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1. Introduction

In the last decade, the literature on linear panel data models has made significant progress on

the estimation of models with multi-factor error structure. Recent papers have focused on the

estimation of models with a fixed number of unobserved factors (see e.g. Pesaran (2006), Bai

(2009), Pesaran and Chudik (2014), Moon and Weidner (2015, 2017), Chudik and Pesaran (2015)).

The Common Correlated Effects (CCE) approach of Pesaran (2006) is robust to cross-sectional

dependence and slope heterogeneity, and it has been further developed to allow for possible unit

roots in factors and spatial forms of weak cross-sectional dependence (see e.g., Kapetanios, Pesaran,

and Yagamata (2011), Pesaran and Tosetti (2011) and Pesaran, Smith and Yagamata (2013)).

The estimation of dynamic panel data models is investigated in Chudik and Pesaran (2015) and

Moon and Weidner (2015, 2017). Moon and Weidner develop estimation approaches for models

with lagged dependent variables and cross-sectional dependence, but they assume homogeneous

coefficients. In an important paper, Chudik and Pesaran (2015) extend the approach developed by

Pesaran (2006) to dynamic panel data models with heterogeneous slopes, for situations where the

cross-sectional dimension (N) and the time-series dimension (T ) are relatively large. This method

however does not offer the possibility of estimating heterogeneous distributional effects, which is

an important consideration for practice. For instance, the effect of a policy can be heterogeneous

throughout the conditional distribution of the response variable, and therefore, it might not be well

summarized by the average treatment effect.

Quantile regression, as introduced in the seminal work by Koenker and Bassett (1978), provides

a convenient way to estimate distributional effects of policy variables, although in general these

type of heterogeneous treatment effects are identified and estimated under the assumption that the

slope coefficients are the same over all cross-sectional units. This condition is used in a number

of different approaches that have been recently developed for the estimation of panel quantile

regression models. The recent literature include work by Koenker (2004), Lamarche (2010), Galvao

(2011), Rosen (2012), Galvao, Lamarche and Lima (2013), Chernozhukov, Fernandez-Val, Hahn and

Newey (2013) and Chernozhukov, Fernandez-Val, Hoderlein, Holzmann and Newey (2015), Harding

and Lamarche (2014, 2017), Arellano and Bonhomme (2016), among others. Slope heterogeneity

in quantile regression is investigated in Galvao and Wang (2015). In related work, Ando and

Bai (2017) and Chen, Dolado and Gonzalo (2017) investigate quantile factor models. With the

exception of Galvao (2011) and Arellano and Bonhomme (2016), the literature has focused on

estimating static models. Moreover, the panel quantile regression literature does not address cross-

sectional dependence with the exception of Harding and Lamarche (2014) that adopt the approach
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proposed by Pesaran (2006) to estimate a static model with interactive effects. This paper extends

the panel quantile literature to dynamic models with heterogeneous slopes and multi-factor error

structure when both T and N are large.

We adopt a CCE approach and focus on estimation and inference of mean quantile coefficients. We

allow for the possibility that unobserved factors and included regressors are correlated and we study

the conditions under which the slope coefficients are estimated consistently. An important condition

is that one plus the number of cross-sectional averages must be larger than the number of unobserved

factors. Another important condition, which is similar to a condition used in Chudik and Pesaran

(2015), is that a large number of lags of cross section averages used to approximate the factors needs

to be included in the individual-specific equations of the panel. Under standard regularity conditions

including T tending to infinity at a faster rate than N as in Kato, Galvao and Montes-Rojas (2012),

we show that the average quantile estimator is consistent and asymptotically Gaussian. Moreover,

we investigate the finite sample performance of the proposed approach in comparison with the

method for dynamic models developed by Galvao (2011). Using a comprehensive set of Monte Carlo

experiments, we find that the proposed estimator has a satisfactory performance under different

dynamic specifications when T is relatively large.

We apply the method to estimate how consumers respond to time-of-use (TOU) electricity pricing

and different type of technologies that allow communication between customers and utility com-

panies. The use of a quantile-specific demand equation allows us to estimate the short and long

run impacts of different enabling technologies, while including three key features of the problem:

dynamics, slope heterogeneity and cross-sectional dependence. We use a data set of more than

6.5 million observations obtained from a large randomized control trial which includes N = 779

customers observed over T = 8639 time intervals.

Our findings suggest that smart thermostats are particularly effective relative to other enabling

technologies and the differential effects are more pronounced at the lower tail of the conditional

distribution of energy consumption. Smart thermostats, in addition of providing real time infor-

mation on consumption and pricing, allow households to respond to price changes in advance by

programming temperature settings for different times of the day. We also find that treated house-

holds appear to reduce overall consumption as a result of these technologies relative to the control

group, but the average response does not truly summarize the distributional effect of the tech-

nologies. We also investigate the long-run effect of a change in energy price for different enabling

technologies across different age and income groups.
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The paper is organized as follows. The next section introduces the model and the proposed estima-

tor. It also establishes the asymptotic properties of the estimator. Section 3 provides simulation

experiments to investigate the small sample performance of the proposed estimator. Section 4

demonstrates how the estimator can be used in practice by exploring an application of electric-

ity pricing and smart technology. Section 5 concludes. Mathematical proofs are provided in the

Appendix and additional Monte Carlo results are offered in an online Supplement.

Notations: Generic positive finite constants are denoted byKa,Kb, . . ., and can take different values

at different instances and are bounded in N and T (the panel dimensions). The largest and the

smallest eigenvalues of the N × N real symmetric matrix A = (aij) are denoted by ζmax(A) and

ζmin(A), respectively, and its spectral (or operator) norm by ∥A∥ = ζ
1/2
max(A′A).

a.s.−→ denotes

almost sure convergence,
ℓ1−→ convergence in the ℓ1 norm,

p−→ convergence in probability, and
d−→ convergence in distribution. We denote ∥x∥1 =

∑n
i=1 |xi| as the ℓ1 norm of vector x. All

asymptotics are carried out under N and T → ∞, jointly.

2. Model and assumptions

We consider a dynamic panel data model for i = 1, 2, . . . , N and t = 1, 2, . . . , T , where yit ∈ R
is the response variable for cross-sectional unit i at time t and yit−1 denotes a lagged dependent

variable. Consider the following conditional panel quantile function:

QYit(τ |yit−1,xit,θi(τ),ft) = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) + f ′tγi(τ), (2.1)

where τ is a quantile in the interval (0, 1), θi(τ) = (αi(τ), λi(τ),β
′
i(τ),γ

′
i(τ))

′ and the conditional

quantile function is defined as QYit(τ |yit−1,xit,θi(τ), ft) := inf{y : P (Yit ≤ y|yit−1,xit,θi(τ), ft) ≥
τ}. The variable xit is a px × 1 vector of regressors specific to cross-sectional unit i at time t,

βi(τ) is the associated regression coefficients, ft is an r × 1 vector of unobserved factors, γi(τ)

is a vector of latent factor loadings, and αi(τ) is an individual effect potentially correlated with

the regressor variables, xit. The term f ′tγi(τ) can be interpreted as a quantile-specific function

capturing unobserved heterogeneity that was not adequately controlled by the inclusion of xit.

The model can be considered to be semi-parametric since the functional form of the conditional

distribution of Yit given (yit−1,x
′
it,θi(τ), f

′
t)

′ is left unspecified and no parametric assumption is

imposed on the relation between the regressors and the latent variables in the model. The px × 1

vector of regressors is assumed to follow the general linear process

xit = µi + Γ′
ift + vit, (2.2)
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where µi is an individual effect, Γi is a r × px matrix of factor loadings in the xit equation, and

vit is a px-dimensional vector assumed to follow a stationary process independently distributed of

other variables in the model.

Naturally, model (2.1) can accommodate additional lags of the dependent variable, deterministic

trends, time-invariant covariates, and lags of the exogenous covariates. These variations can be

incorporated at a cost of additional notational complexity. The conditional panel quantile model

(2.1) is fairly general and includes several recent panel data models as special cases:

Example 1. Let uit := yit−αi−λiyit−1 −x′
itβi− f ′tγi be an identically independently distributed

(i.i.d.) Gaussian random variable with the cumulative distribution function denoted by Φu. Then,

if τ = 0.5, the conditional median function in (2.1) becomes,

QYit(0.5|yit−1,xit,θi(τ),ft) = E(yit|yit−1,xit,θi,ft), (2.3)

since αi(τ) = αi + Qu(τ) = αi + Φ−1
u (0.5) = αi, λi(τ) = λi, βi(τ) = (βi1, . . . , βipx)

′ = βi, and

γi(τ) = γi. Estimation of the conditional mean model (2.3) is discussed in a series of recent papers

by Chudik and Pesaran (2015) and Chudik, Mohaddes, Pesaran and Raissi (2017). The conditional

mean model E(yit|xit,θi,ft) is investigated in Pesaran (2006) and Bai (2009).

Example 2. Galvao (2011) proposes an instrumental variable approach for estimation of a dynamic

quantile regression model when both γi(τ) = 0 and Γi = 0. If γi(τ) = 0, βi(τ) = β(τ), and

λi(τ) = λ(τ) for 1 ≤ i ≤ N , model (2.1) becomes the panel data model studied by Galvao (2011):

QYit(τ |yit−1,xit, αi(τ)) = αi(τ) + λ(τ)yit−1 + x′
itβ(τ). (2.4)

Example 3. Harding and Lamarche (2014) propose a quantile regression approach for the esti-

mation of model (2.1) with homogeneous slope coefficients in the static case where λi(τ) = 0 for

1 ≤ i ≤ N . If λi(τ) = 0 and βi(τ) = β(τ) for 1 ≤ i ≤ N , then equation (2.1) becomes the panel

quantile function studied by Harding and Lamarche (2014):

QYit(τ |xit, γ̃i(τ), f̃t) = x′
itβ(τ) + f̃ ′tγ̃i(τ), (2.5)

where f̃t = (1, f ′t)
′ and γ̃i(τ) = (αi(τ),γi(τ)

′)′. Moreover, if ft = 1 for 1 ≤ t ≤ T , then equation

(2.5) becomes the model studied by Koenker (2004) and Lamarche (2010), where QYit(τ |xit, ai) =
ai + x′

itβ(τ), and ai = αi + γi.

Example 4. Consider for simplicity a panel version of the quantile autoregressive model introduced

by Koenker and Xiao (2006) with one lagged dependent variable: yit = θi0(υit)+θi(υit)yit−1, where
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υit is a standard uniform random variable. This last equation leads to the same conditional quantile

equation (2.1) when the coefficients of xit are set to zero, and γi(τ) = 0 for all 1 ≤ i ≤ N .

Due to the combination of cross-sectional error dependence (γi ̸= 0), and dynamics (λi ̸= 0) in

equation (2.1), existing panel quantile regression approaches are inconsistent for the estimation of

(λi,β
′
i)
′ for i = 1, . . . , N . In this paper, we are interested in estimating the contemporaneous effect

of a change in xit on the quantiles of the conditional distribution of the response variable as well as

its long run effect. For instance, in Section 4, we estimate an autoregressive panel quantile model

for energy consumption with interactive effects. Our primary focus is to identify and estimate the

effect of different technologies that enable households to respond to time-of-use pricing on energy

consumption, focusing on the distributional effect of the assigned technologies.

2.1. Estimation

We consider consistent estimation of the parameters of interest by estimating the dynamic quantile

regression model with interactive effects defined by (2.1). To this end, we make the the following

assumptions:

Assumption 1. For all 0 < τ < 1, the conditional quantile function in equation (2.1) sat-

isfies P (uit(τ) ≤ 0|yit−1,xit,θi(τ),ft) = τ , where uit(τ) := yit − QYit(τ |yit−1,xit,θi(τ),ft) is

identically and independently distributed over i and identically distributed over t, conditional on

(yit−1,xit,θi(τ),ft).

Assumption 2. The r×1 vector of common factors ft = (f1t, f2t, . . . , frt)
′ is a covariance station-

ary process with absolute summable autocovariances, distributed independently of uit(τ) and vit for

all i, t, and τ .

Assumption 3. The factor loadings γi(τ) = γ(τ) + ηγi and vec[Γi] = vec[Γ] + ηΓi are distributed

independently of ujt(τ) and vjt for all i and j with means γ(τ) and Γ(τ), and bounded variances.

The error terms ηγi and ηΓi are independent of each other. Moreover, these random variables

are independently and identically distributed over i with zero means and covariances Ωγ and ΩΓ,

respectively, with ∥Ωγ∥ < K and ∥ΩΓ∥ < K.

Assumption 4. The variables xit = (xit,1, xit,2, . . . , xit,px)
′ ∈ X ⊆ Rpx and uit(τ) are independently

distributed. The regressors xit are generated according to equation (2.2), and the vector of errors

vit in (2.2) follows a stationary process with mean zero, finite covariance matrix, and finite fourth

order cumulants, and summable autocovariances (uniformly in i).
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Assumption 5. The px + 1-dimensional vector of slope coefficients ϑi(τ) = [λi(τ),β
′
i(τ)]

′ follows

the random coefficient representation:

λi(τ) = λ(τ) + (1− |λ(τ)|)νiλ (2.6)

βi(τ) = β(τ) + νiβ,

where β(τ) < K, supi |νiλ| < 1, and |λ(τ)| < 1 for all τ ∈ (0, 1), and

νi =

(
νiλ

νiβ

)
∼ IID (0,Ωϑ) , (2.7)

with ∥Ωϑ∥ < K, Ωϑ is a symmetric positive definite matrix. Furthermore, for each τ ∈ (0, 1),

E(λli(τ)αi(τ)|Ft) = al(τ), E(λli(τ)βi(τ)|Ft) = bl(τ), E(λli(τ)γi(τ)|Ft) = cl(τ), (2.8)

for l = 0, 1, 2, .... where Ft = (ft, ft−1, . . . ;xit,xit−1, . . . , i = 1, 2, . . . , N), and al(τ), bl(τ) and cl(τ)

are exponentially decaying in l, such that |al(τ)| < Kaρ
l, ∥bl(τ)∥ < Kbρ

l, and ∥cl(τ)∥ < Kcρ
l for

some positive ρ < 1. The parameters λi(τ) and βi(τ) are independently distributed over i, and νi

is independently distributed of γi(τ), Γi(τ), uit(τ), v
′
it, and ft for all i, t and τ .

Assumption 6. Let C(τ) = E(Ci(τ)) = (γ(τ),Γ)′, and suppose that px ≥ r−1, and the (px+1)×r
dimensional matrix C(τ) has full column rank, for all values of 0 < τ < 1.

Assumption 1 is similar to Assumption A3 in Ando and Bai (2017) and Assumption 4.iii in Chen,

Dolado and Gonzalo (2017). The assumption is slightly weaker than other assumptions in the

literature since it can allow for forms of serial dependence, as explicitly stated later in Assumptions

9 and 11. In general, the other assumptions are similar to those in Pesaran (2006) and Chudik and

Pesaran (2015). One key difference is that we require certain conditions on the quantile coefficients.

Another difference is that it is common to assume that there exists an N -dimensional vector of

non-stochastic weights that satisfy granularity conditions, namely that they are of order N−1. Such

effects are important in small samples but do not affect the asymptotic results established below

in Section 2.2. Therefore, without loss of generality, we consider the case of equal weights 1/N .

Assumption 5 introduces heterogeneous slope coefficients assuming that deviations of ϑi(τ) with

respect to ϑ(τ) are mean-zero random variables independently distributed of other variables in the

model. Specification (2.6) ensures that supi,τ |λi(τ)| < 1, so long as supi |νiλ| < 1, and |λ(τ)| < 1

for all τ ∈ (0, 1). A convenient distribution for νiλ is a beta distribution defined on (0, 1). The

moment conditions in (2.8) are required for consistent estimation of ft (up to a non-singular r × r

transformation) from cross section averages of zit = (yit,x
′
it)

′ and their lagged values. These

conditions are met when λi(τ) is independently distributed of αi(τ),βi(τ) and γi(τ) and E
(
λli(τ)

)
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decays exponentially in l. This last condition is met, for example, if λi(τ) is distributed over i

uniformly on [−b, b] for any b in 0 < b < 1.

Moreover, it is worth mentioning that the full rank Assumption 6 ensures the large N representation

of the unobserved factors. Under Assumption 1, we write,

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) + f ′tγi(τ) + uit(τ), (2.9)

where uit(τ) is a random variable whose τ -th conditional quantile is equal to zero, and it is assumed

that yit has started a long time in the past. Note that by Assumption 5, (1 − λiL) is invertible

for all i = 1, 2, . . . , N , where L is the lag operator. Then equation (2.9), after pre-multiplying by

(1− λiL)
−1, can be written as,

yit =

∞∑
l=0

λli(τ)αi(τ) +

∞∑
l=0

λli(τ)β
′
i(τ)xit−l +

∞∑
l=0

λli(τ)γ
′
i(τ)ft−l +

∞∑
l=0

λli(τ)uit−l(τ). (2.10)

We now derive a large N representation for a linear combination of the latent factors following

Pesaran (2006) and Chudik and Pesaran (2015). Denote the last term of the above equation by

ξit(τ), and note that it can be written as ξit(τ) = λi(τ)ξit−1(τ)+uit(τ), which is a stationary AR(1)

process for all 1 ≤ i ≤ N , since by Assumption 5 supi,τ |λi(τ)| ≤ ρ < 1. Also, since for each t

and τ , the errors, uit(τ), and λi(τ) are assumed to be cross-sectionally independent, it then readily

follows that (see Pesaran (2006))

ξ̄t(τ) = N−1
N∑
i=1

ξit(τ) = Op(N
−1/2).

Similarly, consider the cross section averages of the other terms of (2.10), and note that under

Assumption 5, for the first term we have (recall that by Assumption 5 {al} is absolute summable)

∞∑
l=0

[
N−1

N∑
i=1

λli(τ)αi(τ)

]
=

∞∑
l=0

al(τ) +Op(N
−1/2).

Similarly, conditional on Ft we have (noting that by Assumption 5 bl(τ) and cl(τ) are absolute

summable)

∞∑
l=0

[
N−1

N∑
i=1

λli(τ)β
′
i(τ)xit−l

]
=

∞∑
l=0

b′
l(τ)x̄t−l +Op(N

−1/2),

∞∑
l=0

[
N−1

N∑
i=1

λli(τ)γ
′
i(τ)

]
ft−l =

∞∑
l=0

c′l(τ)ft−l +Op(N
−1/2).
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Hence, overall

ȳt = a(1, τ) + b(L, τ)′x̄t + c(L, τ)′ft +Op(N
−1/2), (2.11)

where a(1, τ) =
∑∞

l=0 al(τ),b(L, τ) =
∑∞

l=0 bl(τ)L
l, and c(L, τ) =

∑∞
l=0 cl(τ)L

l.

Similarly, taking cross-sectional averages of equation (2.2), we obtain,

x̄t = µ̄+ Γ′ft +Op(N
−1/2), (2.12)

where µ̄ = N−1
∑N

i=1µi and Γ = E(Γi). See also Assumptions 5 and 6. Combining (2.11) and

(2.12), we have

C(L, τ)ft = Λ(L, τ)z̄t − d(τ) +Op(N
−1/2), (2.13)

where z̄t = (ȳt, x̄
′
t)
′,

d(τ) =

(
a(1, τ)

µ̄

)
, C(L, τ) =

(
c(L, τ)′

Γ′

)
, Λ(L, τ) =

(
1 −b(L, τ)′

0 Ipx

)
.

Pre-multiplying both sides of (2.13) by C(L, τ)′ and assuming that rank of C(L, τ) is equal to the

number of factors r we obtain the following result for ft:

ft = f0(τ) +G(L, τ)z̄t +Op(N
−1/2), (2.14)

where f0(τ) = −(C(1, τ)′C(1, τ))−1C(1, τ)′d(τ) and G(L, τ) = (C(L, τ)′C(L, τ))−1C(L, τ)′Λ(L, τ)

is an r × (px + 1) distributed lag matrix. Integrating out τ on the right hand side of (2.14) and

defining f0 =
∫ 1
0 f0(τ)dτ and G(L) =

∫ 1
0 G(L, τ)dτ , we have that

ft = f0 +G(L)z̄t +Op(N
−1/2). (2.15)

Finally, substituting the representation of the factors in equation (2.9), we obtain

yit = β0i(τ) + λi(τ)yit−1 + β′
i(τ)xit + δi(L, τ)

′z̄t + uit(τ) +Op(N
−1/2), (2.16)

where β0i(τ) = αi(τ)+γ ′
i(τ)f0, δi(L, τ) = γ ′

i(τ)
∑∞

l=0GlL
l =

∑∞
l=0 δil(τ)L

l, δil(τ) = (δ′iy,l(τ), δ
′
ix,l(τ))

′,

δiy,l(τ) is a reduced form coefficient for the cross-sectional average of yit−l, δix,l(τ) is a reduced

form coefficient for the cross-sectional average of xit−l, and z̄t−l = (ȳt−l, x̄
′
t−l)

′ is a (px + 1) × 1

dimensional vector.

Remark 1. Since f0 is not identified and its value can be absorbed in the intercept term of equations

(2.11) and (2.12), in what follows, and without loss of generality, we set f0 = 0, and note that under

this normalization β0i(τ) = αi(τ).

Assumption 7. The infinite order distributed lag matrix function G(L) = G0 + G1L + . . . =∑∞
l=0GlL

l, where ∥Gl∥ < Kρl for all l and some positive ρ < 1 and constant K > 0.
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Assumption 7 follows from the exponential decay condition stated in Assumption 5 (see Lemma

A.1 in Chudik and Pesaran (2013)). Recall that G(L) is an infinite order distributed lag matrix

function with exponentially decaying coefficients and hence can be suitably truncated as

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ) + eit(τ), (2.17)

where

eit(τ) = uit(τ) +
∞∑

l=pT+1

z̄′t−lδil(τ) +Op(N
−1/2). (2.18)

Note that by Assumption 7, ∥δil(τ)∥ < Kρl with 0 < ρ < 1, because ∥γi(τ)∥ < K as implied by

Assumption 3. It follows that,∥∥∥∥∥∥
∞∑

l=pT+1

z̄′t−lδil(τ)

∥∥∥∥∥∥ ≤ KρpT
∞∑
l=1

∥z̄t−l∥ ρl,

and by Lemma A.4. (result (A.18)) in Chudik and Pesaran (2015), this remainder term becomes

asymptotically negligible as N,T → ∞.

The total number of parameters for the augmented part of (2.17) is (px + 1)(pT + 1). The error

term eit(τ) includes uit(τ), a term Op(N
−1/2) associated with approximating ft with cross-section

averages, and an error component due to the truncation of the underlying infinite order distributed

lag function δi(τ, L). Moreover, the number of lags is denoted by pT and it is assumed that pTi = pT

for all i for the simplicity of exposition. It is also assumed that the number of lags to approximate

the factors is known and that E(λli) decays exponentially which is satisfied by Assumption 5, and

βi and λi are independently distributed, although this is not required.

Equation (2.16) leads to a conditional quantile function that is naturally different than equation

(2.1) since ft is unknown and we use a large N representation for ft. The following condition is

needed for identification of the parameter of interest (λi(τ),β
′
i(τ))

′ in equations (2.9) and (2.17).

Assumption 8. Consider (2.9) and its approximate version (2.17), let Wit = (yit−1,x
′
it, 1, f

′
t)

′ and

Xit = (yit−1,x
′
it, 1, z̄

′
t, z̄

′
t−1, . . . , z̄

′
t−pT )

′, and define δi(τ) := (δi1(τ)
′, δi2(τ)

′, . . . , δipT (τ)
′)′. Then

for all τ ∈ (0, 1), (λi(τ),βi(τ), αi(τ),γi(τ)) ∈ int Λ × B × A × G, a compact and convex set, and

(λi(τ),βi(τ), αi(τ), δi(τ)) ∈ int Λ× B ×A×D, which is compact and convex. Also define,

Π(λi(τ),βi(τ), αi(τ),γi(τ)) := E(Witψτ (yit − λi(τ)yit−1 − x′
itβi(τ)− αi(τ)− f ′tγi(τ))),

J(λi(τ),βi(τ), αi(τ),γi(τ)) :=
∂

∂(λi(τ),β′
i(τ), αi(τ),γ

′
i(τ))

Π(λi(τ),βi(τ), αi(τ),γi(τ)),
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where ψτ (u) = τ − I(u ≤ 0) is the quantile influence function, and

Π̃(λi(τ),βi(τ), αi(τ), δi(τ)) : = E

(
Xitψτ (yit − λi(τ)yit−1 − x′

itβi(τ)− αi(τ)−
pT∑
l=0

z̄′t−lδil(τ))

)
,

J̃(λi(τ),βi(τ), αi(τ), δi(τ)) =
∂

∂(λi(τ),β′
i(τ), αi(τ), δ

′
i(τ))

Π̃(λi(τ),βi(τ), αi(τ), δi(τ)).

The Jacobian J(λi(τ),βi(τ), αi(τ),γi(τ)) is continuous and full rank uniformly over Λ × B ×
A × G, and the Jacobian J̃(λi(τ),βi(τ), αi(τ), δi(τ)) is continuous and full rank uniformly over

Λ × B × A × D. The image of the parameter spaces Λ × B × A × G and Λ × B × A × D are sim-

ply connected under the mappings (λi(τ),βi(τ), αi(τ),γi(τ)) 7→ Π(λi(τ),βi(τ), αi(τ),γi(τ)) and

(λi(τ),βi(τ), αi(τ), δi(τ)) 7→ Π̃(λi(τ),βi(τ), αi(τ), δi(τ)).

