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Abstract 
 
This paper develops and solves a dynamic spatial equilibrium model of regional housing 
markets in which house prices are jointly determined with location-to-location migration flows. 
Agents optimize period-by-period and decide whether to remain where they are or migrate to a 
new location at the start of each period. The agent’s optimal location choice and the resultant 
migration process is shown to be Markovian with the transition probabilities across all location 
pairs given as non-linear functions of wage and housing cost differentials, which are time 
varying and endogenously determined. On the supply side, in each location the construction 
firms build new houses by combining land and residential structures; with housing supplies 
endogenously responding to migration flows. The model can be viewed as an example of a 
dynamic network where regional housing markets interact with each other via migration flows 
that function as a source of spatial spill-overs. It is shown that the deterministic version of the 
model has a unique equilibrium and a unique balanced growth path. We estimate the state-level 
supplies of new residential land from the model using housing market and urban land acreage 
data. These estimates are shown to be significantly negatively correlated with the Wharton 
Residential Land Use Regulatory Index. The model can simultaneously account for the rise in 
house price dispersion and the interstate migration in the U.S.. Counterfactual simulations 
suggest that reducing either land supply differentials or migration costs could significantly lower 
house price dispersion. 
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1 Introduction

In this paper, we develop and solve a dynamic spatial equilibrium model of regional housing
markets. We model explicitly the agent’s optimal location choice problem, and the dynamics
of location-to-location migration flows. In contrast to the conventional demographic studies
on migration that use Markov chain models with exogenously given transition probabilities
across locations, we explicitly model local labor and housing markets, and allow transi-
tion probabilities that are functions of wage and housing cost differentials to endogenously
respond to migration flows.1 As a result, local wage rates and house prices are jointly deter-
mined with migration flows. Our theoretical framework can be viewed as an example of a
dynamic network where regional housing markets interact with each other via migration flows
that function as a source of spatial spill-overs. Because of these features, the present model
provides a theoretically coherent framework to study the effects of changes in regional supply
and demand conditions on house prices across all locations through endogenized migration
flows.

At the start of each period, agents decide whether to remain where they are or migrate to
a different location. The expected gain from migration depends on the expected differences
in wage rates and housing costs between the origin and the destination, and the migration
cost that consists of a route-specific element, and a stochastic idiosyncratic component. The
agent’s optimal location choice and the resultant migration process is shown to be Markovian
with the transition probabilities across all location pairs given as non-linear functions of
wage and housing cost differentials, which are time varying and endogenously determined.
In each location, the construction firms build new houses by combining land and residential
structures; with housing supplies endogenously responding to migration flows. It is shown
that the deterministic version of the model has a unique balanced growth path, on which no
location ends up with zero population.

Our modelling approach is to be distinguished from existing Rosen-Roback style spatial
equilibrium models, such as, Van Nieuwerburgh and Weill (2010), and from the dynamic
population allocation models adopted in the studies on spatial labor allocations by Davis
et al. (2013) and Herkenhoff et al. (2018), among others. These studies rely on static models
of population allocation as an outcome of spatial sorting process under perfect population
mobility, or consider a representative household that centrally allocates household members
(population) across locations. This paper is complementary to these studies in that it models
explicitly the dynamics of location-to-location migration flows that function as a source of
spatial spill-overs.2

We use the model to study the effects of local land-use regulations on house price dis-

1Conventional demographic studies on migration that use Markov chain models, such as Fuguitt (1965)
and Tarver and Gurley (1965), assume that transition probabilities across locations are exogenously given,
whilst in our study we allow migration flows to interact with local housing markets through endogenous and
nonlinear variations in transition probabilities across location pairs and over time.

2Our paper also relates to empirical studies that find strong spatial spill-over effects in house price changes
in the U.S., such as, Holly et al. (2010), Bailey et al. (2016), Sinai (2012), Cotter et al. (2011), and DeFusco
et al. (2017). To our knowledge, the present paper is the first to explicitly model migration as the source of
spatial spillover effects in regional housing markets.
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persion across U.S. states and for internal migration. The house price dispersion across
U.S. states has been rising since 1970s, and even after adjusting house prices for income
differences, we are still left with a substantial secular rise in the dispersion of house prices
relative to incomes as shown in Figure 1 below. In addition, the rise in house price disper-
sion is basically a between-region phenomenon, since the average within-region dispersion
has been increasing much slower than the between-region dispersion as shown in Figure 2
below.3 The secular increase in the house price dispersion in the U.S. has been the ongo-
ing focus of empirical and theoretical research. Glaeser and Gyourko (2003), Glaeser et al.
(2005), Quigley and Raphael (2005), Ihlanfeldt (2007) and Albouy and Ehrlich (2018) find
that areas with faster than average growth in house prices tend to have more restrictions
on residential land-use.4 Recently, Hsieh and Moretti (2015) and Herkenhoff et al. (2018),
go beyond the analysis of house prices and examine the impact of land-use regulations on
spatial labor allocation. Their models predict that land-use deregulation can lead to substan-
tial population reallocations to high-productivity cities and a considerable increase in the
average labor productivity.5 Since we explicitly modelled the dynamic interactions between
migration and local housing markets, one advantage of our model in empirical application is
that it allows us to simultaneously evaluate the effects of changes in land-use regulations on
house price dispersion and population reallocation over time. In addition, the tractability
of the model allows us to analytically solve the model, which facilitates the analysis of the
evolutions of the U.S. regional housing markets between short run and long run equilibria.
As will be explained below, our model can account for the rise in house price dispersion and
the interstate migration in the U.S. simultaneously. In addition, our model predicts that
changes in regional land-use regulations affect local house prices much more as compared to
their effects on local population.

