quantile estimator and its
mean group counterpart defined by equations (2.20) and (2.21), respectively. Throughout this
section, we set Xi = (yir—1, X}y, %;)', where 2y = (1,24, 2;_1,...,2;_,,.)", and write equation (2.17)

as yir = X}, 7 + €. Also ||-||1 stands for the ¢;-norm.

We consider the following regularity conditions for the consistency of the proposed estimators:
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Assumption 9. The vector {(X},,f/,yix) : t = 1,2,...} is stationary and independent across i,
and [-mizing time series with S-mizing coefficients ;(j). Then, there exists constants a € (0,1)
and B > 0 such that sup, <<y Bi(j) < Ba’ for all j > 1.

Assumption 10. There exist a series of constants independent of i and T such that sup; , [|v:(7)|| <
K., sup; [|T|| < Kr, sup; ||yiol|| < Ky, and sup; ||us|| < Ky, and additionally a constant M, such
that sup; | Xit|| < My (a.s.). In addition, inf; ; CuinE [vi(7)¥.(T)] > 0, and inf;>1 (min(E(TiT;)) >
0.

Assumption 11. For each n > 0,

€y :=inf inf FE
i lwlli=n

Xzfl‘rr
/ (Gi(s|X1) — 7) ds| |
0

where G; is defined as a conditional distribution of u;z and the conditional densities g; is continuous,
uniformly bounded away from 0 and oo, with continuous derivatives everywhere. Moreover, the
joint distribution of (wi1,uii45), Gij(wi1, win451Xe1, Xii45) < Cp with Cy > 0, uniformly over
(wi1, win4j, Xi1, Xi145) foralli > 1 and j > 1.

Assumption 12. Let S;p = T~ ! Zthl Xitht and assume that there exists Ty such that for all
T > Ty, inf; Cmin (Siz) > 0, and sup; Cmin (Siv) > K, and S;p - S; = E(XuX!,), such that
infi(Cmin (S@)) > 0.

Similar conditions are used in the literature. For instance, a version of Assumption 9 has been used
in Hahn and Kuersteiner (2011), Kato, Galvao and Montes-Rojas (2012), and Galvao, Lamarche
and Lima (2013). The condition allows for dependence across time, implying that we need to apply
a Bernstein type inequality for -mixing sequences (Corollary C.1. in Kato, Galvao and Montes-
Rojas (2012)) rather than a Hoeffding’s inequality to show weak consistency. See Lemma 2 in
Appendix A. Assumption 9 is a high-level assumption since X;; includes 41, ¥¢—2, - . ., and it is not
easy to verify from the basic Assumptions 1-6. Assumption 10 is needed for the consistency of the
estimator and for obtaining a well-defined limiting distribution. It requires that the regressors are
strictly bounded, with the implication that the support of the error distributions is bounded and all
coefficients, including the factor loadings, are bounded too. In the case of homogeneous coefficients
(1) = 9(7) forall 1 <4 < N, it can be changed to sup;>; E[[|X;1]|] < 0o as indicated in Kato et al.
(2012) or max;y ||yit|| = Op(v/NT) and max;; ||xi|| = Op(V'NT) as in Galvao (2011), but new results
on stochastic inequalities for non-i.i.d. cases are needed. Note that the last part of Assumption 10

implies, by Assumption 3, that E(~; (1) v/(7)) and E(I';I'}) are non-singular matrices that do not
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depend on i. Assumption 11 is an identification condition and is similar to Assumptions (A3) and
(D2) in Kato, Galvao and Montes-Rojas (2012). The assumption also imposes conditions on the
joint distributions because the data can be non-independently distributed. Lastly, Assumption 12
is standard in the quantile regression literature and it is analogous to Assumption 7.b and 7.c in
Chudik and Pesaran (2015). It guarantees that the inverse of E|[g;(0|X;;)X;:X/,] exists, and jointly

with Assumption 11, it implies that these inverses are uniformly bounded across i.
The following result states the weak consistency of the estimator:

Theorem 2 (Uniform consistency of 7;(7)). Suppose the T-th conditional quantile function of yi
fori=1,..,N andt=1,..,T is given by the panel data model (2.1)-(2.2) and Assumptions 1-12
hold. As N, T and pr go jointly to infinity with p3/T — 0 and (log(N))?/T — 0, the cross-
section augmented quantile regression estimator, 7;(7), defined by (2.20), is consistent uniformly
over 1 <i<N.

As suspected, different conditions lead to changes in Theorem 2. Under less general conditions
in Assumption 9, (i.e., not allowing for time series dependence), an application of Hoeffding’s
inequality leads to a bound in Theorem 2 that is O(exp(—T)) = o(N~!) which is satisfied when
log(N)/T — 0.

It is perhaps worth noting that m;(7) is estimated by quantile regressions for each unit i separately,
but we augment such quantile regressions with z;,z;_1,...,2;—p,. For N sufficiently large, the
consistency of quantile estimators for each unit ¢ can be justified using standard (non-panel) results
for quantile regressions. Thus, if N is fixed, then v/T(#;(7) — m;(7)) converges in distribution to
a mean zero random variable with covariance V, under ' — oo and p3./T" — 0. The form of
the covariance matrix V depends on Assumption 9 and under i.i.d. conditions, the asymptotic
covariance matrix is similar to the ones obtained in Koenker (2005). We need, however, N — oo

for consistency of our approach.

As discussed in Chudik and Pesaran (2015), the consistency of individual coefficients is not al-
ways necessary for the consistency of the mean group estimator. Our next result establishes the

consistency of the QMG estimator.

Theorem 3 (Consistency of 9(7)). Under the conditions of Theorem 2, as (N,pr,T) go jointly
to infinity with p3./T — 0 and (log(N))?/T — 0, the mean quantile group estimator defined by
(2.21) for a model with interactive effects is weakly consistent, namely for every 0 < 7 < 1,
I(r) —I(1) = 0.



14

We now turn our attention to the asymptotic distribution of the proposed estimator. We consider

the following additional regularity condition:

Assum;;tion 13. Let J; := E[gi(0|X.it)XitX;t], D; = ﬁ ZtT:H;?T VYr (yir — Xétﬂ'o)Xit, D, :=
ﬁztzl_ﬂm ¢T(yit - X,itﬂ'i())Xz't; Ei = EiEIi; Vi = Var(Di), Vz' = VCLT(Di), and Qﬂ =
Var(9;(1)). The following conditions hold:

(a) Let Iy = N'SN B 03, and Vy = NPSN &0V, The limit J = limy o0 Iy,
V i=limy_o VN, and Vy := limy_, J;VIVNJR,l exist and are non-singular.
(b) Let Vy =N"1 Zf\;l =,0V,. The limiting matrices Qy = limy_o0 J]_Vl\./]\;.]]_\,1 and V, =

Qy, + Qy exist and are non-singular.

Assumption 13 has two parts which correspond to the case of heterogeneous and homogeneous
coefficients. The first part is standard in the panel quantile literature for models with homogeneous
coefficients and it is needed for the existence of limiting forms of positive definite matrices and to
invoke a Central Limit Theorem. The second part relates to slope heterogeneity in a quantile
framework. Assumption 13.b allows a general form of slope heterogeneity while guaranteeing that

the covariance matrix of the QMG estimator is well defined.
The following theorem establishes the asymptotic distribution of the quantile mean group estimator.

Theorem 4 (Asymptotic Distribution of 9(7)). Suppose the 7-th conditional quantile function of
yir fori =1,..,N andt =1,...,T is given by the panel data model (2.1)-(2.2) and Assumptions
1-13 hold. As (N,pr,T) — oo with p3./T — 0 and N?/3(log(N))/T — 0, the mean group quantile
regression estimator, defined by (2.21), for a model with interactive effects, VN (9() — 9(7)) LN
N(0,V,).

It should be noted that for fixed N, vT(9(r) —9(7)) is asymptotically a Gaussian random variable.
However, because the approximation of the factors requires N — oo and we let N and T go jointly
to infinity, the rates of Theorem 4 suggest that T has to be larger than N in finite samples to

eliminate biases from incidental parameters and truncation of possibly infinite lag polynomials.

The following theorem establishes the asymptotic distribution of the quantile mean group estimator

when the 9;(7)’s are homogeneous.

Theorem 5. Under the Assumptions of Theorem 4, as (N,pr,T) — oo with p3./T — 0 and

N2(log(N))?/T — 0, the mean group quantile regression estimator, defined by (2.21), for a model
with interactive effects with 9;(t) = 9(r) for 1 <i < N, VNT (1) — (7)) LN N(0,Vy).
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The convergence of the QMG estimator in Theorem 4 is v/ N due to the heterogeneity of the
parameter of interest, 9;(7). The standard v/ NT convergence is obtained in Theorem 5 when the
coefficients are not heterogeneous. These results appear to be comparable to standard convergence
results for panel data estimators of conditional mean models with interactive effects (e.g., Pesaran
(2006) and Chudik and Pesaran (2015)), but it is important to point out the difference in terms of
the restrictions on 7' relative to N, due mainly to the estimation of individual parameters and the

non-linearity of the quantile function.

2.3. Inference

The asymptotic covariance matrix can be consistently estimated using existing estimators. For
large N and T, we define @;(7) := yir — X[,7:(7), hy to be a sequence of bandwidths such that
hy — 0 as N — oo, and Kpy (u) = hy' K (u/hy) be a Kernel estimator. Then we can use the

following estimators to consistently estimate V,

T T

. 1 ) . 1 )

Ji= e > K(iaa(r)XaXj, D;= T > 6n (9 XX, (2.22)
br t=pr+1 pr t=pr+1

where, by the derivations in Section S.1 in the Supplement to the manuscript,
g—1 j
65(q) :==7(1—7)+2 Z <1 - q> [I(Ya < X#0i(7), Yirgy < Xy mi(r)) — 7] (2.23)
j=1

for a positive integer ¢ > 1. Note that ¢ = 1 gives ai(l) = 7(1—7), the variance of ), = 7—1I(u < 0)
in the case of independent observations (see, e.g., Koenker 2005). The matrix J; can also be
estimated by the method for non i.i.d. observations proposed by Hendricks and Koenker (1992). On
the other hand, the matrix V,, can be estimated using (N —1)"1 >N (9;(7) —9(7))(9;(1) —9(7))".
Notice that if v;(7) = v; for all 4, the estimator VU is quantile invariant and therefore a consistent
estimator of V,, can be defined as in equation (32) in Chudik and Pesaran (2015).

3. Monte Carlo

This section reports results of several simulation exercises designed to evaluate the small sample
performance of the proposed estimator. Observations on y;; for ¢ = 1,2,...,N and t = =S5 +

1,-542,..,0,1,...,T are generated according to the following model with two factors:

Yit = Poi + NiVit—1 + Briz1it + B2ixa,it + Y1ifie + Y2ifor + koi(1 + K1ix1 i) Uit (3.1)
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where (yp; = a; + Bp, the error term w; is distributed as F, kg; is an i.i.d. random variable
distributed as uniform ¢/(0.9,1.1), and k1; is an i.i.d. random variable distributed as uniform
U(0,0.2). Depending on the values of kg; and k1;, we have two conditional quantile functions. (a)
When kg; =1 and k1; =0 for all 1 <i < N, we have

Qv;, (T|yit—1,Xit, 05, £t) = Boi(T) + Nivii—1 + Lrixiie + B2ixait + Yiifie + v2i for, (3.2)

with 0; = (aq, Mi, B;,71)s Bi = (Bui, B2i)'s vi = (Mi,721)s Bio(T) = i + Po(7), and Bo(7) =
Bo + E1(7). (b) When ko; # 1 and k1; # 0 for all 1 <i < N, the conditional quantile function of
(3.1) becomes,

Qv;, (T|Yit—1,Xit, 0:(7), ) = Boi(T) + Aivit—1 + Bri(T)x 10 + Boitoie + Yiifie + v2i for, (3.3)

with 0;(7) = (e (1), Xi, Bi(7), ), Bi(7) = (B1i(T), B2i)', Bio(T) = i(T)+Po, ai(T) = citrioiF, ()
and B1;(7) = B1; + Koik1:F, L(7). For each i, models (3.2) and (3.3) are typically referred to in the
literature as location shift and location-scale shift models, respectively (see, e.g., Koenker (2005)).
In all experiments, to simplify the exposition and without loss of generality, we set 5y = 0 and
B2; = 0.5, for 1 <i < N. Note that for S sufficiently large, we have that (with 5y = 0),

S—1 S-1 S—1
o . . .
Yio B Ty :)\' + B Y Mavi i+ B Masij+ > Mé& (3.4)

where &t = v1ifit + Y2i for + K0i(1 + K1321,4¢)wir. In all the variants of the model considered in the
simulations, we set S = 200 to minimize the effects of the initial values on the outcomes. The

regressors, x; i, are generated as

i = i+ LDjifje +vjie, (3.5)
Vjiit = Pavji—1+ 1 — piejiy, (3.6)

fit = prfip—1+/1 - e, (3.7)

for j € {1,2}, with p; ~ itdN(0.5,1), €55+ ~ dN(0,1), and €j; ~ itdN(0,1). We consider the
case of relatively persistent regressors by setting p, = 0.8 and py = 0.9. Moreover, without loss of

generality we set z;; _g = 0 and f; _g = 0.

The factor loadings in equation (3.1), v1; and 7;, and in equation (3.5), I'1; and I'y;, are generated
as ;i ~ 1tdN(0.5,1) and T'j; ~ itdN(0.5,1) for j € {1,2}. These factor loadings ensure that the
rank condition in Assumption 6 is met. Finally, the fixed effects, «;, are allowed to be correlated

with the errors by generating them as o; = T1; + 715 fl + v f_g + u; + a;, where the individual specific
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averages are defined as z1; = T~! Z?:l T1it, fj =71 ZtT:1 fits Ui = 71 Zle ui;. The error term

a; in the equation for «; is assumed to be distributed as N (0, 1).

Initially, we set A; = X for ¢ = 1,2,..., N and consider three values of A = {0.25,0.50,0.75}.
Later in Figure 3.1, we investigate the performance of the QMG estimator with heterogeneous \;’s.
Moreover, in addition to the experiments presented in this section, we also considered static panel
data experiments (i.e., when \; = 0, for all 7) and compare the performance of QMG estimator with
a number of existing panel quantile regression estimators. For relatively large T', the performance
of the proposed estimator was similar in both the static panel data model and dynamic panel data

model. Thus, we present results for the dynamic model only to save space.

In the simulations, we assume that the error term u; in equation (3.1) is an i.i.d. random variable
distributed as Standard Normal, t-student with 4 degrees of freedom (t4), and x? with 3 degrees of

freedom (x3). We consider the following four variations of the model (with \; = \):

Design 1: (Location shift model with homogeneous slopes). We consider 5; = 1 in a location shift
model with k1; =0 forall 1 <7< N.

Design 2: (Location shift model with heterogeneous slopes). We consider heterogeneous slope
parameters 31; = 81 + 1; in a location shift model, where x1; = 0 for all 1 <¢ < N, 51 =1 and
v1; ~U(—0.25,0.25). The parameter S1;(7) = y; for all ¢ and 7.

Design 3: (Location-scale shift model with homogeneous slopes). We consider homogenous slope
parameters 51 = 1 in a location-scale shift model with x1; ~ ¢(0,0.2). In this case, the slope
parameter (1;(7) = 1 + koik1:F, (7)) and E(Bi(7)) = B1 + 0.1F, (7).

Design 4: (Location-scale shift model with heterogeneous slopes). We consider heterogeneous
slope parameters as in Design 2, 51, = 81 + 115, in a location-scale shift model with x1; ~ (0, 0.2).
We assume 31 = 1 and vq; ~ U(—0.25,0.25) which implies that 81;(7) = B1; + koik1iFy, (1) =
1+ v1; + kois1 F 1 (7). In this case, E(B1i(7)) = (1) = 1+ 0.1F, (7).

Tables 3.1 to Table 3.2 present the bias and root mean square error (RMSE) for the slope parameter
B1(7) in the location shift model with A = 0.5. The summary results for other choices of A are
provided in the online supplement. We focus on A = 0.5 here, since we obtain similar estimates
in the empirical application to be discussed in Section 4. While Table 3.1 presents results for
Designs 1 and 2, Table 3.2 presents results for Designs 3 and 4. The tables show results for quantile
regression estimators at two quantiles, 7 € {0.25,0.50}, based on sample sizes of N € {100,200}
and T € {50,100, 200}.
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We compare the performance of the QMG estimator with the instrumental variable quantile re-
gression estimator for dynamic panel data model developed by Galvao (2011), using y;;—2 as an
instrument for y; ;—;. This estimator is denoted by DQR. However, it is important to bear in mind
that Galvao’s model does not allow for the interactive term, \;f;, and could generate biases that
cannot be eliminated by use of instrumental variables. The QMG, is computed as the simple cross
sectional average of standard quantile estimators, BM(T), using z; = (Jt, Yt—1,X})’ to proxy the true
unobserved factors fi; and fo;. We do not consider other existing quantile estimators, such as
the classical quantile regression estimator, the fixed effects minimum distance quantile regression
estimator by Galvao and Wang (2015), and the penalized quantile regression estimator, since all
these estimators are biased when the model includes a lagged dependent variable. Therefore, we
restrict our comparison to DQR, which is the only estimator in the literature proposed for dynamic

panel quantile regression models.

3.1. Bias and Root Mean Square Error

As can be seen from Table 3.1, not surprisingly, the DQR estimator of 3 is biased and that its bias
tends to be slightly larger in the case where the slopes are heterogeneous. Furthermore, the bias
of DQR estimator tends to increase with T', and tend to be similar for both 0.5 and 0.25 quantiles.
On the other hand, the performance of the QMG estimator is excellent, with biases in general lower
than 10% for T' = 50, and decreasing rapidly to 1% when T" = 200. In all the variations of the
model considered in the table, the QMG estimator performs much better than DQR in terms of
RMSE, as well.

Table 3.2 presents results for the location-scale shift model where (1(7) changes by quantile. We
continue to see that the DQR estimator is biased and performs poorly in terms of RMSE. The
performance of the QMG estimator in these variations of the model is similar to the results reported
for the baseline model in Table 3.1, with low biases and small RMSE. For values of T' larger than
50, the bias of the proposed estimator is always negative and ranges between 0.7% and 4%, and its
RMSE is substantially below that of the DQR estimator. The RMSE of QMG relative to DQR is
around 30 percent for N = 100,7 = 50, and falls to around 0.05 for N = T = 200. The relative

efficiency of the QMG estimator is similar across all the four designs.

We expanded the simulation evidence for the slope parameter 81 to consider different values of A.
In the online supplement we present results for A € {0.25,0.75} considering the same designs as in
Tables 3.1 and 3.2, with N = 100 and 7" = 200. We considered a moderate N and large T panel



7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A Parameter: §; Parameter: A Parameter: 6;

DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution

100 50 Bias -0.191 0.053 0.644 -0.058 -0.187 0.055 0.639 -0.043
100 50 RMSE 0.221 0.061 0.702 0.085 0.218 0.064 0.700 0.080
100 100 Bias -0.253 0.022 0.703 -0.011 -0.249 0.023 0.703 -0.007
100 100 RMSE 0.270 0.029 0.736 0.044 0.266 0.032 0.737 0.046
100 200 Bias -0.293 0.003 0.738 0.007 -0.291 0.003 0.736 0.008
100 200 RMSE 0.303 0.015 0.758 0.029 0.301 0.016 0.758 0.030
200 50 Bias -0.198 0.056 0.666 -0.069 -0.195 0.057 0.665 -0.054
200 50 RMSE 0.225 0.060 0.722 0.083 0.221 0.061 0.724 0.071
200 100 Bias -0.271 0.028 0.734 -0.027 -0.267 0.028 0.731 -0.023
200 100 RMSE 0.286 0.031 0.760 0.038 0.283 0.031 0.759 0.036
200 200 Bias -0.294 0.011 0.744 -0.006 -0.292 0.011 0.740 -0.004
200 200 RMSE 0.303 0.015 0.757 0.017 0.301 0.015 0.754 0.018

N T t4 distribution

100 50 Bias -0.171  0.057 0.607 -0.066 -0.166 0.063 0.614 -0.060
100 50 RMSE 0.200 0.065 0.677 0.092 0.196 0.073 0.684 0.096
100 100 Bias -0.230 0.027 0.664 -0.019 -0.230 0.032 0.669 -0.018
100 100 RMSE 0.247 0.034 0.698 0.044 0.247 0.040 0.704 0.049
100 200 Bias -0.277 0.005 0.699 0.002 -0.275 0.007 0.702 0.000
100 200 RMSE 0.287 0.015 0.723 0.028 0.285 0.018 0.725 0.030
200 50 Bias -0.176  0.059 0.593 -0.083 -0.170 0.066 0.599 -0.073
200 50 RMSE 0.203 0.063 0.654 0.093 0.197 0.072 0.659 0.107
200 100 Bias -0.235 0.031 0.651 -0.028 -0.233 0.035 0.658 -0.027
200 100 RMSE 0.252 0.034 0.683 0.038 0.250 0.038 0.690 0.041
200 200 Bias -0.281 0.011 0.695 -0.007 -0.280 0.014 0.701 -0.008
200 200 RMSE 0.290 0.015 0.710 0.018 0.289 0.018 0.717 0.022

N T x3 distribution

100 50 Bias -0.109 0.080 0.473 -0.102 -0.109 0.046 0.466 -0.058
100 50 RMSE 0.152 0.097 0.529 0.146 0.148 0.063 0.519 0.104
100 100 Bias -0.173 0.040 0.543 -0.043 -0.164 0.018 0.515 -0.018
100 100 RMSE 0.194 0.053 0.579 0.080 0.184 0.031 0.551 0.052
100 200 Bias -0.217 0.020 0.576 -0.011 -0.204 0.005 0.540 -0.003
100 200 RMSE 0.229 0.031 0.597 0.046 0.216 0.018 0.560 0.033
200 50 Bias -0.116 0.085 0.480 -0.098 -0.115 0.048 0.455 -0.056
200 50 RMSE 0.153 0.094 0.522 0.124 0.149 0.057 0.492 0.079
200 100 Bias -0.174 0.047 0.542 -0.044 -0.167 0.023 0.511 -0.020
200 100 RMSE 0.192 0.053 0.565 0.063 0.185 0.029 0.533 0.040
200 200 Bias -0.208 0.023 0.576 -0.018 -0.198 0.010 0.534 -0.006
200 200 RMSE 0.219 0.028 0.590 0.036 0.208 0.015 0.549 0.023

TABLE 3.3. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 01 in Design 1. In all the variations of the model, A = 0.5.
Also, see notes to Table 3.1.