The first part of Assumption 8 imposes compactness over the parameter space and it can be relaxed

since the quantile objective functions corresponding to equations (2.9) and its approximate version

(2.17) are convex in parameters. The second part is an identification condition that requires full

rank and continuity as in Chernozhukov and Hansen (2006) and Harding and Lamarche (2014).

It implies global identification of the parameters (λi(τ),βi(τ)
′)′ for all τ ∈ (0, 1). It differs from

those conditions in Chernozhukov and Hansen (2006) and Harding and Lamarche (2014) in that

they reflect the specific nature of the identification problem in a panel quantile model with latent

factors. The last part of the assumption requires that the image of the parameter space Λ×B×A×G
and the image of the parameter space Λ × B × A × D are homotopic to a point, ruling out the

possibility of holes in the image of the sets.

The following theorem describes identification of the parameters (λi(τ),βi(τ)
′)′ in a quantile re-

gression model augmented with cross-sectional averages. The proof is presented in Appendix A.

Theorem 1 (Identification of ϑi(τ)). Under Assumptions 1-8, the parameter of interest ϑi(τ) =

(λi(τ),βi(τ)
′)′ is identified in equation (2.9) and equation (2.17) for each τ .

We now present an approach that can be used to estimate a dynamic quantile regression model

with interactive effects. The quantile regression procedure is similar in spirit to Pesaran (2006),

Harding and Lamarche (2014) and Chudik and Pesaran (2015). Define the parameter πi(τ) :=

(λi(τ),βi(τ)
′, αi(τ), δi(τ)

′)′ with δi(τ) = (δi1(τ)
′, δi2(τ)

′, . . . , δipT (τ)
′)′, and

Cit(τ,πi) = ρτ

(
yit − λi(τ)yit−1 − x′

itβi(τ)− αi(τ)−
pT∑
l=0

z̄′t−lδil(τ)

)
, (2.19)
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where ρτ (u) = u(τ − I(u ≤ 0)) is the standard quantile regression loss function. First, we minimize

the individual specific objective function (2.19) for πi(τ),

π̂i(τ) = arg min
πi∈Πi

T∑
t=pT+1

Cit(τ,πi), (2.20)

where Πi is compact set in R(px+1)(pT+2). Therefore, the quantile regression estimator for het-

erogeneous effects in a dynamic panel quantile with interactive effects, π̂i(τ), is based on the

cross-sectionally augmented regression (2.17). We also propose a quantile mean group estimator

for ϑ(τ) := E((λi(τ),βi(τ)
′)′). The estimator is,

ϑ̂(τ) =
1

N

N∑
i=1

ϑ̂i(τ) =
1

N

N∑
i=1

(Ξi ◦ π̂i(τ)) , (2.21)

where ◦ denotes Hadamard product, Ξi = (ι′i,0
′
i)
′ with ιi denoting a px + 1 dimensional vector of

ones and 0i a (px + 1)(pT + 1) dimensional vector of zeros. We denote the estimator defined in

(2.21) as quantile common correlated effects mean group estimator, QCCEMG. In what follows,

for convenience, we shorten the label simply to QMG. One could also consider a pooled version,

the common correlated effects pooled estimator proposed in Pesaran (2006). We can consider a

weighted average of the individual estimates with weights defined by the covariance matrix of π̂i(τ).

The interpretation of the estimator defined in (2.21) is associated with heterogeneous coefficients

modeled as ϑi(τ) = ϑ(τ) + νi, where νi is a mean-zero error term independent of the regressors.

We are interested in ϑ(τ), which motivates the average. Large N helps to understand the average

restriction and recover the parameter of interest. Furthermore, note that we need a panel with large

T , because of the short T bias involved in estimating quantile regressions with lagged dependent

variables, and the fact that we are approximating ft by current and past values of cross section

averages, z̄t, and we need both N and T to be large for this purpose.

2.2. Asymptotic Theory

This section investigates the large sample properties of the proposed quantile estimator and its

mean group counterpart defined by equations (2.20) and (2.21), respectively. Throughout this

section, we set Xit = (yit−1,x
′
it, z̈

′
t)
′, where z̈′t = (1, z̄′t, z̄

′
t−1, ..., z̄

′
t−pT )

′, and write equation (2.17)

as yit = X′
itπi + eit. Also ∥· ∥1 stands for the ℓ1-norm.

We consider the following regularity conditions for the consistency of the proposed estimators:
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Assumption 9. The vector {(X′
it, f

′
t , yit) : t = 1, 2, . . .} is stationary and independent across i,

and β-mixing time series with β-mixing coefficients βi(j). Then, there exists constants a ∈ (0, 1)

and B > 0 such that sup1≤i≤N βi(j) ≤ Baj for all j ≥ 1.

Assumption 10. There exist a series of constants independent of i and τ such that supi,τ ∥γi(τ)∥ <
Kγ , supi ∥Γi∥ < KΓ, supi ∥yi0∥ < Ky, and supi ∥ui1∥ < Ku, and additionally a constant Mx such

that supi ∥Xit∥ ≤ Mx (a.s.). In addition, infi,τ ζminE [γi(τ)γ
′
i(τ)] > 0, and infi≥1 ζmin(E(ΓiΓ

′
i)) >

0.

Assumption 11. For each η > 0,

ϵη := inf
i

inf
∥π∥1=η

E

[∫ X′
i1π

0
(Gi(s|Xi1)− τ) ds

]
,

where Gi is defined as a conditional distribution of uit and the conditional densities gi is continuous,

uniformly bounded away from 0 and ∞, with continuous derivatives everywhere. Moreover, the

joint distribution of (ui,1, ui,1+j), gi,j(ui,1, ui,1+j |Xi,1,Xi,1+j) ≤ Cf with Cf > 0, uniformly over

(ui,1, ui,1+j ,Xi,1,Xi,1+j) for all i ≥ 1 and j ≥ 1.

Assumption 12. Let SiT = T−1
∑T

t=1XitX
′
it and assume that there exists T0 such that for all

T > T0, infi ζmin (SiT ) > 0, and supi ζmin (SiT ) > K, and SiT
p−→ Si = E(XitX

′
it), such that

infi(ζmin (Si)) > 0.

Similar conditions are used in the literature. For instance, a version of Assumption 9 has been used

in Hahn and Kuersteiner (2011), Kato, Galvao and Montes-Rojas (2012), and Galvao, Lamarche

and Lima (2013). The condition allows for dependence across time, implying that we need to apply

a Bernstein type inequality for β-mixing sequences (Corollary C.1. in Kato, Galvao and Montes-

Rojas (2012)) rather than a Hoeffding’s inequality to show weak consistency. See Lemma 2 in

Appendix A. Assumption 9 is a high-level assumption since Xit includes ȳt−1, ȳt−2, . . ., and it is not

easy to verify from the basic Assumptions 1-6. Assumption 10 is needed for the consistency of the

estimator and for obtaining a well-defined limiting distribution. It requires that the regressors are

strictly bounded, with the implication that the support of the error distributions is bounded and all

coefficients, including the factor loadings, are bounded too. In the case of homogeneous coefficients

ϑi(τ) = ϑ(τ) for all 1 ≤ i ≤ N , it can be changed to supi≥1E[∥Xi1∥] <∞ as indicated in Kato et al.

(2012) or maxit ∥yit∥ = Op(
√
NT ) and maxit ∥xit∥ = Op(

√
NT ) as in Galvao (2011), but new results

on stochastic inequalities for non-i.i.d. cases are needed. Note that the last part of Assumption 10

implies, by Assumption 3, that E(γi (τ)γ
′
i(τ)) and E(ΓiΓ

′
i) are non-singular matrices that do not
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depend on i. Assumption 11 is an identification condition and is similar to Assumptions (A3) and

(D2) in Kato, Galvao and Montes-Rojas (2012). The assumption also imposes conditions on the

joint distributions because the data can be non-independently distributed. Lastly, Assumption 12

is standard in the quantile regression literature and it is analogous to Assumption 7.b and 7.c in

Chudik and Pesaran (2015). It guarantees that the inverse of E[gi(0|Xit)XitX
′
it] exists, and jointly

with Assumption 11, it implies that these inverses are uniformly bounded across i.

The following result states the weak consistency of the estimator:

Theorem 2 (Uniform consistency of π̂i(τ)). Suppose the τ -th conditional quantile function of yit

for i = 1, ..., N and t = 1, ..., T is given by the panel data model (2.1)-(2.2) and Assumptions 1-12

hold. As N , T and pT go jointly to infinity with p3T /T → 0 and (log(N))2/T → 0, the cross-

section augmented quantile regression estimator, π̂i(τ), defined by (2.20), is consistent uniformly

over 1 ≤ i ≤ N .

As suspected, different conditions lead to changes in Theorem 2. Under less general conditions

in Assumption 9, (i.e., not allowing for time series dependence), an application of Hoeffding’s

inequality leads to a bound in Theorem 2 that is O(exp(−T )) = o(N−1) which is satisfied when

log(N)/T → 0.

It is perhaps worth noting that πi(τ) is estimated by quantile regressions for each unit i separately,

but we augment such quantile regressions with z̄t, z̄t−1, . . . , z̄t−pT . For N sufficiently large, the

consistency of quantile estimators for each unit i can be justified using standard (non-panel) results

for quantile regressions. Thus, if N is fixed, then
√
T (π̂i(τ) − πi(τ)) converges in distribution to

a mean zero random variable with covariance V, under T → ∞ and p3T /T → 0. The form of

the covariance matrix V depends on Assumption 9 and under i.i.d. conditions, the asymptotic

covariance matrix is similar to the ones obtained in Koenker (2005). We need, however, N → ∞
for consistency of our approach.

As discussed in Chudik and Pesaran (2015), the consistency of individual coefficients is not al-

ways necessary for the consistency of the mean group estimator. Our next result establishes the

consistency of the QMG estimator.

Theorem 3 (Consistency of ϑ̂(τ)). Under the conditions of Theorem 2, as (N, pT , T ) go jointly

to infinity with p3T /T → 0 and (log(N))2/T → 0, the mean quantile group estimator defined by

(2.21) for a model with interactive effects is weakly consistent, namely for every 0 < τ < 1,

ϑ̂(τ)− ϑ(τ)
p−→ 0.
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We now turn our attention to the asymptotic distribution of the proposed estimator. We consider

the following additional regularity condition:

Assumption 13. Let Ji := E[gi(0|Xit)XitX
′
it], Di :=

1√
T−pT

∑T
t=1+pT

ψτ (yit −X′
itπ0)Xit, Ḋi :=

1
T−pT

∑T
t=1+pT

ψτ (yit − X′
itπi0)Xit, Ξ̇i := ΞiΞ

′
i, Vi := Var(Di), V̇i := Var(Ḋi), and Ωϑ :=

Var(ϑi(τ)). The following conditions hold:

(a) Let JN = N−1
∑N

i=1 Ξ̇i ◦ Ji and VN = N−1
∑N

i=1 Ξ̇i ◦ Vi. The limit J := limN→∞ JN ,

V := limN→∞VN , and Vψ := limN→∞ J−1
N VNJ

−1
N exist and are non-singular.

(b) Let V̇N = N−1
∑N

i=1 Ξ̇i ◦ V̇i. The limiting matrices Ωψ = limN→∞ J−1
N V̇NJ

−1
N and Vv =

Ωψ +Ωϑ exist and are non-singular.

Assumption 13 has two parts which correspond to the case of heterogeneous and homogeneous

coefficients. The first part is standard in the panel quantile literature for models with homogeneous

coefficients and it is needed for the existence of limiting forms of positive definite matrices and to

invoke a Central Limit Theorem. The second part relates to slope heterogeneity in a quantile

framework. Assumption 13.b allows a general form of slope heterogeneity while guaranteeing that

the covariance matrix of the QMG estimator is well defined.

The following theorem establishes the asymptotic distribution of the quantile mean group estimator.

Theorem 4 (Asymptotic Distribution of ϑ̂(τ)). Suppose the τ -th conditional quantile function of

yit for i = 1, ..., N and t = 1, ..., T is given by the panel data model (2.1)-(2.2) and Assumptions

1-13 hold. As (N, pT , T ) → ∞ with p3T /T → 0 and N2/3(log(N))/T → 0, the mean group quantile

regression estimator, defined by (2.21), for a model with interactive effects,
√
N(ϑ̂(τ)− ϑ(τ))

d−→
N (0,Vv).

It should be noted that for fixed N ,
√
T (ϑ̂(τ)−ϑ(τ)) is asymptotically a Gaussian random variable.

However, because the approximation of the factors requires N → ∞ and we let N and T go jointly

to infinity, the rates of Theorem 4 suggest that T has to be larger than N in finite samples to

eliminate biases from incidental parameters and truncation of possibly infinite lag polynomials.

The following theorem establishes the asymptotic distribution of the quantile mean group estimator

when the ϑi(τ)’s are homogeneous.

Theorem 5. Under the Assumptions of Theorem 4, as (N, pT , T ) → ∞ with p3T /T → 0 and

N2(log(N))3/T → 0, the mean group quantile regression estimator, defined by (2.21), for a model

with interactive effects with ϑi(τ) = ϑ(τ) for 1 ≤ i ≤ N ,
√
NT (ϑ̂(τ)− ϑ(τ))

d−→ N (0,Vψ).
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The convergence of the QMG estimator in Theorem 4 is
√
N due to the heterogeneity of the

parameter of interest, ϑi(τ). The standard
√
NT convergence is obtained in Theorem 5 when the

coefficients are not heterogeneous. These results appear to be comparable to standard convergence

results for panel data estimators of conditional mean models with interactive effects (e.g., Pesaran

(2006) and Chudik and Pesaran (2015)), but it is important to point out the difference in terms of

the restrictions on T relative to N , due mainly to the estimation of individual parameters and the

non-linearity of the quantile function.

2.3. Inference

The asymptotic covariance matrix can be consistently estimated using existing estimators. For

large N and T , we define ûit(τ) := yit − X′
itπ̂i(τ), hN to be a sequence of bandwidths such that

hN → 0 as N → ∞, and KhN (u) = h−1
N K(u/hN ) be a Kernel estimator. Then we can use the

following estimators to consistently estimate Vψ,

Ĵi :=
1

T − pT

T∑
t=pT+1

K(ûit(τ))XitX
′
it, D̂i :=

1

T − pT

T∑
t=pT+1

σ̂2ψ(q)XitX
′
it, (2.22)

where, by the derivations in Section S.1 in the Supplement to the manuscript,

σ̂2ψ(q) := τ(1− τ) + 2

q−1∑
j=1

(
1− j

q

)[
I(Yi1 ≤ X′

i1π̂i(τ), Yi1+j ≤ X′
i1+jπ̂i(τ))− τ2

]
. (2.23)

for a positive integer q ≥ 1. Note that q = 1 gives σ2ψ(1) = τ(1−τ), the variance of ψτ = τ−I(u < 0)

in the case of independent observations (see, e.g., Koenker 2005). The matrix Ji can also be

estimated by the method for non i.i.d. observations proposed by Hendricks and Koenker (1992). On

the other hand, the matrix Vv can be estimated using (N−1)−1
∑N

i=1(ϑ̂i(τ)−ϑ̂(τ))(ϑ̂i(τ)−ϑ̂(τ))′.

Notice that if vi(τ) = vi for all i, the estimator V̂v is quantile invariant and therefore a consistent

estimator of Vv can be defined as in equation (32) in Chudik and Pesaran (2015).

3. Monte Carlo

This section reports results of several simulation exercises designed to evaluate the small sample

performance of the proposed estimator. Observations on yit for i = 1, 2, . . . , N and t = −S +

1,−S + 2, .., 0, 1, ..., T are generated according to the following model with two factors:

yit = β0i + λiyi,t−1 + β1ix1,it + β2ix2,it + γ1if1t + γ2if2t + κ0i(1 + κ1ix1,it)uit, (3.1)
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where β0i = αi + β0, the error term uit is distributed as F , κ0i is an i.i.d. random variable

distributed as uniform U(0.9, 1.1), and κ1i is an i.i.d. random variable distributed as uniform

U(0, 0.2). Depending on the values of κ0i and κ1i, we have two conditional quantile functions. (a)

When κ0i = 1 and κ1i = 0 for all 1 ≤ i ≤ N , we have

QYit(τ |yit−1,xit,θi, ft) = β0i(τ) + λiyi,t−1 + β1ix1,it + β2ix2,it + γ1if1t + γ2if2t, (3.2)

with θi = (αi, λi,β
′
i,γ

′
i)
′, βi = (β1i, β2i)

′, γi = (γ1i, γ2i)
′, βi0(τ) = αi + β0(τ), and β0(τ) =

β0 + F−1
u (τ). (b) When κ0i ̸= 1 and κ1i ̸= 0 for all 1 ≤ i ≤ N , the conditional quantile function of

(3.1) becomes,

QYit(τ |yit−1,xit,θi(τ), ft) = β0i(τ) + λiyi,t−1 + β1i(τ)x1,it + β2ix2,it + γ1if1t + γ2if2t, (3.3)

with θi(τ) = (αi(τ), λi,β
′
i(τ),γ

′
i)
′, βi(τ) = (β1i(τ), β2i)

′, βi0(τ) = αi(τ)+β0, αi(τ) = αi+κ0iF
−1
u (τ)

and β1i(τ) = β1i + κ0iκ1iF
−1
u (τ). For each i, models (3.2) and (3.3) are typically referred to in the

literature as location shift and location-scale shift models, respectively (see, e.g., Koenker (2005)).

In all experiments, to simplify the exposition and without loss of generality, we set β0 = 0 and

β2i = 0.5, for 1 ≤ i ≤ N . Note that for S sufficiently large, we have that (with β0 = 0),

yi0 ≈
αi

1− λi
+ β1i

S−1∑
j=0

λjix1i,−j + β2i

S−1∑
j=0

λjix2i,−j +

S−1∑
j=0

λji ξi,−j , (3.4)

where ξit = γ1if1t + γ2if2t + κ0i(1 + κ1ix1,it)uit. In all the variants of the model considered in the

simulations, we set S = 200 to minimize the effects of the initial values on the outcomes. The

regressors, xj,it, are generated as

xji,t = µi + Γjifjt + vji,t, (3.5)

vji,t = ρxvj,it−1 +
√

1− ρ2xεji,t, (3.6)

fjt = ρffj,t−1 +
√
1− ρ2fεjt, (3.7)

for j ∈ {1, 2}, with µi ∼ iidN (0.5, 1), εji,t ∼ iidN (0, 1), and εjt ∼ iidN (0, 1). We consider the

case of relatively persistent regressors by setting ρx = 0.8 and ρf = 0.9. Moreover, without loss of

generality we set xji,−S = 0 and fj,−S = 0.

The factor loadings in equation (3.1), γ1i and γ2i, and in equation (3.5), Γ1i and Γ2i, are generated

as γji ∼ iidN (0.5, 1) and Γji ∼ iidN (0.5, 1) for j ∈ {1, 2}. These factor loadings ensure that the

rank condition in Assumption 6 is met. Finally, the fixed effects, αi, are allowed to be correlated

with the errors by generating them as αi = x̄1i+γ1if̄1+γ2if̄2+ ūi+ai, where the individual specific
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averages are defined as x̄1i = T−1
∑T

t=1 x1,it, f̄j = T−1
∑T

t=1 fjt, ūi = T−1
∑T

t=1 uit. The error term

ai in the equation for αi is assumed to be distributed as N (0, 1).

Initially, we set λi = λ for i = 1, 2, . . . , N and consider three values of λ = {0.25, 0.50, 0.75}.
Later in Figure 3.1, we investigate the performance of the QMG estimator with heterogeneous λi’s.

Moreover, in addition to the experiments presented in this section, we also considered static panel

data experiments (i.e., when λi = 0, for all i) and compare the performance of QMG estimator with

a number of existing panel quantile regression estimators. For relatively large T , the performance

of the proposed estimator was similar in both the static panel data model and dynamic panel data

model. Thus, we present results for the dynamic model only to save space.

In the simulations, we assume that the error term uit in equation (3.1) is an i.i.d. random variable

distributed as Standard Normal, t-student with 4 degrees of freedom (t4), and χ
2 with 3 degrees of

freedom (χ2
3). We consider the following four variations of the model (with λi = λ):

Design 1: (Location shift model with homogeneous slopes). We consider β1 = 1 in a location shift

model with κ1i = 0 for all 1 ≤ i ≤ N .

Design 2: (Location shift model with heterogeneous slopes). We consider heterogeneous slope

parameters β1i = β1 + ν1i in a location shift model, where κ1i = 0 for all 1 ≤ i ≤ N , β1 = 1 and

ν1i ∼ U(−0.25, 0.25). The parameter β1i(τ) = β1i for all i and τ .

Design 3: (Location-scale shift model with homogeneous slopes). We consider homogenous slope

parameters β1 = 1 in a location-scale shift model with κ1i ∼ U(0, 0.2). In this case, the slope

parameter β1i(τ) = β1 + κ0iκ1iF
−1
u (τ) and E(β1i(τ)) = β1 + 0.1F−1

u (τ).

Design 4: (Location-scale shift model with heterogeneous slopes). We consider heterogeneous

slope parameters as in Design 2, β1i = β1+ ν1i, in a location-scale shift model with κ1i ∼ U(0, 0.2).
We assume β1 = 1 and ν1i ∼ U(−0.25, 0.25) which implies that β1i(τ) = β1i + κ0iκ1iF

−1
u (τ) =

1 + ν1i + κ0iκ1iF
−1
u (τ). In this case, E(β1i(τ)) = β1(τ) = 1 + 0.1F−1

u (τ).

Tables 3.1 to Table 3.2 present the bias and root mean square error (RMSE) for the slope parameter

β1(τ) in the location shift model with λ = 0.5. The summary results for other choices of λ are

provided in the online supplement. We focus on λ = 0.5 here, since we obtain similar estimates

in the empirical application to be discussed in Section 4. While Table 3.1 presents results for

Designs 1 and 2, Table 3.2 presents results for Designs 3 and 4. The tables show results for quantile

regression estimators at two quantiles, τ ∈ {0.25, 0.50}, based on sample sizes of N ∈ {100, 200}
and T ∈ {50, 100, 200}.
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We compare the performance of the QMG estimator with the instrumental variable quantile re-

gression estimator for dynamic panel data model developed by Galvao (2011), using yi,t−2 as an

instrument for yi,t−1. This estimator is denoted by DQR. However, it is important to bear in mind

that Galvao’s model does not allow for the interactive term, λift, and could generate biases that

cannot be eliminated by use of instrumental variables. The QMG, is computed as the simple cross

sectional average of standard quantile estimators, β̂1i(τ), using z̄t = (ȳt, ȳt−1, x̄
′
t)
′ to proxy the true

unobserved factors f1t and f2t. We do not consider other existing quantile estimators, such as

the classical quantile regression estimator, the fixed effects minimum distance quantile regression

estimator by Galvao and Wang (2015), and the penalized quantile regression estimator, since all

these estimators are biased when the model includes a lagged dependent variable. Therefore, we

restrict our comparison to DQR, which is the only estimator in the literature proposed for dynamic

panel quantile regression models.

3.1. Bias and Root Mean Square Error

As can be seen from Table 3.1, not surprisingly, the DQR estimator of β1 is biased and that its bias

tends to be slightly larger in the case where the slopes are heterogeneous. Furthermore, the bias

of DQR estimator tends to increase with T , and tend to be similar for both 0.5 and 0.25 quantiles.

On the other hand, the performance of the QMG estimator is excellent, with biases in general lower

than 10% for T = 50, and decreasing rapidly to 1% when T = 200. In all the variations of the

model considered in the table, the QMG estimator performs much better than DQR in terms of

RMSE, as well.

Table 3.2 presents results for the location-scale shift model where β1(τ) changes by quantile. We

continue to see that the DQR estimator is biased and performs poorly in terms of RMSE. The

performance of the QMG estimator in these variations of the model is similar to the results reported

for the baseline model in Table 3.1, with low biases and small RMSE. For values of T larger than

50, the bias of the proposed estimator is always negative and ranges between 0.7% and 4%, and its

RMSE is substantially below that of the DQR estimator. The RMSE of QMG relative to DQR is

around 30 percent for N = 100, T = 50, and falls to around 0.05 for N = T = 200. The relative

efficiency of the QMG estimator is similar across all the four designs.

We expanded the simulation evidence for the slope parameter β1 to consider different values of λ.

In the online supplement we present results for λ ∈ {0.25, 0.75} considering the same designs as in

Tables 3.1 and 3.2, with N = 100 and T = 200. We considered a moderate N and large T panel
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ1 Parameter: λ Parameter: θ1
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.191 0.053 0.644 -0.058 -0.187 0.055 0.639 -0.043
100 50 RMSE 0.221 0.061 0.702 0.085 0.218 0.064 0.700 0.080
100 100 Bias -0.253 0.022 0.703 -0.011 -0.249 0.023 0.703 -0.007
100 100 RMSE 0.270 0.029 0.736 0.044 0.266 0.032 0.737 0.046
100 200 Bias -0.293 0.003 0.738 0.007 -0.291 0.003 0.736 0.008
100 200 RMSE 0.303 0.015 0.758 0.029 0.301 0.016 0.758 0.030
200 50 Bias -0.198 0.056 0.666 -0.069 -0.195 0.057 0.665 -0.054
200 50 RMSE 0.225 0.060 0.722 0.083 0.221 0.061 0.724 0.071
200 100 Bias -0.271 0.028 0.734 -0.027 -0.267 0.028 0.731 -0.023
200 100 RMSE 0.286 0.031 0.760 0.038 0.283 0.031 0.759 0.036
200 200 Bias -0.294 0.011 0.744 -0.006 -0.292 0.011 0.740 -0.004
200 200 RMSE 0.303 0.015 0.757 0.017 0.301 0.015 0.754 0.018
N T t4 distribution
100 50 Bias -0.171 0.057 0.607 -0.066 -0.166 0.063 0.614 -0.060
100 50 RMSE 0.200 0.065 0.677 0.092 0.196 0.073 0.684 0.096
100 100 Bias -0.230 0.027 0.664 -0.019 -0.230 0.032 0.669 -0.018
100 100 RMSE 0.247 0.034 0.698 0.044 0.247 0.040 0.704 0.049
100 200 Bias -0.277 0.005 0.699 0.002 -0.275 0.007 0.702 0.000
100 200 RMSE 0.287 0.015 0.723 0.028 0.285 0.018 0.725 0.030
200 50 Bias -0.176 0.059 0.593 -0.083 -0.170 0.066 0.599 -0.073
200 50 RMSE 0.203 0.063 0.654 0.093 0.197 0.072 0.659 0.107
200 100 Bias -0.235 0.031 0.651 -0.028 -0.233 0.035 0.658 -0.027
200 100 RMSE 0.252 0.034 0.683 0.038 0.250 0.038 0.690 0.041
200 200 Bias -0.281 0.011 0.695 -0.007 -0.280 0.014 0.701 -0.008
200 200 RMSE 0.290 0.015 0.710 0.018 0.289 0.018 0.717 0.022
N T χ2

3 distribution
100 50 Bias -0.109 0.080 0.473 -0.102 -0.109 0.046 0.466 -0.058
100 50 RMSE 0.152 0.097 0.529 0.146 0.148 0.063 0.519 0.104
100 100 Bias -0.173 0.040 0.543 -0.043 -0.164 0.018 0.515 -0.018
100 100 RMSE 0.194 0.053 0.579 0.080 0.184 0.031 0.551 0.052
100 200 Bias -0.217 0.020 0.576 -0.011 -0.204 0.005 0.540 -0.003
100 200 RMSE 0.229 0.031 0.597 0.046 0.216 0.018 0.560 0.033
200 50 Bias -0.116 0.085 0.480 -0.098 -0.115 0.048 0.455 -0.056
200 50 RMSE 0.153 0.094 0.522 0.124 0.149 0.057 0.492 0.079
200 100 Bias -0.174 0.047 0.542 -0.044 -0.167 0.023 0.511 -0.020
200 100 RMSE 0.192 0.053 0.565 0.063 0.185 0.029 0.533 0.040
200 200 Bias -0.208 0.023 0.576 -0.018 -0.198 0.010 0.534 -0.006
200 200 RMSE 0.219 0.028 0.590 0.036 0.208 0.015 0.549 0.023

Table 3.3. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ1 in Design 1. In all the variations of the model, λ = 0.5.
Also, see notes to Table 3.1.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ1 Parameter: λ Parameter: θ1
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.195 0.049 0.668 -0.063 -0.190 0.049 0.670 -0.038
100 50 RMSE 0.224 0.058 0.735 0.091 0.220 0.060 0.739 0.110
100 100 Bias -0.267 0.021 0.732 -0.014 -0.265 0.022 0.729 -0.008
100 100 RMSE 0.283 0.033 0.770 0.054 0.280 0.035 0.770 0.055
100 200 Bias -0.296 0.001 0.740 0.005 -0.294 0.001 0.741 0.006
100 200 RMSE 0.307 0.021 0.759 0.040 0.305 0.022 0.760 0.042
200 50 Bias -0.200 0.055 0.674 -0.072 -0.196 0.054 0.678 -0.058
200 50 RMSE 0.226 0.060 0.741 0.087 0.223 0.060 0.752 0.078
200 100 Bias -0.258 0.028 0.711 -0.025 -0.255 0.029 0.712 -0.020
200 100 RMSE 0.272 0.033 0.744 0.040 0.270 0.034 0.748 0.039
200 200 Bias -0.301 0.011 0.742 -0.006 -0.299 0.010 0.739 -0.006
200 200 RMSE 0.309 0.018 0.758 0.028 0.307 0.018 0.756 0.028
N T t4 distribution
100 50 Bias -0.170 0.054 0.591 -0.070 -0.165 0.061 0.600 -0.061
100 50 RMSE 0.206 0.065 0.661 0.102 0.201 0.074 0.669 0.106
100 100 Bias -0.237 0.024 0.669 -0.019 -0.235 0.028 0.667 -0.019
100 100 RMSE 0.255 0.035 0.702 0.053 0.253 0.040 0.703 0.059
100 200 Bias -0.279 0.006 0.696 0.002 -0.280 0.008 0.700 0.003
100 200 RMSE 0.290 0.021 0.716 0.041 0.290 0.023 0.722 0.042
200 50 Bias -0.175 0.058 0.598 -0.078 -0.169 0.065 0.597 -0.072
200 50 RMSE 0.199 0.064 0.642 0.092 0.194 0.071 0.645 0.091
200 100 Bias -0.245 0.029 0.678 -0.030 -0.242 0.032 0.685 -0.030
200 100 RMSE 0.260 0.033 0.708 0.045 0.257 0.038 0.716 0.047
200 200 Bias -0.277 0.012 0.705 -0.006 -0.277 0.014 0.706 -0.009
200 200 RMSE 0.285 0.019 0.719 0.029 0.285 0.021 0.722 0.031
N T χ2

3 distribution
100 50 Bias -0.114 0.081 0.486 -0.096 -0.115 0.045 0.463 -0.056
100 50 RMSE 0.158 0.099 0.540 0.142 0.156 0.063 0.513 0.100
100 100 Bias -0.179 0.042 0.568 -0.041 -0.171 0.020 0.535 -0.017
100 100 RMSE 0.199 0.058 0.601 0.083 0.190 0.036 0.567 0.060
100 200 Bias -0.212 0.021 0.577 -0.009 -0.201 0.007 0.542 0.002
100 200 RMSE 0.226 0.034 0.600 0.052 0.215 0.022 0.564 0.042
200 50 Bias -0.114 0.082 0.479 -0.099 -0.110 0.047 0.462 -0.056
200 50 RMSE 0.148 0.093 0.528 0.130 0.142 0.058 0.510 0.086
200 100 Bias -0.181 0.046 0.546 -0.044 -0.174 0.024 0.517 -0.019
200 100 RMSE 0.200 0.052 0.571 0.065 0.192 0.030 0.541 0.042
200 200 Bias -0.214 0.021 0.584 -0.020 -0.203 0.009 0.546 -0.007
200 200 RMSE 0.225 0.028 0.598 0.039 0.214 0.017 0.560 0.028

Table 3.4. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ1 in Design 2. In all the variations of the model, λ = 0.5.
Also, see notes to Table 3.1.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ1 Parameter: λ Parameter: θ1
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.188 0.055 0.637 -0.060 -0.165 0.070 0.596 -0.015
100 50 RMSE 0.219 0.063 0.694 0.089 0.198 0.078 0.648 0.072
100 100 Bias -0.250 0.023 0.695 -0.011 -0.225 0.032 0.649 0.009
100 100 RMSE 0.267 0.031 0.729 0.045 0.244 0.039 0.678 0.046
100 200 Bias -0.291 0.003 0.729 0.007 -0.268 0.009 0.676 0.018
100 200 RMSE 0.300 0.015 0.749 0.029 0.278 0.019 0.695 0.035
200 50 Bias -0.195 0.057 0.661 -0.073 -0.172 0.071 0.618 -0.024
200 50 RMSE 0.222 0.061 0.717 0.083 0.202 0.075 0.666 0.053
200 100 Bias -0.268 0.029 0.724 -0.028 -0.243 0.036 0.673 -0.008
200 100 RMSE 0.283 0.032 0.750 0.039 0.260 0.038 0.696 0.030
200 200 Bias -0.291 0.011 0.735 -0.006 -0.268 0.016 0.678 0.005
200 200 RMSE 0.300 0.015 0.748 0.018 0.277 0.019 0.690 0.018
N T t4 distribution
100 50 Bias -0.168 0.057 0.595 -0.067 -0.145 0.077 0.556 -0.027
100 50 RMSE 0.197 0.067 0.664 0.094 0.179 0.086 0.614 0.078
100 100 Bias -0.226 0.027 0.653 -0.020 -0.207 0.042 0.598 0.003
100 100 RMSE 0.243 0.035 0.686 0.046 0.226 0.049 0.628 0.048
100 200 Bias -0.272 0.005 0.689 0.001 -0.251 0.014 0.619 0.013
100 200 RMSE 0.282 0.015 0.712 0.028 0.262 0.022 0.640 0.034
200 50 Bias -0.171 0.060 0.583 -0.083 -0.148 0.081 0.544 -0.035
200 50 RMSE 0.199 0.065 0.640 0.094 0.178 0.086 0.594 0.069
200 100 Bias -0.231 0.031 0.639 -0.028 -0.210 0.043 0.589 -0.008
200 100 RMSE 0.247 0.034 0.670 0.039 0.228 0.046 0.615 0.033
200 200 Bias -0.276 0.012 0.684 -0.007 -0.256 0.020 0.619 0.005
200 200 RMSE 0.285 0.015 0.699 0.018 0.265 0.023 0.632 0.022
N T χ2

3 distribution
100 50 Bias -0.131 0.098 0.433 -0.109 -0.102 0.075 0.413 -0.013
100 50 RMSE 0.178 0.116 0.488 0.161 0.150 0.089 0.457 0.093
100 100 Bias -0.203 0.044 0.495 -0.051 -0.163 0.030 0.437 0.001
100 100 RMSE 0.227 0.059 0.531 0.093 0.187 0.040 0.466 0.053
100 200 Bias -0.251 0.020 0.520 -0.016 -0.205 0.010 0.445 0.006
100 200 RMSE 0.265 0.034 0.541 0.055 0.220 0.022 0.465 0.036
200 50 Bias -0.139 0.101 0.439 -0.108 -0.107 0.076 0.404 -0.015
200 50 RMSE 0.177 0.110 0.479 0.138 0.147 0.082 0.432 0.062
200 100 Bias -0.204 0.053 0.496 -0.052 -0.165 0.034 0.437 -0.002
200 100 RMSE 0.224 0.059 0.520 0.073 0.187 0.040 0.455 0.038
200 200 Bias -0.242 0.025 0.520 -0.022 -0.199 0.015 0.443 0.003
200 200 RMSE 0.254 0.032 0.535 0.045 0.212 0.020 0.457 0.025

Table 3.5. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ1 in Design 3. In all the variations of the model, λ = 0.5.
Also, see notes to Table 3.1.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ1 Parameter: λ Parameter: θ1
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.194 0.052 0.662 -0.064 -0.167 0.064 0.631 -0.013
100 50 RMSE 0.223 0.061 0.729 0.094 0.201 0.074 0.692 0.084
100 100 Bias -0.264 0.022 0.724 -0.016 -0.241 0.030 0.674 0.007
100 100 RMSE 0.280 0.034 0.763 0.056 0.258 0.042 0.710 0.055
100 200 Bias -0.292 0.002 0.733 0.005 -0.270 0.007 0.679 0.015
100 200 RMSE 0.304 0.022 0.752 0.041 0.282 0.023 0.697 0.045
200 50 Bias -0.198 0.057 0.664 -0.074 -0.174 0.068 0.635 -0.030
200 50 RMSE 0.225 0.062 0.731 0.090 0.203 0.073 0.695 0.061
200 100 Bias -0.254 0.029 0.705 -0.026 -0.231 0.036 0.659 -0.005
200 100 RMSE 0.269 0.034 0.738 0.041 0.247 0.041 0.689 0.035
200 200 Bias -0.298 0.011 0.734 -0.006 -0.274 0.015 0.677 0.003
200 200 RMSE 0.306 0.019 0.749 0.028 0.283 0.022 0.690 0.029
N T t4 distribution
100 50 Bias -0.166 0.055 0.580 -0.071 -0.143 0.077 0.545 -0.029
100 50 RMSE 0.202 0.067 0.651 0.104 0.184 0.088 0.603 0.095
100 100 Bias -0.232 0.025 0.657 -0.021 -0.211 0.039 0.598 0.002
100 100 RMSE 0.250 0.036 0.689 0.055 0.231 0.048 0.628 0.056
100 200 Bias -0.275 0.006 0.685 0.001 -0.256 0.015 0.619 0.015
100 200 RMSE 0.285 0.021 0.705 0.041 0.267 0.027 0.639 0.045
200 50 Bias -0.170 0.060 0.586 -0.079 -0.147 0.079 0.545 -0.039
200 50 RMSE 0.195 0.065 0.629 0.093 0.173 0.085 0.585 0.069
200 100 Bias -0.241 0.029 0.664 -0.031 -0.219 0.040 0.609 -0.012
200 100 RMSE 0.257 0.034 0.693 0.046 0.236 0.045 0.634 0.038
200 200 Bias -0.272 0.013 0.692 -0.006 -0.253 0.019 0.623 0.003
200 200 RMSE 0.281 0.019 0.707 0.029 0.262 0.025 0.638 0.030
N T χ2

3 distribution
100 50 Bias -0.139 0.096 0.443 -0.107 -0.108 0.073 0.408 -0.015
100 50 RMSE 0.187 0.114 0.498 0.156 0.159 0.087 0.449 0.088
100 100 Bias -0.210 0.047 0.517 -0.050 -0.171 0.031 0.451 0.002
100 100 RMSE 0.231 0.064 0.551 0.094 0.194 0.045 0.479 0.061
100 200 Bias -0.246 0.020 0.521 -0.016 -0.202 0.012 0.449 0.010
100 200 RMSE 0.262 0.036 0.544 0.059 0.219 0.026 0.470 0.045
200 50 Bias -0.136 0.098 0.439 -0.108 -0.103 0.074 0.409 -0.015
200 50 RMSE 0.173 0.110 0.486 0.143 0.142 0.083 0.443 0.072
200 100 Bias -0.212 0.050 0.495 -0.053 -0.172 0.034 0.438 -0.002
200 100 RMSE 0.233 0.057 0.519 0.075 0.194 0.039 0.456 0.038
200 200 Bias -0.249 0.022 0.529 -0.025 -0.204 0.014 0.453 0.001
200 200 RMSE 0.261 0.031 0.544 0.047 0.217 0.021 0.466 0.030

Table 3.6. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ1 in Design 4. In all the variations of the model, λ = 0.5.
Also, see notes to Table 3.1.
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because our application in Section 4 employs a data set with 779 households and 8639 time-series

observations. We see that the QMG estimator continues to perform better than the DQR estimator.

We also find that the performance of the QMG estimator is invariant to the choice of λ, at least in

the simulations considered thus far. We do investigate the performance of the QMG estimator in

the heterogeneous case when λi ∈ [0.025, 0.925], below.

We now turn our attention to the estimators of λ(τ) and θ1(τ) = β1(τ)/(1− λ(τ)). The estimator

for θ1(τ) is defined as β̂1(τ)/(1 − λ̂(τ)) and is computed by plugging in the quantile estimates

corresponding to λ(τ) and β1(τ). We employ this method for both the DQR and QMG estimators.

Tables 3.3, 3.4, 3.5 and 3.6 show the bias and RMSE of the DQR and QMG estimators for the

parameters of interest. These four tables show results for the four different designs we consider in

this section. Each table presents, in columns, the performance of the estimators at τ ∈ {0.25, 0.50}
and in rows the different samples sizes and distributions for the error term. The upper block

presents results when uit is distributed as N (0, 1), the middle panel shows results when uit ∼ t4

and the lower block presents results when uit ∼ χ2
3.

As before, the results indicate that the bias of the DQR estimator can be large, in particular for the

long run coefficient θ1. The QMG estimator offers nearly zero biases for large N and T . The DQR

estimator is biased and its performance is not satisfactory in terms of both bias and RMSE. The

location-scale shift case, presented in Tables 3.5 and 3.6, reveals similar findings. Overall, when

λ = 0.5, the QMG estimator offers the best performance in terms of bias and RMSE in the class

of estimators for the dynamic quantile panel data models considered in this section.

Figure 3.1 offers a visual display of the small sample performance of the QMG estimator as λ

increases. The figure shows the bias and RMSE of the QMG estimator at τ ∈ {0.25, 0.50} for λ, β1

and θ1 for different true values of λ. We considered Design 1 with N = 100 and T = 200. Recall

that when λ increases, θ1 increases too. For instance, while λ = 0 gives θ1 = β1 = 1, λ = 0.9

gives θ = 10 in our simulation experiment. Consistent with our previous evidence, we see that the

performance of QMG estimator does not depend on λ when the interest is in estimating β1. The

bias tends to increase slightly, but it is never larger than 1% for values of λ close to unity. We

also find that the RMSE of the estimator of β1 does not change with λ. On the other hand, we

observe that the absolute value of the bias of the QMG estimator for θ1 increases rapidly λ → 1.

The figure shows that the bias, in absolute value, is negligible for λ < 0.75, and it increases rapidly

when λ > 0.8. Note however that the bias in relative terms is always less than 10%. We also find
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Figure 3.1. Small sample performance of the QMG estimator for different

values of λ. The figure present Bias and RMSE of the QMG estimator for

E(λ(τ)), E(β1(τ)) and E(θ1(τ)) at the 0.25 and 0.50 quantiles.

that the RMSE increases with λ and that the RMSE of the QMG estimator at τ = 0.25 is larger

than the QMG estimator at τ = 0.50, as to be expected.

Figure 3.1 also shows the bias and RMSE of the QMG estimator when λi = λ + ωi, where ωi ∼
U [−0.025, 0.025] and λ takes values in the interval λ ∈ [0.05, 0.90]. The parametrization guarantees

that θ1 exists for all values of λi for i = 1, . . . , N . We generate data using Design 1 withN = 100 and

T = 200. Consistent with our expectations, the bias and RMSE of the estimator tends to be similar

to the case of homogeneous λ’s, although the performance deteriorates for large values of λ = E(λi).

We see an increase in the variance of the estimator, but the bias for θ1 remains, in absolute value,
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Figure 3.2. Small sample performance of the DQR and QMG estimators in

models with and without latent factors.

small for E(λi) < 0.65. As can be seen from Figure 3.1, the parameter vector (E(λi), β1) can be

estimated with small bias and excellent RMSE performance in the case of heterogeneous λi’s, so

long as N and T are sufficiently large, and E(λi) is not too close to unity.

Finally, we investigate the relative performance of DQR and QMG in models with and without

factor structure, i.e.
∑2

j=1 σγγjifjt in equation (3.1). As in Figure 3.1, we generate data using

Design 1 with N = 100 and T = 200. In contrast with the previous design, we generate γ1i ∼
iidN (0.5, 1) and γ2i ∼ iidN (0.5, 1), and we set σγ to take values in the interval [0, 1]. Naturally,

when σγ = 0, the model does not include latent factors. Figure 3.2 presents the bias and RMSE of

the estimators for λ, β1 and θ1. Consistent again with expectations, when equation (3.1) does not
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include factors, the DQR estimator offers the best finite sample performance. However, as shown in

the figure, the QMG performs reasonably well even when σγ = 0 and it offers the best performance

in terms of bias and RMSE when the degree of parameter heterogeneity is not too small.

3.2. Inference

We now turn our attention to the standard error of the QMG estimator for λ(τ) and β1(τ). Table

3.7 reports the average estimated standard errors obtained by the procedure outlined in Sections

2.2 (see Theorems 4 and 5) and 2.3 (equations (2.22) and (2.23)). When estimating Vv and Vψ,

the asymptotic variance of the QMG estimators, we set q = 3 to minimize potential biases in

the estimation of the standard errors. While the upper panels of Table 3.7 show the standard

error of the QMG estimator in Designs 1 and 2, the lower panels show the standard error in

Designs 3 and 4. We also report the standard deviation of the estimator based on 400 Monte Carlo

repetitions. Because T relative to N is important for inference, we report estimates with N = 100

and T ∈ {100, 200, 400}

The results show that the estimated standard errors approximate very closely to the standard

deviation of the estimator when T is larger than N . This result is expected by the rates of

convergence needed to establish the consistency of the QMG estimator. The approximation is

excellent in the case of the Normal and t4 distributions. The evidence when uit ∼ χ2
3 suggests that

a larger T relative to N is needed for the standard error to be well approximated.

Table 3.8 provides empirical coverage probabilities for a nominal 95% confidence interval. The prob-

abilities are calculated based on asymptotic Gaussian confidence intervals consistent with Theorem

4. We see different finite sample performances of the estimator for λ and β1. If we examine the

results across the different distributions, the QMG estimator in some cases does not perform well

for λ when T/N < 4. On the other hand, the coverage probabilities for β1 approximate closely

0.95 with the exception of the case when T = N = 100. Lastly, we investigate the performance

of the QMG estimator in terms of power. The results are shown in the lower panel of Table 3.8.

We compute the power for testing H0 : λ = 0.5 with the alternative hypothesis Ha : λ = 0.55

and H0 : β1 = 1 with the alternative hypothesis Ha : β1 = 1.1. The condition on the rate of

convergence plays an important role in ensuring that the estimator has good power. In particular,

the power is high for values of T > 100, although how quickly the power approaches 1 depends on

the distribution of the error term and the number of cross-sectional units, N .
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4. Time-of-Use Pricing, Smart Technology and Energy Savings

In recent years electric utilities around the country have installed a vast number of smart meters

in homes and businesses. This new digital technology replaces the outdated electric meters used

in previous decades and allows two-way communication between devices inside the home and the

utility. This has lead to a renewed interest in the roll-out of various Time-of-Use (TOU) electricity

pricing strategies1 since utilities now have the ability to communicate prices to the consumers in

real time. While economists have explored this topic in earlier decades, especially after the 1970s

energy crisis, the technology enabling customers to respond to these novel electric rates was largely

not available.

Technological advances referred to as “smart technologies” remove however the limitations of earlier

decades and can meaningfully allow customers to take advantage of time varying electric rates

to respond to peak demand prices or conserve electricity more broadly. Thus, it appears that

substantial peak load reductions can in fact be achieved from TOU pricing (Jessoe and Rapson

(2014), Ito (2014)). The literature however documents just how important the different types of

enabling technology are on consumer responsiveness. Harding and Lamarche (2016) estimate the

impact of TOU pricing using a randomized controlled trial of over 11 million observations on 15-

minute interval electricity consumption in the US and show that smart devices with automation

features achieve the highest peak demand savings and monetary incentives alone are not sufficient by

themselves to motivate consumers to respond to time varying prices in an economically significant

fashion.

In this section, we consider data from a similar randomized controlled trial, to study effectiveness

of three major enabling technologies (web portal, in-home display and smart thermostat) within

the context of TOU pricing. By allowing for interactive effects in the quantile regressions, we also

take account of possible differences in unobserved common effects on households with differing

characteristics.

We apply our quantile regression approach to estimate an autoregressive panel quantile regression

model for energy consumption with interactive effects. We then compare the effect of different tech-

nologies on energy consumption, focusing on the distributional effects of these randomly assigned

technologies. We find that smart thermostats are particularly effective relative to other technologies

at enabling households to respond to TOU pricing. The differential effects are more pronounced at

1In addition to TOU rates a variety of dynamic pricing strategies are currently explored. See Harding

and Sexton (2017) for a comprehensive review of recent developments.
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the lower tail of the conditional distribution of energy consumption. While households appear to

reduce overall consumption as a result of these technologies relative to the control group, the aver-

age response fails to capture the distributional effects of the technologies across households. Since

utilities face a heterogenous customer base, understanding the distributional impact of the policies

has important regulatory consequences. Lastly, we investigate the long-run effect of a change in

energy price for different enabling technologies, focusing on the differential effects for different age

and income groups.

4.1. Data

We employ data from a large scale randomized controlled trial (RCT) of TOU pricing for residential

electricity consumers in a South Central US state. The data used in this paper includes 779

customers who were randomly assigned to a time-of-use pricing structure and received three different

enabling technologies. All households had previously installed smart meters recording electricity

consumption at 15 minute intervals.2

The random allocation of a large sample of households into three treatment groups and one control

group, and the availability of electricity readings measured over 15-minute intervals make the appli-

cation of our QMG estimator particularly well suited to answer questions about the distributional

effect of enabling technologies.

The experiment was conducted during four months from June 1st to September 30th of 2011. After

households signed up for the program, they were randomly assigned into three different treatment

groups and a control group. Consumers randomized to the control group were informed they were

not eligible for the program at that time but might be allowed to join next year. These households

were kept on standard residential tariff and did not receive any enabling technology. On the other

hand, customers who were selected to the treatment groups were assigned a time-of-use pricing

rate which varied over two daily time periods. During the off-peak part of the day consisting of all

hours except 2pm to 7pm, the rate charged for electricity consumption was $0.042 kWh. During

the on-peak part of the day, which was the period from 2pm to 7pm, the rate charged was $0.23

kWh. Weekends were considered to be off-peak throughout.

2While many utilities consider data such as the one collected from this experiment to be proprietary,

similar data is publicly available. For example the CER data from Ireland is commonly used as a test data

set for the evaluation of a pricing experiment using high-frequency smart meter data.
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Control Portal IHD PCT
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

Kilowatt-hours 0.61 0.51 0.62 0.52 0.59 0.48 0.59 0.48
Treatment 0.14 0.35 0.14 0.35 0.14 0.35 0.14 0.35
High Income (> $75, 000) 0.38 0.49 0.58 0.49 0.51 0.50 0.49 0.50
Medium Income 0.31 0.46 0.22 0.41 0.31 0.46 0.28 0.45
Low Income (< $30, 000) 0.31 0.46 0.21 0.40 0.18 0.39 0.23 0.42
Mature (65 or older) 0.20 0.40 0.26 0.44 0.28 0.45 0.31 0.46
Family Life 0.49 0.50 0.42 0.49 0.45 0.50 0.37 0.48
Young (45 or younger) 0.31 0.46 0.32 0.47 0.27 0.44 0.33 0.47
Temperature (◦F) 84.88 12.85 84.85 12.85 84.89 12.85 84.95 12.85
Dew Point (◦F) 58.51 7.91 58.53 7.93 58.50 7.91 58.43 7.88
Number of households 242 189 152 196
Number of periods 8639 8639 8639 8639
Number of observations 2090638 1632771 1313128 1693244

Table 4.1. Descriptive Statistics for the Smart Meter Data. The control
group include households that have no access to the enabling technologies. Por-
tal means that the households have access to a website, IHD denotes in-home
display and PCT denotes “smart” programmable communicating thermostat.
Households in the IHD and PCT groups also had access to a website.