7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A Parameter: §; Parameter: A Parameter: 6;

DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution

100 50 Bias -0.195 0.049 0.668 -0.063 -0.190 0.049 0.670 -0.038
100 50 RMSE 0.224 0.058 0.735 0.091 0.220 0.060 0.739 0.110
100 100 Bias -0.267 0.021 0.732 -0.014 -0.265 0.022 0.729 -0.008
100 100 RMSE 0.283 0.033 0.770 0.054 0.280 0.035 0.770 0.055
100 200 Bias -0.296 0.001 0.740 0.005 -0.294 0.001 0.741 0.006
100 200 RMSE 0.307 0.021 0.759 0.040 0.305 0.022 0.760 0.042
200 50 Bias -0.200 0.055 0.674 -0.072 -0.196 0.054 0.678 -0.058
200 50 RMSE 0.226 0.060 0.741 0.087 0.223 0.060 0.752 0.078
200 100 Bias -0.258 0.028 0.711 -0.025 -0.255 0.029 0.712 -0.020
200 100 RMSE 0.272 0.033 0.744 0.040 0.270 0.034 0.748 0.039
200 200 Bias -0.301 0.011 0.742 -0.006 -0.299 0.010 0.739 -0.006
200 200 RMSE 0.309 0.018 0.758 0.028 0.307 0.018 0.756 0.028

N T t4 distribution

100 50 Bias -0.170 0.054 0.591 -0.070 -0.165 0.061 0.600 -0.061
100 50 RMSE 0.206 0.065 0.661 0.102 0.201 0.074 0.669 0.106
100 100 Bias -0.237 0.024 0.669 -0.019 -0.235 0.028 0.667 -0.019
100 100 RMSE 0.255 0.035 0.702 0.0563 0.253 0.040 0.703 0.059
100 200 Bias -0.279 0.006 0.696 0.002 -0.280 0.008 0.700 0.003
100 200 RMSE 0.290 0.021 0.716 0.041 0.290 0.023 0.722 0.042
200 50 Bias -0.175 0.058 0.598 -0.078 -0.169 0.065 0.597 -0.072
200 50 RMSE 0.199 0.064 0.642 0.092 0.194 0.071 0.645 0.091
200 100 Bias -0.245 0.029 0.678 -0.030 -0.242 0.032 0.685 -0.030
200 100 RMSE 0.260 0.033 0.708 0.045 0.257 0.038 0.716 0.047
200 200 Bias -0.277 0.012 0.705 -0.006 -0.277 0.014 0.706 -0.009
200 200 RMSE 0.285 0.019 0.719 0.029 0.285 0.021 0.722 0.031

N T x3 distribution

100 50 Bias -0.114 0.081 0.486 -0.096 -0.115 0.045 0.463 -0.056
100 50 RMSE 0.158 0.099 0.540 0.142 0.156 0.063 0.513 0.100
100 100 Bias -0.179 0.042 0.568 -0.041 -0.171 0.020 0.535 -0.017
100 100 RMSE 0.199 0.058 0.601 0.083 0.190 0.036 0.567 0.060
100 200 Bias -0.212  0.021 0.577 -0.009 -0.201 0.007 0.542 0.002
100 200 RMSE 0.226 0.034 0.600 0.052 0.215 0.022 0.564 0.042
200 50 Bias -0.114 0.082 0.479 -0.099 -0.110 0.047 0.462 -0.056
200 50 RMSE 0.148 0.093 0.528 0.130 0.142 0.058 0.510 0.086
200 100 Bias -0.181 0.046 0.546 -0.044 -0.174 0.024 0.517 -0.019
200 100 RMSE 0.200 0.052 0.571 0.065 0.192 0.030 0.541 0.042
200 200 Bias -0.214 0.021 0.584 -0.020 -0.203 0.009 0.546 -0.007
200 200 RMSE 0.225 0.028 0.598 0.039 0.214 0.017 0.560 0.028

TABLE 3.4. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 01 in Design 2. In all the variations of the model, A = 0.5.
Also, see notes to Table 3.1.



7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A Parameter: §; Parameter: A Parameter: 6;

DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution

100 50 Bias -0.188 0.055 0.637 -0.060 -0.165 0.070 0.596 -0.015
100 50 RMSE 0.219 0.063 0.694 0.089 0.198 0.078 0.648 0.072
100 100 Bias -0.250 0.023 0.695 -0.011 -0.225 0.032 0.649 0.009
100 100 RMSE 0.267 0.031 0.729 0.045 0.244 0.039 0.678 0.046
100 200 Bias -0.291 0.003 0.729 0.007 -0.268 0.009 0.676 0.018
100 200 RMSE 0.300 0.015 0.749 0.029 0.278 0.019 0.695 0.035
200 50 Bias -0.195 0.057 0.661 -0.073 -0.172 0.071 0.618 -0.024
200 50 RMSE 0.222 0.061 0.717 0.083 0.202 0.075 0.666 0.053
200 100 Bias -0.268 0.029 0.724 -0.028 -0.243 0.036 0.673 -0.008
200 100 RMSE 0.283 0.032 0.750 0.039 0.260 0.038 0.696 0.030
200 200 Bias -0.291 0.011 0.735 -0.006 -0.268 0.016 0.678 0.005
200 200 RMSE 0.300 0.015 0.748 0.018 0.277 0.019 0.690 0.018

N T t4 distribution

100 50 Bias -0.168 0.057 0.595 -0.067 -0.145 0.077 0.556 -0.027
100 50 RMSE 0.197 0.067 0.664 0.094 0.179 0.086 0.614 0.078
100 100 Bias -0.226 0.027 0.653 -0.020 -0.207 0.042 0.598 0.003
100 100 RMSE 0.243 0.035 0.686 0.046 0.226 0.049 0.628 0.048
100 200 Bias -0.272 0.005 0.689 0.001 -0.251 0.014 0.619 0.013
100 200 RMSE 0.282 0.015 0.712 0.028 0.262 0.022 0.640 0.034
200 50 Bias -0.171 0.060 0.583 -0.083 -0.148 0.081 0.544 -0.035
200 50 RMSE 0.199 0.065 0.640 0.094 0.178 0.086 0.594 0.069
200 100 Bias -0.231 0.031 0.639 -0.028 -0.210 0.043 0.589 -0.008
200 100 RMSE 0.247 0.034 0.670 0.039 0.228 0.046 0.615 0.033
200 200 Bias -0.276 0.012 0.684 -0.007 -0.256 0.020 0.619 0.005
200 200 RMSE 0.285 0.015 0.699 0.018 0.265 0.023 0.632 0.022

N T x3 distribution

100 50 Bias -0.131 0.098 0.433 -0.109 -0.102 0.075 0.413 -0.013
100 50 RMSE 0.178 0.116 0.488 0.161 0.150 0.089 0.457 0.093
100 100 Bias -0.203 0.044 0.495 -0.051 -0.163 0.030 0.437 0.001
100 100 RMSE 0.227 0.059 0.531 0.093 0.187 0.040 0.466 0.053
100 200 Bias -0.251 0.020 0.520 -0.016 -0.205 0.010 0.445 0.006
100 200 RMSE 0.265 0.034 0.541 0.055 0.220 0.022 0.465 0.036
200 50 Bias -0.139 0.101 0.439 -0.108 -0.107 0.076 0.404 -0.015
200 50 RMSE 0.177 0.110 0479 0.138 0.147 0.082 0.432 0.062
200 100 Bias -0.204 0.053 0.496 -0.052 -0.165 0.034 0.437 -0.002
200 100 RMSE 0.224 0.059 0.520 0.073 0.187 0.040 0.455 0.038
200 200 Bias -0.242 0.025 0.520 -0.022 -0.199 0.015 0.443 0.003
200 200 RMSE 0.254 0.032 0.535 0.045 0.212 0.020 0.457 0.025

TABLE 3.5. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 01 in Design 3. In all the variations of the model, A = 0.5.
Also, see notes to Table 3.1.



7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A Parameter: §; Parameter: A Parameter: 6;

DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution

100 50 Bias -0.194 0.052 0.662 -0.064 -0.167 0.064 0.631 -0.013
100 50 RMSE 0.223 0.061 0.729 0.094 0.201 0.074 0.692 0.084
100 100 Bias -0.264 0.022 0.724 -0.016 -0.241 0.030 0.674 0.007
100 100 RMSE 0.280 0.034 0.763 0.056 0.258 0.042 0.710 0.055
100 200 Bias -0.292 0.002 0.733 0.005 -0.270 0.007 0.679 0.015
100 200 RMSE 0.304 0.022 0.752 0.041 0.282 0.023 0.697 0.045
200 50 Bias -0.198 0.057 0.664 -0.074 -0.174 0.068 0.635 -0.030
200 50 RMSE 0.225 0.062 0.731 0.090 0.203 0.073 0.695 0.061
200 100 Bias -0.254 0.029 0.705 -0.026 -0.231 0.036 0.659 -0.005
200 100 RMSE 0.269 0.034 0.738 0.041 0.247 0.041 0.689 0.035
200 200 Bias -0.298 0.011 0.734 -0.006 -0.274 0.015 0.677 0.003
200 200 RMSE 0.306 0.019 0.749 0.028 0.283 0.022 0.690 0.029

N T t4 distribution

100 50 Bias -0.166 0.055 0.580 -0.071 -0.143 0.077 0.545 -0.029
100 50 RMSE 0.202 0.067 0.651 0.104 0.184 0.088 0.603 0.095
100 100 Bias -0.232 0.025 0.657 -0.021 -0.211 0.039 0.598 0.002
100 100 RMSE 0.250 0.036 0.689 0.055 0.231 0.048 0.628 0.056
100 200 Bias -0.275 0.006 0.685 0.001 -0.256 0.015 0.619 0.015
100 200 RMSE 0.285 0.021 0.705 0.041 0.267 0.027 0.639 0.045
200 50 Bias -0.170 0.060 0.586 -0.079 -0.147 0.079 0.545 -0.039
200 50 RMSE 0.195 0.065 0.629 0.093 0.173 0.085 0.585 0.069
200 100 Bias -0.241 0.029 0.664 -0.031 -0.219 0.040 0.609 -0.012
200 100 RMSE 0.257 0.034 0.693 0.046 0.236 0.045 0.634 0.038
200 200 Bias -0.272 0.013 0.692 -0.006 -0.253 0.019 0.623 0.003
200 200 RMSE 0.281 0.019 0.707 0.029 0.262 0.025 0.638 0.030

N T x3 distribution

100 50 Bias -0.139 0.096 0.443 -0.107 -0.108 0.073 0.408 -0.015
100 50 RMSE 0.187 0.114 0.498 0.156 0.159 0.087 0.449 0.088
100 100 Bias -0.210 0.047 0.517 -0.050 -0.171 0.031 0.451 0.002
100 100 RMSE 0.231 0.064 0.551 0.094 0.194 0.045 0.479 0.061
100 200 Bias -0.246 0.020 0.521 -0.016 -0.202 0.012 0.449 0.010
100 200 RMSE 0.262 0.036 0.544 0.059 0.219 0.026 0.470 0.045
200 50 Bias -0.136  0.098 0.439 -0.108 -0.103 0.074 0.409 -0.015
200 50 RMSE 0.173 0.110 0.486 0.143 0.142 0.083 0.443 0.072
200 100 Bias -0.212  0.050 0.495 -0.053 -0.172 0.034 0.438 -0.002
200 100 RMSE 0.233 0.057 0.519 0.075 0.194 0.039 0.456 0.038
200 200 Bias -0.249 0.022 0.529 -0.025 -0.204 0.014 0.453 0.001
200 200 RMSE 0.261 0.031 0.544 0.047 0.217 0.021 0.466 0.030

TABLE 3.6. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 01 in Design 4. In all the variations of the model, A = 0.5.
Also, see notes to Table 3.1.
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because our application in Section 4 employs a data set with 779 households and 8639 time-series
observations. We see that the QMG estimator continues to perform better than the DQR estimator.
We also find that the performance of the QMG estimator is invariant to the choice of A, at least in
the simulations considered thus far. We do investigate the performance of the QMG estimator in

the heterogeneous case when \; € [0.025,0.925], below.

We now turn our attention to the estimators of A(7) and 61(7) = 51(7)/(1 — A(7)). The estimator
for 61(7) is defined as f1(7)/(1 — A()) and is computed by plugging in the quantile estimates
corresponding to A\(7) and S (7). We employ this method for both the DQR and QMG estimators.

Tables 3.3, 3.4, 3.5 and 3.6 show the bias and RMSE of the DQR and QMG estimators for the
parameters of interest. These four tables show results for the four different designs we consider in
this section. Each table presents, in columns, the performance of the estimators at 7 € {0.25,0.50}
and in rows the different samples sizes and distributions for the error term. The upper block
presents results when u;; is distributed as A(0,1), the middle panel shows results when w;; ~ t4

and the lower block presents results when wu;; ~ X%-

As before, the results indicate that the bias of the DQR estimator can be large, in particular for the
long run coefficient #;. The QMG estimator offers nearly zero biases for large N and 7. The DQR
estimator is biased and its performance is not satisfactory in terms of both bias and RMSE. The
location-scale shift case, presented in Tables 3.5 and 3.6, reveals similar findings. Overall, when
A = 0.5, the QMG estimator offers the best performance in terms of bias and RMSE in the class

of estimators for the dynamic quantile panel data models considered in this section.

Figure 3.1 offers a visual display of the small sample performance of the QMG estimator as A
increases. The figure shows the bias and RMSE of the QMG estimator at 7 € {0.25,0.50} for A, 5;
and 6, for different true values of A. We considered Design 1 with N = 100 and 7" = 200. Recall
that when A increases, 0, increases too. For instance, while A = 0 gives 1 = 51 = 1, A = 0.9
gives § = 10 in our simulation experiment. Consistent with our previous evidence, we see that the
performance of QMG estimator does not depend on A when the interest is in estimating ;. The
bias tends to increase slightly, but it is never larger than 1% for values of A close to unity. We
also find that the RMSE of the estimator of 81 does not change with A. On the other hand, we
observe that the absolute value of the bias of the QMG estimator for #; increases rapidly A — 1.
The figure shows that the bias, in absolute value, is negligible for A < 0.75, and it increases rapidly

when A > 0.8. Note however that the bias in relative terms is always less than 10%. We also find
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FIGURE 3.1. Small sample performance of the QMG estimator for different
values of . The figure present Bias and RMSE of the QMG estimator for
E(X(7)), E(f1(7)) and E(01(7)) at the 0.25 and 0.50 quantiles.

that the RMSE increases with A and that the RMSE of the QMG estimator at 7 = 0.25 is larger
than the QMG estimator at 7 = 0.50, as to be expected.

Figure 3.1 also shows the bias and RMSE of the QMG estimator when \; = A + w;, where w; ~
U[—0.025,0.025] and A takes values in the interval A € [0.05,0.90]. The parametrization guarantees
that 6, exists for all values of \; fori =1,..., N. We generate data using Design 1 with NV = 100 and
T = 200. Consistent with our expectations, the bias and RMSE of the estimator tends to be similar
to the case of homogeneous \’s, although the performance deteriorates for large values of A = E()\;).

We see an increase in the variance of the estimator, but the bias for 6; remains, in absolute value,
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small for E();) < 0.65. As can be seen from Figure 3.1, the parameter vector (E();), 1) can be

estimated with small bias and excellent RMSE performance in the case of heterogeneous \;’s, so

long as N and T are sufficiently large, and F();) is not too close to unity.

Finally, we investigate the relative performance of DQR and QMG in models with and without

factor structure, i.e. Z?Zl oyvjifje in equation (3.1). As in Figure 3.1, we generate data using

Design 1 with N = 100 and T" = 200. In contrast with the previous design, we generate v1; ~
itdN(0.5,1) and 79; ~ idN(0.5,1), and we set 0., to take values in the interval [0,1]. Naturally,

when o, = 0, the model does not include latent factors. Figure 3.2 presents the bias and RMSE of

the estimators for A, f; and ;. Consistent again with expectations, when equation (3.1) does not
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include factors, the DQR estimator offers the best finite sample performance. However, as shown in
the figure, the QMG performs reasonably well even when o, = 0 and it offers the best performance

in terms of bias and RMSE when the degree of parameter heterogeneity is not too small.

3.2. Inference

We now turn our attention to the standard error of the QMG estimator for A(7) and S (7). Table
3.7 reports the average estimated standard errors obtained by the procedure outlined in Sections
2.2 (see Theorems 4 and 5) and 2.3 (equations (2.22) and (2.23)). When estimating V, and V,
the asymptotic variance of the QMG estimators, we set ¢ = 3 to minimize potential biases in
the estimation of the standard errors. While the upper panels of Table 3.7 show the standard
error of the QMG estimator in Designs 1 and 2, the lower panels show the standard error in
Designs 3 and 4. We also report the standard deviation of the estimator based on 400 Monte Carlo
repetitions. Because T relative to N is important for inference, we report estimates with N = 100
and T € {100, 200,400}

The results show that the estimated standard errors approximate very closely to the standard
deviation of the estimator when 7' is larger than N. This result is expected by the rates of
convergence needed to establish the consistency of the QMG estimator. The approximation is
excellent in the case of the Normal and ¢4 distributions. The evidence when w;; ~ X% suggests that

a larger T relative to N is needed for the standard error to be well approximated.

Table 3.8 provides empirical coverage probabilities for a nominal 95% confidence interval. The prob-
abilities are calculated based on asymptotic Gaussian confidence intervals consistent with Theorem
4. We see different finite sample performances of the estimator for A and ;. If we examine the
results across the different distributions, the QMG estimator in some cases does not perform well
for A when T'/N < 4. On the other hand, the coverage probabilities for /51 approximate closely
0.95 with the exception of the case when T" = N = 100. Lastly, we investigate the performance
of the QMG estimator in terms of power. The results are shown in the lower panel of Table 3.8.
We compute the power for testing Hy : A = 0.5 with the alternative hypothesis H, : A = 0.55
and Hy : 51 = 1 with the alternative hypothesis H, : 1 = 1.1. The condition on the rate of
convergence plays an important role in ensuring that the estimator has good power. In particular,
the power is high for values of T' > 100, although how quickly the power approaches 1 depends on

the distribution of the error term and the number of cross-sectional units, N.
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4. Time-of-Use Pricing, Smart Technology and Energy Savings

In recent years electric utilities around the country have installed a vast number of smart meters
in homes and businesses. This new digital technology replaces the outdated electric meters used
in previous decades and allows two-way communication between devices inside the home and the
utility. This has lead to a renewed interest in the roll-out of various Time-of-Use (TOU) electricity
pricing strategies' since utilities now have the ability to communicate prices to the consumers in
real time. While economists have explored this topic in earlier decades, especially after the 1970s
energy crisis, the technology enabling customers to respond to these novel electric rates was largely

not available.

Technological advances referred to as “smart technologies” remove however the limitations of earlier
decades and can meaningfully allow customers to take advantage of time varying electric rates
to respond to peak demand prices or conserve electricity more broadly. Thus, it appears that
substantial peak load reductions can in fact be achieved from TOU pricing (Jessoe and Rapson
(2014), Tto (2014)). The literature however documents just how important the different types of
enabling technology are on consumer responsiveness. Harding and Lamarche (2016) estimate the
impact of TOU pricing using a randomized controlled trial of over 11 million observations on 15-
minute interval electricity consumption in the US and show that smart devices with automation
features achieve the highest peak demand savings and monetary incentives alone are not sufficient by
themselves to motivate consumers to respond to time varying prices in an economically significant

fashion.

In this section, we consider data from a similar randomized controlled trial, to study effectiveness
of three major enabling technologies (web portal, in-home display and smart thermostat) within
the context of TOU pricing. By allowing for interactive effects in the quantile regressions, we also
take account of possible differences in unobserved common effects on households with differing

characteristics.

We apply our quantile regression approach to estimate an autoregressive panel quantile regression
model for energy consumption with interactive effects. We then compare the effect of different tech-
nologies on energy consumption, focusing on the distributional effects of these randomly assigned
technologies. We find that smart thermostats are particularly effective relative to other technologies

at enabling households to respond to TOU pricing. The differential effects are more pronounced at

n addition to TOU rates a variety of dynamic pricing strategies are currently explored. See Harding

and Sexton (2017) for a comprehensive review of recent developments.
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the lower tail of the conditional distribution of energy consumption. While households appear to
reduce overall consumption as a result of these technologies relative to the control group, the aver-
age response fails to capture the distributional effects of the technologies across households. Since
utilities face a heterogenous customer base, understanding the distributional impact of the policies
has important regulatory consequences. Lastly, we investigate the long-run effect of a change in
energy price for different enabling technologies, focusing on the differential effects for different age

and income groups.

4.1. Data

We employ data from a large scale randomized controlled trial (RCT) of TOU pricing for residential
electricity consumers in a South Central US state. The data used in this paper includes 779
customers who were randomly assigned to a time-of-use pricing structure and received three different
enabling technologies. All households had previously installed smart meters recording electricity

consumption at 15 minute intervals.?

The random allocation of a large sample of households into three treatment groups and one control
group, and the availability of electricity readings measured over 15-minute intervals make the appli-
cation of our QMG estimator particularly well suited to answer questions about the distributional

effect of enabling technologies.