Treated households were then further randomized by received additional enabling technologies. All

treated households had access to a website (“web portal”) which exhibited information on their

electricity consumption and prices in real time. Our sample includes a group of 189 households

who were limited to the website as the only enabling technology.

The other households in the treatment group were randomly assigned to receive one of these two

additional enabling technologies: an in-home display (IHD) or a “smart” programmable com-

municating thermostat (PCT). An IHD is a small wireless tablet which displays information on

electricity usage and cost in real time and is typically placed in a highly visible place in the house,

e.g. kitchen. The PCT provides an interface that allows the customer to program and control the

air conditioning system and respond to future and current price events. It also offers the same

price and consumption information as displayed on the IHD screen. While a group of 152 house-

holds received in-home displays, another group of 196 customers received “smart” programmable

communicating thermostats.

The large scale RCT has a high degree of compliance among treated participants. Only a small

proportion participants (less than 4%) were switched to alternative treatments, largely due to
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problems installing the required technology. We restrict the sample to households who did not

change treatment status and whose electricity readings measured over 15-minute were consistently

recorded in the period between June and September. As shown in Table 4.1, we this leads to a

balanced panel of 6,729,781 observations with N = 779 and T = 8, 639. Since the majority of the

households had central AC, we focus only on these households in the analysis.

Only a limited number of observed covariates is available for the analysis. This is common in

this industry since utilities have very little information on the customers themselves. Demographic

information was collected from the Nielsen’s PRIZM R⃝ segmentation system.3 and allows us to

partition our sample by life stages and income. In Table 4.1, “young years” is designed to capture

younger households, under 45 years of age with no children. The “family life” segment captures

middle aged families with children. Households were also clustered by income into three groups:

low, middle and high. The high group includes households with income above $75,000 and the

middle income group captures households with income between $30,000 and $75,000. These types

of customer segmentations are rather insufficient to capture treatment heterogeneity and further

highlight the attractiveness of econometric approaches such as the one proposed in this paper to

overcome data limitations.

Due to confidentiality reasons we don’t have access to exact address information for these house-

holds. We do however know the zip codes in which the households reside and are thus able to

further augment our sample with zip-code specific temperature and humidity data from collected

from Weather Underground.

4.2. Model

Recall that each household was randomly assigned to either a treatment group or the control group.

Let g ∈ {0, 1, 2, 3} denote the groups, g = 0 denoting the control group, and g ∈ {1, 2, 3} denoting

households assigned to either Portal, IHD or PCT. Designate the households by i = 1, 2, . . . , Ng

and 15-minute intervals by t = 1, 2, . . . , T . Recall that only households with a continuous record of

electricity consumption over 96 (15 minutes) intervals per day and over roughly 90 days are included.

To explore the importance of heterogeneity of treatment effects, we consider the following dynamic

panel data model:

yigt = αig + λigyit−1 + δigdt(g) + x′
ig,tβig + f ′tγig + uigt, (4.1)

3PRIZM partitions the U.S. population into 66 types, or segments, aligned along two major dimensions,

life stages and income.
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where yigt is the natural logarithm of electricity usage for household i in group g ∈ {0, 1, 2, 3} during

the 15-minute interval t, and the associated vector of weather measurements xig,t = (xig,t,1, xig,t,2)
′

includes temperature and dew point. We note that xig,t is the same for all individuals in the same

location, irrespective of their group assignment. But the inclusion of fixed effects in the model

allows assignment of the treatment to depend on location-specific variables, xig,t. The variable

dt(g) indicates the treatment assignment g and it takes the value 1 if t is between 2 pm and 7 pm

during weekdays, and 0 otherwise. Our quantile treatment coefficients are identified by the time

variation associated with TOU pricing:

QYigt(τ |·) = αig(τ) + λig(τ)yit−1 + δig(τ)dt(g) + x′
ig,tβig,t(τ) + f ′tγig(τ), (4.2)

where QYigt(τ |·) is the τ -th conditional quantile function and δig(τ) is the quantile treatment effect

(QTE) of interest.

We estimate the model using our QMG estimator for each quantile τ and group g separately.

The estimator is implemented considering cross-sectional averages of the logarithm of electric-

ity usage, (ȳt, ȳt−1, . . . , ȳt−pT ), as well as cross-sectional averages of temperature and dew point,

(x̄1,t, . . . , x̄1,t−pT , x̄2,t, . . . , x̄2,t−pT ). Note that ȳt = N−1
∑

i,g yig,t, and x̄j,t = N−1
∑

i,g xj,ig,t, and

N =
∑3

g=0Ng. We follow the recommendations of the theory in Section 2 and set pT = 4.4 The

standard errors are estimated by the procedure described in Section 2.3 using q = 3, which al-

lows incorporating possible dependence across time in the estimation of the asymptotic covariance

matrix of the QMG estimator. We do not include controls for demographics in the main results

shown in the next section, but we explore heterogeneity of effects among consumers with different

observable characteristics (i.e., high vs. low income) in Section 4.4.

4.3. Main Empirical Results

Table 4.2 reports results for the coefficient λg(τ) = E(λig(τ)) and the QTE, δg(τ) = E(δig(τ)), for

the four groups: control group, portal, in-home display (IHD), and programmable communicating

thermostats (PCT). The last two columns present results obtained by using fixed effects (FE)

estimators which produces inconsistent results in dynamic heterogeneous panels, and the CCE

mean group (CCEMG) estimator as in Chudik and Pesaran (2015) that allows for heterogeneity

and interactive effects. The first five columns show the quantile regression version of the CCEMG

estimator, labeled QMG.

4We examine the sensitivity of results to the choice of pT in the online Supplement. See Section S.4.
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QMG FE CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Consumption at 0.464 0.573 0.616 0.477 0.353 0.623 0.474
t− 1 (in logs) (0.020) (0.021) (0.021) (0.020) (0.015) (0.001) (0.009)

Treatment 0.135 0.102 0.059 0.044 0.037 0.145 0.086
(2pm - 7pm) (0.009) (0.008) (0.006) (0.006) (0.006) (0.001) (0.020)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 242 242 242 242 242 242 242
N × T 2090638 2090638 2090638 2090638 2090638 2090638 2090638

Portal
Consumption at 0.468 0.586 0.628 0.484 0.360 0.622 0.487
t− 1 (in logs) (0.021) (0.023) (0.024) (0.022) (0.015) (0.001) (0.009)

Treatment 0.081 0.060 0.037 0.019 0.000 0.102 0.043
(2pm - 7pm) (0.012) (0.011) (0.009) (0.010) (0.013) (0.001) (0.019)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 189 189 189 189 189 189 189
N × T 1632771 1632771 1632771 1632771 1632771 1632771 1632771

IHD
Consumption at 0.469 0.578 0.612 0.473 0.352 0.627 0.478
t− 1 (in logs) (0.022) (0.025) (0.027) (0.025) (0.018) (0.001) (0.009)

Treatment 0.087 0.064 0.037 0.022 -0.004 0.089 0.040
(2pm - 7pm) (0.015) (0.012) (0.010) (0.008) (0.011) (0.002) (0.019)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 152 152 152 152 152 152 152
N × T 1313128 1313128 1313128 1313128 1313128 1313128 1313128

PCT
Consumption at 0.716 0.783 0.804 0.692 0.561 0.771 0.680
t− 1 (in logs) (0.024) (0.020) (0.019) (0.022) (0.021) (0.000) (0.007)

Treatment -0.081 -0.052 -0.027 -0.030 -0.037 -0.010 -0.067
(2pm - 7pm) (0.020) (0.015) (0.010) (0.010) (0.014) (0.001) (0.016)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 196 196 196 196 196 196 196
N × T 1693244 1693244 1693244 1693244 1693244 1693244 1693244

Table 4.2. Quantile Mean Group estimator results for the control group and
different technologies. FE denotes fixed effects and CCEMG denotes the Com-
mon Correlated Mean Group estimator due to Chudik and Pesaran (2015).
IHD denotes in-home display and PCT is programmable communicating ther-
mostats. Standard errors are in parentheses.
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It is important to note, that in absence of a rich set of covariates specific to the consumers, it

is important that the panel regressions contains unobserved effects that are different from time

dummies. For instance, homes can have different levels of insulation that lead to different electricity

usage when weather conditions experience sharp changes. We allow for consumer-specific common

effects by the availability of the data and the use of CCE type estimators.

The FE results tend to overestimate the effect of the lagged dependent variable and the treatment

effect, which is in line with the theoretical results obtained by Pesaran and Smith (1995) on the

inconsistency of the FE estimators for dynamic heterogenous panels even for N and T large panels

that we are considering here. Because these results are likely to be biased, we concentrate our

attention on the CCEMG estimates. The positive and significant coefficient for the control group

indicates that consumption increases by 9.0% from 2 pm to 7 pm when temperature is likely to be

high.5 However, TOU pricing scheme seem to reduce energy consumption since the other treatment

effects are smaller than 0.086. The table shows, however, that the technology adopted by households

crucially determines whether the households engage in some saving behavior. The coefficient for

Portal and IHD are positive and significant, and they suggest a smaller (relative to the control

group) 4% increase in energy use (although the differences might not be statistically significantly

different from zero). However, the effect for the households using PCT are negative and significant

relative to the other groups. The estimates show that smart thermostats are particularly effective

in enabling consumers to respond to TOU pricing. Households provided with a PCT achieve a

reduction of 6.5% when energy prices are high.

Households response, however, is not homogeneous across the quantiles of the conditional distri-

bution of electricity consumption. Among consumers with a PCT technology, we find the largest

energy saving in the lower tail of the conditional distribution, while the effect of TOU pricing is

weakly significant at the upper conditional quantile. When we examine the distributional effect

across households with Portal and IHD technologies, we find a similar pattern. The QTE decreases

in absolute value as we go across quantiles, changing from a significant effect at the 0.1 quantile to

an effect not significantly different than zero at the 0.9 quantile. The effect of using PCT continues

to be negative at the lower tail, and the effect of IHD is positive, although smaller than the estimate

for the control group. This is an interesting finding that has policy implications as it suggests that

consumers react to the price changes, but the IHD is substantially less effective than the PCT in

5The mean maximum daily temperature was 99◦F and the median was 103◦F. The months of July and

August were very similar and September was substantially cooler with mean temperatures of 88.6◦F.



38

0.2 0.4 0.6 0.8

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Control Group

τ

C
oe

ffi
ci

en
t E

st
im

at
e

Short Run Effect
Long Run Effect

0.2 0.4 0.6 0.8

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Portal

τ

C
oe

ffi
ci

en
t E

st
im

at
e

Short Run Effect
Long Run Effect

0.2 0.4 0.6 0.8

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

IHD

τ

C
oe

ffi
ci

en
t E

st
im

at
e

Short Run Effect
Long Run Effect

0.2 0.4 0.6 0.8

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
PCT

τ

C
oe

ffi
ci

en
t E

st
im

at
e

Short Run Effect
Long Run Effect

Figure 4.1. Short and Long Run Quantile Regression Results. The figure

shows the QTE coefficient δg(τ) for the control group, portal group, in-home-

device (IHD), and programmable communicating thermostats (PCT). The grey

area denotes a 95 percent point-wise confidence interval.

terms of energy savings. This might explain why in spite of the huge initial popularity of IHD

technologies they have failed to be adopted at scale.

Figure 4.1 offers a clear view of the main findings. The figure presents estimates of the QTE as

a function of the quantile τ of the conditional distribution of electricity consumption. We present
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estimates for the short run and long run effects for the three treatment and the control groups. The

continuous line show the QMG estimates of δg(τ) (impact effect) and the dashed line show QMG

estimates for θg(τ) = δg(τ)/(1 − λg(τ)) (long-run effect) which is estimated as discussed above.

The gray areas denote 95% point-wise confidence intervals.

We find that the estimates for the control group are smaller as compared to the estimates for the

treatment groups. This can be interpreted as suggesting that Portal and IHD reduce consumption

during periods of high electricity cost but these technologies do not seem to achieve a significant

energy reduction at any quantile. On the other hand, the profiles of QTE for the control group

and PCT group are clearly different, suggesting that smart thermostats are effective in allowing

households to respond to the increase in the price of electricity between 2 pm and 7 pm. Moreover, it

is interesting to see that the largest savings differentials in the short-run and long-run are estimated

at the lower tail of the conditional distribution, while these differentials are small at the 0.9 quantile.

The evidence indicates that households provided with a PCT can engage in considerable energy

savings in the long run and the impact of the enabling technology is greater at the 0.1 quantile of

the distribution of electricity consumption.

4.4. Responsiveness across Demographics

It is often important for policymakers to understand how the responsiveness to TOU pricing and

enabling technologies changes with household demographics. This section addresses this question

offering evidence on how consumers with different characteristics respond to TOU pricing. The

household characteristics are limited to age and income of the family.

We first turn our attention to estimating the QTE across different income levels. Table 4.3 is similar

to Table 4.2 although it shows separate results for high- and low-income families. As discussed

previously in Section 4.1, the high income group includes households with income above $75,000

and we combine the low and middle income groups to form a group of households with income

below $75,000. As expected, high income households in the control group consume more electricity

between 2 pm and 7 pm than low income households in the control group. The differential is fairly

constant across quantiles. It is very interesting to discover that the results for the other groups

are exactly the opposite: the coefficient estimates for high income consumers are smaller than

the coefficient estimates for low income consumers. This suggests that high income customers are

more successful in taking advantage of the existing information about price and consumption, and

consequently, engage in larger electricity savings. This may not be a pure behavioral effect and may
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
High Income Consumption at 0.468 0.580 0.621 0.490 0.367 0.482

t− 1 (in logs) (0.032) (0.035) (0.036) (0.034) (0.025) (0.009)
Treatment 0.143 0.118 0.069 0.054 0.042 0.097

(0.015) (0.013) (0.009) (0.008) (0.008) (0.017)
Low Income Consumption at 0.462 0.568 0.613 0.469 0.344 0.469

t− 1 (in logs) (0.025) (0.026) (0.026) (0.024) (0.018) (0.009)
Treatment 0.130 0.093 0.053 0.038 0.033 0.079

(0.012) (0.009) (0.007) (0.009) (0.008) (0.021)
Portal

High Income Consumption at 0.463 0.579 0.616 0.479 0.351 0.481
t− 1 (in logs) (0.029) (0.031) (0.033) (0.030) (0.020) (0.009)

Treatment 0.071 0.053 0.033 0.011 -0.010 0.033
(0.017) (0.017) (0.014) (0.017) (0.021) (0.019)

Low Income Consumption at 0.474 0.594 0.645 0.492 0.371 0.495
t− 1 (in logs) (0.030) (0.033) (0.035) (0.032) (0.024) (0.009)

Treatment 0.096 0.069 0.042 0.030 0.014 0.057
(0.020) (0.014) (0.011) (0.009) (0.011) (0.019)

IHD
High Income Consumption at 0.469 0.581 0.607 0.479 0.364 0.486

t− 1 (in logs) (0.032) (0.036) (0.038) (0.037) (0.025) (0.009)
Treatment 0.074 0.050 0.021 0.006 -0.026 0.018

(0.019) (0.019) (0.016) (0.014) (0.019) (0.022)
Low Income Consumption at 0.470 0.576 0.618 0.467 0.339 0.471

t− 1 (in logs) (0.031) (0.035) (0.038) (0.034) (0.027) (0.009)
Treatment 0.101 0.079 0.053 0.039 0.019 0.063

(0.022) (0.015) (0.011) (0.010) (0.011) (0.019)
PCT

High Income Consumption at 0.708 0.785 0.808 0.685 0.536 0.675
t− 1 (in logs) (0.033) (0.027) (0.024) (0.028) (0.026) (0.008)

Treatment -0.096 -0.064 -0.036 -0.042 -0.052 -0.080
(0.030) (0.023) (0.016) (0.017) (0.022) (0.015)

Low Income Consumption at 0.724 0.781 0.800 0.700 0.585 0.685
t− 1 (in logs) (0.036) (0.031) (0.029) (0.033) (0.032) (0.007)

Treatment -0.067 -0.041 -0.019 -0.017 -0.023 -0.055
(0.028) (0.021) (0.012) (0.011) (0.016) (0.016)

Table 4.3. Quantile Mean Group estimator results by Income Levels.
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Family years Consumption at 0.492 0.616 0.663 0.513 0.369 0.505

t− 1 (in logs) (0.028) (0.029) (0.030) (0.028) (0.021) (0.009)
Treatment 0.146 0.107 0.059 0.047 0.032 0.091

(0.013) (0.010) (0.007) (0.007) (0.008) (0.018)
Young years Consumption at 0.438 0.531 0.571 0.442 0.337 0.444

t− 1 (in logs) (0.029) (0.029) (0.030) (0.027) (0.020) (0.009)
Treatment 0.124 0.098 0.060 0.042 0.041 0.081

(0.013) (0.011) (0.009) (0.010) (0.008) (0.021)
Portal

Family years Consumption at 0.470 0.599 0.651 0.505 0.363 0.500
t− 1 (in logs) (0.033) (0.035) (0.036) (0.034) (0.024) (0.009)

Treatment 0.093 0.071 0.047 0.035 0.023 0.056
(0.019) (0.015) (0.011) (0.012) (0.013) (0.018)

Young years Consumption at 0.465 0.576 0.612 0.470 0.357 0.477
t− 1 (in logs) (0.027) (0.030) (0.032) (0.029) (0.020) (0.009)

Treatment 0.073 0.052 0.030 0.008 -0.016 0.034
(0.016) (0.016) (0.014) (0.016) (0.020) (0.020)

IHD
Family years Consumption at 0.507 0.644 0.693 0.538 0.384 0.534

t− 1 (in logs) (0.029) (0.030) (0.031) (0.032) (0.025) (0.009)
Treatment 0.068 0.049 0.026 0.012 -0.008 0.027

(0.023) (0.018) (0.012) (0.010) (0.016) (0.018)
Young years Consumption at 0.439 0.525 0.547 0.420 0.326 0.433

t− 1 (in logs) (0.032) (0.037) (0.040) (0.037) (0.026) (0.009)
Treatment 0.103 0.077 0.046 0.030 0.000 0.051

(0.021) (0.016) (0.014) (0.013) (0.015) (0.020)
PCT

Family years Consumption at 0.718 0.778 0.799 0.688 0.558 0.678
t− 1 (in logs) (0.037) (0.030) (0.026) (0.032) (0.032) (0.008)

Treatment -0.072 -0.045 -0.020 -0.020 -0.012 -0.052
(0.033) (0.024) (0.014) (0.016) (0.022) (0.015)

Young years Consumption at 0.715 0.786 0.807 0.695 0.563 0.682
t− 1 (in logs) (0.032) (0.029) (0.027) (0.030) (0.028) (0.007)

Treatment -0.087 -0.057 -0.032 -0.035 -0.052 -0.076
(0.025) (0.020) (0.013) (0.013) (0.018) (0.016)

Table 4.4. Quantile Mean Group estimator results by Family Stages.
CCEMG denotes the CCEMG denotes the Common Correlated Mean Group
estimator due to Chudik and Pesaran (2015). IHD denotes in-home display
and PCT is programmable communicating thermostats. Standard errors are in
parentheses.
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come from the fact that high income consumers have not only larger cooling systems but perhaps

also more sophisticated ones which can achieve higher savings. This is true for all quantiles and

groups. When we compare the evidence in Table 4.3 with the evidence presented in Table 4.2, we

find that the effect of PCT continues to be negative but it is now significant at the 0.9 quantile for

high income households and insignificant for low income households. Thus, high-income customers

who are conditionally consuming high levels of electricity reduce consumption by 5.1% relative to

other times of the day and by roughly 9.3% relative to the control group in the period 2 pm to 7

pm.

Lastly, we investigate how households at different life stages respond to TOU pricing and the

different technologies. In Table 4.4, the group called “family life” includes middle aged families

with children, while “other years” refers to younger households under 45 years of age and no

children and customers typically over 65 years of age. Again, as in the previous table, we see

considerable response heterogeneity by group demographics. For instance, we find larger energy

savings among families with no children who were provided a PCT, with the gains ranging from

3.1% at the 0.5 quantile to 8.3% at the 0.10 quantile. However, PCT does not seem to be an

effective technology for middle aged families at the upper quantiles of the conditional distribution

of electricity consumption.

4.5. A Counterfactual Exercise

In practice, regulators and electric utility managers must balance several concerns when implement-

ing dynamic pricing strategies. Considerations range from the peak price level, the variability of

prices over the course of the day, and the determination of days when the utility ought to increase

prices to critical peak levels (often several times the baseline off-peak price) in order to prevent

blackouts. These decisions are complex and it is important to base their conclusions on sound data

driven counterfactual simulations.

Models such as the one developed in this paper can play an important role in evaluating relevant

counterfactuals and allowing decision makers to choose optimal data driven strategies. While it is

beyond the scope of our paper to provide an in-depth exploration of the menu of strategies available

to a utility, we will briefly exemplify the process by evaluating a scenario where the utility decides

to execute the peak pricing option only if temperature exceeds a certain threshold. This is usually

coupled with further prediction models which may indicate that on days where the temperature is

high the risk of a blackout also increases substantially. Thus, while utilities have to avoid this very
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costly scenario, they also have to balance their responsibilities towards their consumers. Daily peak

prices may avoid blackouts, but will also cost consumers extra money and can lead to unhappy

customers, when the rationale for higher prices is decoupled from the risk of a blackout. Many

utilities have in fact opted to employ similar strategies in recent years which are commonly labeled

as “variable peak pricing”rates.

Using our model, we can explore a series of counterfactuals. We create a decision rule that deviated

from the actual policy, by only switching on the counterfactual policy if temperature exceeds a

certain threshold defined as percentiles of the temperature distribution. In this simplified example,

we consider actual temperature, though in the real world this strategy would be implemented

using a secondary prediction algorithms for the temperature a few days ahead. Thus, we contrast

counterfactual policies which are turned on if the temperature exceeds the 90th, 50th, and 25th

percentiles, respectively. To understand the rationale, we can imagine that reasoning behind turning

on the peak prices if temperature exceeds the 90th percentile is a way of explaining to consumers

that they will be subjected to higher prices only on very hot days where the risk of a blackout is

significantly greater than on a regular day.

For simplicity, we compare the baseline policy and counterfactual policies for customers with a PCT

and investigate the response heterogeneity by considering households at both the top 90th quantile

and bottom 10th quantile of the conditional usage distribution (Figure 4.2). Since in practice it

is often required to display results in terms of kWh load curves over the course of the day we do

so in the figures below for each policy while also reporting the percent change in electricity usage

relative to the actual baseline policy.

We see that the counterfactual policies reduce savings during the peak hours as a function of the

threshold at which they are implemented. The reductions are, however, relatively minor indicating

that there may be a gain in efficiency from targeting only the hottest days (which is consistent with

current practice by many utilities). Less strict counterfactuals also result in lower levels of off-peak

load shifting during the evening and night hours.

5. Conclusions

In this paper, we extend the Common Correlated Effects (CCE) approach of Pesaran (2006) and

Chudik and Pesaran (2015) to the estimation and inference of dynamic panel quantile regression

models with interactive effects. We propose a new quantile estimator and show that it is consistent

and asymptotically normal under standard regularity conditions in the quantile and dynamic linear
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Figure 4.2. Counterfactual policies for customers with a PCT. The right

panels show the percentage change in electricity usage with respect to the actual

policy.

panel literatures. We require, however, a larger T/N for inference as compared to the standard

CCEMG estimators developed for linear panel data models. An important condition is that the

individual models need to be augmented by a sufficiently large number of lagged cross section
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averages that proxy the unobserved common effects. We also show that the approach offers good

finite sample performance in the class of dynamic quantile regression estimators, as long as the time

series dimension of the panel is large. Lastly, we demonstrate how the approach can be used in

practice by documenting how the use of different technologies that allow consumers to be informed

about electricity prices and consumption are associated with energy savings. Using data from a

large scale randomized experiment that contains more than 6 million observations, we semipara-

metrically estimate a dynamic equation for electricity consumption with slope heterogeneity and

cross-sectional dependence. The results offer several new insights useful for policy, while illustrating

that the average effect does not summarize the distributional effect of the technologies.

Several directions remain to be investigated. Inference procedures are proposed but they require

a detailed investigation in the case of long run effects. Moreover, although T is relatively large

in our empirical application, offering an estimation approach that helps to reduce potential biases

in short T applications seems of fundamental importance. A bias-corrected mean quantile group

estimator is being investigated for the case of heterogeneous quantile coefficients following closely

the approach developed in Chudik and Pesaran (2015).
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Appendix A. Mathematical Proofs

A.1. Notations and Definitions

The proofs make use of Knight’s (1998) identity: ρτ (u− v)− ρτ (u) = −vψτ +
∫ v
0 (I(v ≤ s)− I(v ≤

0))ds, where ρτ = u(τ−I(u ≤ 0)) is the quantile regression check function and ψτ (u) = τ−I(u ≤ 0)

is the quantile influence function.

Throughout this appendix, we omit, at times, τ in πi(τ) for notational simplicity. Recall that

πi := (λi,β
′
i, αi, δ

′
i)
′ where δi := (δ′i1, δ

′
i2, . . . , δ

′
ipT

)′. We denote the dimension of the vector πi by

p = (2 + px) + (1 + pT )(1 + px). Also Xit = (yit−1,x
′
it, 1, z̄

′
t, z̄

′
t−1, ..., z̄

′
t−pT )

′ and z̄t := (ȳt, x̄
′
t)
′. We

define ∆i(πi) = Mi(πi)−Mi(πi0) and

Mi(πi) :=
1

T − pT

T∑
t=1+pT

ρτ
(
yit −X′

itπi
)
, Mi(πi0) :=

1

T − pT

T∑
t=1+pT

ρτ
(
yit −X′

itπi0
)
,

Hi(πi) :=
1

T − pT

T∑
t=1+pT

ψτ
(
yit −X′

itπi
)
Xit, Hi(πi) := E(Hi(πi)) = E [τ −Gi(·|Xit)] ,
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Ji :=
∂Hi(πi)

∂πi
= E

[
gi(0|Xit)XitX

′
it

]
.

We define the two conditional quantile functions:

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) + f ′tγi(τ) + uit(τ) (A.1)

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ) + eit(τ), (A.2)

where eit(τ) = uit(τ) +
∑∞

l=pT+1 z̄
′
t−lδil(τ) + Op(N

−1/2). See (2.17) and (2.18). Let Wit =

(yit−1,x
′
it, 1, f

′
t)

′ and recall that Xit = (yit−1,x
′
it, z̈

′
t)
′, where z̈t = (1, z̄′t, z̄

′
t−1, ..., z̄

′
t−pT )

′ with pT

sufficiently large. For any value y, y−1, x, f , and α, we define,

Q(W, λ,β, α,γ, τ) := E(ρτ (y − λy−1 − x′β − α− f ′γ)W) (A.3)

Q(X, λ,β, α, δ, τ) := E

[
ρτ

(
y − λy−1 − x′β − α−

pT∑
l=0

z̄′−lδl

)
X

]
. (A.4)

A.2. Proofs

Proof of Theorem 1. We first show that (λ,β′, α,γ ′) uniquely solve the quantile regression prob-

lem for all τ in the limit (i.e., as N,T → ∞), which implies that the quantile score function can be

set to zero. For that, we define:

Π(λ,β, α,γ) := E
[
Wψτ (y − λy−1 − x′β − α− f ′tγ)

]
J(λ,β, α,γ) :=

∂

∂(λ,β′, α,γ ′)
Π(λ,β, α,γ).

Our argument proceeds as follows. We first show that (λ,β′, α,γ ′) is the unique solution of the quan-

tile regression minimization problem that includes the true factors. We then show that (λ,β′, α, δ′)

is the unique solution of the quantile regression minimization problem that includes cross-sectional

averages to approximate the true factors. Finally, we show that (λ,β′) is the unique solution of

both minimization problems.

The uniqueness of (λ,β′, α,γ ′) can be shown using similar arguments as in Chernozhukov and

Hansen (2006, Theorem 2). Under Assumption 8, J(λ,β, α,γ) is continuous in (λ,β′, α,γ ′) and

has full rank. The image of the space that includes all possible solutions of Π(λ,β, α,γ) = 0,

contained in the interior of Λ×B ×A× G, is assumed to be simply connected under the mapping

(λ,β′, α,γ ′) 7→ Π(λ,β, α,γ). By the Monodromy Theorem 1.8 in Ambrosetti and Prodi (1993, p.

47), the mapping Π(λ,β, α,γ) is one-to-one (homeomorphism) from Λ×B×A×G to Π(Λ,B,A,G).
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Therefore, the true parameters (λ,β′, α,γ ′) uniquely solve Π(λ,β, α,γ) = 0. Denote the unique

solution of Π(λ,β, α,γ) = 0 by (λ∗,β∗, α∗,γ∗).

We now show the uniqueness of (λ,β′, α, δ′). Let

Π̃(λ,β, α, δ) := E

[
Xψτ

(
y − λy−1 − x′β − α−

pT∑
l=0

z̄′t−lδil

)]

J̃(λ,β, α, δ) =
∂

∂(λ,β′, α, δ′)
Π̃(λ,β, α, δ).

The matrix J̃ is continuous on (λ,β′, α, δ′) and has full rank under Assumption 8. The image of

Λ×B×A×D under the mapping (λ,β′, α, δ′) 7→ Π̃(λ,β, α, δ) is assumed to be simply connected.

By Theorem 1.8 in Ambrosetti and Prodi (1993), the mapping Π̃(λ,β, α, δ) is one-to-one between

Λ×B×A×D and Π̃(Λ,B,A,D), the image of Λ×B×A×D under Π̃(λ,β, α, δ). Therefore, the

parameter (λ,β′, α, δ′) is the unique solution of Π̃(λ,β, α, δ) = 0. Denote the unique solution of

Π̃(λ,β, α, δ) = 0 by (λ†,β†, α†, δ†). Note that the number of parameters depends on pT , but we

supress this dependence for simplicity.

We now show that (λ,β′) in equation (A.1) can be identified from equation (A.2). Because f =

G(L)z̄+ Op(N
−1/2) (recall that we have set f0 = 0; see Remark 1 in Section 2.1), we can express

the latent factors as (see equation (2.15)),

f =

∞∑
l=0

G′
lz̄−l +Op(N

−1/2) = G′
0z̄+G′

1z̄−1 + . . .+Op(N
−1/2)

= Hż+ η +Op(N
−1/2),

where H is a r × (1 + px)(pT + 1) matrix of reduced form coefficients, ż = (z̄′, z̄′−1, . . . , z̄
′
−pT )

′ is a

(1 + px)(pT + 1)× 1 vector of cross-sectional averages, and η =
∑∞

l=pT+1G
′
lz̄−l. Solving for ż and

letting Ḣ = (H′H)−1H′, we obtain, ż = Ḣ(f − η) +Op(N
−1/2). Without loss of generality, we set

pT to be sufficiently large such that, under Assumption 5, we have that:∥∥∥∥∥∥
∞∑

l=pT+1

G′
lz̄−l

∥∥∥∥∥∥ ≤ KρpT
∞∑
l=1

∥∥∥ρlz̄−(pT+l)

∥∥∥ .
Note also that for each 1 ≤ i ≤ N , as in equation (A.18) in Chudik and Pesaran (2015), ηi =

{
∑∞

l=pT+1 δ
′
ilz̄pT+1−l,

∑∞
l=pT+1 δ

′
ilz̄pT+2−l, . . .}. By Lemma A.4 in Chudik and Pesaran (2015), Ḣη
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becomes asymptotically negligible as N,T → ∞. We can therefore write,
1 0 0 0

0 Ipx 0 0

0 0 1 0

0 0 0 Ḣ



y−1

x

1

f

 =


y−1

x

1

ż

+


0

0

0

f −G(L)z̄

 ,

Moreover, by (A.19) in Lemma A.4 in Chudik and Pesaran (2015), the second term on the right

hand side is asymptotically negligible. Therefore, for sufficiently large N and T , we can write

ΨW = X, where W = (y−1,x
′, 1, f ′)′, X = (y−1,x

′, 1, ż′)′, and

Ψ =


1 0 0 0

0 Ipx 0 0

0 0 1 0

0 0 0 Ḣ

 .

The matrix Ψ is invertible by Assumptions 5 and 6 (exponentially decaying coefficients and full

rank condition of the matrix C).

Also, under Assumption 5 for sufficiently large pT , it follows that,

E

[
ψτ

(
y − λy−1 − x′β − α−

pT∑
l=0

δ′lz̄−l

)]
= E

(
ψτ
(
y − λy−1 − x′β − α− γ ′G(L)z̄

))
.

Therefore, the quantile regression problem can be written as

Π̃(λ,β, α, δ) = E

(
Xψτ

(
y − λy−1 − x′β − α−

pT∑
l=0

z̄′t−lδil

))
= E

(
Xψτ

(
y − λy−1 − x′β − α− γ ′G(L)z̄

))
= E

(
ΨWψτ

(
y − λy−1 − x′β − α− f ′γ

))
= ΨE

(
Wψτ

(
y − λy−1 − x′β − α− f ′γ

))
= ΨΠ(λ,β, α,γ) = 0.

It follows that Π̃(λ∗,β∗, α∗, δ∗) = ΨΠ(λ†,β†, α†,γ†) = ΨΠ(λ∗,β∗, α†,γ†) because λ∗ = λ† and

β∗ = β†. We show this result by contradiction. Suppose now that there are not equal, i.e. λ∗ ̸= λ†

and β∗ ̸= β†. We now have,

Π̃(λ∗,β∗, α∗, δ∗) = 0 = ΨΠ(λ∗,β∗, α†,γ†).

Therefore,Π(λ∗,β∗, α†,γ†) = Ψ−10 = 0, which is a contradiction to the uniqueness of (λ†,β†, α†,γ†).

Therefore, λ∗ = λ† and β∗ = β†, and the parameter of interest ϑ(τ) = (λ(τ),β(τ)′)′ is uniquely

identified for all τ . �
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Proof of Theorem 2. The proof is divided in two parts. First, we show that the estimated factors

are uniformly consistent for i = 1, . . . , N and the limiting problem corresponding to the model with

augmented cross-sectional averages is E(ρτ (yit−αi−λiyit−1−x′
itβi− f ′tγi)). Given the consistency

of the approach, the second part of the proof establishes consistency of the reduced form coefficients,

π̂i(τ), for all τ .

[Part 1: Consistency of estimated factors] To show the uniform consistency of the estimator of the

factor ft in a quantile regression setting, we first note that

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ) + eit(τ)

= αi(τ) + λi(τ)yit−1 + x′
itβi(τ) +

pT∑
l=0

z̄′t−lδil(τ) +
∞∑

l=pT+1

z̄′t−lδil(τ) +Op(N
−1/2) + uit(τ).

Let
∑∞

l=0 z̄
′
t−lδ̄il(τ) = γ ′

i(τ)Ḡ(L)z̄t which is obtained by a sample of sizeN . Similarly,
∑pT

l=0 z̄
′
t−lδ̄il(τ)

is constructed with a sample of size N . Recall that γ ′
i(τ)(ft −G(L)z̄t) = Op(N

−1/2), and, under

Assumptions 5 and 9: ∥∥∥∥∥∥
∞∑

l=pT+1

z̄′−lδil(τ)

∥∥∥∥∥∥ ≤ KρpT
∞∑
l=1

∥∥∥ρlz̄−(pT+l)

∥∥∥ ,
which is asymptotically negligible under (N,T, pT ) → ∞. Therefore, we can write the last equation

as

yit = αi(τ) + λi(τ)yit−1 + x′
itβi(τ) + f ′tγi(τ) + ϕit(τ) + uit(τ).

where ϕit(τ) = γ ′
i(τ)(Ḡ(L)−G(L))z̄t. Define for each i,

Q∞(τ, α, λ,β,γ) = E(ρτ (yit − αi − λiyit−1 − x′
itβi − f ′tγi))

QT (τ, α, λ,β,γ) =
1

T

T∑
t=1

ρτ (yit − αi − λiyit−1 − x′
itβi − f ′tγi)

Q̂T (τ, α, λ,β,γ) =
1

T

T∑
t=1

ρτ (yit − αi − λiyit−1 − x′
itβi − f ′tγi − ϕit).

We show the result in two steps. First, we prove that QT (τ, α, λ,β,γ) converges uniformly to

Q∞(τ, α, λ,β,γ) in (α, λ,β,γ) and τ . Second, we show that Q̂T (τ, α, λ,β,γ) converges uniformly

to QT (τ, α, λ,β,γ) in (α, λ,β,γ) and τ . It follows then that argmin Q̂T (τ, α, λ,β,γ) converges to

argmin Q̂∞(τ, α, λ,β,γ).
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[Part 1: Step 1 ] The first step is to show that

sup
τ,α,λ,β,γ

|QT (τ, α, λ,β,γ)−Q∞(τ, α, λ,β,γ)| = op(1). (A.5)

Note that (α, λ,β,γ) 7→ ρτ (y − α− λy−1 − β′x− γ ′f) is continuous for y, x and f . Moreover, the

dominating function corresponding to the quantile regression check function exists under Assump-

tions 9 and 10 and it is equal to ρτ (y−α−λy−1−β′x−γ ′f) ≤ K(|α|+ |λ||y−1|+∥x∥∥β∥+∥γ∥∥f∥).
Then, using an extended version of Lemma 2.4 in Newey and McFadden (1994) for stationary pro-

cesses, we can conclude that (A.5) holds (see footnote 18 to Lemma 2.4 of Newey and McFadden

(1994)).

[Part 1: Step 2 ] The second part of the proof uses a version of Knight’s (1998) inequality: |ρτ (u−
v)− ρτ (u)| ≤ 3|v|. Letting u := y − α− λy−1 − x′β − f ′γ and v := ϕ = γ ′(τ)(Ḡ(L)−G(L))z̄, we

have∣∣∣Q̂T (τ, ·)−QT (τ, ·)
∣∣∣ = ∣∣∣∣∣ 1T

T∑
t=1

ρτ (uit − ϕit)− ρτ (uit)

∣∣∣∣∣ ≤ K
1

T

T∑
t=1

∣∣γ ′
i(τ)(Ḡ(L)−G(L))z̄t

∣∣ .
Since G(L) =

∑∞
l=0GlL

l and, Ḡ(L) =
∑∞

l=0 ḠlL
l, then

1

T

T∑
t=1

|γ ′
i(τ)(Ḡ(L)−G(L))z̄t| ≤ sup

i,t,τ
∥γ ′

i(τ)(Ḡ(L)−G(L))z̄t∥ = op(1),

by Lemma 1 as long as p3T /T → 0, and (log(N))2/T → 0, as N and T → ∞, jointly. Therefore,

overall we have,

sup
(τ,α,λ,β,γ)

∣∣∣Q̂T (τ, α, λ,β,γ)−QT (τ, α, λ,β,γ)
∣∣∣ = op(1),

leading to the desired result for each τ .

[Part 2: Consistency of reduced form coefficients] For each η > 0, define the ball Bi(η) := {πi :
∥πi − πi0∥1 ≤ η} and the boundary ∂Bi(η) := {πi : ∥πi − πi0∥1 = η}. For each πi ̸∈ Bi(η), define
π̄i = riπi+ (1− ri)πi0, where ri = η/∥πi−πi0∥. Note that π̄i is in the boundary ∂Bi(η). Because
the objective function is convex,

ri (Mi(πi)−Mi(πi0)) ≥ Mi(π̄i)−Mi(πi0) = Mi(π̄i) = E(∆i(π̄i)) + (Mi(π̄i)− E(∆i(π̄i))) , (A.6)

Note thatMi(πi0) is naturally equal to zero by definition and that E(∆i(π̄i)) ≥ ϵη for all 1 ≤ i ≤ N .

Consider now ∥π̂i − πi0∥1 > η which implies that π̂i ̸∈ Bi(η) for all 1 ≤ i ≤ N . It follows that

Mi(π̂i) ≤ Mi(πi0) for some 1 ≤ i ≤ N by definition of π̂i = argmin{Mi(πi)}, which is equivalent

to (2.20).
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Note that π̂i ̸∈ Bi(η) implies M(π̂i) ≤ 0 by definition. Thus, by equation (A.6), the following

inclusion relationships are true:{
max
1≤i≤N

∥π̂i − πi0∥1 > η

}
⊆ {M(πi) ≤ 0,∃πi ̸∈ Bi(η)} ⊆

N∪
i=1

{
sup

πi∈Bi(η)
|∆i(πi)− E(∆i(πi))| ≥ ϵη

}
.

It follows that,

P

{
max
1≤i≤N

∥π̂i − πi0∥1 > η

}
≤ N max

1≤i≤N
P

{
sup

πi∈Bi(η)
|∆i(πi)− E(∆i(πi))| ≥ ϵη

}
.

We therefore need to show that

max
1≤i≤N

P

{
sup

πi∈Bi(η)
|∆i(πi)− E(∆i(πi))| ≥ ϵη

}
= o(N−1), (A.7)

which is similar to equation (A.3) in Kato, Galvao and Montes-Rojas (2012) and equation (15) in

Galvao and Wang (2015). Recall that as N → ∞, automatically T → ∞ too.

Without loss of generality, we restrict all the balls Bi(η) to be equal to B(η) by setting πi0 = 0.

Thus, Bi(η) = B(η) for all 1 ≤ i ≤ N . We then suppress the subscript i for simplicity. Let

gπ(u,X) = ρτ (u −X′π) − ρτ (u). We observe that |gπ(u,X) − gπ̄(u,X)| ≤ C(1 +M)(∥π − π̄∥1),
for some universal constant C. Since B(η) is a compact subset in Rp, ∃K ℓ1 balls with center π(j)

and radius ϵ/3κ where κ := C(1 +M).

For each π ∈ B(η), there is j ∈ {1, ...,K} such that,

|∆(π)− E(∆(π))| ≤ |∆(π(j))− E(∆(π(j)))|+ 2ϵ

3
. (A.8)

The last inequality follows by a property of gπ(u,X). Notice that,

|∆(π)− E(∆(π))| − |∆(π(j))− E(∆(π(j)))| ≤ |∆(π)− E(∆(π))−∆(π(j)) + E(∆(π(j)))|

≤ |∆(π)− E(∆(π))|+ |∆(π(j)) + E(∆(π(j)))|

≤ C(1 +M)
ϵ

3κ
+ C(1 +M)

ϵ

3κ
=

2

3
ϵ.

Therefore, following (A.8), we write,

P

(
sup

π∈B(η)
|∆(π)− E(∆(π))| > ϵ

)
≤

K∑
j=1

P

(
|∆(π(j))− E(∆(π(j)))|+ 2

3
ϵ > ϵ

)

=

K∑
j=1

P
(
|∆(π(j))− E(∆(π(j)))| > ϵ

3

)
.
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For each j ∈ {1, ...,K}, we note that |∆(π(j))−E(∆(π(j)))| satisfies the conditions of Lemma 2 in

Section A.3. Taking s = 2 log(N) and q = [
√
T ] and using the fact that log(N)/

√
T → 0,

P
(
|∆(π(j))− E(∆(π(j)))|

)
≤ const×

(
exp{−2 log(N)}+

√
TBa[

√
T ]
)
,

where the constants a ∈ (0, 1) and B > 0 (Assumption 9). Therefore,

P

{
sup

πi∈Bi(η)
|∆i(πi)− E(∆i(πi))| > ϵη

}
≤ K × const×

(
exp{−2 log(N)}+

√
TBa[

√
T ]
)
. (A.9)

Because by assumption (log(N))2/T → 0, the right hand side of equation (A.9) is o(N−1) which

leads to the weak consistency result. �

Proof of Theorem 3. Under the stated assumptions, the results follows directly from Theorem

2. By definition, ϑ̂(τ) = N−1
∑N

i=1 ϑ̂i(τ). Thus,

ϑ̂(τ)− ϑ(τ) =
1

N

N∑
i=1

ϑ̂i(τ)− ϑ(τ) =
1

N

N∑
i=1

(
ϑ̂i(τ)− ϑ(τ)

)

=
1

N

N∑
i=1

Ξi ◦ (π̂i(τ)− πi(τ)) +
1

N

N∑
i=1

Ξi ◦ (πi(τ)− π(τ)) = op(1),

The first term converges in probability to zero as established in Theorem 2 and the last equality

follows by Assumption 5. �

Proof of Theorem 4. By definition, as in Theorem 3, we have

ϑ̂(τ)− ϑ(τ) =
1

N

N∑
i=1

(ϑ̂i(τ)− ϑ(τ)) =
1

N

N∑
i=1

((ϑ̂i(τ)− ϑi(τ)) + (ϑi(τ)− ϑ(τ)))

=
1

N

N∑
i=1

Ξi ◦ ((π̂i(τ)− πi(τ)) + (πi(τ)− π(τ)))

It follows that,

√
N
(
ϑ̂(τ)− ϑ(τ)

)
=

√
N

N

N∑
i=1

Ξi ◦ (π̂i(τ)− πi(τ)) +

√
N

N

N∑
i=1

Ξi ◦ (πi(τ)− π(τ)). (A.10)

We now obtain the asymptotic representation of π̂i(τ)− πi(τ) following closely Galvao and Wang

(2015). We use an expansion of Hi(π̂i) = E(Hi(π̂i)) around πi0 to obtain,

Hi(π̂i) = Hi(πi0) + Ji(π̂i(τ)− πi0(τ)) +Op
[
(π̂i(τ)− πi0(τ))

2
]
,



55

where Ji := ∂Hi(πi)/∂πi0 = E(gi(0|Xit)XitX
′
it)). Basic manipulations lead to:

π̂i(τ)− πi0(τ) = J−1
i

(
Hi(π̂i)−Hi(πi0) +Op

[
(π̂i(τ)− πi0(τ))

2
]

= −J−1
i Hi(πi0)− J−1

i (Hi(π̂i)−Hi(πi0))− J−1
i (Hi(π̂i)−Hi(πi0))

+J−1
i (Hi(π̂i)) + J−1

i Op
[
(π̂i(τ)− πi0(τ))

2
]

= −J−1
i Hi(πi0)− J−1

i [(Hi(π̂i)−Hi(πi0))− (Hi(π̂i)−Hi(πi0))]

+J−1
i (Hi(π̂i)) + J−1

i Op
[
(π̂i(τ)− πi0(τ))

2
]
.

For fixed N , the second term in the last expression is op(1). In the case of panel data with individ-

ual parameters, we need to find the order of max1≤i≤N [(Hi(π̂i)−Hi(πi0))− (Hi(π̂i)−Hi(πi0))].

Lemma 3 in Section A.3 establishes that order. Moreover, by the computational property of quantile

regression, Hi(π̂i(τ)) = Op(T
−1). Therefore, for each 1 ≤ i ≤ N , we have

π̂i(τ)− πi0(τ) = −J−1
i Hi(πi0) +Op(dN ) +Op(T

−1) + J−1
i Op

[
(π̂i(τ)− πi0(τ))

2
]
, (A.11)

where dN := T−(1−c) log(N)∨T−1/2δ
1/2
N (log(N))1/2 and δN =

√
log(N)/T when | log(δN )| ≍ log(N)

as in Theorem 5.1 in Kato, Galvao, and Montes-Rojas (2012). Substituting equation (A.11) in

equation (A.10), after basic simplifications, we obtain

√
N
(
ϑ̂(τ)− ϑ(τ)

)
=

1√
N

N∑
i=1

Ξi ◦ J−1
i

 1

T − pT

T∑
t=1+pT

ψτ (yit −X′
itπi0)Xit

+
√
NO(dN )

+
1√
N

N∑
i=1

Ξi ◦ (πi(τ)− π(τ)). (A.12)

The second term is Op(N
1/2dN ). Using the dN rate implied by Lemma 3 for a sufficiently small

c provided that p3T /T → 0, we have that N1/2dN = N1/2 log(N)1/4T−1/4 log(N)1/2. Therefore, if

N2/3 log(N)/T → 0, the second term is asymptotically negligible.

By standard arguments, as N and T tends to infinity under the conditions on pT and the relative

rate of N and T ,
√
N
(
ϑ̂(τ)− ϑ(τ)

)
d−→ N (0,Vv). �

Proof of Theorem 5. If ϑi(τ) = ϑ(τ) for 1 ≤ i ≤ N , equation (A.10) can be written as

ϑ̂(τ)− ϑ(τ) =
1

N

N∑
i=1

Ξi ◦ (π̂i(τ)− π(τ)) . (A.13)

As in Theorem 4, for each 1 ≤ i ≤ N , we have

π̂i(τ)− π(τ) = −J−1
i Hi(π0) +O(dN ) +O(T−1) + J−1

i Op
(
(π̂i(τ)− πi(τ))

2
)
, (A.14)
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Substituting, after basic simplifications, we obtain

√
NT

(
ϑ̂(τ)− ϑ(τ)

)
=

√
NT

N(T − pT )

N∑
i=1

Ξi ◦ J−1
i

T∑
t=1+pT

ψτ (yit −X′
itπ0)Xit +

√
TNO(dN ). (A.15)

The second term is Op((NT )
1/2dN ). Using the where dN := T−(1−c) log(N)∨T−1/2δ

1/2
N (log(N))1/2

and δN =
√
log(N)/T when | log(δN )| ≍ log(N) implied by Lemma 2, for a sufficiently small c

provided that p3T /T → 0, we have that (NT )1/2dN = N1/2 log(N)1/4T−1/4 log(N)1/2. Therefore, if

N2(log(N))3/T → 0, ∥ϑ̂(τ)−ϑ(τ)∥ = Op((NT )
−1/2) if the last term is of the same other than the

first term in the expression. Therefore, as N and T tends to infinity under the conditions on pT

and the relative rate of N and T ,
√
NT

(
ϑ̂(τ)− ϑ(τ)

)
d−→ N (0,Vψ).

�

A.3. Lemmas

In recent years, there has been considerable progress on establishing the rate of the remainder

terms of the Bahadur representation of the quantile regression estimator. The next three lemmas

are used in the proofs of Theorems 2, 3, and 4.

Lemma 1. Under Assumptions 1-11, as N , T and pT go jointly to infinity with p3T /T → 0 and

(log(N))2/T → 0, supi,t,τ ∥γ ′
i(τ)(Ḡ(L)−G(L))z̄t∥

p−→ 0.