The experiment was conducted during four months from June 1st to September 30th of 2011. After
households signed up for the program, they were randomly assigned into three different treatment
groups and a control group. Consumers randomized to the control group were informed they were
not eligible for the program at that time but might be allowed to join next year. These households
were kept on standard residential tariff and did not receive any enabling technology. On the other
hand, customers who were selected to the treatment groups were assigned a time-of-use pricing
rate which varied over two daily time periods. During the off-peak part of the day consisting of all
hours except 2pm to 7pm, the rate charged for electricity consumption was $0.042 kWh. During
the on-peak part of the day, which was the period from 2pm to 7pm, the rate charged was $0.23
kWh. Weekends were considered to be off-peak throughout.

2While many utilities consider data such as the one collected from this experiment to be proprietary,
similar data is publicly available. For example the CER data from Ireland is commonly used as a test data

set for the evaluation of a pricing experiment using high-frequency smart meter data.
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Control Portal IHD PCT
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

Kilowatt-hours 0.61 0.51 0.62 0.52 0.59 0.48 0.59 0.48
Treatment 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35
High Income (> $75,000) 0.38 0.49 0.58 0.49 0.51 0.50 0.49 0.50
Medium Income 0.31 0.46 0.22 0.41 0.31 0.46 0.28 0.45
Low Income (< $30,000) 0.31 0.46 0.21 0.40 0.18 0.39 0.23 0.42
Mature (65 or older) 0.20 0.40 0.26 0.44 0.28 0.45 0.31 0.46
Family Life 0.49 0.50 0.42 0.49 0.45 0.50 0.37 0.48
Young (45 or younger) 0.31 0.46 0.32 0.47 0.27 0.44 0.33 0.47
Temperature (°F) 84.88 12.85 84.85 12.85 84.80 12.85 84.95 12.85
Dew Point (°F) 58.51 7.91 58.53 7.93 58.50 7.91 58.43 7.88
Number of households 242 189 152 196
Number of periods 8639 8639 8639 8639
Number of observations 2090638 1632771 1313128 1693244

TABLE 4.1. Descriptive Statistics for the Smart Meter Data. The control
group include households that have no access to the enabling technologies. Por-
tal means that the households have access to a website, IHD denotes in-home
display and PCT denotes “smart” programmable communicating thermostat.
Households in the IHD and PCT groups also had access to a website.

Treated households were then further randomized by received additional enabling technologies. All
treated households had access to a website (“web portal”) which exhibited information on their
electricity consumption and prices in real time. Our sample includes a group of 189 households

who were limited to the website as the only enabling technology.

The other households in the treatment group were randomly assigned to receive one of these two
additional enabling technologies: an in-home display (IHD) or a “smart” programmable com-
municating thermostat (PCT). An IHD is a small wireless tablet which displays information on
electricity usage and cost in real time and is typically placed in a highly visible place in the house,
e.g. kitchen. The PCT provides an interface that allows the customer to program and control the
air conditioning system and respond to future and current price events. It also offers the same
price and consumption information as displayed on the IHD screen. While a group of 152 house-
holds received in-home displays, another group of 196 customers received “smart” programmable

communicating thermostats.

The large scale RCT has a high degree of compliance among treated participants. Only a small

proportion participants (less than 4%) were switched to alternative treatments, largely due to
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problems installing the required technology. We restrict the sample to households who did not
change treatment status and whose electricity readings measured over 15-minute were consistently
recorded in the period between June and September. As shown in Table 4.1, we this leads to a
balanced panel of 6,729,781 observations with NV = 779 and T = 8,639. Since the majority of the

households had central AC, we focus only on these households in the analysis.

Only a limited number of observed covariates is available for the analysis. This is common in
this industry since utilities have very little information on the customers themselves. Demographic
information was collected from the Nielsen’s PRIZM® segmentation system.® and allows us to
partition our sample by life stages and income. In Table 4.1, “young years” is designed to capture
younger households, under 45 years of age with no children. The “family life” segment captures
middle aged families with children. Households were also clustered by income into three groups:
low, middle and high. The high group includes households with income above $75,000 and the
middle income group captures households with income between $30,000 and $75,000. These types
of customer segmentations are rather insufficient to capture treatment heterogeneity and further
highlight the attractiveness of econometric approaches such as the one proposed in this paper to

overcome data limitations.

Due to confidentiality reasons we don’t have access to exact address information for these house-
holds. We do however know the zip codes in which the households reside and are thus able to
further augment our sample with zip-code specific temperature and humidity data from collected

from Weather Underground.

4.2. Model

Recall that each household was randomly assigned to either a treatment group or the control group.
Let g € {0,1,2,3} denote the groups, g = 0 denoting the control group, and g € {1,2,3} denoting
households assigned to either Portal, IHD or PCT. Designate the households by i = 1,2,..., N,
and 15-minute intervals by ¢t = 1,2,...,7T. Recall that only households with a continuous record of
electricity consumption over 96 (15 minutes) intervals per day and over roughly 90 days are included.
To explore the importance of heterogeneity of treatment effects, we consider the following dynamic

panel data model:
Yigt = Qg + Niglit—1 + 0igdi(9) + Xiy 1Big + F{¥ig + iget, (4.1)

3PRIZM partitions the U.S. population into 66 types, or segments, aligned along two major dimensions,

life stages and income.
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where y;4; is the natural logarithm of electricity usage for household 7 in group g € {0, 1, 2, 3} during
the 15-minute interval ¢, and the associated vector of weather measurements X5 ¢ = (2ig,.1, J:ig,m)’
includes temperature and dew point. We note that x;4; is the same for all individuals in the same
location, irrespective of their group assignment. But the inclusion of fixed effects in the model
allows assignment of the treatment to depend on location-specific variables, x;q¢. The variable
di(g) indicates the treatment assignment g and it takes the value 1 if ¢ is between 2 pm and 7 pm
during weekdays, and 0 otherwise. Our quantile treatment coefficients are identified by the time

variation associated with TOU pricing:

Qv (T]) = ig(7) + Nig (T)yir—1 + 0ig(7)de(9) + Xig 1 Biga(7) + £{vig(7), (4.2)

where Qy; , (7|-) is the 7-th conditional quantile function and d;,(7) is the quantile treatment effect
(QTE) of interest.

We estimate the model using our QMG estimator for each quantile 7 and group g separately.
The estimator is implemented considering cross-sectional averages of the logarithm of electric-
ity usage, (Ut, ¥t—1,---,Yt—py), as well as cross-sectional averages of temperature and dew point,
(14, s T1t—pps T2ty -+, T2t—py). Note that gy = N1 Zi,g Yigt, and Tj; = N1 Zi,g Tjig,t, and
N = Z?;:o N,. We follow the recommendations of the theory in Section 2 and set pr = 4.4 The
standard errors are estimated by the procedure described in Section 2.3 using ¢ = 3, which al-
lows incorporating possible dependence across time in the estimation of the asymptotic covariance
matrix of the QMG estimator. We do not include controls for demographics in the main results
shown in the next section, but we explore heterogeneity of effects among consumers with different

observable characteristics (i.e., high vs. low income) in Section 4.4.

4.3. Main Empirical Results

Table 4.2 reports results for the coefficient \y(7) = E(Aijg(7)) and the QTE, 64(7) = E(di4(7)), for
the four groups: control group, portal, in-home display (IHD), and programmable communicating
thermostats (PCT). The last two columns present results obtained by using fixed effects (FE)
estimators which produces inconsistent results in dynamic heterogeneous panels, and the CCE
mean group (CCEMG) estimator as in Chudik and Pesaran (2015) that allows for heterogeneity
and interactive effects. The first five columns show the quantile regression version of the CCEMG
estimator, labeled QMG.

4We examine the sensitivity of results to the choice of pr in the online Supplement. See Section S.4.
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QMG FE  CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group

Consumption at 0.464 0.573 0.616 0.477 0.353 0.623 0.474
t — 1 (in logs) (0.020)  (0.021) (0.021) (0.020) (0.015) (0.001)  (0.009)

Treatment 0.135 0.102 0.059 0.044 0.037 0.145 0.086

(2pm - 7pm) (0.009)  (0.008) (0.006) (0.006) (0.006) (0.001)  (0.020)

Weather controls Yes Yes Yes Yes Yes Yes Yes

N 242 242 242 242 242 242 242

NxT 2090638 2090638 2090638 2090638 2090638 2090638 2090638
Portal

Consumption at  0.468  0.586  0.628 0484  0.360  0.622  0.487
t—1 (inlogs)  (0.021) (0.023) (0.024) (0.022) (0.015) (0.001)  (0.009)

Treatment 0.081 0.060 0.037 0.019 0.000 0.102 0.043

(2pm - 7pm) (0.012)  (0.011) (0.009) (0.010) (0.013) (0.001)  (0.019)

Weather controls Yes Yes Yes Yes Yes Yes Yes

N 189 189 189 189 189 189 189

N xT 1632771 1632771 1632771 1632771 1632771 1632771 1632771
IHD

Consumption at 0.469 0.578 0.612 0.473 0.352 0.627 0.478
t —1 (in logs) (0.022)  (0.025) (0.027) (0.025) (0.018) (0.001)  (0.009)

Treatment 0.087 0.064 0.037 0.022 -0.004 0.089 0.040

(2pm - 7pm) (0.015)  (0.012) (0.010) (0.008) (0.011) (0.002)  (0.019)

Weather controls Yes Yes Yes Yes Yes Yes Yes

N 152 152 152 152 152 152 152

N xT 1313128 1313128 1313128 1313128 1313128 1313128 1313128
PCT

Consumption at  0.716  0.783  0.804  0.692  0.561  0.771  0.680
t—1 (inlogs)  (0.024) (0.020) (0.019) (0.022) (0.021) (0.000)  (0.007)

Treatment -0.081 -0.052 -0.027 -0.030 -0.037 -0.010 -0.067
(2pm - 7pm) (0.020) (0.015) (0.010) (0.010) (0.014) (0.001)  (0.016)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 196 196 196 196 196 196 196
NxT 1693244 1693244 1693244 1693244 1693244 1693244 1693244

TABLE 4.2. Quantile Mean Group estimator results for the control group and
different technologies. FE denotes fixed effects and CCEMG denotes the Com-
mon Correlated Mean Group estimator due to Chudik and Pesaran (2015).
IHD denotes in-home display and PCT is programmable communicating ther-
mostats. Standard errors are in parentheses.
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It is important to note, that in absence of a rich set of covariates specific to the consumers, it
is important that the panel regressions contains unobserved effects that are different from time
dummies. For instance, homes can have different levels of insulation that lead to different electricity
usage when weather conditions experience sharp changes. We allow for consumer-specific common

effects by the availability of the data and the use of CCE type estimators.

The FE results tend to overestimate the effect of the lagged dependent variable and the treatment
effect, which is in line with the theoretical results obtained by Pesaran and Smith (1995) on the
inconsistency of the FE estimators for dynamic heterogenous panels even for N and T large panels
that we are considering here. Because these results are likely to be biased, we concentrate our
attention on the CCEMG estimates. The positive and significant coefficient for the control group
indicates that consumption increases by 9.0% from 2 pm to 7 pm when temperature is likely to be
high.> However, TOU pricing scheme seem to reduce energy consumption since the other treatment
effects are smaller than 0.086. The table shows, however, that the technology adopted by households
crucially determines whether the households engage in some saving behavior. The coefficient for
Portal and THD are positive and significant, and they suggest a smaller (relative to the control
group) 4% increase in energy use (although the differences might not be statistically significantly
different from zero). However, the effect for the households using PCT are negative and significant
relative to the other groups. The estimates show that smart thermostats are particularly effective
in enabling consumers to respond to TOU pricing. Households provided with a PCT achieve a

reduction of 6.5% when energy prices are high.

Households response, however, is not homogeneous across the quantiles of the conditional distri-
bution of electricity consumption. Among consumers with a PCT technology, we find the largest
energy saving in the lower tail of the conditional distribution, while the effect of TOU pricing is
weakly significant at the upper conditional quantile. When we examine the distributional effect
across households with Portal and THD technologies, we find a similar pattern. The QTE decreases
in absolute value as we go across quantiles, changing from a significant effect at the 0.1 quantile to
an effect not significantly different than zero at the 0.9 quantile. The effect of using PCT continues
to be negative at the lower tail, and the effect of IHD is positive, although smaller than the estimate
for the control group. This is an interesting finding that has policy implications as it suggests that

consumers react to the price changes, but the IHD is substantially less effective than the PCT in

5The mean maximum daily temperature was 99°F and the median was 103°F. The months of July and

August were very similar and September was substantially cooler with mean temperatures of 88.6°F.
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shows the QTE coefficient 6,(T) for the control group, portal group, in-home-
device (IHD), and programmable communicating thermostats (PCT). The grey

area denotes a 95 percent point-wise confidence interval.

terms of energy savings. This might explain why in spite of the huge initial popularity of IHD
technologies they have failed to be adopted at scale.

Figure 4.1 offers a clear view of the main findings. The figure presents estimates of the QTE as

a function of the quantile 7 of the conditional distribution of electricity consumption. We present



39

estimates for the short run and long run effects for the three treatment and the control groups. The
continuous line show the QMG estimates of 4(7) (impact effect) and the dashed line show QMG
estimates for 0,(7) = 04(7)/(1 — Ag(7)) (long-run effect) which is estimated as discussed above.

The gray areas denote 95% point-wise confidence intervals.

We find that the estimates for the control group are smaller as compared to the estimates for the
treatment groups. This can be interpreted as suggesting that Portal and IHD reduce consumption
during periods of high electricity cost but these technologies do not seem to achieve a significant
energy reduction at any quantile. On the other hand, the profiles of QTE for the control group
and PCT group are clearly different, suggesting that smart thermostats are effective in allowing
households to respond to the increase in the price of electricity between 2 pm and 7 pm. Moreover, it
is interesting to see that the largest savings differentials in the short-run and long-run are estimated
at the lower tail of the conditional distribution, while these differentials are small at the 0.9 quantile.
The evidence indicates that households provided with a PCT can engage in considerable energy
savings in the long run and the impact of the enabling technology is greater at the 0.1 quantile of

the distribution of electricity consumption.

4.4. Responsiveness across Demographics

It is often important for policymakers to understand how the responsiveness to TOU pricing and
enabling technologies changes with household demographics. This section addresses this question
offering evidence on how consumers with different characteristics respond to TOU pricing. The

household characteristics are limited to age and income of the family.

We first turn our attention to estimating the QTE across different income levels. Table 4.3 is similar
to Table 4.2 although it shows separate results for high- and low-income families. As discussed
previously in Section 4.1, the high income group includes households with income above $75,000
and we combine the low and middle income groups to form a group of households with income
below $75,000. As expected, high income households in the control group consume more electricity
between 2 pm and 7 pm than low income households in the control group. The differential is fairly
constant across quantiles. It is very interesting to discover that the results for the other groups
are exactly the opposite: the coefficient estimates for high income consumers are smaller than
the coefficient estimates for low income consumers. This suggests that high income customers are
more successful in taking advantage of the existing information about price and consumption, and

consequently, engage in larger electricity savings. This may not be a pure behavioral effect and may
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90
Control Group

High Income Consumption at 0.468  0.580  0.621  0.490  0.367 0.482
t—1 (inlogs) (0.032) (0.035) (0.036) (0.034) (0.025) (0.009)
Treatment 0.143  0.118 0.069  0.054  0.042 0.097
(0.015) (0.013) (0.009) (0.008) (0.008) (0.017)
Low Income Consumption at  0.462 0.568 0.613  0.469 0.344 0.469
t—1 (inlogs) (0.025) (0.026) (0.026) (0.024) (0.018) (0.009)
Treatment 0.130  0.093 0.063 0.038 0.033 0.079
(0.012) (0.009) (0.007) (0.009) (0.008) (0.021)

Portal
High Income Consumption at 0.463  0.579  0.616  0.479  0.351 0.481
t—1 (inlogs) (0.029) (0.031) (0.033) (0.030) (0.020) (0.009)
Treatment 0.071  0.053 0.033 0.011 -0.010 0.033
(0.017) (0.017) (0.014) (0.017) (0.021) (0.019)
Low Income Consumption at 0.474  0.594 0.645 0492 0.371 0.495
t—1 (in logs)  (0.030) (0.033) (0.035) (0.032) (0.024) (0.009)
Treatment 0.096 0.069 0.042 0.030 0.014 0.057
(0.020) (0.014) (0.011) (0.009) (0.011) (0.019)

IHD
High Income Consumption at 0.469  0.581  0.607  0.479  0.364 0.486
t—1 (in logs) (0.032) (0.036) (0.038) (0.037) (0.025) (0.009)
Treatment 0.074  0.050 0.021  0.006 -0.026 0.018
(0.019) (0.019) (0.016) (0.014) (0.019) (0.022)
Low Income Consumption at  0.470 0.576 0.618  0.467  0.339 0.471
t—1 (in logs) (0.031) (0.035) (0.038) (0.034) (0.027) (0.009)
Treatment 0.101  0.079  0.063 0.039 0.019 0.063
(0.022) (0.015) (0.011) (0.010) (0.011) (0.019)

PCT
High Income Consumption at 0.708  0.785  0.808  0.685  0.536 0.675
t—1 (inlogs) (0.033) (0.027) (0.024) (0.028) (0.026) (0.008)
Treatment -0.096 -0.064 -0.036 -0.042 -0.052  -0.080
(0.030) (0.023) (0.016) (0.017) (0.022) (0.015)
Low Income Consumption at 0.724  0.781  0.800  0.700  0.585 0.685
t—1 (in logs)  (0.036) (0.031) (0.029) (0.033) (0.032) (0.007)
Treatment -0.067 -0.041 -0.019 -0.017 -0.023  -0.055
(0.028) (0.021) (0.012) (0.011) (0.016) (0.016)
TABLE 4.3. Quantile Mean Group estimator results by Income Levels.
CCEMG denotes the Common Correlated Mean Group estimator due to

Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.



QMG CCEMG
0.10 0.25 0.50 0.75 0.90
Control Group

Family years Consumption at 0.492  0.616 0.663 0.513  0.369 0.505
t—1 (in logs) (0.028) (0.029) (0.030) (0.028) (0.021) (0.009)

Treatment 0.146  0.107  0.059  0.047  0.032 0.091

(0.013) (0.010) (0.007) (0.007) (0.008) (0.018)

Young years Consumption at 0.438  0.531 0.571 0.442 0.337 0.444
t—1 (inlogs)  (0.029) (0.029) (0.030) (0.027) (0.020) (0.009)

Treatment 0.124  0.098 0.060  0.042 0.041 0.081

(0.013) (0.011) (0.009) (0.010) (0.008) (0.021)

Portal

Family years Consumption at 0.470  0.599  0.651  0.505  0.363 0.500
t—1 (in logs)  (0.033) (0.035) (0.036) (0.034) (0.024) (0.009)

Treatment 0.093  0.071  0.047 0.035 0.023 0.056

(0.019) (0.015) (0.011) (0.012) (0.013) (0.018)

Young years Consumption at 0.465  0.576  0.612  0.470  0.357 0.477
t—1 (inlogs)  (0.027) (0.030) (0.032) (0.029) (0.020) (0.009)

Treatment 0.073 0.052 0.030 0.008 -0.016 0.034

(0.016) (0.016) (0.014) (0.016) (0.020) (0.020)

IHD

Family years Consumption at 0.507  0.644  0.693 0.538  0.384 0.534
t—1 (inlogs)  (0.029) (0.030) (0.031) (0.032) (0.025) (0.009)

Treatment 0.068 0.049 0.026 0.012 -0.008 0.027

(0.023) (0.018) (0.012) (0.010) (0.016) (0.018)

Young years Consumption at 0.439  0.525 0.547  0.420 0.326 0.433
t—1 (inlogs) (0.032) (0.037) (0.040) (0.037) (0.026) (0.009)

Treatment 0.103  0.077  0.046  0.030  0.000 0.051

(0.021) (0.016) (0.014) (0.013) (0.015) (0.020)

PCT

Family years Consumption at 0.718  0.778  0.799  0.688  0.558 0.678
t—1 (in logs)  (0.037) (0.030) (0.026) (0.032) (0.032) (0.008)

Treatment -0.072  -0.045 -0.020 -0.020 -0.012  -0.052

(0.033) (0.024) (0.014) (0.016) (0.022) (0.015)

Young years Consumption at 0.715  0.786  0.807  0.695  0.563 0.682
t—1 (inlogs) (0.032) (0.029) (0.027) (0.030) (0.028) (0.007)

Treatment -0.087 -0.057 -0.032 -0.035 -0.052 -0.076

(0.025) (0.020) (0.013) (0.013) (0.018) (0.016)

TABLE 4.4. Quantile Mean Group estimator results by Family Stages.

CCEMG denotes the CCEMG denotes the Common Correlated Mean Group
estimator due to Chudik and Pesaran (2015). IHD denotes in-home display
and PCT is programmable communicating thermostats. Standard errors are in
parentheses.
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come from the fact that high income consumers have not only larger cooling systems but perhaps
also more sophisticated ones which can achieve higher savings. This is true for all quantiles and
groups. When we compare the evidence in Table 4.3 with the evidence presented in Table 4.2, we
find that the effect of PCT continues to be negative but it is now significant at the 0.9 quantile for
high income households and insignificant for low income households. Thus, high-income customers
who are conditionally consuming high levels of electricity reduce consumption by 5.1% relative to
other times of the day and by roughly 9.3% relative to the control group in the period 2 pm to 7

pm.

Lastly, we investigate how households at different life stages respond to TOU pricing and the
different technologies. In Table 4.4, the group called “family life” includes middle aged families
with children, while “other years” refers to younger households under 45 years of age and no
children and customers typically over 65 years of age. Again, as in the previous table, we see
considerable response heterogeneity by group demographics. For instance, we find larger energy
savings among families with no children who were provided a PCT, with the gains ranging from
3.1% at the 0.5 quantile to 8.3% at the 0.10 quantile. However, PCT does not seem to be an
effective technology for middle aged families at the upper quantiles of the conditional distribution

of electricity consumption.

4.5. A Counterfactual Exercise

In practice, regulators and electric utility managers must balance several concerns when implement-
ing dynamic pricing strategies. Considerations range from the peak price level, the variability of
prices over the course of the day, and the determination of days when the utility ought to increase
prices to critical peak levels (often several times the baseline off-peak price) in order to prevent
blackouts. These decisions are complex and it is important to base their conclusions on sound data

driven counterfactual simulations.