Proof. The proof is similar to Lemma A.7 in Chudik and Pesaran (2013). As in part 1 of Theorem

2, we define
∑∞

l=0 z̄
′
t−lδil(τ) = γ ′

i(τ)G(L)z̄t and
∑∞

l=0 z̄
′
t−lδ̄il(τ) = γ ′

i(τ)Ḡ(L)z̄t, which is obtained

with a sample of size N . It follows that,

∥∥γ ′
i(τ)(Ḡ(L)−G(L))z̄t

∥∥
∞ ≤

∞∑
l=0

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞ =

pT∑
l=0

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞

+
∞∑

l=pT+1

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞

≤
pT∑
l=0

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞ +

∞∑
l=pT+1

(
∥δ̄′il(τ)z̄t−l∥+ ∥δ′il(τ)z̄t−l∥

)
≤

pT∑
l=0

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞ + 2KρpT

∞∑
l=pT+1

∥z̄t−lρl∥. (A.16)
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The last inequality holds by Assumption 5, and∥∥∥∥∥∥
∞∑

l=pT+1

z̄′t−lδil(τ)

∥∥∥∥∥∥ ≤ KρpT
∞∑
l=1

∥∥∥z̄−(pT+l)ρ
l
∥∥∥ ,

implied by Lemma A.4. (result (A.18)) in Chudik and Pesaran (2015). The first term on the right

hand side of equation (A.16),

pT∑
l=0

∥∥(δ̄il(τ)− δil(τ))
′z̄t−l

∥∥
∞ ≤

pT∑
l=0

∥δ̄il(τ)− δil(τ)∥∞ ∥z̄t−l∥∞ ≤
pT∑
l=0

∥δ̄il(τ)− δil(τ)∥∞ ∥z̄t−l∥

=

pT∑
l=0

max
1≤j≤px+1

|δ̄ij,l(τ)− δij,l(τ)| ∥z̄t−l∥

≤ KpT max
1≤j≤px+1

|δ̄ij,l(τ)− δij,l(τ)|,

which holds by Assumption 10. Note that z̄t is bounded because the cross-sectional average of

yit and xit are bounded. On the other hand, the coefficients δij,l decay exponentially in l, which

follows by Assumption 5 and Lemma A.1 in Chudik and Pesaran (2013).

For fixed N , the quantile regression estimator is
√
T -consistent. In panel data, by Lemma 8 in

Galvao and Wang (2015), we have that maxj |δ̄ij,l(τ)− δij,l(τ)| = Op(
√
log(N)/T ) (see also Kato,

Galvao and Montes Rojas (2012) and Lemma 3 below). Therefore,

∥∥γ ′
i(τ)(Ḡ(L)−G(L))z̄t

∥∥
∞ ≤ K

pT√
T

√
log(N) + 2KρpT

∞∑
l=pT+1

∥z̄t−lρl∥

If p4T /T → c for a constant 0 < c <∞ and log(N)2/T → 0, we have that ∥γ ′
i(τ)(Ḡ(L)−G(L))z̄t∥∞

converges to zero in L1 norm which implies convergence in probability to zero. Because T is

required to grow faster in panel quantiles than in linear models, we require that p3T /T → 0, which

is a sufficient condition for convergence in probability to zero and is similar to the condition in

Chudik and Pesaran (2013) and Chudik and Pesaran (2015), which requires p3T /T → c where

0 < c <∞. �

Lemma 2 (Corollary C.1, Kato et al. (2012)). Let f be a function on S, a Polish space, and let

{ξt : t ≥ 1} be a stationary process taking values in a measurable space (S,K). Assume that K is

a Borel σ-field. Let supξ∈S |f(ξt)| ≤ U for some constant U and E(f(ξt)) = 0. Take q ∈ [1, T/2].

Then,

P

(
|
T∑
t=1

f(ξt)| ≥ const×
{√

(s ∨ 1)Tσq(f) + sqU
})

≤ 2e−s + 2rβ(q),
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where r := [T/2q], β(·) denote mixing coefficients of the {ξt} process, and

σq(f) := Var(f(ξt)) + 2

q−1∑
j=1

(1− j/q)Cov(f(ξ1), f(ξ1+j)).

Lemma 3. Under regularity conditions 9-12, for any c ∈ (0, 1) and δN such that | log(δN )| ≍
log(N),

max
1≤i≤N

{[Hi(π̂i)−Hi(πi0)]− [Hi(π̂i)−Hi(πi0)]} = Op(T
−(1−c) log(N) ∨ T−1/2δ

1/2
N (log(N))1/2),

and max1≤i≤N ∥π̂i(τ)− πi(τ)∥ = Op(
√

log(N)/T ).

Proof. Without loss of generality, we assume that πi0 = 0 for all 1 ≤ i ≤ N . We then write

Hi(π̂i)−Hi(πi0) as

Hi(π̂i)−Hi(0) =
1

T − pT

T∑
t=1+pT

(
ψτ (yit −X′

itπ̂i)Xit − ψτ (yit)Xit

)
= − 1

T − pT

T∑
t=1+pT

(
I(yit ≤ X′

itπ̂i)− I(yit ≤ 0)
)
Xit

= − 1

T − pT

T∑
t=1+pT

(
I(uit ≤ X′

itπ̂i)− I(uit ≤ 0)
)
Xit =

1

T − pT

T∑
t=1+pT

Gπ̂i
(X∗

it) ,

where Gπi (X
∗
it) = Gπi ((uit,Xit) = (I(uit ≤ X′

itπi)− I(uit ≤ 0))Xit. The third equality follows

because πi0 = 0, which implies that γi0 = 0 for 1 ≤ i ≤ N , and consequently, yit = X′
itπi0 + eit =

uit + γ ′
i0(ft −G(L)z̄t) +

∑∞
l=pT+1 z̄

′
tδil = uit.

Pick a c ∈ (0, 1) and let dN := T−1+c| log(δN )| ∨ T−1/2δ
1/2
N | log(δN )|1/2. We need to show that

max
1≤i≤N

{
T∑
t=1

(Gπ̂i
(X∗

it)− E (Gπ̂i
(X∗

it)))

}
= Op((T − pT )dN )

= Op((T − pT )(T
−1+c log(N) ∨ T−1/2δ

1/2
N log(N)1/2)).

Details of the proof are omitted as the proof is an application of Proposition C.1. in Kato et al.

(2012) as shown in Galvao and Wang (2015). The result follows by verifying that Assumptions 9,

11, and 12 are similar to the Assumptions A2-A5 and B1-B3 in Lemmas 7 and 8 in Galvao and Wang

(2015). To avoid repetition, we point out the modification. Fixing 1 ≤ i ≤ N , we apply Proposition

C.1. in Kato et al. (2012) to a class of functions G̃iδN = {Gπ − EGπ : ∥π∥ ≤ δN}. Conditions (i)
and (iii) in Proposition C.1. are satisfied as in Galvao and Wang (2015) but Condition (ii) needs
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some attention since the condition on uniformly bounded regressors is different in our paper. Under

Assumption 10, the class of functions G̃iδN is bounded, and therefore, Condition (ii) is satisfied.

Thus, the conclusion of the first result is obtained following Lemma 7 in Galvao and Wang (2015).

The second result follows directly by Lemma 8 in Galvao and Wang (2015). �
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In this Supplement, we first offer a derivation of the variance of ψτ (yit−X′
itπi) when we allow

for dependence across time. Section S.2 presents simulation results for a one factor model,

which complements the evidence on a two factor model presented in Section 3. In Section S.3,

we extend the simulation results presented in Section S.2 by offering results on the infeasible

QMG estimator which uses the latent factor, ft. The comparison of the infeasible quantile

estimator with the QMG estimator illustrates the effect of cross-section augmentation in

dealing with the estimation of ft. This section also presents additional results on the power

of the QMG estimator. Lastly, in Section S.4, we investigate the sensitivity of the results to

the choice of pT in the empirical application, by offering additional empirical results.

S.1. On the Derivation of the Asymptotic Covariance Matrix

Let ξ̄i(τ) := T−1/2
∑T

t=1 ψτ (yit −X′
itπi). By definition, we have that

Var(ξ̄i(τ)) =
1

T

T∑
t=1

Var[ψτ (yit −X′
itπi)] + 2

T∑
t̸=t′

Cov[ψτ (yit −X′
itπi), ψτ (Yit′ −X′

it′πi))].

Note that,

Cov[ψτ (yit −X′
itπi), ψτ (Yit′ −X′

it′πi)] = Cov(τ − I(yit < X′
itπi), τ − I(Yit′ < X′

it′πi))
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Cov[ψτ (yit −X′
itπi), ψτ (Yit′ −X′

it′πi)] = E((τ − I(yit < X′
itπi))(τ − I(Yit′ < X′

it′πi)))

−E(τ − I(yit < X′
itπi))E(τ − I(Yit′ < X′

it′πi))

= E((τ − I(yit < X′
itπi))(τ − I(Yit′ < X′

it′πi))),

because τ = G(X′
itπi) = G(X′

it′πi) under Assumption 11. It follows that,

Cov[ψτ (yit −X′
itπi), ψτ (Yit′ −X′

it′πi)] = τ 2 − τE(I(yit < X′
itπi))− τE(I(Yit′ < X′

it′πi))

+E(I(yit < X′
itπi)I(yit < X′

itπi))

= E(I(yit < X′
itπi)I(yit < X′

itπi))− τ 2.

Thus, we have that

σ2
ψ(q) := Var(ξ̄i(τ)) = τ(1− τ) + 2

q−1∑
j=1

(
1− j

q

)
Cov(ψτ (Yi1 −X′

i1πi), ψτ (Yi1+j −X′
i1+jπi))

= τ(1− τ) + 2

q−1∑
j=1

(
1− j

q

)[
E(I(Yi1 < X′

i1πi)I(Yi1+j < X′
i1+jπi))− τ 2

]
= τ(1− τ) + 2

q−1∑
j=1

(
1− j

q

)[
E(I(Yi1 < X′

i1πi, Yi1+j < X′
i1+jπi))− τ 2

]
.

This parameter is estimated in Section 2.3.

S.2. Simulation Evidence: One Factor Models

This section reports results of several simulation exercises designed to evaluate the small

sample performance of the proposed estimator. Observations on yit for i = 1, 2, . . . , N and

t = −S+1,−S+2, .., 0, 1, ..., T are generated according to the following ARX(1) model with

one factor:

yit = αi + λiyi,t−1 + β0 + βixit + γift + (1 + δxit)uit, (S.2.1)

where the error term uit is distributed as F (0, σ2
i ), σ

2
i generated as 0.5(1+χ2

i ) and χ
2
i denotes

an i.i.d. random variable distributed as χ2 distribution with 1 degree of freedom. Depending

on the value of δ, we have two conditional quantile functions. When δ = 0, we have

QYit(τ |αi, yit−1, xit, ft) = αi + λiyi,t−1 + β0(τ) + βixit + γift, (S.2.2)
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with β0(τ) = β0 + F−1
u (τ). On the hand, when δ ̸= 0, the conditional quantile function of

(S.2.1) becomes,

QYit(τ |αi, yit−1, xit, ft) = αi + λiyi,t−1 + β0(τ) + βi(τ)xit + γift, (S.2.3)

with β0(τ) = β0+F
−1
u (τ) and βi(τ) = βi+ δF

−1
u (τ). Models (S.2.2) and (S.2.3) are typically

refereed to as location shift and location-scale shift models in the literature (see, e.g., Koenker

(2005)). Quantile regression models are estimated with an overall intercept β0 which is

assumed to be zero in the simulations. Note that for S sufficiently large, we have that

yi0 ≈
1

1− λ
αi + β

S−1∑
j=0

λjxi,−j +
S−1∑
j=0

λjξi,−j, (S.2.4)

where ξit = γift + (1 + δxit)uit, λ = E(λi) and β = E(βi). In all the variants of the model

considered in the simulations, we set S = 200. The regressor, xit, is generated as

xit = µi + Γift + vit, (S.2.5)

vit = ρxzi,t−1 +
√

1− ρ2xεit, (S.2.6)

ft = ρfft−1 +
√

1− ρ2fεft, (S.2.7)

where the i.i.d. variables µi ∼ N (0.5, 1), εit ∼ N (0, 1), and εft ∼ N (0, 1). We consider the

case of relatively persistent regressors by setting ρx = 0.8 and ρf = 0.9. Moreover, without

loss of generality we use xi,−S = 0 and f−S = 0.

The factor loadings in equation (S.2.1), γi, and in equation (S.2.5), Γi, are generated as

γi ∼ iidN (0.5, 1) and Γi ∼ iidN (0.5, 1). Finally, the fixed effects, αi, are allowed to be

correlated with the errors by generating them as αi = x̄i+γif̄ + ūi+ai, where the individual

specific averages are defined as x̄i = T−1
∑T

t=1 xit, f̄ = T−1
∑T

t=1 ft, ūi = T−1
∑T

t=1 uit. The

error term ai in the equation for αi is assumed to be distributed as N (0, 1).

Initially, we set λi = λ for i = 1, 2, . . . , N and consider three values of λ = {0.25, 0.50, 0.75}.
Later in Figure S.1, we investigate the performance of the estimator with heterogeneous λi’s.

Moreover, in addition to the experiments presented in this section, we also considered static

panel data experiments (i.e., λ = 0) and compare the performance of the proposed approach

with existing panel quantile regression approaches. For relatively large T , the performance

of the proposed estimator was similar in both the static panel data model and dynamic panel

data model. Thus, we present results for the dynamic model to save space.
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In the simulations, we assume that the error term uit in equation (S.2.1) is an i.i.d. random

variable distributed as Standard Normal, t-student with 4 degrees of freedom (t4), and χ2

with 3 degrees of freedom (χ2
3). We consider the following four variations of the model:

Design 1: (Location shift model with homogeneous slopes). We consider β = 1 in a location

shift model with δ = 0.

Design 2: (Location shift model with heterogeneous slopes). We consider heterogeneous

slope parameters βi = β + νi in a location shift model, where δ = 0, β = 1 and νi ∼
U(−0.25, 0.25). The parameter βi(τ) = βi for all i and τ .

Design 3: (Location-scale shift model with homogeneous slopes). We consider homogenous

slope parameters β = 1 in a location-scale shift model with δ = 0.1. In this case, the slope

parameter β(τ) = β + 0.1F−1
u (τ).

Design 4: (Location-scale shift model with heterogeneous slopes). We consider heteroge-

neous slope parameters as in Design 2, βi = β+νi, in a location-scale shift model with δ = 0.1.

We assume β = 1 and νi ∼ U(−0.25, 0.25) which implies that βi(τ) = 1+ νi+0.1F−1
u (τ). In

this case, E(βi(τ)) = β(τ) = 1 + 0.1F−1
u (τ).

Tables S.1 to Table S.2 present the bias and root mean square error (RMSE) for the slope

parameter β in the location shift model with λ = 0.5. The finite sample performance for

the slope parameter when the model (S.2.1) include a different value for λ is considered in

Table S.9. While Table S.1 presents results for Designs 1 and 2, Table S.2 presents results for

Designs 3 and 4. The tables show results for quantile regression estimators at two quantiles,

τ ∈ {0.25, 0.50}, based on sample sizes of N ∈ {100, 200} and T ∈ {50, 100, 200}.

We compare the performance of the following quantile regression estimators: (i) the existing

instrumental variable quantile regression estimator for a dynamic panel data model developed

by Galvao (2011), labeled DQR, and (ii) the quantile mean group (QMG) estimator for a

model with interactive effects. The DQR estimator uses yit−2 as an instrument for yit−1.

It should be noted that Galvao’s model does not include the term λift, which can generate

biases that cannot be eliminated by the use of instrumental variables. The proposed quantile

mean group estimator, QMG, is obtained as the simple cross sectional average of β̂i(τ) using

z̄t = (ȳt, ȳt−1, x̄t)
′.

The tables do not provide the finite sample performance of other existing quantile estimators.

The classical quantile regression estimator is biased because the individual specific effects

αi and the factor ft are correlated with the regressor xit. Also the fixed effects estimator,
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the recently proposed minimum distance quantile regression estimator (Galvao and Wang

(2015)), and the penalized quantile regression estimator are biased when the model includes

a lagged dependent variable. Therefore, we restrict our comparison to DQR, which is the

only estimator in the literature proposed for dynamic panel quantile regression models.

S.2.1. Bias and Root Mean Square Error

In Table S.1, it might not be surprising to find out that the DQR method is biased and

that its bias tends to be slightly larger in the case of heterogeneous slopes. The bias of this

estimator for the slope β tends to increase as T increases and it does not seem to change at

the 0.5 and 0.25 quantiles. On the other hand, the performance of the QMG estimator is

excellent, with biases in general lower than 5% for T = 50 and biases decreasing rapidly to

1% when T = 200. In all the variations of the model considered in the table, the quantile

estimator QMG performs better than DQR in terms of RMSE too.

Table S.2 presents results for the location-scale shift model where β(τ) changes by quantile.

For instance, β(0.5) = 1 and β(0.25) = 0.93 in the case where the error term uit ∼ N (0, 1),

and β(0.5) = 1.24 and β(0.25) = 1.12 when uit ∼ χ2
3. We continue to see that the DQR

estimator is biased and has poor RMSE properties. The performance of the QMG estimator

in these variations of the model is similar to Table S.1, with low biases and small RMSE.

For values of T larger than 50, the bias of the proposed estimator is always negative and it

ranges between 0.6% and 3%.

We expanded the simulation evidence for the slope parameter β to consider different values

of λ. Table S.9 presents results for λ ∈ {0.25, 0.75} considering the same designs as in

Tables S.1 and S.2 and N = 100 and T = 200. We see that the QMG estimator continues

to perform better than the DQR estimator. We also find that the performance of the QMG

estimator is invariant to the choice of λ, at least in the simulations considered thus far. We

do investigate the performance of the QMG estimator when λi ∈ [0.025, 0.925] below.

We now turn our attention to the estimator for λ(τ) and θ(τ) = β(τ)/(1 − λ(τ)). The

estimator for θ(τ) is defined as β̂(τ)/(1− λ̂(τ)) and it is obtained by plugging in the quantile

estimates corresponding to λ(τ) and β(τ). We employ this method for the DQR and QMG

estimators.

Tables S.3, S.4, S.5 and S.6 show the bias and RMSE of the DQR and QMG estimators for

the parameters of interest. These four tables show results for the four different designs we
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consider in this section. Each table presents, in columns, the performance of the estimators

at τ ∈ {0.25, 0.50} and in rows the different samples sizes and distributions for the error

term. The upper block present results when uit is distributed as N (0, 1), the middle panel

shows results when uit ∼ t4 and the lower block presents results when uit ∼ χ2
3. While

λ = 0.5 does not change in these tables, the parameter of interest θ does change in the

tables. For instance, θ(0.5) = 2 = θ(0.25) in the Gaussian case in Table S.3, θ(0.5) = 2.48

and θ(0.25) = 2.24 when uit ∼ χ2
3 in Table S.5.

As before, the results indicate that the bias of the DQR estimator can be large, in particular

for the long run coefficient θ. The bias of the QMG estimator is small in the tables and

it tends to zero as T increases, as expected. For T = 50, however, we see that the bias

of the DQR estimator is smaller than the bias of the QMG estimator in the case of χ2
3

for the parameter λ (i.e., columns (1) and (2)). We also find that the QMG estimator has

smaller variance than the DQR estimator which might be expected since the QMG estimator

does not employ instrumental variables. Even in the few cases where the bias of the DQR

estimator is smaller than the bias of the QMG estimator, the QMG estimator offers the best

performance in terms of RMSE.

A comparison between the results for the long-run effect in the location shift model reveals

that estimating heterogeneous effects is more demanding than estimating homogeneous ef-

fects, as expected. However, the QMG estimator offers nearly zero biases for large N and

large T . The DQR estimator is biased and its performance is not satisfactory in terms of

both bias and RMSE. The location-shift case, presented in Tables S.5 and S.6, reveals similar

findings. Overall, when λ = 0.5, the QMG estimator offers the best performance in terms of

bias and RMSE in the class of estimators for a dynamic quantile panel data model.

Figure S.1 offers a clear summary of the small sample performance of the QMG estimator as

λ increases. The figure shows the bias and RMSE of the QMG estimator at τ ∈ {0.25, 0.50}
for λ, β and θ in terms of λ. We considered Design 1 with N = 100 and T = 200. Recall that

when λ increases, θ increases too. For instance, while λ = 0 gives θ = β = 1, λ = 0.9 gives

θ = 10 in our simulation experiment. Consistent with our previous evidence, we see that the

performance of QMG estimator does not depend on λ when the interest is in estimating β.

The bias tends to slightly increase but it is never larger than 1% for large values of λ. We

also find that the RMSE of the estimator of β does not change with λ. On the other hand, we

find that the absolute value of the bias of the QMG estimator for θ increases exponentially

when λ → 1. The figure shows that the bias, in absolute value, is negligible for λ < 0.75,
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and it increases rapidly when λ > 0.8. Note however that the bias in relative terms is always

less than 10%. We also find that the RMSE increases with λ and that the RMSE of the

QMG estimator at τ = 0.25 is larger than the QMG estimator at τ = 0.50, as expected.

Figure S.1 also shows the bias and RMSE of the QMG estimator when λi = λ + ωi, where

ωi ∼ U [−0.025, 0.025] and λ takes values in the interval λ ∈ [0.05, 0.90]. The parametrization

guarantees that θ exists for all values of λi for i = 1, . . . , N . We generate data using Design

1 with N = 100 and T = 200. Consistent with our expectations, the bias and RMSE of

the estimator tends to be similar to the case of homogeneous λ’s, although the performance

deteriorates for large values of λ = E(λi). We see an increase in the variance of the estimator,

but the bias for θ remains, in absolute value, small for E(λi) < 0.65. As it can be seen in

Figure S.1, the parameter (E(λi), β) can be estimated with small bias and excellent RMSE

performance in the case of heterogeneous λi’s.

S.2.2. Inference

We now turn our attention to the standard error of the QMG estimator for λ(τ) and β(τ).

Table S.7 reports the average estimated standard error obtained by the procedure outlined

in Section 2.2. We select q = 3 to minimize potential biases in the estimation of the standard

errors. While the upper panels of Table S.7 show the standard error of the QMG estimator

in Designs 1 and 2, the lower panels show the standard error in Designs 3 and 4. We

also report the standard deviation of the estimator based on 400 Monte Carlo repetitions.

Because T relative to N is important for inference, we included results with N = 100 and

T ∈ {100, 200, 400}.

The results show that the estimated standard errors approximate very closely to the standard

deviation of the estimator when T is larger than N . This result is expected by the rates of

convergence needed to establish the consistency of the QMG estimator. The approximation is

excellent in the case of the Normal and t4 distributions. The evidence when uit ∼ χ2
3 suggests

that a larger T relative to N is needed for the standard error to be well approximated.

Table S.8 provides empirical coverage probabilities for a nominal 95% confidence interval.

The probabilities are calculated based on asymptotic Gaussian confidence intervals. We see

different finite sample performances of the estimator for λ and β. If we examine the results

across the different distributions, the QMG estimator in some cases does not perform well for

λ when T/N < 4. On the other hand, the coverage probabilities for β approximate closely

0.95 with the exceptions when T = N = 100. Lastly, we investigate the performance of the
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QMG estimator in terms of power. The results are shown in the lower panel of Table S.8.

We compute the power for the estimation of λ with the alternative hypothesis Ha : λ = 0.55

and β with the alternative hypothesis Ha : β = 1.1. The condition on the rate of convergence

plays an important role in ensuring that the estimator has good power. In particular, the

power is high for values of T > 100, although how quickly approaches 1 depends on the

distribution of the error term and the number of cross-sectional units, N .

As we can see in Figure S.2, the power function of the test constructed based on the QMG

estimator at the 0.25 quantile tends to be symmetric and have the expected shape. As an

illustration, Figure S.2 reports results based on Design 1 for the Gaussian and χ2
3 case when

N = 100 and T = 400. Consistent with the theory, a larger T for a given number of cross-

sectional units leads to a better approximation of the function. The evidence shows that

for this sample size and quantile, the QMG estimator seem to perform reasonably well for

different distributions and parameters.

S.3. Additional Simulation Evidence

This section offers additional Monte Carlo evidence on the finite sample performance of the

proposed estimator for different values of λ. It then compares the performance of the feasible

QMG estimator with an unfeasible version of it that uses unknown factors ft.

S.3.1. Autoregressive Models

Tables S.9 presents the bias and root mean square error (RMSE) for the slope parameter β in

the location shift model with λ ∈ {0.25, 0.75}, which are different to the value λ = 0.5 used

in the first tables of Section 3. The table presents results for Designs 1-4, showing results

for quantile regression estimators at two quantiles, τ ∈ {0.25, 0.50}. The table compares the

performance of the quantile regression estimator for a dynamic panel data model (Galvao

2011) denoted by DQR and the quantile mean group (QMG) estimator for a model with

interactive effects. The DQR estimator uses yit−2 as an instrument for yit−1. The proposed

quantile mean group estimator, QMG, is obtained as the cross sectional average of β̂i(τ)

using z̄t = (ȳt, ȳt−1, x̄t)
′. The sample size is based on N = 100 and T = 200. Table S.9 shows

that the QMG method for β performs extremely well with negligible biases and low RMSE

for all values of λ.
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Tables S.10 and S.11 report results for λ and θ. While Table S.10 presents simulation results

for the case of λ = 0.25, Table S.11 presents simulation results for the case of λ = 0.75.

In terms of relative performance between DQR and QMG estimators, the tables do not

offer new insights. The evidence continues to suggest that the QMG estimator performs

better in small samples than the DQR estimator with considerable gains in terms of bias

and RMSE. We find however that the absolute bias of the QMG estimator tends to increase

as λ increases. The results however are not presented in terms of percentage bias since θ

increase as λ increases.

S.3.2. Estimation of Models with Known ft

This section compares the results of the estimator QMG defined in Section 2.2 with the results

obtained by employing an unfeasible version of the estimator. The infeasible estimator is

defined as:

π̃i(τ) = arg min
πi∈Πi

T∑
t=1

ρτ (yit − λiyit−1 − β′
ixit − γ ′

ift)

Therefore, π̃i(τ) is an estimator based on quantile regression with latent factors, ft. Moreover,

we define ϑ̃(τ) = 1
N

∑N
i=1 ϑ̃i(τ) =

1
N

∑N
i=1 (Ξi ◦ π̃i(τ)), where ◦ denotes Hadamard product

and Ξi = (ι′i,0
′
i)
′ with ιi denoting a vector of ones. In what follows, we denote this estimator

as IQMG.

The data is generated as in Section S.2 (see equations (S.2.1)-(S.2.7)). Tables S.12 to Table

S.13 present the bias and root mean square error (RMSE) of the QMG and IQMG estimators

for the slope parameter β in the location shift model with λ = 0.5. Table S.12 presents results

for Designs 1 and 2 and Table S.13 presents results for Designs 3 and 4. The tables show

results for quantile regression estimators at two quantiles, τ ∈ {0.25, 0.50}, based on sample

sizes of N ∈ {100, 200} and T ∈ {50, 100, 200}. As to be expected, the IQMG estimator

yields smaller bias and smaller RMSE than its feasible counterpart QMG. We also observe

that these differences tend to disappear as long as both N and T increase.

In the next four tables, Tables S.14 to Table S.17, we present results the bias and root

mean square error (RMSE) of the QMG and IQMG estimators for the parameters λ and

θ. The results continues to indicate that the infeasible version improves the performance

of the feasible version, although again as in the case of the slope parameter β, the finite

sample performance of the QMG estimator approximates very closely to the performance of

the IQMG estimator when T > 100.
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S.3.3. Power

This section reports additional simulation results for the power of the QMG estimator. In

light of the theoretical results, we limit our investigation to document the shape of the

power function as the time series dimension of the panel, T , increases. We generate data

using Design 1 considering N = 100 and T ∈ {100, 200, 400} for the case of Gaussian and

χ2
3 error term. The evidence is presented in Figures S.3 and S.4.

As shown in Figures S.3 and S.4, the power function of the test constructed based on the

QMG is not symmetric when N ≈ T , but it tends to have the expected shape as long as

T increases. This is true for different distributions (i.e., Gaussian and χ2
3) and different

quantiles (i.e., τ ∈ {0.25, 0.50}). The evidence shows that the QMG estimator performs well

for different distributions and parameters, as long as the number of time series observations

is significantly larger than the number of cross-sectional units.

S.4. Time-of-Use Pricing, Smart Technology and Energy Savings:

A Sensitivity Analysis

In this section, we re-estimate the conditional quantile function for electricity consumption

(equation (4.2) in Section 4.2) to evaluate the sensitivity of results to a change in the number

of cross-section averages used to approximate the unknown factors, ft. As in Section 4, we

estimate the model using the QMG procedure for each quantile τ and group g separately.

However, we deviate from the previous analysis by using cross-section averages of the log-

arithm of electricity usage at t and t − 1, (ȳt, ȳt−1), as well as cross-sectional averages of

temperature and drew-point, (x̄1,t, x̄2,t). The evidence is reported in Tables S.18, S.19, S.20,

and Figures S.5 and S.6.

As to be expected, the evidence shows consistently smaller (in absolute value) treatment

effects estimates when we compare the results reported in Section 4.3 with the results shown

in Table S.18. The CCEMG (see Chudik and Pesaran (2015)) estimate for the control group

is reduced by 1% point in Table 4.2 compared to Table S.18, while the MG estimate for

the PCT group is increased from -7% to -6.5%. The evidence across quantiles is similar,

although we observe the most significant changes in the results at the 0.1 and 0.9 quantiles

of the conditional distribution of electricity usage. Lastly, we obtain, in general, similar

empirical results when we estimate the responsiveness to TOU pricing across demographics

(see Tables S.19 and S.20) and we perform a counterfactual exercise on how policies can
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increase savings (see Figure S.6). The exceptions are, again, the 0.1 and 0.9 quantiles of the

PCT group, where we observe interesting changes. Overall, the results appear to be robust

to the choice of the number of lagged cross-section averages used to proxy ft. Nevertheless,

we would like to emphasize the importance of setting pT to be relatively large in applications

to avoid inconsistent results.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.110 0.051 0.411 -0.043 -0.107 0.053 0.412 -0.028
100 50 RMSE 0.164 0.058 0.461 0.069 0.158 0.062 0.463 0.068
100 100 Bias -0.168 0.029 0.493 -0.017 -0.163 0.028 0.495 -0.013
100 100 RMSE 0.197 0.033 0.520 0.036 0.193 0.034 0.526 0.036
100 200 Bias -0.196 0.009 0.503 -0.005 -0.195 0.009 0.502 -0.005
100 200 RMSE 0.213 0.017 0.521 0.022 0.212 0.016 0.521 0.024
200 50 Bias -0.109 0.058 0.416 -0.044 -0.105 0.058 0.416 -0.030
200 50 RMSE 0.156 0.062 0.456 0.060 0.152 0.061 0.464 0.053
200 100 Bias -0.167 0.030 0.476 -0.021 -0.164 0.030 0.474 -0.014
200 100 RMSE 0.198 0.032 0.499 0.029 0.194 0.033 0.498 0.028
200 200 Bias -0.213 0.014 0.525 -0.008 -0.212 0.013 0.526 -0.005
200 200 RMSE 0.227 0.016 0.541 0.017 0.226 0.016 0.542 0.018
N T t4 distribution
100 50 Bias -0.089 0.049 0.362 -0.042 -0.086 0.055 0.371 -0.031
100 50 RMSE 0.139 0.058 0.401 0.075 0.140 0.067 0.416 0.073
100 100 Bias -0.149 0.027 0.454 -0.017 -0.146 0.029 0.460 -0.018
100 100 RMSE 0.183 0.032 0.489 0.039 0.180 0.036 0.498 0.042
100 200 Bias -0.179 0.010 0.489 -0.003 -0.178 0.012 0.496 -0.002
100 200 RMSE 0.198 0.015 0.510 0.023 0.197 0.019 0.517 0.027
200 50 Bias -0.103 0.054 0.390 -0.046 -0.099 0.061 0.400 -0.036
200 50 RMSE 0.159 0.058 0.429 0.064 0.155 0.065 0.443 0.082
200 100 Bias -0.132 0.028 0.419 -0.020 -0.131 0.029 0.422 -0.021
200 100 RMSE 0.161 0.031 0.438 0.032 0.159 0.033 0.442 0.037
200 200 Bias -0.179 0.012 0.469 -0.008 -0.180 0.014 0.479 -0.007
200 200 RMSE 0.196 0.015 0.485 0.019 0.197 0.017 0.495 0.022
N T χ2

3 distribution
100 50 Bias -0.035 0.075 0.320 -0.035 -0.037 0.041 0.309 -0.015
100 50 RMSE 0.109 0.092 0.367 0.111 0.104 0.058 0.351 0.084
100 100 Bias -0.086 0.037 0.378 -0.015 -0.079 0.017 0.351 -0.007
100 100 RMSE 0.126 0.049 0.419 0.059 0.115 0.027 0.388 0.040
100 200 Bias -0.123 0.018 0.409 -0.003 -0.109 0.006 0.373 0.000
100 200 RMSE 0.147 0.030 0.431 0.044 0.131 0.016 0.393 0.027
200 50 Bias -0.035 0.072 0.321 -0.050 -0.038 0.039 0.310 -0.026
200 50 RMSE 0.098 0.082 0.354 0.088 0.090 0.049 0.343 0.061
200 100 Bias -0.093 0.038 0.400 -0.022 -0.083 0.019 0.368 -0.008
200 100 RMSE 0.127 0.044 0.423 0.049 0.114 0.026 0.388 0.034
200 200 Bias -0.122 0.020 0.430 -0.007 -0.108 0.009 0.391 -0.002
200 200 RMSE 0.141 0.026 0.445 0.030 0.127 0.014 0.405 0.021

Table S.3. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ in Design 1. In all the variations of the model, λ = 0.5.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.112 0.065 0.442 -0.015 -0.107 0.063 0.439 -0.004
100 50 RMSE 0.170 0.071 0.491 0.057 0.166 0.070 0.487 0.066
100 100 Bias -0.179 0.035 0.526 0.002 -0.176 0.034 0.519 0.007
100 100 RMSE 0.210 0.041 0.554 0.033 0.208 0.040 0.547 0.036
100 200 Bias -0.220 -0.006 0.488 -0.036 -0.220 -0.006 0.480 -0.035
100 200 RMSE 0.235 0.014 0.510 0.042 0.235 0.015 0.502 0.042
200 50 Bias -0.110 0.065 0.438 -0.030 -0.107 0.064 0.428 -0.018
200 50 RMSE 0.158 0.068 0.476 0.051 0.154 0.067 0.471 0.046
200 100 Bias -0.157 0.039 0.502 0.001 -0.155 0.038 0.500 0.005
200 100 RMSE 0.188 0.041 0.525 0.022 0.186 0.041 0.525 0.027
200 200 Bias -0.214 0.013 0.510 -0.007 -0.212 0.012 0.507 -0.006
200 200 RMSE 0.229 0.015 0.522 0.017 0.227 0.015 0.520 0.017
N T t4 distribution
100 50 Bias -0.059 0.083 0.436 0.027 -0.057 0.089 0.446 0.038
100 50 RMSE 0.123 0.089 0.468 0.068 0.123 0.096 0.484 0.077
100 100 Bias -0.119 0.062 0.532 0.057 -0.116 0.065 0.541 0.055
100 100 RMSE 0.161 0.065 0.561 0.066 0.159 0.068 0.574 0.067
100 200 Bias -0.178 0.017 0.511 0.013 -0.177 0.020 0.519 0.014
100 200 RMSE 0.197 0.021 0.530 0.026 0.196 0.024 0.540 0.030
200 50 Bias -0.092 0.070 0.428 -0.012 -0.085 0.077 0.440 -0.024
200 50 RMSE 0.151 0.073 0.465 0.045 0.145 0.081 0.482 0.299
200 100 Bias -0.118 0.048 0.472 0.023 -0.117 0.050 0.475 0.021
200 100 RMSE 0.148 0.050 0.490 0.034 0.147 0.052 0.493 0.037
200 200 Bias -0.183 0.012 0.481 -0.008 -0.185 0.014 0.488 -0.007
200 200 RMSE 0.200 0.014 0.497 0.018 0.201 0.017 0.505 0.022
N T χ2

3 distribution
100 50 Bias -0.051 0.066 0.308 -0.051 -0.053 0.032 0.299 -0.034
100 50 RMSE 0.123 0.085 0.362 0.133 0.116 0.051 0.347 0.088
100 100 Bias -0.113 0.013 0.335 -0.062 -0.106 -0.006 0.310 -0.054
100 100 RMSE 0.146 0.034 0.382 0.084 0.135 0.023 0.352 0.068
100 200 Bias -0.155 -0.008 0.362 -0.053 -0.142 -0.020 0.327 -0.051
100 200 RMSE 0.175 0.025 0.389 0.069 0.160 0.025 0.350 0.058
200 50 Bias -0.060 0.055 0.341 -0.078 -0.064 0.024 0.321 -0.054
200 50 RMSE 0.109 0.066 0.376 0.129 0.103 0.037 0.355 0.076
200 100 Bias -0.111 0.020 0.365 -0.060 -0.105 0.001 0.337 -0.045
200 100 RMSE 0.143 0.031 0.385 0.074 0.134 0.015 0.358 0.053
200 200 Bias -0.133 0.018 0.424 -0.012 -0.119 0.007 0.388 -0.007
200 200 RMSE 0.150 0.024 0.439 0.032 0.134 0.013 0.402 0.022

Table S.4. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ in Design 2. In all the variations of the model, λ = 0.5.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.110 0.058 0.420 -0.048 -0.091 0.066 0.407 -0.011
100 50 RMSE 0.161 0.066 0.467 0.076 0.145 0.073 0.449 0.067
100 100 Bias -0.183 0.032 0.502 -0.015 -0.166 0.035 0.460 0.000
100 100 RMSE 0.214 0.037 0.532 0.036 0.198 0.041 0.487 0.039
100 200 Bias -0.208 0.013 0.525 -0.005 -0.190 0.016 0.485 0.005
100 200 RMSE 0.226 0.018 0.546 0.022 0.209 0.021 0.507 0.024
200 50 Bias -0.100 0.065 0.409 -0.050 -0.082 0.074 0.379 -0.012
200 50 RMSE 0.158 0.068 0.462 0.063 0.142 0.077 0.421 0.047
200 100 Bias -0.163 0.033 0.471 -0.024 -0.146 0.038 0.440 -0.006
200 100 RMSE 0.191 0.036 0.495 0.038 0.176 0.040 0.462 0.027
200 200 Bias -0.212 0.014 0.520 -0.010 -0.194 0.017 0.477 0.000
200 200 RMSE 0.228 0.017 0.537 0.019 0.210 0.020 0.492 0.016
N T t4 distribution
100 50 Bias -0.087 0.054 0.377 -0.056 -0.073 0.069 0.357 -0.005
100 50 RMSE 0.144 0.063 0.425 0.083 0.137 0.079 0.395 0.223
100 100 Bias -0.129 0.029 0.452 -0.017 -0.114 0.040 0.418 0.002
100 100 RMSE 0.157 0.035 0.480 0.042 0.146 0.046 0.444 0.041
100 200 Bias -0.173 0.012 0.481 -0.005 -0.158 0.019 0.446 0.008
100 200 RMSE 0.194 0.018 0.501 0.024 0.181 0.024 0.464 0.025
200 50 Bias -0.087 0.058 0.387 -0.051 -0.069 0.074 0.372 -0.014
200 50 RMSE 0.130 0.063 0.426 0.068 0.115 0.079 0.407 0.080
200 100 Bias -0.139 0.030 0.439 -0.025 -0.124 0.039 0.405 -0.008
200 100 RMSE 0.168 0.033 0.461 0.035 0.154 0.042 0.424 0.029
200 200 Bias -0.173 0.014 0.462 -0.009 -0.157 0.019 0.424 0.000
200 200 RMSE 0.188 0.016 0.475 0.020 0.173 0.022 0.436 0.020
N T χ2

3 distribution
100 50 Bias -0.033 0.082 0.274 -0.055 -0.025 0.060 0.260 0.008
100 50 RMSE 0.119 0.100 0.321 0.126 0.106 0.072 0.294 0.080
100 100 Bias -0.091 0.044 0.354 -0.026 -0.067 0.025 0.326 0.003
100 100 RMSE 0.133 0.055 0.385 0.069 0.110 0.036 0.352 0.050
100 200 Bias -0.136 0.017 0.367 -0.015 -0.102 0.010 0.320 0.002
100 200 RMSE 0.159 0.028 0.392 0.046 0.127 0.018 0.343 0.028
200 50 Bias -0.037 0.082 0.275 -0.063 -0.025 0.057 0.274 0.001
200 50 RMSE 0.114 0.089 0.318 0.090 0.096 0.064 0.304 0.052
200 100 Bias -0.091 0.041 0.343 -0.032 -0.064 0.024 0.312 -0.002
200 100 RMSE 0.127 0.047 0.364 0.054 0.100 0.029 0.329 0.033
200 200 Bias -0.130 0.020 0.361 -0.015 -0.095 0.012 0.321 0.002
200 200 RMSE 0.152 0.026 0.377 0.035 0.117 0.017 0.335 0.022

Table S.5. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ in Design 3. In all the variations of the model, λ = 0.5.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
DQR QMG DQR QMG DQR QMG DQR QMG

N T Normal Distribution
100 50 Bias -0.106 0.068 0.453 -0.038 -0.086 0.077 0.433 0.003
100 50 RMSE 0.156 0.072 0.504 0.064 0.142 0.082 0.480 0.061
100 100 Bias -0.164 0.027 0.469 -0.021 -0.146 0.034 0.442 -0.003
100 100 RMSE 0.195 0.033 0.498 0.041 0.179 0.039 0.468 0.036
100 200 Bias -0.201 0.011 0.514 -0.006 -0.181 0.015 0.477 0.005
100 200 RMSE 0.216 0.017 0.532 0.024 0.198 0.021 0.494 0.024
200 50 Bias -0.116 0.069 0.443 -0.036 -0.097 0.078 0.428 -0.004
200 50 RMSE 0.169 0.072 0.484 0.055 0.152 0.081 0.464 0.044
200 100 Bias -0.174 0.026 0.476 -0.035 -0.155 0.030 0.446 -0.019
200 100 RMSE 0.195 0.029 0.499 0.042 0.177 0.032 0.466 0.032
200 200 Bias -0.215 0.014 0.554 -0.010 -0.196 0.018 0.516 0.001
200 200 RMSE 0.230 0.017 0.567 0.019 0.212 0.021 0.529 0.016
N T t4 distribution
100 50 Bias -0.092 0.066 0.411 -0.034 -0.076 0.086 0.393 0.007
100 50 RMSE 0.160 0.073 0.457 0.071 0.149 0.094 0.433 0.076
100 100 Bias -0.153 0.021 0.462 -0.029 -0.138 0.033 0.432 -0.012
100 100 RMSE 0.182 0.029 0.494 0.046 0.169 0.040 0.462 0.042
100 200 Bias -0.173 0.019 0.505 0.010 -0.155 0.026 0.470 0.023
100 200 RMSE 0.195 0.023 0.525 0.025 0.180 0.030 0.488 0.032
200 50 Bias -0.109 0.050 0.390 -0.068 -0.090 0.069 0.364 -0.031
200 50 RMSE 0.153 0.055 0.428 0.080 0.138 0.073 0.397 0.058
200 100 Bias -0.145 0.033 0.457 -0.015 -0.128 0.040 0.424 -0.001
200 100 RMSE 0.172 0.036 0.480 0.030 0.156 0.043 0.445 0.031
200 200 Bias -0.182 0.015 0.488 -0.008 -0.167 0.019 0.455 0.000
200 200 RMSE 0.199 0.018 0.502 0.019 0.185 0.022 0.469 0.018
N T χ2

3 distribution
100 50 Bias -0.031 0.092 0.288 -0.057 -0.021 0.064 0.281 0.010
100 50 RMSE 0.108 0.107 0.344 0.111 0.097 0.076 0.320 0.073
100 100 Bias -0.060 0.074 0.410 0.035 -0.034 0.056 0.385 0.064
100 100 RMSE 0.112 0.082 0.438 0.072 0.093 0.062 0.409 0.078
100 200 Bias -0.106 0.051 0.445 0.052 -0.070 0.042 0.402 0.068
100 200 RMSE 0.134 0.056 0.467 0.067 0.102 0.045 0.422 0.074
200 50 Bias -0.044 0.083 0.284 -0.064 -0.032 0.055 0.272 -0.004
200 50 RMSE 0.121 0.092 0.323 0.098 0.105 0.063 0.299 0.059
200 100 Bias -0.101 0.041 0.334 -0.034 -0.073 0.023 0.308 -0.005
200 100 RMSE 0.137 0.047 0.356 0.055 0.108 0.028 0.325 0.031
200 200 Bias -0.136 0.021 0.358 -0.014 -0.102 0.013 0.320 0.003
200 200 RMSE 0.157 0.026 0.374 0.031 0.123 0.017 0.334 0.020

Table S.6. Bias and root mean square error (RMSE) of quantile regression
estimators for λ and θ in Design 4. In all the variations of the model, λ = 0.5.
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Figure S.1. Small sample performance of the QMG estimator for different

values of λ. The figure present Bias and RMSE of the QMG estimator for

E(λ(τ)), E(β(τ)) and E(θ(τ)) at the 0.25 and 0.50 quantiles.
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Figure S.2. Power of the QMG estimator against different alternatives.
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τ = 0.50 quantile τ = 0.25 quantile
λ Design Parameter: λ Parameter: θ Parameter: λ Parameter: θ

DQR QMG DQR QMG DQR QMG DQR QMG
Normal Distribution

0.25 1 Bias -0.267 0.006 0.313 -0.001 -0.266 0.005 0.313 -0.002
0.25 1 RMSE 0.281 0.015 0.324 0.014 0.281 0.014 0.325 0.015
0.25 2 Bias -0.292 -0.010 0.300 -0.022 -0.291 -0.010 0.298 -0.022
0.25 2 RMSE 0.305 0.016 0.313 0.026 0.304 0.017 0.313 0.027
0.25 3 Bias -0.280 0.009 0.326 0.000 -0.264 0.011 0.285 0.004
0.25 3 RMSE 0.295 0.015 0.339 0.014 0.279 0.017 0.298 0.016
0.25 4 Bias -0.273 0.007 0.321 -0.002 -0.255 0.011 0.280 0.004
0.25 4 RMSE 0.286 0.015 0.332 0.015 0.268 0.018 0.292 0.016

t4 distribution
0.25 1 Bias -0.247 0.006 0.308 0.000 -0.246 0.008 0.310 0.001
0.25 1 RMSE 0.264 0.013 0.321 0.014 0.263 0.016 0.324 0.017
0.25 2 Bias -0.247 0.013 0.321 0.010 -0.246 0.015 0.325 0.011
0.25 2 RMSE 0.263 0.017 0.334 0.018 0.262 0.021 0.338 0.020
0.25 3 Bias -0.239 0.007 0.300 -0.001 -0.225 0.014 0.262 0.007
0.25 3 RMSE 0.257 0.015 0.313 0.016 0.246 0.019 0.274 0.017
0.25 4 Bias -0.239 0.014 0.314 0.009 -0.225 0.021 0.275 0.017
0.25 4 RMSE 0.258 0.019 0.327 0.018 0.246 0.025 0.287 0.023

χ2
3 distribution

0.25 1 Bias -0.178 0.011 0.257 0.003 -0.163 0.002 0.235 0.001
0.25 1 RMSE 0.198 0.026 0.271 0.029 0.182 0.015 0.248 0.019
0.25 2 Bias -0.212 -0.015 0.224 -0.032 -0.196 -0.024 0.204 -0.033
0.25 2 RMSE 0.229 0.028 0.242 0.043 0.213 0.028 0.220 0.038
0.25 3 Bias -0.194 0.008 0.225 -0.005 -0.159 0.006 0.187 0.003
0.25 3 RMSE 0.214 0.024 0.241 0.029 0.180 0.015 0.202 0.018
0.25 4 Bias -0.170 0.043 0.276 0.040 -0.131 0.037 0.243 0.046
0.25 4 RMSE 0.193 0.048 0.290 0.048 0.156 0.040 0.256 0.050

Table S.10. Bias and root mean square error (RMSE) of quantile regression
estimators when λ = 0.25, N = 100 and T = 200.
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τ = 0.50 quantile τ = 0.25 quantile
λ Design Parameter: λ Parameter: θ Parameter: λ Parameter: θ

DQR QMG DQR QMG DQR QMG DQR QMG
Normal Distribution

0.75 1 Bias -0.107 0.012 1.180 -0.029 -0.106 0.012 1.184 -0.019
0.75 1 RMSE 0.130 0.018 1.223 0.057 0.129 0.017 1.229 0.055
0.75 2 Bias -0.130 -0.003 1.170 -0.085 -0.129 -0.003 1.150 -0.079
0.75 2 RMSE 0.150 0.012 1.221 0.101 0.148 0.013 1.200 0.097
0.75 3 Bias -0.118 0.016 1.249 -0.029 -0.100 0.019 1.205 -0.005
0.75 3 RMSE 0.141 0.020 1.300 0.061 0.125 0.023 1.260 0.057
0.75 4 Bias -0.111 0.014 1.225 -0.030 -0.091 0.018 1.177 0.000
0.75 4 RMSE 0.132 0.018 1.267 0.062 0.116 0.022 1.217 0.056

t4 distribution
0.75 1 Bias -0.099 0.014 1.177 -0.024 -0.098 0.016 1.192 -0.020
0.75 1 RMSE 0.124 0.018 1.224 0.058 0.124 0.022 1.244 0.067
0.75 2 Bias -0.096 0.021 1.229 0.008 -0.096 0.023 1.245 0.010
0.75 2 RMSE 0.123 0.024 1.274 0.054 0.123 0.028 1.294 0.064
0.75 3 Bias -0.100 0.016 1.175 -0.032 -0.083 0.024 1.138 -0.003
0.75 3 RMSE 0.126 0.021 1.224 0.061 0.113 0.028 1.184 0.056
0.75 4 Bias -0.097 0.023 1.229 -0.004 -0.079 0.031 1.193 0.026
0.75 4 RMSE 0.125 0.027 1.276 0.053 0.112 0.035 1.236 0.060

χ2
3 distribution

0.75 1 Bias -0.071 0.029 1.028 -0.046 -0.064 0.013 0.935 -0.020
0.75 1 RMSE 0.106 0.037 1.081 0.105 0.096 0.020 0.983 0.063
0.75 2 Bias -0.102 0.002 0.941 -0.149 -0.095 -0.014 0.853 -0.123
0.75 2 RMSE 0.128 0.023 1.003 0.177 0.119 0.021 0.908 0.136
0.75 3 Bias -0.079 0.028 0.930 -0.081 -0.051 0.016 0.832 -0.020
0.75 3 RMSE 0.109 0.036 0.985 0.129 0.084 0.022 0.879 0.068
0.75 4 Bias -0.045 0.062 1.085 0.059 -0.014 0.048 0.995 0.115
0.75 4 RMSE 0.088 0.067 1.134 0.105 0.070 0.050 1.038 0.130

Table S.11. Bias and root mean square error (RMSE) of quantile regression
estimators when λ = 0.75, N = 100 and T = 200.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
IQMG QMG IQMG QMG IQMG QMG IQMG QMG