Models such as the one developed in this paper can play an important role in evaluating relevant
counterfactuals and allowing decision makers to choose optimal data driven strategies. While it is
beyond the scope of our paper to provide an in-depth exploration of the menu of strategies available
to a utility, we will briefly exemplify the process by evaluating a scenario where the utility decides
to execute the peak pricing option only if temperature exceeds a certain threshold. This is usually
coupled with further prediction models which may indicate that on days where the temperature is

high the risk of a blackout also increases substantially. Thus, while utilities have to avoid this very
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costly scenario, they also have to balance their responsibilities towards their consumers. Daily peak
prices may avoid blackouts, but will also cost consumers extra money and can lead to unhappy
customers, when the rationale for higher prices is decoupled from the risk of a blackout. Many
utilities have in fact opted to employ similar strategies in recent years which are commonly labeled

as “variable peak pricing’rates.

Using our model, we can explore a series of counterfactuals. We create a decision rule that deviated
from the actual policy, by only switching on the counterfactual policy if temperature exceeds a
certain threshold defined as percentiles of the temperature distribution. In this simplified example,
we consider actual temperature, though in the real world this strategy would be implemented
using a secondary prediction algorithms for the temperature a few days ahead. Thus, we contrast
counterfactual policies which are turned on if the temperature exceeds the 90th, 50th, and 25th
percentiles, respectively. To understand the rationale, we can imagine that reasoning behind turning
on the peak prices if temperature exceeds the 90th percentile is a way of explaining to consumers
that they will be subjected to higher prices only on very hot days where the risk of a blackout is

significantly greater than on a regular day.

For simplicity, we compare the baseline policy and counterfactual policies for customers with a PCT
and investigate the response heterogeneity by considering households at both the top 90th quantile
and bottom 10th quantile of the conditional usage distribution (Figure 4.2). Since in practice it
is often required to display results in terms of kWh load curves over the course of the day we do
so in the figures below for each policy while also reporting the percent change in electricity usage

relative to the actual baseline policy.

We see that the counterfactual policies reduce savings during the peak hours as a function of the
threshold at which they are implemented. The reductions are, however, relatively minor indicating
that there may be a gain in efficiency from targeting only the hottest days (which is consistent with
current practice by many utilities). Less strict counterfactuals also result in lower levels of off-peak

load shifting during the evening and night hours.

5. Conclusions

In this paper, we extend the Common Correlated Effects (CCE) approach of Pesaran (2006) and
Chudik and Pesaran (2015) to the estimation and inference of dynamic panel quantile regression
models with interactive effects. We propose a new quantile estimator and show that it is consistent

and asymptotically normal under standard regularity conditions in the quantile and dynamic linear
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FIGURE 4.2. Counterfactual policies for customers with a PCT. The right
panels show the percentage change in electricity usage with respect to the actual

policy.

panel literatures. We require, however, a larger T/N for inference as compared to the standard
CCEMG estimators developed for linear panel data models. An important condition is that the

individual models need to be augmented by a sufficiently large number of lagged cross section
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averages that proxy the unobserved common effects. We also show that the approach offers good
finite sample performance in the class of dynamic quantile regression estimators, as long as the time
series dimension of the panel is large. Lastly, we demonstrate how the approach can be used in
practice by documenting how the use of different technologies that allow consumers to be informed
about electricity prices and consumption are associated with energy savings. Using data from a
large scale randomized experiment that contains more than 6 million observations, we semipara-
metrically estimate a dynamic equation for electricity consumption with slope heterogeneity and
cross-sectional dependence. The results offer several new insights useful for policy, while illustrating

that the average effect does not summarize the distributional effect of the technologies.

Several directions remain to be investigated. Inference procedures are proposed but they require
a detailed investigation in the case of long run effects. Moreover, although T is relatively large
in our empirical application, offering an estimation approach that helps to reduce potential biases
in short 71" applications seems of fundamental importance. A bias-corrected mean quantile group
estimator is being investigated for the case of heterogeneous quantile coefficients following closely
the approach developed in Chudik and Pesaran (2015).
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Appendix A. Mathematical Proofs

A.1. Notations and Definitions

The proofs make use of Knight’s (1998) identity: pr(u—v) — pr(u) = —vp; + [ (I(v < 5) — I(v <
0))ds, where p, = u(7—1I(u < 0)) is the quantile regression check function and ¢, (u) = 7—1I(u < 0)

is the quantile influence function.

Throughout this appendix, we omit, at times, 7 in 7r;(7) for notational simplicity. Recall that
i = (N, B, i, 8))" where &; := (8,005, .., 62’-pT)’. We denote the dimension of the vector m; by

p=2+p:) + (L +pr)(1+ps). Also Xy = (Yir—1,X}y, 1,24, 2;_q, -, %) and 2z := (4, %;)". We
define A;(m;) = M;(7;) — M;(7i0) and

T T
1 1
M(m;) = 7 (yir — Xiymi) . Mi(mio) = 7 (Yir — Xiymio)
) T_th:%:pr e ) o) T_th:].Z'i‘pr e )
T
1
H;(m;) = T pr Z Ur (yie — Xiymi) Xie,  Hi(mi) = E(Hy(m;)) = E [1 — Gi(-|Xar)],

t=1+pr
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8HZ~ 5
™

We define the two conditional quantile functions:

yio = ai(T) + X(T)yie—1 + X Bi(7) + £ () + i (1) (A1)
pPT

yie = () + N(T)gir—1 + X 8:(r) + > 2 18u(7) + ein(T), (A.2)
P

where e (1) = wir(7) + D25, 11 2 0u(T) + Op(N~1/2). See (2.17) and (2.18). Let W;; =
(Yit—1,%};, 1,£/) and recall that X = (yit—1,X}y, Z;)", where z; = (1,2%,2;_1,...,22_12”’ with pr

sufficiently large. For any value y, y_1, x, f, and «, we define,

QW,\,B,a,7v,7) = E(p:(y—Ay_1 —x'B—a—f'v)W) (A.3)
pr
Q(X, A3, a, 5,7‘) = FE|p; (y —Ay_1 — X/ﬁ — o — Zz’16l> X] . (A4)
=0
A.2. Proofs

Proof of Theorem 1. We first show that (\, 3, @,~’) uniquely solve the quantile regression prob-
lem for all 7 in the limit (i.e., as N,T"— o0), which implies that the quantile score function can be

set to zero. For that, we define:

I\ B,a,y) = E[Wir(y—Ay-1 —x'B—a—fv)]
0
J()\,,@,O&,’Y) = WH(Avﬂvaa‘y)'

Our argument proceeds as follows. We first show that (A, 3, o, 4') is the unique solution of the quan-
tile regression minimization problem that includes the true factors. We then show that (A, 3, «, §’)
is the unique solution of the quantile regression minimization problem that includes cross-sectional
averages to approximate the true factors. Finally, we show that (A, 3') is the unique solution of

both minimization problems.

The uniqueness of (A, 3, a,v’) can be shown using similar arguments as in Chernozhukov and
Hansen (2006, Theorem 2). Under Assumption 8, J(\, 3, a, ) is continuous in (A, 3, a, ') and
has full rank. The image of the space that includes all possible solutions of II(\, 3, «a,~) = 0,
contained in the interior of A x B x A x G, is assumed to be simply connected under the mapping
N, B, a,v") — II(\, B, a,v). By the Monodromy Theorem 1.8 in Ambrosetti and Prodi (1993, p.
47), the mapping IT(\, 3, a, ) is one-to-one (homeomorphism) from A x Bx Ax G to II(A, B, A, G).
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Therefore, the true parameters (\, 3, a,~’) uniquely solve II(\, 3, «,v) = 0. Denote the unique
solution of II(\, B, a,y) = 0 by (\*, 8%, a*,v*).

We now show the uniqueness of (\, 3, «, d’). Let

pr
1:-[()‘51670[)6) = K XwT (y_)\y—l —X,,@—Oé— Zzg—lézl>]
=0
B ) 3
J\,B,0,0) = WH(/\NB?O&, 9).

The matrix J is continuous on (A, B, «,d") and has full rank under Assumption 8. The image of
A x B x A x D under the mapping (), 3, o, &) — II(\, B, a, §) is assumed to be simply connected.
By Theorem 1.8 in Ambrosetti and Prodi (1993), the mapping II(\, 8, a, §) is one-to-one between
AxBxAxDand fI(A, B, A, D), the image of A x B x A x D under l:I(/\,B7 a, ). Therefore, the
parameter (A, 3, a,d’) is the unique solution of fI()\, B,a,8) = 0. Denote the unique solution of
II()\, 3,0, 8) = 0 by (AT, 87, af, 8"). Note that the number of parameters depends on pr, but we

supress this dependence for simplicity.

We now show that (\,3’) in equation (A.1) can be identified from equation (A.2). Because f =
G(L)Z + O,(N~1/2) (recall that we have set fy = 0; see Remark 1 in Section 2.1), we can express

the latent factors as (see equation (2.15)),

f ZGZ 1+ Op(N"V) =Gz + Glz_1 + ...+ Oy(N"V?)
= Hz+n+0p( N2,

where H is a 7 x (1 + p,)(pr + 1) matrix of reduced form coefficients, z = (z',2’ ,...,2" ) is a
(1 +p2)(pr +1) x 1 vector of cross-sectional averages, and 9 = >22 .| GjZ_;. Solving for z and
letting H = (H'H) ™' H', we obtain, z = H(f — 1) + O,(N~'/2). Without loss of generality, we set

pr to be sufficiently large such that, under Assumption 5, we have that:
o0 (o]
S G| <1973 ||
I=pr+1 =1

Note also that for each 1 < i < N, as in equation (A.18) in Chudik and Pesaran (2015), n;, =
i1 OiZprt1-15 2121 95y Zpr 215 - - -}- By Lemma A4 in Chudik and Pesaran (2015), Hy
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becomes asymptotically negligible as N, T — oco. We can therefore write,

1 0 0 0\ [y Y1 0

0 I, 0 O L I S 0

0 0 1 0 1 1 0 ’
0 0 0 H f z f—G(L)z

Moreover, by (A.19) in Lemma A.4 in Chudik and Pesaran (2015), the second term on the right
hand side is asymptotically negligible. Therefore, for sufficiently large N and T, we can write
PIW =X, where W = (y_1,x/,1,f"), X = (y_1,x/,1,2')’, and

1 0 0 O
lI,:01,,3600
0 0 1 0
0 0 0 H

The matrix ¥ is invertible by Assumptions 5 and 6 (exponentially decaying coefficients and full

rank condition of the matrix C).

Also, under Assumption 5 for sufficiently large pp, it follows that,

pr
Yr (y — Ay —xB-a-) 5fi_z>
1=0

E =F (1/JT (y —Ay_1 —xB—a-— "/G(L)Z)) .

Therefore, the quantile regression problem can be written as

pr
]-:-[()‘7 ﬁ? «, 5) = FE (Xw’?' (y - Ay—l - X/ﬁ —a— Z Z{‘-lail)>

=0
= E(X¢; (y— M1 —xB—a—+G(L)z))
= E(¥Wi, (y—Ay-1 —x'B-a - 7))
= WE (W, (y—My_1 —x'B—a—1fy)) =PI\ B, a,v) =0.

It follows that 1:I(/\*,,8*,a*,5*) = WII(\T, BT, af, 4T) = WII()\*, B*, af,v') because \* = AT and
B* = B'. We show this result by contradiction. Suppose now that there are not equal, i.e. A* # Af
and B8* # 3'. We now have,

II(\*, 3%, a*,8%) = 0 = WIL(\*, 8%, af,~1).

Therefore, TI(\*, 8*, af,~1) = ¥~10 = 0, which is a contradiction to the uniqueness of (Af, 87, af, 4T).
Therefore, \* = AT and 8* = 37, and the parameter of interest 9(7) = (A\(7), B(7)") is uniquely
identified for all 7. O
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Proof of Theorem 2. The proof is divided in two parts. First, we show that the estimated factors
are uniformly consistent for ¢ = 1,..., N and the limiting problem corresponding to the model with
augmented cross-sectional averages is E(p-(yit — ; — N\iYir—1 — x;tﬁi —f£/7;)). Given the consistency
of the approach, the second part of the proof establishes consistency of the reduced form coefficients,

7v;(7), for all 7.

[Part 1: Consistency of estimated factors] To show the uniform consistency of the estimator of the

factor f; in a quantile regression setting, we first note that

pT
i = il7)+ N(T)yi-1 +X5Bi(r) + D> 2 18u(7) + ean(T)
=0

pT (o)
= ai(7) + N1 + X Bi(T) + Dz Sa(m) + Y 2 8a(r) + Op(N ) + ui(7).
=0 I=pr+1

Let >°°,2;_,0;(7) = ~,(7)G(L)z; which is obtained by a sample of size N. Similarly, > ;7 z;_;8;(7)
is constructed with a sample of size N. Recall that ~/(7)(f; — G(L)z;) = O,(N~'/?), and, under

Assumptions 5 and 9:

S .80 < K77 3 5o
I=pr+1 =1

which is asymptotically negligible under (N, T, pr) — oo. Therefore, we can write the last equation

as
Yir = o(T) + Xi(T)yie—1 + X3 Bi(7) + £7i(7) + die (1) + wie (7).

where ¢;(7) = ¥/(7)(G(L) — G(L))Z:. Define for each i,

QOO(Ta a, )\a 167 7) = E(pT(th S )‘iyit—l - X'IitIBi - fL{ﬂyZ))
T
1
Qr(r,a,A\By) = > or(yit — i — Nigir—1 — X 8; — £vi)
t=1

~

T
1
Qr(t,a,\,B,7) = T E pr(Yit — i — NiYir—1 — X Bi — £lvi — dit).
=1

We show the result in two steps. First, we prove that Qr(7,a, A\, 3,7) converges uniformly to
Qoo(T,, N\, B,7) in (a, A\, B,7) and 7. Second, we show that QT(T, a, A\, B,7) converges uniformly
to Qr(T,a, A, B,7) in (o, A\, 3,7) and 7. It follows then that arg min QT(T,a, A, B,7) converges to
arg min QOO(T,a,)\,,B,'y).
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[Part 1: Step 1] The first step is to show that

s [Qr(r e\ 8.7) ~ Qulr, 001,87 = oy(1). (A.5)
Note that (o, \, B,7) — pr(y — o — Ay—1 — B'x —+'f) is continuous for y, x and f. Moreover, the
dominating function corresponding to the quantile regression check function exists under Assump-
tions 9 and 10 and it is equal to pr(y—a — Ay_1 — B'x—¥'E) < K (o] + | Mly_1|+ <1181+ [ IEN).
Then, using an extended version of Lemma 2.4 in Newey and McFadden (1994) for stationary pro-
cesses, we can conclude that (A.5) holds (see footnote 18 to Lemma 2.4 of Newey and McFadden
(1994)).

[Part 1: Step 2] The second part of the proof uses a version of Knight’s (1998) inequality: |pr(u —

v) — pr(u)] < 3Jv|. Letting u:=y —a—Ay_1 —x'8 — 'y and v := ¢ = v/(7)(G(L) — G(L))z, we

have

@) = Qr(r, )| =

1 < 1 < _
7 > pr(uis = dir) — pr(ua)| < K > W(G(L) - G(L))z] .
t=1 t=1

Since G(L) = >.7°, G, L! and, G(L) = Y ;°, G, L, then

T

1 - _ = _

72 M(N(GI) - G(L))z < sup [[7;(T)(G(L) = G(L))zi]| = 0p(1),
t=1 b

by Lemma 1 as long as p3./T — 0, and (log(N))?/T — 0, as N and T — oo, jointly. Therefore,

overall we have,

sup ‘QT(Taav)‘HBa’Y) _QT(T,OZ,)\,/B,’Y) :Op(]-)a
(T,0,7,8,7)

leading to the desired result for each .

[Part 2: Consistency of reduced form coefficients] For each n > 0, define the ball B;(n) := {m; :
|7; — mioll1 < n} and the boundary 9B;(n) := {m; : ||®; — mio|l1 = n}. For each m; & B;(n), define
7; = rim; + (1 — ;) mi, where r; = n/||7; — m||. Note that 7; is in the boundary 0B;(n). Because

the objective function is convex,
ri (Mi(mi) — Mii(i0)) > Mii(7:) — Mi(mi0) = Mi(7:) = E(Aq(m:)) + (Mi(7:) — E(Ai(73))) , (A.6)
Note that M (7r;0) is naturally equal to zero by definition and that E(A;(7;)) > €, forall1 <i < N.

Consider now ||7; — miol[1 > n which implies that 7; ¢ B;(n) for all 1 < ¢ < N. It follows that
M (7;) < M(7ri0) for some 1 < ¢ < N by definition of 7r; = arg min{M](7r;)}, which is equivalent
to (2.20).
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Note that 7; ¢ B;(n) implies M(7;) < 0 by definition. Thus, by equation (A.6), the following

inclusion relationships are true:

N
{max rm—moul>n}Q{Mm)soam&(n)}gu{ sup |Az-<m>—E<Ai<m>>zen}.

1<i<N i=1 \mi€Bi(n)
It follows that,

P {1r<nla<)](v |7i — mioll1 > 77} < Nlr%qiaS)]qu {milzg)(n) 1A () — E(Ai(m3))| > en} :

We therefore need to show that
max P<{ sup |Ai(m;) — E(Ai(m))| > e, p =o(N7Y), (A.7)
1<i<N {ﬂ'iEBi("]) | ( ) ( ( ))’ ”}

which is similar to equation (A.3) in Kato, Galvao and Montes-Rojas (2012) and equation (15) in
Galvao and Wang (2015). Recall that as N — oo, automatically 7" — oo too.

Without loss of generality, we restrict all the balls B;(n) to be equal to B(n) by setting 7,y = 0.
Thus, Bi(n) = B(n) for all 1 < i < N. We then suppress the subscript i for simplicity. Let
gr(u, X) = pr(u— X'w) — pr(u). We observe that |gx(u, X) — gz(u, X)| < C(1+ M)(||7w — =1),
for some universal constant C'. Since B(7) is a compact subset in R?, 3K ¢; balls with center (/)
and radius €/3k where k := C(1 + M).

For each 7 € B(n), there is j € {1, ..., K} such that,

() ~ BAMm)]| < [AED) - BAED)] + 5. (A38)

The last inequality follows by a property of gr(u,X). Notice that,
|A(m) — B(A(m)| = [A(xY)) = BAY)] < |A(r) — B(A(w)) — A(xY)) + E(A(xY))]

A(
A(w) — BE(A())| + [A(xY) + B(A ()]
€ 2

€
14+ M-S = Ze
3 T O+ M)z = ge

IN

IN

C(1+ M)
Therefore, following (A.8), we write,

K . . 9
P ( sup |A(r) — E(A(m))] > e> < Y P <]A(7r(])) — E(A(xD))| + 56> e)

weB(n)
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For each j € {1,..., K}, we note that |A(w()) — E(A(7()))] satisfies the conditions of Lemma 2 in
Section A.3. Taking s = 2log(N) and ¢ = [v/T] and using the fact that log(N)/v/T — 0,

P (\A(ﬂ'(j)) - E(A(ﬂ'(j)))\) < const x (exp{—210g(N)} + \/TBG[\/T]) ,

where the constants a € (0,1) and B > 0 (Assumption 9). Therefore,

P{ sup |Ai(m) — E(Ai(m;))] > 671} < K x const X <exp{—210g(N)} + \/TBa[\/T]) . (A9)
™ €B8;(n)

Because by assumption (log(N))2/T — 0, the right hand side of equation (A.9) is o(N~1) which

leads to the weak consistency result. O

Proof of Theorem 3. Under the stated assumptions, the results follows directly from Theorem
2. By definition, 9(r) = N~! Zfil 9;(7). Thus,

N

W)~ 0(r) = >

=1 7

S
2

@) =90 = 3 (8:(r) — 9(7))

1

0 (i(r) = mi(r)) + 5 Y Eio (mi(r) — m(r) = (1),
i=1

I
|-
[m

Il
—

(2
The first term converges in probability to zero as established in Theorem 2 and the last equality

follows by Assumption 5. g

Proof of Theorem 4. By definition, as in Theorem 3, we have

N N
)~ D) = & S Bilr) ~ D) = 1 S (Bilr) — 9:(7)) + (Bi(r) — D))
s =1

=1
It follows that,
N N
VN (é(f) - 19(7)) - \/]\J[V 3 Eio (Fu(r) — mi(r)) + \/NN Y Eio(mi(r) —w(r).  (A.10)
i=1 =1

We now obtain the asymptotic representation of 7r;(7) — 7r;(7) following closely Galvao and Wang
(2015). We use an expansion of H;(7;) = E(H;(7;)) around 7o to obtain,

Hy(#;) = Hi(mio) + Ji(7:(7) — mio(7)) + Oy [(#i(7) — min(7))?] |



55
where J; := 0H;(m;)/0mi0 = E(9:(0/X;)X;:X],)). Basic manipulations lead to:
7ri(7) —mio(r) = I (Hi(#;) — Hi(mio) + Op [(70i(7) — mio(7))?]
= =37 Hi(mio) — I (Hi(Fi) — Hy(mi0)) — I; 1 (Hi(7:) — Hi(mi0))
+J;1 (Hi(fr»)) + 310, [(7ri(1) — mi0(7))?]
= 37 Hy(mio) — 7 [(Hi(7 ) Hi(7io)) — (Hi(#:) — Hi(mio))]
+37 (Hy (7)) + 37 10,, [(7i(1) — mi0(7))?] -
For fixed N, the second term in the last expression is 0,(1). In the case of panel data with individ-
ual parameters, we need to find the order of max;<;<n [(H;(7;) — H;(mio)) — (Hi(7:) — Hi(mi0))]-
Lemma 3 in Section A.3 establishes that order. Moreover, by the computational property of quantile
regression, H;(;(7)) = O,(T~1). Therefore, for each 1 <i < N, we have
ﬁ'z(’l’) — 7\'@0(7‘) = —JZIHi(Tri(]) + Op(d]v) + Op(T_l) + Ji_lOp [(fl'z<7') — 71'7;0(7'))2} s (A.ll)

where dy = T~(1=9 log(N)vT~1/26%/*(log(N))!/? and 6y = 1/log(N)/T when |log(6x)| =< log(NN)
as in Theorem 5.1 in Kato, Galvao, and Montes-Rojas (2012). Substituting equation (A.11) in

equation (A.10), after basic simplifications, we obtain

Z e (yir — Xjymi0)Xir | + VNO(dy)

t 1+pr

VN (9(r) - 9(r)) = \/1N i Zi0J; !
=1

+—= ;o (mi(r) —m(7)). (A.12)

The second term is Opy(N 1/ 2dy). Using the dy rate implied by Lemma 3 for a sufficiently small
¢ provided that p3./T — 0, we have that N'/2dy = N'/2log(N)V/4T~/*1og(N)'/2. Therefore, if
N?/31og(N)/T — 0, the second term is asymptotically negligible.

By standard arguments, as N and T tends to infinity under the conditions on pr and the relative
rate of N and T, v N (ﬂ(r) — 19(7')) —Ly N(0, V). O

Proof of Theorem 5. If ¥;(1) = ¥(7) for 1 <i < N, equation (A.10) can be written as
) 1Y
’19(7' N Z

As in Theorem 4, for each 1 < i < N, we have

[I]

— (). (A.13)

(1) — (1) = =J; 'Hi(m0) + O(dn) + O(T ) + J;10,, ((#:(1) — mi(7))?) (A.14)
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Substituting, after basic simplifications, we obtain

NNgE

Eio z_ Z 7/]7' Yit — ztﬂ-O)Xit + VTNO(dN). (A15)

=1 t= 1+pT

VNT (9(7) =9(7)) = 5o (ﬂﬂ

The second term is O,((NT)Y2dy). Using the where dy := T~07% log(N) \/T_1/2<5]1\,/2(log(N))l/2
and 0y = 4/log(N)/T when |log(dn)| < log(N) implied by Lemma 2, for a sufficiently small ¢
provided that p3./T — 0, we have that (NT)'/2dy = N'/2log(N)Y/4*T~/*1og(N)'/2. Therefore, if
N2(log(N))3/T = 0, ||[9(1) —9(7)|| = Op((NT)~/?) if the last term is of the same other than the

first term in the expression. Therefore, as N and T tends to infinity under the conditions on pr
and the relative rate of N and T, vV NT (19(7’) - 19(T)) LN N(0,Vy).

A.3. Lemmas

In recent years, there has been considerable progress on establishing the rate of the remainder
terms of the Bahadur representation of the quantile regression estimator. The next three lemmas

are used in the proofs of Theorems 2, 3, and 4.

Lemma 1. Under Assumptions 1-11, as N, T and pr go jointly to infinity with p:}/T — 0 and
(log(N))?/T = 0, sup; s . [|7/(r)(G(L) = G(L))z:|| = 0.

Proof. The proof is similar to Lemma A.7 in Chudik and Pesaran (2013). As in part 1 of Theorem
2, we define > 70z, ,84(7) = v/(1)G(L)Z; and > 12,7, ,04(T) = v.(1)G(L)z, which is obtained
with a sample of size N. It follows that,

[Y(OGL) =Gz, < D [[(Ea(r) = 8ulr)) 2|, ZH (T (7)) %]

=0
+ Z zl( )) Zt—lHOO
l=pr+1

< 3@ = a2+ D (10u(P)zl| + 1165 (7)2 )
=0 l=pr+1
pr ')

< Y NGalr) = 6u(m)) 2|+ 2K0"" D (|Zeif - (A.16)
=0 l=pr+1
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The last inequality holds by Assumption 5, and

Y zda(n)| < KpPt Y |7

l=pT+1 =1

implied by Lemma A.4. (result (A.18)) in Chudik and Pesaran (2015). The first term on the right
hand side of equation (A.16),

pT

> Ga(r) = da(r) 2|, < ZII(M (M) lloo 126100 < ZH% = 0it(T) oo [1Ze—
=0

= X, ) =) |

< S 8

< Kpr _max  0(7) = dija(7)];
which holds by Assumption 10. Note that z; is bounded because the cross-sectional average of
yit and x;; are bounded. On the other hand, the coefficients d;;; decay exponentially in I, which
follows by Assumption 5 and Lemma A.1 in Chudik and Pesaran (2013).

For fixed N, the quantile regression estimator is v/T-consistent. In panel data, by Lemma 8 in
Galvao and Wang (2015), we have that max; [6;;,(7) — 6;;:(7)| = Op(y/log(N)/T) (see also Kato,
Galvao and Montes Rojas (2012) and Lemma 3 below). Therefore,

[¥((G(L) — GD)al|, < K%m + 2K S |lzd|
l=pr+1

If p1./T — c for a constant 0 < ¢ < co and log(N)?/T — 0, we have that ||v/(7)(G(L) — G(L))Zt/|
converges to zero in L; norm which implies convergence in probability to zero. Because T is
required to grow faster in panel quantiles than in linear models, we require that p% /T — 0, which
is a sufficient condition for convergence in probability to zero and is similar to the condition in
Chudik and Pesaran (2013) and Chudik and Pesaran (2015), which requires p3./T — ¢ where
0<e<oo. ([

Lemma 2 (Corollary C.1, Kato et al. (2012)). Let f be a function on S, a Polish space, and let
{& : t > 1} be a stationary process taking values in a measurable space (S,K). Assume that IC is
a Borel o-field. Let supees|f(&)] < U for some constant U and E(f(&§)) = 0. Take q € [1,T/2].
Then,

T
P <| Zf(ft)] > const X {\/(s V1)To,(f)+ qu}) <2 +2rp(q),
t=1
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where r:= [T/2q], B(-) denote mizing coefficients of the {&} process, and

qg—1
0q(f) = Var(£(&)) +2) (1= j/a)Coo(£(&1). f(147)).
j=1
Lemma 3. Under regularity conditions 9-12, for any ¢ € (0,1) and dn such that |log(dn)| =
log(N),

e {[EL () — H(m0)] — [H:(7) — Himo)l} = Op(T~0 = 1og(N) v T~/263 (log())/2)

and maxi<;<n [|[7(7) — mi(7)[| = Op(1/10g(N)/T).

Proof. Without loss of generality, we assume that m;p = 0 for all 1 < ¢ < N. We then write
Hl(’fl‘@) — Hi(ﬂ'iO) as
T

Hi(7;) — Hi(0) = T—pr Z (Vr (yir — Xip7) Xie — Ur (yie) Xit)
t=1+pr

T
1 .
= e > (Tl < Xiyg) — Iy < 0)) X
rr t=1+pr
1 ) 1 )
= - > (T(uir < Xya;) — Iug < 0)) Xig = > 64, (X)),
T=pr, 43, T=rr, 3,

where &, (X)) = &, ((wit, Xit) = (I(wip < Xlmw;) — I(uiy < 0)) Xjp. The third equality follows
because ;o = 0, which implies that ;o = 0 for 1 < i < N, and consequently, y;; = X}, w0 + €ir =
wig + Yio(fr — G(L)z¢) + Z[’ipTH 705 = Uit

Pick a ¢ € (0,1) and let dy := T~ 1log(6n)| V T*1/25]1V/2| log(dn)|*/2. We need to show that

T
max {Z(ﬁm (XGt) — E (&3, (XZ})))} = Op((T' = pr)dn)

1<i<N
t=1

= Op((T — pr)(T™ ¢ log(N) v T7/26)/* 1og(N)/2)).

Details of the proof are omitted as the proof is an application of Proposition C.1. in Kato et al.
(2012) as shown in Galvao and Wang (2015). The result follows by verifying that Assumptions 9,
11, and 12 are similar to the Assumptions A2-A5 and B1-B3 in Lemmas 7 and 8 in Galvao and Wang
(2015). To avoid repetition, we point out the modification. Fixing 1 < i < N, we apply Proposition
C.1. in Kato et al. (2012) to a class of functions B;5, = {Gr — EG : ||[7|| < dn}. Conditions (i)
and (iii) in Proposition C.1. are satisfied as in Galvao and Wang (2015) but Condition (ii) needs
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some attention since the condition on uniformly bounded regressors is different in our paper. Under

Assumption 10, the class of functions (’3@'51\, is bounded, and therefore, Condition (ii) is satisfied.

Thus, the conclusion of the first result is obtained following Lemma 7 in Galvao and Wang (2015).
The second result follows directly by Lemma 8 in Galvao and Wang (2015). g
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In this Supplement, we first offer a derivation of the variance of ¢, (y;; — X}, 7;) when we allow
for dependence across time. Section S.2 presents simulation results for a one factor model,
which complements the evidence on a two factor model presented in Section 3. In Section S.3,
we extend the simulation results presented in Section S.2 by offering results on the infeasible
QMG estimator which uses the latent factor, f;. The comparison of the infeasible quantile
estimator with the QMG estimator illustrates the effect of cross-section augmentation in
dealing with the estimation of f;. This section also presents additional results on the power
of the QMG estimator. Lastly, in Section S.4, we investigate the sensitivity of the results to

the choice of pr in the empirical application, by offering additional empirical results.

S.1. On the Derivation of the Asymptotic Covariance Matrix

Let &(7) = T2 b, (ya — X/ym;). By definition, we have that

T
Var(& (1 Z\/ar Ur (i — Xjymi)] + 2 Covlihe (g — Xym:), 7 (Yiw — Xiymy))].
£t
Note that,
Cov[t: (yi — Xym;), 0, Yy — X)) = Cov(t — I(yy < Xjmi), 7 — I(Yiy < X},m;))
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Cov[thr (yie — Xiymi), Y- (Vi — Xipmi)] = E((7 = I(yie < Xiymi) ) (7 — 1(Yie < X}pm;)))
—E(r — I(yy < X,m))E(1 — [ (Y < X[,1;))
= BE((r = Iy < Xjm))(1 — I (Yir < X)),

because 7 = G(X[,m;) = G(X], ;) under Assumption 11. It follows that,

Cov[tor (yie — Xiymi), 7 (Yir — Xipmi)] = 7° = 7E((yie < X)) — TE(I(Yir < X))
+E(I(yi < thm)f(yit < th”%’))
= BE(I(yy < Xim) I (yy < X}m;)) — 72

Thus, we have that

q—1
U?p(Q) = Var(fz(T)) = 1 - T + 2 (1 é) COV @Dr( il 17Tz) 77[)7( il+5 — X;H.jﬂ'i))
Jj=1
q—1
= 1 — T +2 Z ( é) (Y;l < Xglﬂi)I(Y;l—s-j < X;H_]’ﬂ-i)) — 7'2:|

q—1
= 1 — 7' + 22 (1 — Z) (Y;l < Xélﬂi71/;1+j < X;lJroFZ')) — TQ} .

This parameter is estimated in Section 2.3.

S.2. Simulation Evidence: One Factor Models

This section reports results of several simulation exercises designed to evaluate the small
sample performance of the proposed estimator. Observations on y;; for ¢ = 1,2,..., N and
t=-S+1,-5+2,..,0,1,...,T are generated according to the following ARX(1) model with
one factor:

Yit = @ + NYir—1 + Bo + Bizi + vifr + (1 4 0xi)ws, (5.2.1)

where the error term u; is distributed as F/(0, 0?), o7 generated as 0.5(1+x?) and x? denotes
an i.i.d. random variable distributed as x? distribution with 1 degree of freedom. Depending
on the value of §, we have two conditional quantile functions. When § = 0, we have

Qv (T]s Yir—1, Tit, [1) = @ + NYir—1 + Bo(T) + Bizar + Vi f, (S5.2.2)
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with Bo(7) = By + F, *(7). On the hand, when § # 0, the conditional quantile function of
(S.2.1) becomes,

Qv (Tl Yir—1, Tit, fr) = @i + Nyig—1 + Bo(T) + Bi(T) @it + Vi fi, (5.2.3)

with By(7) = 8o+ F, '(7) and B;(7) = B; + 6 F, ' (7). Models (S.2.2) and (S.2.3) are typically
refereed to as location shift and location-scale shift models in the literature (see, e.g., Koenker
(2005)). Quantile regression models are estimated with an overall intercept [y which is
assumed to be zero in the simulations. Note that for S sufficiently large, we have that

5—1 5-1

1 . )

vio N T+ By N+ ) N&i, (S.2.4)
§=0 §=0

where &; = v ft + (1 4+ dxy)uy, A = E(N\;) and f = E(f;). In all the variants of the model

considered in the simulations, we set S = 200. The regressor, x;;, is generated as

T = i+ ife + v, (S.2.5)

Vi = paZig1+ /1 — piga, (S.2.6)
Je = prfici+y/1— p?cgfty (S.2.7)

where the i.i.d. variables p; ~ N(0.5,1), e ~ N(0,1), and 4 ~ N(0,1). We consider the
case of relatively persistent regressors by setting p, = 0.8 and py = 0.9. Moreover, without
loss of generality we use z; _¢ =0 and f_g = 0.

The factor loadings in equation (S.2.1), 7;, and in equation (S.2.5), I';, are generated as
vi ~ itdN(0.5,1) and T'; ~ 2dN(0.5,1). Finally, the fixed effects, «;, are allowed to be
correlated with the errors by generating them as o; = #; + 7, f + @; + a;, where the individual
specific averages are defined as Z; = T~ S 2y, f =T 'S, fi, @ = T3], ug. The
error term a; in the equation for o is assumed to be distributed as N'(0, 1).

Initially, we set \; = X for i = 1,2,..., N and consider three values of A = {0.25,0.50,0.75}.
Later in Figure S.1, we investigate the performance of the estimator with heterogeneous \;’s.
Moreover, in addition to the experiments presented in this section, we also considered static
panel data experiments (i.e., A = 0) and compare the performance of the proposed approach
with existing panel quantile regression approaches. For relatively large 7', the performance
of the proposed estimator was similar in both the static panel data model and dynamic panel
data model. Thus, we present results for the dynamic model to save space.
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In the simulations, we assume that the error term w;; in equation (S.2.1) is an i.i.d. random
variable distributed as Standard Normal, t-student with 4 degrees of freedom (t), and x?
with 3 degrees of freedom (x2). We consider the following four variations of the model:

Design 1: (Location shift model with homogeneous slopes). We consider § = 1 in a location
shift model with ¢ = 0.

Design 2: (Location shift model with heterogeneous slopes). We consider heterogeneous
slope parameters 5; = (8 + v; in a location shift model, where 6 = 0, f = 1 and v; ~
U(—0.25,0.25). The parameter §;(7) = f; for all ¢ and .

Design 3: (Location-scale shift model with homogeneous slopes). We consider homogenous
slope parameters § = 1 in a location-scale shift model with § = 0.1. In this case, the slope
parameter 3(7) = 8+ 0.1F, (7).

Design 4: (Location-scale shift model with heterogeneous slopes). We consider heteroge-
neous slope parameters as in Design 2, 8; = S+, in a location-scale shift model with 6 = 0.1.
We assume 3 =1 and v; ~ U(—0.25,0.25) which implies that 5;(7) = 1+ v; +0.1F, (7). In
this case, E(f;(1)) = 8(7) = 1+ 0.1E, (7).

Tables S.1 to Table S.2 present the bias and root mean square error (RMSE) for the slope
parameter (3 in the location shift model with A\ = 0.5. The finite sample performance for
the slope parameter when the model (S.2.1) include a different value for A is considered in
Table S.9. While Table S.1 presents results for Designs 1 and 2, Table S.2 presents results for
Designs 3 and 4. The tables show results for quantile regression estimators at two quantiles,
7 € {0.25,0.50}, based on sample sizes of N € {100,200} and T" € {50, 100, 200}.

We compare the performance of the following quantile regression estimators: (i) the existing
instrumental variable quantile regression estimator for a dynamic panel data model developed
by Galvao (2011), labeled DQR, and (ii) the quantile mean group (QMG) estimator for a
model with interactive effects. The DQR estimator uses y;;_» as an instrument for y;_i.
It should be noted that Galvao’s model does not include the term );f;, which can generate
biases that cannot be eliminated by the use of instrumental variables. The proposed quantile
mean group estimator, QMG, is obtained as the simple cross sectional average of Bl(T) using
zi = (1, Y1, 1)

The tables do not provide the finite sample performance of other existing quantile estimators.
The classical quantile regression estimator is biased because the individual specific effects
«; and the factor f; are correlated with the regressor z;;. Also the fixed effects estimator,
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the recently proposed minimum distance quantile regression estimator (Galvao and Wang
(2015)), and the penalized quantile regression estimator are biased when the model includes
a lagged dependent variable. Therefore, we restrict our comparison to DQR, which is the
only estimator in the literature proposed for dynamic panel quantile regression models.

S.2.1. Bias and Root Mean Square Error

In Table S.1, it might not be surprising to find out that the DQR method is biased and
that its bias tends to be slightly larger in the case of heterogeneous slopes. The bias of this
estimator for the slope § tends to increase as T' increases and it does not seem to change at
the 0.5 and 0.25 quantiles. On the other hand, the performance of the QMG estimator is
excellent, with biases in general lower than 5% for T' = 50 and biases decreasing rapidly to
1% when T = 200. In all the variations of the model considered in the table, the quantile
estimator QMG performs better than DQR in terms of RMSE too.

Table S.2 presents results for the location-scale shift model where 5(7) changes by quantile.
For instance, £(0.5) = 1 and £(0.25) = 0.93 in the case where the error term u;; ~ N(0, 1),
and 3(0.5) = 1.24 and 3(0.25) = 1.12 when u; ~ x3. We continue to see that the DQR
estimator is biased and has poor RMSE properties. The performance of the QMG estimator
in these variations of the model is similar to Table S.1, with low biases and small RMSE.
For values of T larger than 50, the bias of the proposed estimator is always negative and it
ranges between 0.6% and 3%.

We expanded the simulation evidence for the slope parameter 5 to consider different values
of A\. Table S.9 presents results for A € {0.25,0.75} considering the same designs as in
Tables S.1 and S.2 and N = 100 and T = 200. We see that the QMG estimator continues
to perform better than the DQR estimator. We also find that the performance of the QMG
estimator is invariant to the choice of \, at least in the simulations considered thus far. We
do investigate the performance of the QMG estimator when \; € [0.025,0.925] below.

We now turn our attention to the estimator for A\(7) and 0(7) = B(7)/(1 — A(7)). The
estimator for 0(7) is defined as 5(7)/(1—A(7)) and it is obtained by plugging in the quantile
estimates corresponding to A(7) and (7). We employ this method for the DQR and QMG

estimators.

Tables S.3, S.4, S.5 and S.6 show the bias and RMSE of the DQR and QMG estimators for
the parameters of interest. These four tables show results for the four different designs we
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consider in this section. Each table presents, in columns, the performance of the estimators
at 7 € {0.25,0.50} and in rows the different samples sizes and distributions for the error
term. The upper block present results when u; is distributed as N (0, 1), the middle panel
shows results when wu;; ~ t4 and the lower block presents results when wu; ~ 3. While
A = 0.5 does not change in these tables, the parameter of interest # does change in the
tables. For instance, #(0.5) = 2 = 6(0.25) in the Gaussian case in Table S.3, 0(0.5) = 2.48
and 0(0.25) = 2.24 when u; ~ x3 in Table S.5.

As before, the results indicate that the bias of the DQR estimator can be large, in particular
for the long run coefficient 6. The bias of the QMG estimator is small in the tables and
it tends to zero as T increases, as expected. For T = 50, however, we see that the bias
of the DQR estimator is smaller than the bias of the QMG estimator in the case of 2
for the parameter A (i.e., columns (1) and (2)). We also find that the QMG estimator has
smaller variance than the DQR estimator which might be expected since the QMG estimator
does not employ instrumental variables. Even in the few cases where the bias of the DQR
estimator is smaller than the bias of the QMG estimator, the QMG estimator offers the best

performance in terms of RMSE.

A comparison between the results for the long-run effect in the location shift model reveals
that estimating heterogeneous effects is more demanding than estimating homogeneous ef-
fects, as expected. However, the QMG estimator offers nearly zero biases for large N and
large T'. The DQR estimator is biased and its performance is not satisfactory in terms of
both bias and RMSE. The location-shift case, presented in Tables S.5 and S.6, reveals similar
findings. Overall, when A = 0.5, the QMG estimator offers the best performance in terms of
bias and RMSE in the class of estimators for a dynamic quantile panel data model.

Figure S.1 offers a clear summary of the small sample performance of the QMG estimator as
A increases. The figure shows the bias and RMSE of the QMG estimator at 7 € {0.25,0.50}
for A\, 5 and € in terms of \. We considered Design 1 with N = 100 and 7" = 200. Recall that
when \ increases, 6 increases too. For instance, while A = 0 gives § = g =1, A = 0.9 gives
0 = 10 in our simulation experiment. Consistent with our previous evidence, we see that the
performance of QMG estimator does not depend on A when the interest is in estimating f3.
The bias tends to slightly increase but it is never larger than 1% for large values of A\. We
also find that the RMSE of the estimator of 3 does not change with A\. On the other hand, we
find that the absolute value of the bias of the QMG estimator for # increases exponentially
when A — 1. The figure shows that the bias, in absolute value, is negligible for A < 0.75,
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and it increases rapidly when A > 0.8. Note however that the bias in relative terms is always

less than 10%. We also find that the RMSE increases with A and that the RMSE of the
QMG estimator at 7 = 0.25 is larger than the QMG estimator at 7 = 0.50, as expected.

Figure S.1 also shows the bias and RMSE of the QMG estimator when \; = A + w;, where
w; ~ U[—0.025,0.025] and X takes values in the interval A € [0.05,0.90]. The parametrization
guarantees that 6 exists for all values of \; for i = 1,..., N. We generate data using Design
1 with N = 100 and 7" = 200. Consistent with our expectations, the bias and RMSE of
the estimator tends to be similar to the case of homogeneous \’s, although the performance
deteriorates for large values of A = E(\;). We see an increase in the variance of the estimator,
but the bias for § remains, in absolute value, small for E();) < 0.65. As it can be seen in
Figure S.1, the parameter (E();), 8) can be estimated with small bias and excellent RMSE

performance in the case of heterogeneous \;’s.