Normal Distribution
100 50 Bias 0.029 0.051 -0.028 -0.043 0.032 0.053 -0.017 -0.028
100 50 RMSE 0.040 0.058 0.059 0.069 0.044 0.062 0.057 0.068
100 100 Bias 0.019 0.029 -0.011 -0.017 0.017 0.028 -0.009 -0.013
100 100 RMSE 0.024 0.033 0.031 0.036 0.024 0.034 0.034 0.036
100 200 Bias 0.009 0.009 -0.007 -0.005 0.008 0.009 -0.007 -0.005
100 200 RMSE 0.015 0.017 0.022 0.022 0.014 0.016 0.023 0.024
200 50 Bias 0.034 0.058 -0.021 -0.044 0.035 0.058 -0.010 -0.030
200 50 RMSE 0.038 0.062 0.043 0.060 0.040 0.061 0.040 0.053
200 100 Bias 0.018 0.030 -0.012 -0.021 0.017 0.030 -0.008 -0.014
200 100 RMSE 0.021 0.032 0.023 0.029 0.022 0.033 0.024 0.028
200 200 Bias 0.010 0.014 -0.004 -0.008 0.009 0.013 -0.003 -0.005
200 200 RMSE 0.013 0.016 0.016 0.017 0.013 0.016 0.016 0.018

t4 distribution
100 50 Bias 0.032 0.049 -0.025 -0.042 0.037 0.055 -0.017 -0.031
100 50 RMSE 0.044 0.058 0.061 0.075 0.051 0.067 0.063 0.073
100 100 Bias 0.019 0.027 -0.013 -0.017 0.019 0.029 -0.015 -0.018
100 100 RMSE 0.025 0.032 0.033 0.039 0.028 0.036 0.039 0.042
100 200 Bias 0.010 0.010 -0.004 -0.003 0.012 0.012 -0.005 -0.002
100 200 RMSE 0.015 0.015 0.020 0.023 0.018 0.019 0.025 0.027
200 50 Bias 0.035 0.054 -0.025 -0.046 0.039 0.061 -0.021 -0.036
200 50 RMSE 0.040 0.058 0.046 0.064 0.046 0.065 0.051 0.082
200 100 Bias 0.018 0.028 -0.014 -0.020 0.019 0.029 -0.013 -0.021
200 100 RMSE 0.021 0.031 0.027 0.032 0.024 0.033 0.031 0.037
200 200 Bias 0.009 0.012 -0.007 -0.008 0.011 0.014 -0.005 -0.007
200 200 RMSE 0.012 0.015 0.018 0.019 0.015 0.017 0.020 0.022

χ2
3 distribution

100 50 Bias 0.055 0.075 -0.023 -0.035 0.029 0.041 -0.011 -0.015
100 50 RMSE 0.076 0.092 0.102 0.111 0.047 0.058 0.074 0.084
100 100 Bias 0.031 0.037 -0.009 -0.015 0.018 0.017 0.001 -0.007
100 100 RMSE 0.045 0.049 0.061 0.059 0.028 0.027 0.039 0.040
100 200 Bias 0.017 0.018 -0.003 -0.003 0.009 0.006 -0.001 0.000
100 200 RMSE 0.030 0.030 0.046 0.044 0.017 0.016 0.029 0.027
200 50 Bias 0.051 0.072 -0.034 -0.050 0.028 0.039 -0.015 -0.026
200 50 RMSE 0.063 0.082 0.077 0.088 0.038 0.049 0.053 0.061
200 100 Bias 0.029 0.038 -0.015 -0.022 0.015 0.019 -0.006 -0.008
200 100 RMSE 0.038 0.044 0.046 0.049 0.022 0.026 0.031 0.034
200 200 Bias 0.017 0.020 -0.005 -0.007 0.009 0.009 -0.001 -0.002
200 200 RMSE 0.023 0.026 0.029 0.030 0.014 0.014 0.020 0.021

Table S.14. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for λ and θ in Design 1. In all the
variations of the model, λ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
IQMG QMG IQMG QMG IQMG QMG IQMG QMG

Normal Distribution
100 50 Bias 0.041 0.063 -0.003 -0.018 0.040 0.061 0.003 -0.007
100 50 RMSE 0.049 0.069 0.048 0.058 0.049 0.069 0.055 0.066
100 100 Bias 0.026 0.034 0.005 -0.001 0.024 0.033 0.008 0.004
100 100 RMSE 0.031 0.039 0.031 0.033 0.030 0.039 0.032 0.036
100 200 Bias -0.008 -0.007 -0.041 -0.039 -0.008 -0.007 -0.040 -0.038
100 200 RMSE 0.014 0.015 0.046 0.045 0.014 0.015 0.046 0.044
200 50 Bias 0.040 0.063 -0.009 -0.034 0.040 0.063 -0.001 -0.021
200 50 RMSE 0.044 0.066 0.039 0.053 0.044 0.066 0.037 0.048
200 100 Bias 0.026 0.038 0.006 -0.003 0.025 0.037 0.009 0.002
200 100 RMSE 0.028 0.039 0.021 0.023 0.028 0.039 0.026 0.026
200 200 Bias 0.008 0.012 -0.007 -0.011 0.007 0.010 -0.007 -0.009
200 200 RMSE 0.011 0.014 0.016 0.019 0.011 0.014 0.017 0.019

t4 distribution
100 50 Bias 0.045 0.060 -0.001 -0.019 0.049 0.066 0.007 -0.008
100 50 RMSE 0.053 0.068 0.054 0.065 0.060 0.076 0.061 0.067
100 100 Bias 0.032 0.039 0.014 0.011 0.032 0.042 0.013 0.009
100 100 RMSE 0.036 0.043 0.033 0.036 0.038 0.047 0.038 0.039
100 200 Bias -0.006 -0.006 -0.035 -0.033 -0.004 -0.003 -0.035 -0.032
100 200 RMSE 0.012 0.013 0.040 0.040 0.014 0.015 0.044 0.042
200 50 Bias 0.029 0.047 -0.037 -0.058 0.033 0.054 -0.034 -0.070
200 50 RMSE 0.035 0.052 0.053 0.072 0.041 0.059 0.058 0.306
200 100 Bias 0.016 0.025 -0.018 -0.023 0.017 0.027 -0.017 -0.025
200 100 RMSE 0.020 0.029 0.029 0.034 0.023 0.031 0.033 0.039
200 200 Bias -0.014 -0.011 -0.052 -0.053 -0.012 -0.009 -0.051 -0.053
200 200 RMSE 0.016 0.014 0.055 0.056 0.016 0.014 0.054 0.056

χ2
3 distribution

100 50 Bias 0.067 0.087 -0.003 -0.009 0.041 0.053 0.013 0.008
100 50 RMSE 0.084 0.102 0.101 0.123 0.055 0.066 0.073 0.082
100 100 Bias 0.028 0.034 -0.015 -0.020 0.015 0.015 -0.005 -0.012
100 100 RMSE 0.043 0.046 0.062 0.061 0.027 0.026 0.040 0.042
100 200 Bias 0.012 0.013 -0.012 -0.012 0.003 0.001 -0.011 -0.010
100 200 RMSE 0.027 0.027 0.048 0.046 0.016 0.015 0.031 0.029
200 50 Bias 0.059 0.076 -0.020 -0.036 0.035 0.045 0.000 -0.012
200 50 RMSE 0.068 0.084 0.070 0.109 0.042 0.053 0.046 0.055
200 100 Bias 0.031 0.041 -0.009 -0.018 0.017 0.021 0.000 -0.003
200 100 RMSE 0.039 0.047 0.047 0.048 0.022 0.026 0.027 0.028
200 200 Bias 0.034 0.039 0.032 0.030 0.027 0.028 0.036 0.035
200 200 RMSE 0.037 0.042 0.043 0.043 0.029 0.030 0.041 0.040

Table S.15. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for λ and θ in Design 2. In all the
variations of the model, λ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
IQMG QMG IQMG QMG IQMG QMG IQMG QMG

Normal Distribution
100 50 Bias 0.039 0.058 -0.023 -0.048 0.042 0.066 -0.004 -0.011
100 50 RMSE 0.048 0.066 0.060 0.076 0.051 0.073 0.062 0.067
100 100 Bias 0.023 0.032 -0.007 -0.015 0.024 0.035 0.001 0.000
100 100 RMSE 0.028 0.037 0.032 0.036 0.030 0.041 0.034 0.039
100 200 Bias 0.011 0.013 -0.004 -0.005 0.011 0.016 -0.002 0.005
100 200 RMSE 0.017 0.018 0.022 0.022 0.018 0.021 0.023 0.024
200 50 Bias 0.039 0.065 -0.026 -0.050 0.044 0.074 -0.003 -0.012
200 50 RMSE 0.044 0.068 0.044 0.063 0.049 0.077 0.040 0.047
200 100 Bias 0.021 0.033 -0.013 -0.024 0.023 0.038 -0.003 -0.006
200 100 RMSE 0.024 0.036 0.027 0.038 0.027 0.040 0.026 0.027
200 200 Bias 0.010 0.014 -0.007 -0.010 0.011 0.017 -0.001 0.000
200 200 RMSE 0.013 0.017 0.017 0.019 0.014 0.020 0.016 0.016

t4 distribution
100 50 Bias 0.037 0.054 -0.032 -0.056 0.044 0.069 -0.012 -0.005
100 50 RMSE 0.049 0.063 0.067 0.083 0.057 0.079 0.069 0.223
100 100 Bias 0.022 0.029 -0.010 -0.017 0.028 0.040 -0.001 0.002
100 100 RMSE 0.028 0.035 0.036 0.042 0.034 0.046 0.035 0.041
100 200 Bias 0.012 0.012 -0.004 -0.005 0.015 0.019 0.002 0.008
100 200 RMSE 0.017 0.018 0.023 0.024 0.019 0.024 0.022 0.025
200 50 Bias 0.036 0.058 -0.033 -0.051 0.048 0.074 -0.010 -0.014
200 50 RMSE 0.041 0.063 0.051 0.068 0.054 0.079 0.049 0.080
200 100 Bias 0.019 0.030 -0.017 -0.025 0.025 0.039 -0.006 -0.008
200 100 RMSE 0.023 0.033 0.028 0.035 0.029 0.042 0.028 0.029
200 200 Bias 0.010 0.014 -0.007 -0.009 0.014 0.019 0.000 0.000
200 200 RMSE 0.013 0.016 0.018 0.020 0.017 0.022 0.018 0.020

χ2
3 distribution

100 50 Bias 0.060 0.082 -0.036 -0.055 0.041 0.060 0.010 0.008
100 50 RMSE 0.082 0.100 0.116 0.126 0.055 0.072 0.076 0.080
100 100 Bias 0.037 0.044 -0.016 -0.026 0.018 0.025 -0.002 0.003
100 100 RMSE 0.049 0.055 0.067 0.069 0.030 0.036 0.045 0.050
100 200 Bias 0.016 0.017 -0.010 -0.015 0.009 0.010 -0.002 0.002
100 200 RMSE 0.028 0.028 0.044 0.046 0.017 0.018 0.028 0.028
200 50 Bias 0.059 0.082 -0.041 -0.063 0.038 0.057 0.002 0.001
200 50 RMSE 0.068 0.089 0.076 0.090 0.046 0.064 0.047 0.052
200 100 Bias 0.031 0.041 -0.022 -0.032 0.017 0.024 -0.002 -0.002
200 100 RMSE 0.038 0.047 0.048 0.054 0.023 0.029 0.031 0.033
200 200 Bias 0.016 0.020 -0.011 -0.015 0.010 0.012 0.000 0.002
200 200 RMSE 0.024 0.026 0.034 0.035 0.015 0.017 0.021 0.022

Table S.16. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for λ and θ in Design 3. In all the
variations of the model, λ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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τ = 0.50 quantile τ = 0.25 quantile
Parameter: λ Parameter: θ Parameter: λ Parameter: θ
IQMG QMG IQMG QMG IQMG QMG IQMG QMG

Normal Distribution
100 50 Bias 0.045 0.067 -0.012 -0.040 0.049 0.076 0.009 0.001
100 50 RMSE 0.052 0.071 0.052 0.065 0.056 0.081 0.053 0.061
100 100 Bias 0.016 0.026 -0.020 -0.023 0.021 0.033 -0.006 -0.005
100 100 RMSE 0.023 0.032 0.036 0.042 0.027 0.039 0.036 0.036
100 200 Bias 0.007 0.010 -0.009 -0.008 0.010 0.014 -0.004 0.003
100 200 RMSE 0.013 0.016 0.022 0.024 0.016 0.020 0.023 0.024
200 50 Bias 0.043 0.068 -0.013 -0.038 0.049 0.077 0.007 -0.005
200 50 RMSE 0.047 0.071 0.038 0.057 0.052 0.080 0.036 0.044
200 100 Bias 0.013 0.025 -0.027 -0.037 0.015 0.029 -0.017 -0.021
200 100 RMSE 0.017 0.028 0.035 0.043 0.020 0.032 0.030 0.033
200 200 Bias 0.009 0.013 -0.009 -0.012 0.011 0.017 -0.003 -0.001
200 200 RMSE 0.012 0.016 0.018 0.020 0.014 0.020 0.016 0.016

t4 distribution
100 50 Bias 0.048 0.066 -0.009 -0.033 0.061 0.087 0.016 0.007
100 50 RMSE 0.055 0.074 0.055 0.071 0.069 0.094 0.070 0.076
100 100 Bias 0.014 0.022 -0.023 -0.028 0.020 0.033 -0.015 -0.011
100 100 RMSE 0.023 0.029 0.041 0.045 0.028 0.040 0.038 0.041
100 200 Bias 0.019 0.019 0.012 0.011 0.022 0.027 0.017 0.024
100 200 RMSE 0.022 0.023 0.025 0.026 0.026 0.030 0.028 0.033
200 50 Bias 0.030 0.050 -0.046 -0.067 0.043 0.070 -0.017 -0.030
200 50 RMSE 0.036 0.055 0.060 0.079 0.048 0.073 0.050 0.057
200 100 Bias 0.023 0.034 -0.007 -0.014 0.027 0.040 0.002 0.000
200 100 RMSE 0.027 0.037 0.025 0.030 0.032 0.044 0.029 0.031
200 200 Bias 0.011 0.015 -0.005 -0.007 0.014 0.020 -0.001 0.001
200 200 RMSE 0.014 0.018 0.016 0.019 0.017 0.023 0.018 0.018

χ2
3 distribution

100 50 Bias 0.073 0.100 -0.023 -0.041 0.050 0.072 0.022 0.026
100 50 RMSE 0.089 0.114 0.098 0.104 0.062 0.083 0.071 0.077
100 100 Bias 0.074 0.082 0.060 0.051 0.058 0.064 0.076 0.080
100 100 RMSE 0.083 0.089 0.089 0.081 0.063 0.069 0.088 0.092
100 200 Bias 0.058 0.059 0.072 0.068 0.048 0.050 0.079 0.084
100 200 RMSE 0.062 0.063 0.084 0.080 0.051 0.053 0.084 0.089
200 50 Bias 0.066 0.091 -0.024 -0.049 0.045 0.063 0.015 0.012
200 50 RMSE 0.077 0.099 0.085 0.089 0.053 0.070 0.055 0.060
200 100 Bias 0.038 0.049 -0.008 -0.018 0.024 0.031 0.012 0.011
200 100 RMSE 0.043 0.054 0.042 0.046 0.029 0.035 0.033 0.033
200 200 Bias 0.025 0.029 0.007 0.002 0.018 0.021 0.017 0.019
200 200 RMSE 0.029 0.033 0.028 0.028 0.021 0.023 0.026 0.027

Table S.17. Bias and root mean square error (RMSE) of the unfeasible QMG
estimator and the feasible QMG estimator for λ and θ in Design 4. In all the
variations of the model, λ = 0.5. IQMG denotes the unfeasible version of the
estimator.
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Figure S.3. Power of the QMG estimator against different alternatives. The

figures shows results when u ∼ N (0, 1).



32

0.46 0.48 0.50 0.52 0.54

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile τ = 0.5

Parameter λ

P
ow

er T = 100
T = 200
T = 400

0.46 0.48 0.50 0.52 0.54

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile τ = 0.25

Parameter λ

P
ow

er T = 100
T = 200
T = 400

0.90 0.95 1.00 1.05 1.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile τ = 0.5

Parameter β

P
ow

er T = 100
T = 200
T = 400

0.90 0.95 1.00 1.05 1.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile τ = 0.25

Parameter β

P
ow

er T = 100
T = 200
T = 400

Figure S.4. Power of the QMG estimator against different alternatives. The

figures shows results when u ∼ χ2
3.
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QMG FE CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Consumption at 0.466 0.576 0.620 0.479 0.353 0.623 0.476
t− 1 (in logs) (0.020) (0.021) (0.021) (0.020) (0.015) (0.001) (0.009)

Treatment 0.148 0.112 0.063 0.049 0.048 0.145 0.095
(2pm - 7pm) (0.011) (0.009) (0.006) (0.007) (0.006) (0.001) (0.018)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 242 242 242 242 242 242 242
N × T 2090638 2090638 2090638 2090638 2090638 2090638 2090638

Portal
Consumption at 0.469 0.588 0.631 0.485 0.360 0.622 0.489
t− 1 (in logs) (0.021) (0.023) (0.024) (0.022) (0.015) (0.001) (0.009)

Treatment 0.089 0.065 0.038 0.023 0.007 0.102 0.048
(2pm - 7pm) (0.013) (0.012) (0.010) (0.011) (0.014) (0.001) (0.017)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 189 189 189 189 189 189 189
N × T 1632771 1632771 1632771 1632771 1632771 1632771 1632771

IHD
Consumption at 0.470 0.581 0.615 0.475 0.352 0.627 0.480
t− 1 (in logs) (0.022) (0.025) (0.027) (0.025) (0.018) (0.001) (0.009)

Treatment 0.102 0.072 0.038 0.025 0.006 0.089 0.046
(2pm - 7pm) (0.017) (0.013) (0.010) (0.009) (0.011) (0.002) (0.017)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 152 152 152 152 152 152 152
N × T 1313128 1313128 1313128 1313128 1313128 1313128 1313128

PCT
Consumption at 0.718 0.785 0.806 0.693 0.560 0.771 0.682
t− 1 (in logs) (0.024) (0.020) (0.019) (0.022) (0.021) (0.000) (0.007)

Treatment -0.092 -0.054 -0.029 -0.030 -0.029 -0.010 -0.073
(2pm - 7pm) (0.022) (0.016) (0.010) (0.010) (0.014) (0.001) (0.014)
Weather controls Yes Yes Yes Yes Yes Yes Yes
N 196 196 196 196 196 196 196
N × T 1693244 1693244 1693244 1693244 1693244 1693244 1693244

Table S.18. Quantile Mean Group estimator results for the control group and
different technologies. FE denotes fixed effects and CCEMG denotes the Com-
mon Correlated Mean Group estimator due to Chudik and Pesaran (2015).
IHD denotes in-home display and PCT is programmable communicating ther-
mostats. Standard errors are in parentheses.
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Figure S.5. Short and Long Run Quantile Regression Results. The figure

shows the QTE coefficient δg(τ) for the control group, portal group, in-home-

device (IHD), and programmable communicating thermostats (PCT). The grey

area denotes a 95 percent point-wise confidence interval.
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QMG CCEMG
0.10 0.25 0.50 0.75 0.90

Control Group
High Income Consumption at 0.470 0.583 0.624 0.492 0.368 0.484

t− 1 (in logs) (0.032) (0.035) (0.036) (0.034) (0.025) (0.009)
Treatment 0.164 0.132 0.075 0.061 0.058 0.110
(2pm - 7pm) (0.017) (0.015) (0.010) (0.009) (0.009) (0.016)

Low Income Consumption at 0.463 0.572 0.617 0.472 0.344 0.472
t− 1 (in logs) (0.025) (0.026) (0.026) (0.024) (0.018) (0.009)

Treatment 0.139 0.100 0.055 0.041 0.041 0.085
(2pm - 7pm) (0.014) (0.011) (0.008) (0.009) (0.009) (0.019)

Portal
High Income Consumption at 0.463 0.582 0.619 0.480 0.351 0.483

t− 1 (in logs) (0.029) (0.031) (0.033) (0.030) (0.020) (0.009)
Treatment 0.083 0.061 0.035 0.016 -0.003 0.040
(2pm - 7pm) (0.018) (0.018) (0.015) (0.017) (0.022) (0.017)

Low Income Consumption at 0.476 0.597 0.648 0.492 0.371 0.496
t− 1 (in logs) (0.030) (0.033) (0.035) (0.032) (0.024) (0.009)

Treatment 0.098 0.072 0.042 0.032 0.021 0.060
(2pm - 7pm) (0.020) (0.016) (0.012) (0.009) (0.012) (0.018)

IHD
High Income Consumption at 0.470 0.582 0.609 0.481 0.364 0.488

t− 1 (in logs) (0.032) (0.036) (0.038) (0.037) (0.025) (0.009)
Treatment 0.092 0.062 0.025 0.011 -0.015 0.028
(2pm - 7pm) (0.023) (0.021) (0.017) (0.015) (0.020) (0.017)

Low Income Consumption at 0.471 0.579 0.621 0.469 0.340 0.472
t− 1 (in logs) (0.031) (0.035) (0.038) (0.034) (0.027) (0.009)

Treatment 0.112 0.083 0.052 0.039 0.026 0.065
(2pm - 7pm) (0.025) (0.017) (0.011) (0.011) (0.011) (0.017)

PCT
High Income Consumption at 0.709 0.787 0.810 0.685 0.535 0.676

t− 1 (in logs) (0.033) (0.027) (0.024) (0.028) (0.026) (0.008)
Treatment -0.103 -0.064 -0.036 -0.044 -0.044 -0.085
(2pm - 7pm) (0.033) (0.025) (0.016) (0.018) (0.023) (0.014)

Low Income Consumption at 0.727 0.784 0.802 0.701 0.584 0.687
t− 1 (in logs) (0.036) (0.030) (0.029) (0.033) (0.032) (0.007)

Treatment -0.082 -0.045 -0.021 -0.016 -0.014 -0.061
(2pm - 7pm) (0.031) (0.022) (0.013) (0.012) (0.017) (0.015)

Table S.19. Quantile Mean Group estimator results by Income Levels.
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.
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QMG CEEMG
0.10 0.25 0.50 0.75 0.90

Control Group
Family years Consumption at 0.493 0.618 0.666 0.515 0.369 0.507

t− 1 (in logs) (0.027) (0.029) (0.029) (0.028) (0.021) (0.009)
Treatment 0.161 0.119 0.062 0.050 0.041 0.099
(2pm - 7pm) (0.015) (0.012) (0.008) (0.008) (0.008) (0.017)

Young years Consumption at 0.439 0.535 0.575 0.444 0.337 0.447
t− 1 (in logs) (0.029) (0.029) (0.030) (0.027) (0.020) (0.009)

Treatment 0.135 0.106 0.063 0.047 0.053 0.090
(2pm - 7pm) (0.016) (0.013) (0.010) (0.011) (0.009) (0.019)

Portal
Family years Consumption at 0.471 0.602 0.654 0.505 0.364 0.502

t− 1 (in logs) (0.027) (0.030) (0.032) (0.029) (0.020) (0.009)
Treatment 0.109 0.086 0.053 0.043 0.032 0.067
(2pm - 7pm) (0.017) (0.017) (0.015) (0.016) (0.021) (0.017)

Young years Consumption at 0.467 0.578 0.615 0.471 0.357 0.479
t− 1 (in logs) (0.017) (0.014) (0.013) (0.014) (0.013) (0.009)

Treatment 0.075 0.051 0.026 0.009 -0.011 0.035
(2pm - 7pm) (0.028) (0.019) (0.014) (0.015) (0.020) (0.018)

IHD
Family years Consumption at 0.508 0.647 0.696 0.540 0.384 0.535

t− 1 (in logs) (0.029) (0.030) (0.031) (0.032) (0.025) (0.009)
Treatment 0.084 0.056 0.028 0.014 0.001 0.033
(2pm - 7pm) (0.025) (0.020) (0.013) (0.011) (0.017) (0.016)

Young years Consumption at 0.440 0.527 0.550 0.422 0.327 0.435
t− 1 (in logs) (0.032) (0.037) (0.040) (0.037) (0.026) (0.009)

Treatment 0.117 0.086 0.047 0.034 0.009 0.058
(2pm - 7pm) (0.024) (0.018) (0.015) (0.013) (0.015) (0.018)

PCT
Family years Consumption at 0.719 0.780 0.801 0.689 0.556 0.679

t− 1 (in logs) (0.037) (0.030) (0.026) (0.032) (0.032) (0.007)
Treatment -0.078 -0.042 -0.020 -0.018 -0.003 -0.055
(2pm - 7pm) (0.036) (0.025) (0.015) (0.016) (0.022) (0.014)

Young years Consumption at 0.718 0.789 0.809 0.696 0.562 0.683
t− 1 (in logs) (0.032) (0.029) (0.027) (0.030) (0.027) (0.007)

Treatment -0.101 -0.062 -0.034 -0.037 -0.044 -0.083
(2pm - 7pm) (0.028) (0.021) (0.013) (0.013) (0.018) (0.015)

Table S.20. Quantile Mean Group estimator results by Income Levels.
CCEMG denotes the Common Correlated Mean Group estimator due to
Chudik and Pesaran (2015). IHD denotes in-home display and PCT is pro-
grammable communicating thermostats. Standard errors are in parentheses.
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Figure S.6. Counterfactual policies for customers with a PCT. The right

panels show the percentage change in electricity usage with respect to the actual

policy.
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