S.2.2. Inference

We now turn our attention to the standard error of the QMG estimator for A\(7) and ((7).
Table S.7 reports the average estimated standard error obtained by the procedure outlined
in Section 2.2. We select ¢ = 3 to minimize potential biases in the estimation of the standard
errors. While the upper panels of Table S.7 show the standard error of the QMG estimator
in Designs 1 and 2, the lower panels show the standard error in Designs 3 and 4. We
also report the standard deviation of the estimator based on 400 Monte Carlo repetitions.

Because T relative to N is important for inference, we included results with N = 100 and
T € {100,200, 400}.

The results show that the estimated standard errors approximate very closely to the standard
deviation of the estimator when T is larger than N. This result is expected by the rates of
convergence needed to establish the consistency of the QMG estimator. The approximation is
excellent in the case of the Normal and ¢, distributions. The evidence when u;; ~ X2 suggests

that a larger T relative to N is needed for the standard error to be well approximated.

Table S.8 provides empirical coverage probabilities for a nominal 95% confidence interval.
The probabilities are calculated based on asymptotic Gaussian confidence intervals. We see
different finite sample performances of the estimator for A and . If we examine the results
across the different distributions, the QMG estimator in some cases does not perform well for
A when T/N < 4. On the other hand, the coverage probabilities for 5 approximate closely
0.95 with the exceptions when T'= N = 100. Lastly, we investigate the performance of the
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QMG estimator in terms of power. The results are shown in the lower panel of Table S.8.
We compute the power for the estimation of A\ with the alternative hypothesis H, : A = 0.55
and § with the alternative hypothesis H, : § = 1.1. The condition on the rate of convergence
plays an important role in ensuring that the estimator has good power. In particular, the
power is high for values of T" > 100, although how quickly approaches 1 depends on the
distribution of the error term and the number of cross-sectional units, N.

As we can see in Figure S.2, the power function of the test constructed based on the QMG
estimator at the 0.25 quantile tends to be symmetric and have the expected shape. As an
illustration, Figure S.2 reports results based on Design 1 for the Gaussian and 3 case when
N =100 and T' = 400. Consistent with the theory, a larger T" for a given number of cross-
sectional units leads to a better approximation of the function. The evidence shows that
for this sample size and quantile, the QMG estimator seem to perform reasonably well for
different distributions and parameters.

S.3. Additional Simulation Evidence

This section offers additional Monte Carlo evidence on the finite sample performance of the
proposed estimator for different values of A. It then compares the performance of the feasible
QMG estimator with an unfeasible version of it that uses unknown factors f;.

S.3.1. Autoregressive Models

Tables S.9 presents the bias and root mean square error (RMSE) for the slope parameter 3 in
the location shift model with A € {0.25,0.75}, which are different to the value A = 0.5 used
in the first tables of Section 3. The table presents results for Designs 1-4, showing results
for quantile regression estimators at two quantiles, 7 € {0.25,0.50}. The table compares the
performance of the quantile regression estimator for a dynamic panel data model (Galvao
2011) denoted by DQR and the quantile mean group (QMG) estimator for a model with
interactive effects. The DQR estimator uses y;;_» as an instrument for y;; 1. The proposed
quantile mean group estimator, QMG, is obtained as the cross sectional average of 31(7')
using z; = (Y, Y1—1, T¢)’. The sample size is based on N = 100 and 7" = 200. Table S.9 shows
that the QMG method for  performs extremely well with negligible biases and low RMSE
for all values of A.
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Tables S.10 and S.11 report results for A and #. While Table S.10 presents simulation results
for the case of A = 0.25, Table S.11 presents simulation results for the case of A = 0.75.
In terms of relative performance between DQR and QMG estimators, the tables do not
offer new insights. The evidence continues to suggest that the QMG estimator performs
better in small samples than the DQR estimator with considerable gains in terms of bias
and RMSE. We find however that the absolute bias of the QMG estimator tends to increase
as A increases. The results however are not presented in terms of percentage bias since 6

increase as \ increases.

S.3.2. Estimation of Models with Known f;

This section compares the results of the estimator QMG defined in Section 2.2 with the results

obtained by employing an unfeasible version of the estimator. The infeasible estimator is
defined as:

7;(T) = arg min pr Yit — Aitli—1 — BiXie — Yift)

Therefore, 7r;(7) is an estimator based on quantile regression with latent factors, f;. Moreover,
we define 9(7) = % SN (1) = % SN (E;07i(1)), where o denotes Hadamard product
and Z; = (¢}, 0;)" with ¢; denoting a vector of ones. In what follows, we denote this estimator

1) 1

as IQMG.

The data is generated as in Section S.2 (see equations (S.2.1)-(S.2.7)). Tables S.12 to Table
S.13 present the bias and root mean square error (RMSE) of the QMG and IQMG estimators
for the slope parameter 3 in the location shift model with A = 0.5. Table S.12 presents results
for Designs 1 and 2 and Table S.13 presents results for Designs 3 and 4. The tables show
results for quantile regression estimators at two quantiles, 7 € {0.25,0.50}, based on sample
sizes of N € {100,200} and T" € {50,100,200}. As to be expected, the IQMG estimator
yields smaller bias and smaller RMSE than its feasible counterpart QMG. We also observe

that these differences tend to disappear as long as both N and T increase.

In the next four tables, Tables S.14 to Table S.17, we present results the bias and root
mean square error (RMSE) of the QMG and IQMG estimators for the parameters A and
0. The results continues to indicate that the infeasible version improves the performance
of the feasible version, although again as in the case of the slope parameter [, the finite

sample performance of the QMG estimator approximates very closely to the performance of
the IQMG estimator when T > 100.
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S.3.3. Power

This section reports additional simulation results for the power of the QMG estimator. In
light of the theoretical results, we limit our investigation to document the shape of the
power function as the time series dimension of the panel, 7', increases. We generate data
using Design 1 considering N = 100 and 7" € {100, 200,400} for the case of Gaussian and
X3 error term. The evidence is presented in Figures S.3 and S.4.

As shown in Figures S.3 and S.4, the power function of the test constructed based on the
QMG is not symmetric when N ~ T, but it tends to have the expected shape as long as
T increases. This is true for different distributions (i.e., Gaussian and x32) and different
quantiles (i.e., 7 € {0.25,0.50}). The evidence shows that the QMG estimator performs well
for different distributions and parameters, as long as the number of time series observations

is significantly larger than the number of cross-sectional units.

S.4. Time-of-Use Pricing, Smart Technology and Energy Savings:
A Sensitivity Analysis

In this section, we re-estimate the conditional quantile function for electricity consumption
(equation (4.2) in Section 4.2) to evaluate the sensitivity of results to a change in the number
of cross-section averages used to approximate the unknown factors, f;. As in Section 4, we
estimate the model using the QMG procedure for each quantile 7 and group g separately.
However, we deviate from the previous analysis by using cross-section averages of the log-
arithm of electricity usage at ¢ and ¢ — 1, (9, 9s—1), as well as cross-sectional averages of
temperature and drew-point, (Z14, Z2;). The evidence is reported in Tables S.18, S.19, S.20,
and Figures S.5 and S.6.

As to be expected, the evidence shows consistently smaller (in absolute value) treatment
effects estimates when we compare the results reported in Section 4.3 with the results shown
in Table S.18. The CCEMG (see Chudik and Pesaran (2015)) estimate for the control group
is reduced by 1% point in Table 4.2 compared to Table S.18, while the MG estimate for
the PCT group is increased from -7% to -6.5%. The evidence across quantiles is similar,
although we observe the most significant changes in the results at the 0.1 and 0.9 quantiles
of the conditional distribution of electricity usage. Lastly, we obtain, in general, similar
empirical results when we estimate the responsiveness to TOU pricing across demographics
(see Tables S.19 and S.20) and we perform a counterfactual exercise on how policies can



11

increase savings (see Figure S.6). The exceptions are, again, the 0.1 and 0.9 quantiles of the
PCT group, where we observe interesting changes. Overall, the results appear to be robust
to the choice of the number of lagged cross-section averages used to proxy f;. Nevertheless,
we would like to emphasize the importance of setting pr to be relatively large in applications
to avoid inconsistent results.
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7 = 0.50 quantile 7 = 0.25 quantile

Parameter: A Parameter: § Parameter: A Parameter: 6

DQR QMG DQR QMG DQR QMG DQR QMG
N T Normal Distribution
100 50 Bias -0.110 0.051 0.411 -0.043 -0.107 0.0563 0.412 -0.028
100 50 RMSE 0.164 0.058 0.461 0.069 0.158 0.062 0.463 0.068
100 100 Bias -0.168 0.029 0.493 -0.017 -0.163 0.028 0.495 -0.013
100 100 RMSE 0.197 0.033 0.520 0.036 0.193 0.034 0.526 0.036
100 200 Bias -0.196 0.009 0.503 -0.005 -0.195 0.009 0.502 -0.005
100 200 RMSE 0.213 0.017 0.521 0.022 0.212 0.016 0.521 0.024
200 50 Bias -0.109 0.058 0.416 -0.044 -0.105 0.058 0.416 -0.030
200 50 RMSE 0.156 0.062 0.456 0.060 0.152 0.061 0.464 0.053
200 100 Bias -0.167 0.030 0.476 -0.021 -0.164 0.030 0.474 -0.014
200 100 RMSE 0.198 0.032 0.499 0.029 0.194 0.033 0.498 0.028
200 200 Bias -0.213 0.014 0.525 -0.008 -0.212 0.013 0.526 -0.005
200 200 RMSE 0.227 0.016 0.541 0.017 0.226 0.016 0.542 0.018
N T t4 distribution
100 50 Bias -0.089 0.049 0.362 -0.042 -0.086 0.055 0.371 -0.031
100 50 RMSE 0.139 0.058 0.401 0.075 0.140 0.067 0.416 0.073
100 100 Bias -0.149 0.027 0.454 -0.017 -0.146 0.029 0.460 -0.018
100 100 RMSE 0.183 0.032 0.489 0.039 0.180 0.036 0.498 0.042
100 200 Bias -0.179 0.010 0.489 -0.003 -0.178 0.012 0.496 -0.002
100 200 RMSE 0.198 0.015 0.510 0.023 0.197 0.019 0.517 0.027
200 50 Bias -0.103 0.054 0.390 -0.046 -0.099 0.061 0.400 -0.036
200 50 RMSE 0.159 0.058 0.429 0.064 0.155 0.065 0.443 0.082
200 100 Bias -0.132 0.028 0.419 -0.020 -0.131 0.029 0.422 -0.021
200 100 RMSE 0.161 0.031 0.438 0.032 0.159 0.033 0.442 0.037
200 200 Bias -0.179 0.012 0.469 -0.008 -0.180 0.014 0.479 -0.007
200 200 RMSE 0.196 0.015 0.485 0.019 0.197 0.017 0.495 0.022
N T x3 distribution
100 50 Bias -0.035 0.075 0.320 -0.035 -0.037 0.041 0.309 -0.015
100 50 RMSE 0.109 0.092 0.367 0.111 0.104 0.058 0.351 0.084
100 100 Bias -0.086 0.037 0.378 -0.015 -0.079 0.017 0.351 -0.007
100 100 RMSE 0.126 0.049 0.419 0.059 0.115 0.027 0.388 0.040
100 200 Bias -0.123 0.018 0.409 -0.003 -0.109 0.006 0.373 0.000
100 200 RMSE 0.147 0.030 0.431 0.044 0.131 0.016 0.393 0.027
200 50 Bias -0.035 0.072 0.321 -0.050 -0.038 0.039 0.310 -0.026
200 50 RMSE 0.098 0.082 0.354 0.088 0.090 0.049 0.343 0.061
200 100 Bias -0.093 0.038 0.400 -0.022 -0.083 0.019 0.368 -0.008
200 100 RMSE 0.127 0.044 0.423 0.049 0.114 0.026 0.388 0.034
200 200 Bias -0.122 0.020 0.430 -0.007 -0.108 0.009 0.391 -0.002
200 200 RMSE 0.141 0.026 0.445 0.030 0.127 0.014 0.405 0.021

TABLE S.3. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 0 in Design 1. In all the variations of the model, A = 0.5.



7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A\ Parameter: 8§ Parameter: A\ Parameter: 6
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution

100 50 Bias -0.112 0.065 0.442 -0.015 -0.107 0.063 0.439 -0.004
100 50 RMSE 0.170 0.071 0.491 0.057 0.166 0.070 0.487 0.066
100 100 Bias -0.179 0.035 0.526 0.002 -0.176 0.034 0.519 0.007
100 100 RMSE 0.210 0.041 0.554 0.033 0.208 0.040 0.547 0.036
100 200 Bias -0.220 -0.006 0.488 -0.036 -0.220 -0.006 0.480 -0.035
100 200 RMSE 0.235 0.014 0.510 0.042 0.235 0.015 0.502 0.042
200 50 Bias -0.110 0.065 0.438 -0.030 -0.107 0.064 0.428 -0.018
200 50 RMSE 0.158 0.068 0.476 0.051 0.154 0.067 0.471 0.046
200 100 Bias -0.157 0.039 0.502 0.001 -0.155 0.038 0.500 0.005
200 100 RMSE 0.188 0.041 0.525 0.022 0.186 0.041 0.525 0.027
200 200 Bias -0.214 0.013 0.510 -0.007 -0.212 0.012 0.507 -0.006
200 200 RMSE 0.229 0.015 0.522 0.017 0.227 0.015 0.520 0.017

N T t4 distribution

100 50 Bias -0.059 0.083 0.436 0.027 -0.057 0.089 0.446 0.038
100 50 RMSE 0.123 0.089 0.468 0.068 0.123 0.096 0.484 0.077
100 100 Bias -0.119 0.062 0.532 0.057 -0.116 0.065 0.541 0.055
100 100 RMSE 0.161 0.065 0.561 0.066 0.159 0.068 0.574 0.067
100 200 Bias -0.178 0.017 0.511 0.013 -0.177 0.020 0.519 0.014
100 200 RMSE 0.197 0.021 0.530 0.026 0.196 0.024 0.540 0.030
200 50 Bias -0.092 0.070 0.428 -0.012 -0.085 0.077 0.440 -0.024
200 50 RMSE 0.151 0.073 0.465 0.045 0.145 0.081 0.482 0.299
200 100 Bias -0.118 0.048 0472 0.023 -0.117 0.050 0.475 0.021
200 100 RMSE 0.148 0.050 0.490 0.034 0.147 0.052 0.493 0.037
200 200 Bias -0.183 0.012 0.481 -0.008 -0.185 0.014 0.488 -0.007
200 200 RMSE 0.200 0.014 0.497 0.018 0.201 0.017 0.505 0.022

N T x3 distribution

100 50 Bias -0.051 0.066 0.308 -0.051 -0.053 0.032 0.299 -0.034
100 50 RMSE 0.123 0.085 0.362 0.133 0.116 0.051 0.347 0.088
100 100 Bias -0.113 0.013 0.335 -0.062 -0.106 -0.006 0.310 -0.054
100 100 RMSE 0.146 0.034 0.382 0.084 0.135 0.023 0.352 0.068
100 200 Bias -0.155 -0.008 0.362 -0.053 -0.142 -0.020 0.327 -0.051
100 200 RMSE 0.175 0.025 0.389 0.069 0.160 0.025 0.350 0.058
200 50 Bias -0.060 0.055 0.341 -0.078 -0.064 0.024 0.321 -0.054
200 50 RMSE 0.109 0.066 0.376 0.129 0.103 0.037 0.355 0.076
200 100 Bias -0.111  0.020 0.365 -0.060 -0.105 0.001 0.337 -0.045
200 100 RMSE 0.143 0.031 0.385 0.074 0.134 0.015 0.358 0.053
200 200 Bias -0.133 0.018 0.424 -0.012 -0.119 0.007 0.388 -0.007
200 200 RMSE 0.150 0.024 0.439 0.032 0.134 0.013 0.402 0.022

TABLE S.4. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 0 in Design 2. In all the variations of the model, A = 0.5.



7 = 0.50 quantile 7 = 0.25 quantile

Parameter: A Parameter: § Parameter: A Parameter: 6

DQR QMG DQR QMG DQR QMG DQR QMG
N T Normal Distribution
100 50 Bias -0.110 0.058 0.420 -0.048 -0.091 0.066 0.407 -0.011
100 50 RMSE 0.161 0.066 0.467 0.076 0.145 0.073 0.449 0.067
100 100 Bias -0.183 0.032 0.502 -0.015 -0.166 0.035 0.460 0.000
100 100 RMSE 0.214 0.037 0.532 0.036 0.198 0.041 0.487 0.039
100 200 Bias -0.208 0.013 0.525 -0.005 -0.190 0.016 0.485 0.005
100 200 RMSE 0.226 0.018 0.546 0.022 0.209 0.021 0.507 0.024
200 50 Bias -0.100 0.065 0.409 -0.050 -0.082 0.074 0.379 -0.012
200 50 RMSE 0.158 0.068 0.462 0.063 0.142 0.077 0.421 0.047
200 100 Bias -0.163 0.033 0.471 -0.024 -0.146 0.038 0.440 -0.006
200 100 RMSE 0.191 0.036 0.495 0.038 0.176 0.040 0.462 0.027
200 200 Bias -0.212 0.014 0.520 -0.010 -0.194 0.017 0.477 0.000
200 200 RMSE 0.228 0.017 0.537 0.019 0.210 0.020 0.492 0.016
N T t4 distribution
100 50 Bias -0.087 0.054 0.377 -0.056 -0.073 0.069 0.357 -0.005
100 50 RMSE 0.144 0.063 0.425 0.083 0.137 0.079 0.395 0.223
100 100 Bias -0.129 0.029 0.452 -0.017 -0.114 0.040 0.418 0.002
100 100 RMSE 0.157 0.035 0.480 0.042 0.146 0.046 0.444 0.041
100 200 Bias -0.173 0.012 0.481 -0.005 -0.158 0.019 0.446 0.008
100 200 RMSE 0.194 0.018 0.501 0.024 0.181 0.024 0.464 0.025
200 50 Bias -0.087 0.058 0.387 -0.051 -0.069 0.074 0.372 -0.014
200 50 RMSE 0.130 0.063 0.426 0.068 0.115 0.079 0.407 0.080
200 100 Bias -0.139 0.030 0.439 -0.025 -0.124 0.039 0.405 -0.008
200 100 RMSE 0.168 0.033 0.461 0.035 0.154 0.042 0.424 0.029
200 200 Bias -0.173 0.014 0.462 -0.009 -0.157 0.019 0.424 0.000
200 200 RMSE 0.188 0.016 0.475 0.020 0.173 0.022 0.436 0.020
N T x3 distribution
100 50 Bias -0.033 0.082 0.274 -0.055 -0.025 0.060 0.260 0.008
100 50 RMSE 0.119 0.100 0.321 0.126 0.106 0.072 0.294 0.080
100 100 Bias -0.091 0.044 0.354 -0.026 -0.067 0.025 0.326 0.003
100 100 RMSE 0.133 0.055 0.385 0.069 0.110 0.036 0.352 0.050
100 200 Bias -0.136 0.017 0.367 -0.015 -0.102 0.010 0.320 0.002
100 200 RMSE 0.159 0.028 0.392 0.046 0.127 0.018 0.343 0.028
200 50 Bias -0.037 0.082 0.275 -0.063 -0.025 0.057 0.274 0.001
200 50 RMSE 0.114 0.089 0.318 0.090 0.096 0.064 0.304 0.052
200 100 Bias -0.091 0.041 0.343 -0.032 -0.064 0.024 0.312 -0.002
200 100 RMSE 0.127 0.047 0.364 0.054 0.100 0.029 0.329 0.033
200 200 Bias -0.130 0.020 0.361 -0.015 -0.095 0.012 0.321 0.002
200 200 RMSE 0.152 0.026 0.377 0.035 0.117 0.017 0.335 0.022

TABLE S.5. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 0 in Design 3. In all the variations of the model, A = 0.5.



7 = 0.50 quantile 7 = 0.25 quantile

Parameter: A Parameter: § Parameter: A Parameter: 6

DQR QMG DQR QMG DQR QMG DQR QMG
N T Normal Distribution
100 50 Bias -0.106 0.068 0.453 -0.038 -0.086 0.077 0.433 0.003
100 50 RMSE 0.156 0.072 0.504 0.064 0.142 0.082 0.480 0.061
100 100 Bias -0.164 0.027 0.469 -0.021 -0.146 0.034 0.442 -0.003
100 100 RMSE 0.195 0.033 0.498 0.041 0.179 0.039 0.468 0.036
100 200 Bias -0.201 0.011 0.514 -0.006 -0.181 0.015 0.477 0.005
100 200 RMSE 0.216 0.017 0.532 0.024 0.198 0.021 0.494 0.024
200 50 Bias -0.116 0.069 0.443 -0.036 -0.097 0.078 0.428 -0.004
200 50 RMSE 0.169 0.072 0.484 0.055 0.152 0.081 0.464 0.044
200 100 Bias -0.174 0.026 0.476 -0.035 -0.155 0.030 0.446 -0.019
200 100 RMSE 0.195 0.029 0.499 0.042 0.177 0.032 0.466 0.032
200 200 Bias -0.215 0.014 0.554 -0.010 -0.196 0.018 0.516 0.001
200 200 RMSE 0.230 0.017 0.567 0.019 0.212 0.021 0.529 0.016
N T t4 distribution
100 50 Bias -0.092 0.066 0.411 -0.034 -0.076 0.086 0.393 0.007
100 50 RMSE 0.160 0.073 0.457 0.071 0.149 0.094 0.433 0.076
100 100 Bias -0.153 0.021 0.462 -0.029 -0.138 0.033 0.432 -0.012
100 100 RMSE 0.182 0.029 0.494 0.046 0.169 0.040 0.462 0.042
100 200 Bias -0.173 0.019 0.505 0.010 -0.155 0.026 0.470 0.023
100 200 RMSE 0.195 0.023 0.525 0.025 0.180 0.030 0.488 0.032
200 50 Bias -0.109 0.050 0.390 -0.068 -0.090 0.069 0.364 -0.031
200 50 RMSE 0.153 0.055 0.428 0.080 0.138 0.073 0.397 0.058
200 100 Bias -0.145 0.033 0.457 -0.015 -0.128 0.040 0.424 -0.001
200 100 RMSE 0.172 0.036 0.480 0.030 0.156 0.043 0.445 0.031
200 200 Bias -0.182 0.015 0.488 -0.008 -0.167 0.019 0.455 0.000
200 200 RMSE 0.199 0.018 0.502 0.019 0.185 0.022 0.469 0.018
N T x3 distribution
100 50 Bias -0.031 0.092 0.288 -0.057 -0.021 0.064 0.281 0.010
100 50 RMSE 0.108 0.107 0.344 0.111 0.097 0.076 0.320 0.073
100 100 Bias -0.060 0.074 0.410 0.035 -0.034 0.056 0.385 0.064
100 100 RMSE 0.112 0.082 0.438 0.072 0.093 0.062 0.409 0.078
100 200 Bias -0.106 0.051 0.445 0.052 -0.070 0.042 0.402 0.068
100 200 RMSE 0.134 0.056 0.467 0.067 0.102 0.045 0.422 0.074
200 50 Bias -0.044 0.083 0.284 -0.064 -0.032 0.055 0.272 -0.004
200 50 RMSE 0.121 0.092 0.323 0.098 0.105 0.063 0.299 0.059
200 100 Bias -0.101 0.041 0.334 -0.034 -0.073 0.023 0.308 -0.005
200 100 RMSE 0.137 0.047 0.356 0.055 0.108 0.028 0.325 0.031
200 200 Bias -0.136 0.021 0.358 -0.014 -0.102 0.013 0.320 0.003
200 200 RMSE 0.157 0.026 0.374 0.031 0.123 0.017 0.334 0.020

TABLE S.6. Bias and root mean square error (RMSE) of quantile regression
estimators for A and 0 in Design 4. In all the variations of the model, A = 0.5.
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FiGure S.1. Small sample performance of the QMG estimator for different
values of X\. The figure present Bias and RMSE of the QMG estimator for
E(\(T)), E(B(7)) and E(0(T)) at the 0.25 and 0.50 quantiles.
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7 = 0.50 quantile

7 = 0.25 quantile

A Design Parameter: A Parameter: § Parameter: A\ Parameter: 0

DQR QMG DQR QMG DQR QMG DQR QMG

Normal Distribution
0.25 1 Bias -0.267 0.006 0.313 -0.001 -0.266 0.005 0.313 -0.002
0.25 1 RMSE 0.281 0.015 0.324 0.014 0.281 0.014 0.325 0.015
0.25 2 Bias -0.292 -0.010 0.300 -0.022 -0.291 -0.010 0.298 -0.022
0.25 2 RMSE 0.305 0.016 0.313 0.026 0.304 0.017 0.313 0.027
0.25 3 Bias -0.280 0.009 0.326 0.000 -0.264 0.011 0.285 0.004
0.25 3 RMSE 0.295 0.015 0.339 0.014 0.279 0.017 0.298 0.016
0.25 4 Bias -0.273 0.007 0.321 -0.002 -0.255 0.011 0.280 0.004
0.25 4 RMSE 0.286 0.015 0.332 0.015 0.268 0.018 0.292 0.016
t4 distribution
0.25 1 Bias -0.247 0.006 0.308 0.000 -0.246 0.008 0.310 0.001
0.25 1 RMSE 0.264 0.013 0.321 0.014 0.263 0.016 0.324 0.017
0.25 2 Bias -0.247 0.013 0.321 0.010 -0.246 0.015 0.325 0.011
0.25 2 RMSE 0.263 0.017 0.334 0.018 0.262 0.021 0.338 0.020
0.25 3 Bias -0.239 0.007 0.300 -0.001 -0.225 0.014 0.262 0.007
0.25 3 RMSE 0.257 0.015 0.313 0.016 0.246 0.019 0.274 0.017
0.25 4 Bias -0.239 0.014 0.314 0.009 -0.225 0.021 0.275 0.017
0.25 4 RMSE 0.258 0.019 0.327 0.018 0.246 0.025 0.287 0.023
X% distribution

0.25 1 Bias -0.178 0.011 0.257 0.003 -0.163 0.002 0.235 0.001
0.25 1 RMSE 0.198 0.026 0.271 0.029 0.182 0.015 0.248 0.019
0.25 2 Bias -0.212 -0.015 0.224 -0.032 -0.196 -0.024 0.204 -0.033
0.25 2 RMSE 0.229 0.028 0.242 0.043 0.213 0.028 0.220 0.038
0.25 3 Bias -0.194 0.008 0.225 -0.005 -0.159 0.006 0.187 0.003
0.25 3 RMSE 0.214 0.024 0.241 0.029 0.180 0.015 0.202 0.018
0.25 4 Bias -0.170 0.043 0.276 0.040 -0.131 0.037 0.243 0.046
0.25 4 RMSE 0.193 0.048 0.290 0.048 0.156 0.040 0.256 0.050

TABLE S.10. Bias and root mean square error (RMSE) of quantile regression

estimators when A = 0.25, N = 100 and T = 200.
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7 = 0.50 quantile

7 = 0.25 quantile

A Design Parameter: A Parameter: § Parameter: A\ Parameter: 0

DQR QMG DQR QMG DQR QMG DQR QMG

Normal Distribution
0.75 1 Bias -0.107 0.012 1.180 -0.029 -0.106 0.012 1.184 -0.019
0.75 1 RMSE 0.130 0.018 1.223 0.057 0.129 0.017 1.229 0.055
0.75 2 Bias -0.130 -0.003 1.170 -0.085 -0.129 -0.003 1.150 -0.079
0.75 2 RMSE 0.150 0.012 1.221 0.101 0.148 0.013 1.200 0.097
0.75 3 Bias -0.118 0.016 1.249 -0.029 -0.100 0.019 1.205 -0.005
0.75 3 RMSE 0.141 0.020 1.300 0.061 0.125 0.023 1.260 0.057
0.75 4 Bias -0.111 0.014 1.225 -0.030 -0.091 0.018 1.177 0.000
0.75 4 RMSE 0.132 0.018 1.267 0.062 0.116 0.022 1.217 0.056
t4 distribution
0.75 1 Bias -0.099 0.014 1.177 -0.024 -0.098 0.016 1.192 -0.020
0.75 1 RMSE 0.124 0.018 1.224 0.058 0.124 0.022 1.244 0.067
0.75 2 Bias -0.096 0.021 1.229 0.008 -0.096 0.023 1.245 0.010
0.75 2 RMSE 0.123 0.024 1.274 0.054 0.123 0.028 1.294 0.064
0.75 3 Bias -0.100 0.016 1.175 -0.032 -0.083 0.024 1.138 -0.003
0.75 3 RMSE 0.126 0.021 1.224 0.061 0.113 0.028 1.184 0.056
0.75 4 Bias -0.097 0.023 1.229 -0.004 -0.079 0.031 1.193 0.026
0.75 4 RMSE 0.125 0.027 1.276 0.053 0.112 0.035 1.236 0.060
X% distribution

0.75 1 Bias -0.071 0.029 1.028 -0.046 -0.064 0.013 0.935 -0.020
0.75 1 RMSE 0.106 0.037 1.081 0.105 0.096 0.020 0.983 0.063
0.75 2 Bias -0.102 0.002 0.941 -0.149 -0.095 -0.014 0.853 -0.123
0.75 2 RMSE 0.128 0.023 1.003 0.177 0.119 0.021 0.908 0.136
0.75 3 Bias -0.079 0.028 0.930 -0.081 -0.051 0.016 0.832 -0.020
0.75 3 RMSE 0.109 0.036 0.985 0.129 0.084 0.022 0.879 0.068
0.75 4 Bias -0.045 0.062 1.085 0.059 -0.014 0.048 0.995 0.115
0.75 4 RMSE 0.088 0.067 1.134 0.105 0.070 0.050 1.038 0.130

TABLE S.11. Bias and root mean square error (RMSE) of quantile regression

estimators when A = 0.75, N = 100 and T = 200.



25

L0IDWYSD Y] [0 U01S420 2]QIsDI[Un YY) S9P0UID HIND]
G0 = Y ‘Jepow ay) Jo suowvipa 2Yyp 10 U] g puv [ subisa ut ¢ 40f 103puwigso HNEH 2191s0af
Y] puv L0IWIS? HIN 2]91svfun ay) fo (HSNY) 40449 24DNbs uDIWL 1004 PUD SV “TT'S HTAV],

£00°0 900°0 GI00 <¢I00 <¢I00 6000 TIOO 8000 TTOO 8000 <GrO0 8000 HSWY 00¢ 00¢
L00°0- 900°0- S10°0- ¢I00- TIO0- 6000- 0OTO'0- 800°0- 0OT0°0- L0O0°O- TI0°0- LOOO- setd  00¢ 00¢
91000 ¢I0°0 ¢€00 ¥¢0'0 LgO'O 8100 P¥c00 9100 9200 SI00 9200 9100 HSWYH 00T 00¢
GT0°0- TIO00- ¢€0°0- €¢0°0- Lg00- LTIO0- ¥¢0°0- 910°0- 6Gc0°0- <ST10°0- G20°0- G100~ setd 00T 00¢
L£0°0 <200 6900 6700 T90°0 8O0 PEO0 €€00 LS00 <EO'0 8GO0 €€0°0 HUSINY 0§ 00¢
9€0°0- ¥20°0- 890°0- 870°0- T190°0- LEO'O- ¥G0°0- €€0°0- 990°0- <¢e00- LG0°0- ¢€0°0- seld 09 00¢
9000 2000 %100 €100 TI00 0100 6000 8000 TIOO 6000 OI00 6000 HSINY 00¢ 00T
¥00°0- S00°0- ¢I0°0- ¢&I0°0- 600°0- 600°0- L000- L00°0- 600°0- 800°0- 600°0- 8000~ seld  00¢ 00T
610’0 €10°0  0€0°0  Gc00 9200 6100 €¢0°0 LIOO %200 9100 <200 LT10°0 HSINY 00T 00T
¥10°0- TI00- 62600~ €¢0°0- G¢0°0- LTI0°0- ¢c00- <100 €¢0°0- ¥I0'0- €20°0- GT10°0- seld 00T 00T
9€0°'0  9¢0°'0 8900 0%0°0 LS00 LEO0O TS0°0 ¢€O'0  GS0°0 €€0°0  ¥E00 €€0°0 HSINY 0S¢ 00T
G€0°0-  §20°0- 990°0- 6700~ 9%0°0- G€0°0- 6¥0°0- T€0'0- €90°0- TE€00- €S0°0- T€0°0- seld 0§ 00T
sodo[s SN0oue301939Y M JIYS UOIYRIOT :7 USISO(]
L00°0 9000 G100 @I00 ¢I0’0 6000 TIOO 8000 TI00 8000 ¢IO'0 8000 WSINY 00¢ 00¢
900°0- 900°0- GT0°0- ¢I0°0- TT10°0- 800°0- OTO°0- L00°0- TIO0- ZL00°0- TTO°0- 8000~ seld  00¢ 00¢
910'0 ¢I0'0  ¢€00 ¥c0'0 Lg00O 8100 ¥¢0'0 9100 9200 9100 9¢0°0 9100 HSINY 00T 008
G10°0- ¢r10°0- ¢€0°0- ¥¢0°0- 9¢0°0- LTI00- €¢0°0- GI0°0- G200~ <100~ 9¢0°0- G100~ seld 00T 00¢
L£0°0 9¢0°0 6900 6¥0°0 T90°0  LEO0  PE0°0 €€0°0 LS00 <EO0'0 8GO0 <¢€O0 HUSINY 0§ 00¢
L€0°0- G200~ 890°0- 8¥0°0- 090°0- LE0°0- €90°0- <¢€00- 9%0°0- T€0°0- LS0°0- <¢€0°0- seld 09 00¢
9000 2000 ¥10°0 €100 TI0°0 OTO°0 6000 8000 OTOO 8000 OIO0 6000 HSIWNY 00¢ 00T
¥00°0- G000~ €10°0- ¢&I0°0- 600°0- 600°0- L000- L00°0- 800°0- L00°0- 800°0- 800°0- seld  00¢ 00T
610’0 €10°0  0€0°0  Gc00 Lc00 6100 ¥¢0'0 LTIOO G200 9100 Sc0°0 LT10°0 HSINY 00T 00T
¥10°0- TI0O0- 6¢0°0- €¢0°0- G9¢0°0- LI00- ¢¢0'0- G10°0- ¥¢0°0- S10°0- ¥¢0°0- SI10°0- seld 00T 00T
2E00 9¢0°0 8900 000 LS00 L£00 TS00 @¢€O'0 95900 €€00 7400 ¢€€0'0 WHSINY 09 00T
GE€0'0- G200~ 990°0- 6¥0°0- 990°0- GEO0°0- 0%0°0- TEO0- €90°0- T€00- ¢S0°0- T€0°0- seld 09 001
sodo[s sSnooueFOWOY YIM JIYS UOIPeIOT T USISO(]
DINO HDIODI HINO HINDI HDIWO HINDI DD HDINOI HINO HDINOT HINO HDINOI
o=+ 0§°0=+ Gco=+ 06°0=+ o=+ 06°0=+

uopnqLsip EX

uornNqLIIsip 2

UOTINGLIISI(] [BWLION




26

L0IDWYSD Y] [0 U01S420 2]QIsDI[Un YY) S9P0UID HIND]
G0 = Y ‘Jepow ayy Jo suowvipa 2yy v Ul ¥ puv g subiso ur ¢ 40f 40ppuwiyso HNEH 2191svaf
Y] puv L0IWIS? HIN 2]91svfun ay) fo (HSNY) 40449 24DNbs uDIWL 1004 PUD SV “€T°S HTAV],

000 9000 4100 @I00 ¥IOO O0T0O0 €100 6000 €100 6000 €100 6000 HWSINY 00¢ 00¢
900°0- G00°0- ¥I0°0- TIO0- €T10°0- 600°0- TTO'0- 800°0- €T10°0- 800°0- ¢&r0°0- 8000~ seld  00¢ 00¢
610’0 1100 0€0°0 ¢c00 6600 6100 9¢0°'0 8IOO 6200 8I00 6800 S8T0°'0 HUSINY 00T 008
710°0- 0T0°0- 0€0°0- ¢c0°0- 6¢0°0- 610°0- 9¢0°0- LTI0°0- 6¢0°0- LI0O0- 620°0- 8I00- seld 00T 00¢
Geo’o €00 9900 9¥0°0  L90°0 <¥0'0 0900 8EO'O  ¥I90°0 LEOO  €90°0 9€0°0 HUSINY 0% 00¢
7€0°0- ¢c0°0- 990°0- 4¥0°0- 990°0- T¥0°0- 690°0- LEO0- €90°0- 9€0°0- ¢90°0- G€0°0- seld 09 00¢
9000 9000 ¥I0°0O <100 <¢I00 0100 OT0°'0 60000 <¢I00 0100 <¢I0°0 6000 HSIWNY 00¢ 00T
¥00°0- S00°0- <¢I0°0- O0T10°0- TT0°0- 600°0- 600°0- 800°0- O0T0°0- 800°0- O0OTO0- 800°0- seld  00¢ 00T
610’0 ¢r10’0 0€0°0  ¥¢0'0 6600 Tg0'0 GO0 8IOO 800 6100 Lg00 6100 HSINY 00T 00T
€10°0- TI00- 6¢0°0- ¢c00- 8¢0°0- 0¢0°0- €¢0°0- LT10°0- 92¢0°0- LIO0- 9¢0°0- LTO0- seld 00T 00T
9€0°'0  ¥¢0°'0 L1900 8Y00 9900 €¥V0'0 690°0 LEO'O <900 8EO'O €90°0 8EO'0 HSINY 0S¢ 00T
7€0°0- €200~ 9900~ 2¥0°0- ¥90°0- 0¥0°0- L80°0- €€0°0- 090°0- 9€0°0- ¢90°0- L€0°0- seld 0§ 00T
sodo[s snooua30I019Y YIM PIYS S[RIS-UOIYLIOT :f, USISO(]
000 9000 ¥I00 @¢I00 €100 0100 <¢I00 6000 €100 6000 €100 6000 HWSINY 00¢ 00¢
900°0- G00°0- ¥I0°0- TIO0- €T10°0- 600°0- TTO0- 800°0- <CI0O0- 800°0- ¢&r0°0- 8000~ seld  00¢ 00¢
¥10°0  TI00 0€0°0 ¢c00 0€0°0 0cO'0 LcO'0 8IOO 6¢00 8I0O0 0€0°0 8I0O0 HUSINY 00T 008
¥10°0- 0100~ 62600~ &¢0°0- 6¢0°0- 6100~ 9¢0°0- LTI00- 8¢0°0- LIO'0- 620°0- 8I00- seld 00T 00¢
¥€0°0 €200 9900 9700 9900 ¢¥0'0 6500 LEO0  F90°0  LEOO  ¥90°0 LEO'O HUSINY 09 00¢
€€0°0- ¢c0'0- ¥90°0- <¥0°0- 990°0- I¥0°0- 8G0°0- 9€0°0- €90°0- 9€0°0- €90°0- LEOO- seld 09 00¢
000 9000 ¥I00 @¢r00 €10°0 0100 0100 6000 €100 0100 @¢I0'0 O0T0°0 HWSINY 00¢ 00T
G00°0- S00°0- €100~ TI00- TT10°0- 600°0- 600°0- 8000~ 0T00- 800°0- OT0°0- 8000~ seld  00¢ 00T
610’0 ¢r10’0 1€0°0 ¥¢00 6600 1600 GO0 8IO0 L200 8IOO0 Lg0'0 6100 HSINY 00T 00T
€10°0- TT10°0- 0€0°0- €2¢0°0- 2L20°0- 610°0- ¥c0°0- LTI0°0- 92¢0°0- LT10°0- 920°0- LT00- seid 00T 00T
Ggeo’o  ¥co'0 ¥90°0  9¥0°0 €900 <v0'0 8G0°'0  LEO'O  T90°0  LEO0  T90°0 8EO'0 HSINY 0S¢ 00T
€€0°0-  ¢c0°0- 290°0- S¥0°0- €90°0- O0¥0°0- 950°0- 9€0°0- 690°0- G€0°0- 690°0- 9€0°0- seld 09 00T
sodo[s snoaua3owoT YHM JIUS d[BIS-UOT}ed0T ¢ USISI(]
DINO HDIODI HINO HINDI HDIWO HINDI DD HDINOI HINO HDINOT HINO HDINOI
o=+ 0§°0=+ Gco=+ 06°0=+ o=+ 06°0=+

uornquysip £X uonnqLysIp 7y

UOTINGLIISI(] [BWLION




7 = 0.50 quantile

Parameter: A\ Parameter: 6
IQMG QMG IQMG QMG

IQMG

QMG

7 = 0.25 quantile

Parameter: \

Parameter: 0

IQMG

QMG

Normal Distribution

100
100
100
100
100
100
200
200
200
200
200
200

50
50
100
100
200
200
50
50
100
100
200
200

Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE

0.029
0.040
0.019
0.024
0.009
0.015
0.034
0.038
0.018
0.021
0.010
0.013

0.051
0.058
0.029
0.033
0.009
0.017
0.058
0.062
0.030
0.032
0.014
0.016

-0.028
0.059
-0.011
0.031
-0.007
0.022
-0.021
0.043
-0.012
0.023
-0.004
0.016

-0.043
0.069
-0.017
0.036
-0.005
0.022
-0.044
0.060
-0.021
0.029
-0.008
0.017

0.032
0.044
0.017
0.024
0.008
0.014
0.035
0.040
0.017
0.022
0.009
0.013

0.053
0.062
0.028
0.034
0.009
0.016
0.058
0.061
0.030
0.033
0.013
0.016

-0.017
0.057
-0.009
0.034
-0.007
0.023
-0.010
0.040
-0.008
0.024
-0.003
0.016

-0.028
0.068
-0.013
0.036
-0.005
0.024
-0.030
0.053
-0.014
0.028
-0.005
0.018

t4 distribution

100
100
100
100
100
100
200
200
200
200
200
200

50
50
100
100
200
200
50
50
100
100
200
200

Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE

0.032
0.044
0.019
0.025
0.010
0.015
0.035
0.040
0.018
0.021
0.009
0.012

0.049
0.058
0.027
0.032
0.010
0.015
0.054
0.058
0.028
0.031
0.012
0.015

-0.025
0.061
-0.013
0.033
-0.004
0.020
-0.025
0.046
-0.014
0.027
-0.007
0.018

-0.042
0.075
-0.017
0.039
-0.003
0.023
-0.046
0.064
-0.020
0.032
-0.008
0.019

0.037
0.051
0.019
0.028
0.012
0.018
0.039
0.046
0.019
0.024
0.011
0.015

0.055
0.067
0.029
0.036
0.012
0.019
0.061
0.065
0.029
0.033
0.014
0.017

-0.017
0.063
-0.015
0.039
-0.005
0.025
-0.021
0.051
-0.013
0.031
-0.005
0.020

-0.031
0.073
-0.018
0.042
-0.002
0.027
-0.036
0.082
-0.021
0.037
-0.007
0.022

x3 distribution

100
100
100
100
100
100
200
200
200
200
200
200

50
50
100
100
200
200
50
50
100
100
200
200

Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE

0.055
0.076
0.031
0.045
0.017
0.030
0.051
0.063
0.029
0.038
0.017
0.023

0.075
0.092
0.037
0.049
0.018
0.030
0.072
0.082
0.038
0.044
0.020
0.026

-0.023
0.102
-0.009
0.061
-0.003
0.046
-0.034
0.077
-0.015
0.046
-0.005
0.029

-0.035
0.111
-0.015
0.059
-0.003
0.044
-0.050
0.088
-0.022
0.049
-0.007
0.030

0.029
0.047
0.018
0.028
0.009
0.017
0.028
0.038
0.015
0.022
0.009
0.014

0.041
0.058
0.017
0.027
0.006
0.016
0.039
0.049
0.019
0.026
0.009
0.014

-0.011
0.074
0.001
0.039

-0.001
0.029

-0.015
0.053

-0.006
0.031

-0.001
0.020

-0.015
0.084
-0.007
0.040
0.000
0.027
-0.026
0.061
-0.008
0.034
-0.002
0.021

TABLE S.14. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for X and 6 in Design 1. In all the
variations of the model, A\ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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7 = 0.50 quantile

Parameter: \

Parameter: 6

7 = 0.25 quantile

Parameter: \

Parameter: 0

IQMG QMG IQMG QMG IQMG QMG IQMG QMG
Normal Distribution
100 50 Bias 0.041 0.063 -0.003 -0.018 0.040 0.061 0.003 -0.007
100 50 RMSE 0.049 0.069 0.048 0.058 0.049 0.069 0.055 0.066
100 100 Bias 0.026 0.034 0.005 -0.001 0.024 0.033 0.008 0.004
100 100 RMSE 0.031 0.039 0.031 0.033 0.030 0.039 0.032 0.036
100 200 Bias -0.008 -0.007 -0.041 -0.039 -0.008 -0.007 -0.040 -0.038
100 200 RMSE 0.014 0.015 0.046 0.045 0.014 0.015 0.046 0.044
200 50 Bias 0.040 0.063 -0.009 -0.034 0.040 0.063 -0.001 -0.021
200 50 RMSE 0.044 0.066 0.039 0.0563 0.044 0.066 0.037 0.048
200 100 Bias 0.026 0.038 0.006 -0.003 0.025 0.037 0.009 0.002
200 100 RMSE 0.028 0.039 0.021 0.023 0.028 0.039 0.026 0.026
200 200 Bias 0.008 0.012 -0.007 -0.011 0.007 0.010 -0.007 -0.009
200 200 RMSE 0.011 0.014 0.016 0.019 0.011 0.014 0.017 0.019
t4 distribution
100 50 Bias 0.045 0.060 -0.001 -0.019 0.049 0.066 0.007 -0.008
100 50 RMSE 0.053 0.068 0.054 0.065 0.060 0.076 0.061 0.067
100 100 Bias 0.032 0.039 0.014 0.011 0.032 0.042 0.013 0.009
100 100 RMSE 0.036 0.043 0.033 0.036 0.038 0.047 0.038 0.039
100 200 Bias -0.006 -0.006 -0.035 -0.033 -0.004 -0.003 -0.035 -0.032
100 200 RMSE 0.012 0.013 0.040 0.040 0.014 0.015 0.044 0.042
200 50 Bias 0.029 0.047 -0.037 -0.058 0.033 0.054 -0.034 -0.070
200 50 RMSE 0.035 0.052 0.053 0.072 0.041 0.059 0.058 0.306
200 100 Bias 0.016 0.025 -0.018 -0.023 0.017 0.027 -0.017 -0.025
200 100 RMSE 0.020 0.029 0.029 0.034 0.023 0.031 0.033 0.039
200 200 Bias -0.014 -0.011 -0.052 -0.053 -0.012 -0.009 -0.051 -0.053
200 200 RMSE 0.016 0.014 0.055 0.056 0.016 0.014 0.054 0.056
x3 distribution

100 50 Bias 0.067 0.087 -0.003 -0.009 0.041 0.053 0.013 0.008
100 50 RMSE 0.084 0.102 0.101 0.123 0.055 0.066 0.073 0.082
100 100 Bias 0.028 0.034 -0.015 -0.020 0.015 0.015 -0.005 -0.012
100 100 RMSE 0.043 0.046 0.062 0.061 0.027 0.026 0.040 0.042
100 200 Bias 0.012 0.013 -0.012 -0.012 0.003 0.001 -0.011 -0.010
100 200 RMSE 0.027 0.027 0.048 0.046 0.016 0.015 0.031 0.029
200 50 Bias 0.059 0.076 -0.020 -0.036 0.035 0.045 0.000 -0.012
200 50 RMSE 0.068 0.084 0.070 0.109 0.042 0.053 0.046 0.055
200 100 Bias 0.031 0.041 -0.009 -0.018 0.017 0.021 0.000 -0.003
200 100 RMSE 0.039 0.047 0.047 0.048 0.022 0.026 0.027 0.028
200 200 Bias 0.034 0.039 0.032 0.030 0.027 0.028 0.036 0.035
200 200 RMSE 0.037 0.042 0.043 0.043 0.029 0.030 0.041 0.040

TABLE S.15. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for X and 6 in Design 2. In all the
variations of the model, A\ = 0.5. IQMG denotes the unfeasible version of the
estimator.



7 = 0.50 quantile

Parameter: A\ Parameter: 6

7 = 0.25 quantile

Parameter: \

Parameter: 0

IQMG QMG IQMG QMG IQMG QMG IQMG QMG
Normal Distribution
100 50 Bias 0.039 0.058 -0.023 -0.048 0.042 0.066 -0.004 -0.011
100 50 RMSE 0.048 0.066 0.060 0.076 0.051 0.073 0.062 0.067
100 100 Bias 0.023 0.032 -0.007 -0.015 0.024 0.035 0.001 0.000
100 100 RMSE 0.028 0.037 0.032 0.036 0.030 0.041 0.034 0.039
100 200 Bias 0.011 0.013 -0.004 -0.005 0.011 0.016 -0.002 0.005
100 200 RMSE 0.017 0.018 0.022 0.022 0.018 0.021 0.023 0.024
200 50 Bias 0.039 0.065 -0.026 -0.050 0.044 0.074 -0.003 -0.012
200 50 RMSE 0.044 0.068 0.044 0.063 0.049 0.077 0.040 0.047
200 100 Bias 0.021 0.033 -0.013 -0.024 0.023 0.038 -0.003 -0.006
200 100 RMSE 0.024 0.036 0.027 0.038 0.027 0.040 0.026 0.027
200 200 Bias 0.010 0.014 -0.007 -0.010 0.011 0.017 -0.001 0.000
200 200 RMSE 0.013 0.017 0.017 0.019 0.014 0.020 0.016 0.016
t4 distribution
100 50 Bias 0.037 0.054 -0.032 -0.056 0.044 0.069 -0.012 -0.005
100 50 RMSE 0.049 0.063 0.067 0.083 0.057 0.079 0.069 0.223
100 100 Bias 0.022 0.029 -0.010 -0.017 0.028 0.040 -0.001 0.002
100 100 RMSE 0.028 0.035 0.036 0.042 0.034 0.046 0.035 0.041
100 200 Bias 0.012 0.012 -0.004 -0.005 0.015 0.019 0.002 0.008
100 200 RMSE 0.017 0.018 0.023 0.024 0.019 0.024 0.022 0.025
200 50 Bias 0.036 0.058 -0.033 -0.051 0.048 0.074 -0.010 -0.014
200 50 RMSE 0.041 0.063 0.051 0.068 0.054 0.079 0.049 0.080
200 100 Bias 0.019 0.030 -0.017 -0.025 0.025 0.039 -0.006 -0.008
200 100 RMSE 0.023 0.033 0.028 0.035 0.029 0.042 0.028 0.029
200 200 Bias 0.010 0.014 -0.007 -0.009 0.014 0.019 0.000 0.000
200 200 RMSE 0.013 0.016 0.018 0.020 0.017 0.022 0.018 0.020
x3 distribution

100 50 Bias 0.060 0.082 -0.036 -0.055 0.041 0.060 0.010 0.008
100 50 RMSE 0.082 0.100 0.116 0.126 0.055 0.072 0.076 0.080
100 100 Bias 0.037 0.044 -0.016 -0.026 0.018 0.025 -0.002 0.003
100 100 RMSE 0.049 0.055 0.067 0.069 0.030 0.036 0.045 0.050
100 200 Bias 0.016 0.017 -0.010 -0.015 0.009 0.010 -0.002 0.002
100 200 RMSE 0.028 0.028 0.044 0.046 0.017 0.018 0.028 0.028
200 50 Bias 0.059 0.082 -0.041 -0.063 0.038 0.057 0.002 0.001
200 50 RMSE 0.068 0.089 0.076 0.090 0.046 0.064 0.047 0.052
200 100 Bias 0.031 0.041 -0.022 -0.032 0.017 0.024 -0.002 -0.002
200 100 RMSE 0.038 0.047 0.048 0.054 0.023 0.029 0.031 0.033
200 200 Bias 0.016 0.020 -0.011 -0.015 0.010 0.012 0.000 0.002
200 200 RMSE 0.024 0.026 0.034 0.035 0.015 0.017 0.021 0.022

TABLE S.16. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for X and 6 in Design 3. In all the
variations of the model, A\ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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7 = 0.50 quantile 7 = 0.25 quantile
Parameter: A\ Parameter: 8§ Parameter: A\  Parameter: 0
IQMG QMG IQMG QMG IQMG QMG IQMG QMG

Normal Distribution

100 50 Bias 0.045 0.067 -0.012 -0.040 0.049 0.076 0.009 0.001
100 50 RMSE 0.052 0.071 0.052 0.065 0.056 0.081 0.053 0.061
100 100 Bias 0.016 0.026 -0.020 -0.023 0.021 0.033 -0.006 -0.005
100 100 RMSE 0.023 0.032 0.036 0.042 0.027 0.039 0.036 0.036
100 200 Bias 0.007 0.010 -0.009 -0.008 0.010 0.014 -0.004 0.003
100 200 RMSE 0.013 0.016 0.022 0.024 0.016 0.020 0.023 0.024
200 50 Bias 0.043 0.068 -0.013 -0.038 0.049 0.077 0.007 -0.005
200 50 RMSE 0.047 0.071 0.038 0.057 0.052 0.080 0.036 0.044
200 100 Bias 0.013 0.025 -0.027 -0.037 0.015 0.029 -0.017 -0.021
200 100 RMSE 0.017 0.028 0.035 0.043 0.020 0.032 0.030 0.033
200 200 Bias 0.009 0.013 -0.009 -0.012 0.011 0.017 -0.003 -0.001
200 200 RMSE 0.012 0.016 0.018 0.020 0.014 0.020 0.016 0.016

t4 distribution

100 50 Bias 0.048 0.066 -0.009 -0.033 0.061 0.087 0.016 0.007
100 50 RMSE 0.055 0.074 0.055 0.071 0.069 0.094 0.070 0.076
100 100 Bias 0.014 0.022 -0.023 -0.028 0.020 0.033 -0.015 -0.011
100 100 RMSE 0.023 0.029 0.041 0.045 0.028 0.040 0.038 0.041
100 200 Bias 0.019 0.019 0.012 0.011 0.022 0.027 0.017 0.024
100 200 RMSE 0.022 0.023 0.025 0.026 0.026 0.030 0.028 0.033
200 50 Bias 0.030 0.050 -0.046 -0.067 0.043 0.070 -0.017 -0.030
200 50 RMSE 0.036 0.055 0.060 0.079 0.048 0.073 0.050 0.057
200 100 Bias 0.023 0.034 -0.007 -0.014 0.027 0.040 0.002 0.000
200 100 RMSE 0.027 0.037 0.025 0.030 0.032 0.044 0.029 0.031
200 200 Bias 0.011 0.015 -0.005 -0.007 0.014 0.020 -0.001 0.001
200 200 RMSE 0.014 0.018 0.016 0.019 0.017 0.023 0.018 0.018

x3 distribution

100 50 Bias 0.073 0.100 -0.023 -0.041 0.050 0.072 0.022 0.026
100 50 RMSE 0.089 0.114 0.098 0.104 0.062 0.083 0.071 0.077
100 100 Bias 0.074 0.082 0.060 0.051 0.058 0.064 0.076 0.080
100 100 RMSE 0.083 0.089 0.089 0.081 0.063 0.069 0.088 0.092
100 200 Bias 0.058 0.059 0.072 0.068 0.048 0.050 0.079 0.084
100 200 RMSE 0.062 0.063 0.084 0.080 0.051 0.053 0.084 0.089
200 50 Bias 0.066 0.091 -0.024 -0.049 0.045 0.063 0.015 0.012
200 50 RMSE 0.077 0.099 0.085 0.089 0.053 0.070 0.055 0.060
200 100 Bias 0.038 0.049 -0.008 -0.018 0.024 0.031 0.012 0.011
200 100 RMSE 0.043 0.054 0.042 0.046 0.029 0.035 0.033 0.033
200 200 Bias 0.025 0.029 0.007 0.002 0.018 0.021 0.017 0.019
200 200 RMSE 0.029 0.033 0.028 0.028 0.021 0.023 0.026 0.027

TABLE S.17. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for A and 6 in Design 4. In all the
variations of the model, A\ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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FIGURE S.3. Power of the QMG estimator against different alternatives. The
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FIGURE S.4. Power of the QMG estimator against different alternatives. The

figures shows results when u ~ x3.



QMG FE CCEMG
0.10 0.25 0.50 0.75 0.90
Control Group
Consumption at 0.466 0.576 0.620 0.479 0.353 0.623 0.476
t — 1 (in logs) (0.020)  (0.021) (0.021) (0.020) (0.015) (0.001)  (0.009)
Treatment 0.148 0.112 0.063 0.049 0.048 0.145 0.095
(2pm - 7pm) (0.011)  (0.009) (0.006)  (0.007) (0.006) (0.001)  (0.018)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 242 242 242 242 242 242 242
NxT 2090638 2090638 2090638 2090638 2090638 2090638 2090638
Portal
Consumption at 0.469 0.588 0.631 0.485 0.360 0.622 0.489
t —1 (in logs) (0.021)  (0.023) (0.024) (0.022) (0.015) (0.001)  (0.009)
Treatment 0.089 0.065 0.038 0.023 0.007 0.102 0.048
(2pm - 7pm) (0.013)  (0.012) (0.010) (0.011) (0.014) (0.001)  (0.017)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 189 189 189 189 189 189 189
N xT 1632771 1632771 1632771 1632771 1632771 1632771 1632771
IHD
Consumption at 0.470 0.581 0.615 0.475 0.352 0.627 0.480
t —1 (in logs) (0.022)  (0.025) (0.027) (0.025) (0.018) (0.001)  (0.009)
Treatment 0.102 0.072 0.038 0.025 0.006 0.089 0.046
(2pm - 7pm) (0.017)  (0.013) (0.010) (0.009) (0.011) (0.002)  (0.017)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 152 152 152 152 152 152 152
N xT 1313128 1313128 1313128 1313128 1313128 1313128 1313128
PCT
Consumption at 0.718 0.785 0.806 0.693 0.560 0.771 0.682
t — 1 (in logs) (0.024)  (0.020) (0.019) (0.022) (0.021) (0.000)  (0.007)
Treatment -0.092 -0.054 -0.029 -0.030 -0.029 -0.010 -0.073
(2pm - 7pm) (0.022) (0.016) (0.010) (0.010) (0.014) (0.001)  (0.014)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 196 196 196 196 196 196 196
NxT 1693244 1693244 1693244 1693244 1693244 1693244 1693244

TABLE S.18. Quantile Mean Group estimator results for the control group and
different technologies. FE denotes fixed effects and CCEMG denotes the Com-
mon Correlated Mean Group estimator due to Chudik and Pesaran (2015).
IHD denotes in-home display and PCT is programmable communicating ther-
mostats. Standard errors are in parentheses.
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FicUrRE S.5. Short and Long Run Quantile Regression Results. The figure
shows the QTE coefficient 6,(T) for the control group, portal group, in-home-
device (IHD), and programmable communicating thermostats (PCT). The grey

area denotes a 95 percent point-wise confidence interval.



QMG CCEMG
0.10 0.25 0.50 0.75 0.90
Control Group

High Income Consumption at 0.470  0.583  0.624  0.492  0.368 0.484
t—1 (inlogs) (0.032) (0.035) (0.036) (0.034) (0.025) (0.009)
Treatment 0.164 0.132 0.075 0.061  0.058 0.110
(2pm - 7pm) (0.017) (0.015) (0.010) (0.009) (0.009) (0.016)
Low Income Consumption at 0.463 0.572 0.617 0472 0.344 0.472
t—1 (inlogs) (0.025) (0.026) (0.026) (0.024) (0.018) (0.009)
Treatment 0.139 0.100  0.055 0.041 0.041 0.085
(2pm - 7pm) (0.014) (0.011) (0.008) (0.009) (0.009) (0.019)

Portal
High Income Consumption at 0.463  0.582  0.619 0.480 0.351 0.483
t—1 (inlogs) (0.029) (0.031) (0.033) (0.030) (0.020) (0.009)
Treatment 0.083 0.061 0.035 0.016 -0.003 0.040
(2pm - 7pm) (0.018) (0.018) (0.015) (0.017) (0.022) (0.017)
Low Income Consumption at 0.476 0.597  0.648  0.492 0.371 0.496
t—1 (in logs)  (0.030) (0.033) (0.035) (0.032) (0.024) (0.009)
Treatment 0.098 0.072 0.042 0.032 0.021 0.060
(2pm - 7pm) (0.020) (0.016) (0.012) (0.009) (0.012) (0.018)

IHD
High Income Consumption at 0.470  0.582  0.609  0.481  0.364 0.488
t—1 (in logs) (0.032) (0.036) (0.038) (0.037) (0.025) (0.009)
Treatment 0.092 0.062 0.025 0.011 -0.015 0.028
(2pm - 7pm) (0.023) (0.021) (0.017) (0.015) (0.020) (0.017)
Low Income Consumption at 0.471 0.579 0.621 0.469 0.340 0.472
t—1 (in logs) (0.031) (0.035) (0.038) (0.034) (0.027) (0.009)
Treatment 0.112  0.083 0.0562 0.039 0.026 0.065
(2pm - 7pm) (0.025) (0.017) (0.011) (0.011) (0.011) (0.017)

PCT
High Income Consumption at 0.709  0.787  0.810  0.685  0.535 0.676
t—1 (inlogs) (0.033) (0.027) (0.024) (0.028) (0.026) (0.008)
Treatment -0.103  -0.064 -0.036 -0.044 -0.044  -0.085
(2pm - 7pm) (0.033) (0.025) (0.016) (0.018) (0.023) (0.014)
Low Income Consumption at 0.727  0.784  0.802  0.701 0.584 0.687
t—1 (in logs)  (0.036) (0.030) (0.029) (0.033) (0.032) (0.007)
Treatment -0.082 -0.045 -0.021 -0.016 -0.014 -0.061
(2pm - 7pm) (0.031) (0.022) (0.013) (0.012) (0.017) (0.015)

TABLE S.19. Quantile Mean Group estimator results by
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.

Income Lewvels.
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QMG CEEMG
0.10 0.25 0.50 0.75 0.90
Control Group
Family years Consumption at 0.493  0.618  0.666  0.515  0.369 0.507
t—1 (inlogs)  (0.027) (0.029) (0.029) (0.028) (0.021) (0.009)
Treatment 0.161  0.119 0.062  0.050  0.041 0.099
(2pm - 7pm) (0.015) (0.012) (0.008) (0.008) (0.008) (0.017)
Young years Consumption at 0.439  0.535 0.575 0.444  0.337 0.447
t—1 (inlogs) (0.029) (0.029) (0.030) (0.027) (0.020) (0.009)
Treatment 0.135 0.106  0.063  0.047  0.053 0.090
(2pm - 7pm) (0.016) (0.013) (0.010) (0.011) (0.009) (0.019)
Portal
Family years Consumption at 0.471  0.602  0.654 0.505  0.364 0.502
t—1 (inlogs)  (0.027) (0.030) (0.032) (0.029) (0.020) (0.009)
Treatment 0.109 0.086 0.053 0.043 0.032 0.067
(2pm - 7pm) (0.017) (0.017) (0.015) (0.016) (0.021) (0.017)
Young years Consumption at 0.467  0.578  0.615  0.471 0.357 0.479
t—1 (inlogs) (0.017) (0.014) (0.013) (0.014) (0.013) (0.009)
Treatment 0.075  0.0561  0.026  0.009 -0.011 0.035
(2pm - 7pm) (0.028) (0.019) (0.014) (0.015) (0.020) (0.018)
IHD
Family years Consumption at 0.508  0.647  0.696  0.540  0.384 0.535
t—1 (inlogs)  (0.029) (0.030) (0.031) (0.032) (0.025) (0.009)
Treatment 0.084 0.056 0.028 0.014  0.001 0.033
(2pm - 7pm) (0.025) (0.020) (0.013) (0.011) (0.017) (0.016)
Young years Consumption at 0.440  0.527  0.550  0.422 0.327 0.435
t—1 (inlogs) (0.032) (0.037) (0.040) (0.037) (0.026) (0.009)
Treatment 0.117  0.086  0.047 0.034  0.009 0.058
(2pm - 7pm) (0.024) (0.018) (0.015) (0.013) (0.015) (0.018)
PCT
Family years Consumption at 0.719  0.780  0.801  0.689  0.556 0.679
t—1 (in logs)  (0.037) (0.030) (0.026) (0.032) (0.032) (0.007)
Treatment -0.078 -0.042 -0.020 -0.018 -0.003  -0.055
(2pm - 7pm) (0.036) (0.025) (0.015) (0.016) (0.022) (0.014)
Young years Consumption at 0.718  0.789  0.809  0.696  0.562 0.683
t—1 (inlogs) (0.032) (0.029) (0.027) (0.030) (0.027) (0.007)
Treatment -0.101  -0.062 -0.034 -0.037 -0.044  -0.083
(2pm - 7pm) (0.028) (0.021) (0.013) (0.013) (0.018) (0.015)

TABLE S.20. Quantile Mean Group estimator results by
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-

grammable communicating thermostats. Standard errors are in parentheses.

Income Lewvels.
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F1GURE S.6. Counterfactual policies for customers with a PCT. The right
panels show the percentage change in electricity usage with respect to the actual
policy.
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