We calibrate our model on a panel of 49 states (including the District of Columbia) in the
U.S. mainland. We estimate the model using the subset of the available data on interstate
migration flows and state level housing market data over the period 1976-1999 (training
sample), and then conduct out-of-sample forecasts and simulations over the period 2000-
2014 (evaluation sample) and compare the predicted values to the actual realized values.
The route-specific migration costs are estimated using the combined state-to-state migration
flows and state level incomes and housing costs data. Parameters that govern local housing
supplies are calibrated using state level housing market data. We estimate the state-level
supplies of new residential land from the model using housing market and urban land acreage
data. These estimates are shown to be significantly negatively correlated with the Wharton

3Similar increases in house price dispersion have also been documented across Metropolitan Statistical
Areas (MSAs). The increases in house price dispersion across MSAs are mainly due to the increases in
between-state dispersion, as the within-state dispersion has not increased that much. For further details, see
Section S4.2 of the online supplement.

4Some recent studies consider also non-regulatory factors behind land supply availabilities. For example,
Saiz (2010) considers the impacts of geographical constraints on land supplies, and Kahn (2011) finds that
liberal cities in California grant fewer new housing permits.

5In addition, Hilber and Robert-Nicoud (2013) and Parkhomenko (2016) study how regional housing
supply regulations are endogenously determined in political processes, and Van Nieuwerburgh and Weill
(2010) and Gyourko et al. (2013) attribute the increase in house price dispersion to spatial labor sorting.
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Figure 1: Dispersions of log house prices and log house price-to-income
ratios across U.S. states

Notes: The solid line shows the standard deviation of log real house prices across U.S. states. The dashed
line shows the standard deviation of log house price-to-income ratios across U.S. states.

Residential Land Use Regulatory Index (WRI henceforth). In the out-of-sample forecast-
ing exercises, we examine the performance of the model in predicting the observed rise in
house price dispersion during the period 2000-2014. The model predicts reasonably well the
increases in the dispersions of house price-to-income ratios at both national and regional
levels during the evaluation sample. In addition, the model captures the different trends at
different geographical levels, i.e., the substantial increase in the between-region dispersion
and the moderate increases of within-region dispersions. As will be shown in Section 9,
this can be partially due to the stronger migration linkages between geographically close
states that tend to prevent the house price differences between these states from increasing.
Furthermore, our model captures the observed patterns of interstate migration, which com-
plements the analysis of gross migration trends in the literature, for example, by Kaplan and
Schulhofer-Wohl (2017).

To examine the importance of spatial heterogeneity in land-use regulation in driving up
house price dispersion in the U.S., we conduct a counterfactual simulation over the evaluation
sample (2000-2014) in which land supply growth rates of all states are set equal to the na-
tional average. The results of the counterfactual exercise show that land supply differentials
are the major factor behind the rising house price dispersion in the U.S..

To examine the impacts of regional land-use regulations on local house prices and popu-
lations, we consider two counterfactual exercises: a land-use deregulation in California and
a tightening of land-use regulation in Texas. These exercises show that local house prices
are much more affected by changes in land use regulations than populations. For example,
our model predicts that increasing the land supply growth rate of California to the national
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Figure 2: Dispersions of log house price-to-income ratios within and between U.S. regions

Notes: The line designated with ‘o’shows the dispersion of log house price-to-income ratios across U.S. states.
The line designated with ‘+’shows the dispersion of log house price-to-income ratios across the five U.S.
regions. The line designated with ’*’shows the average of within-region dispersions, where within-region
dispersion is the standard deviation of log house price-to-income ratios across the states that are within
a given region. See Section S5 of the online supplement for a derivation of the dispersion decomposition
formula.

average from 2000 onward induces the population of California in 2014 to rise by 0.1 million
(around 0.2 per cent of California population), whilst such a de-regulation could reduce the
annual growth rate of real house prices from 3 per cent realized during the 2000-2014 period
to a mere 0.8 per cent counterfactually. On the other extreme, reducing the land supply
growth rate of Texas to the national average reduces Texas’s population in 2014 by 0.1 mil-
lion (around 0.4 per cent of Texas population), but increases the annual growth rate of real
house prices from a realized value of 1.1 per cent to a counterfactual rate of 2.5 per cent.

To examine how land supply differentials and migration costs jointly contribute to the
rise in house price dispersion, we also carry out simulations assuming different levels of
land supply differentials and migration costs. The results indicate that both land supply
differentials and migration costs play significant roles in driving up house price dispersion;
reducing either of the two factors can significantly lower house price dispersion in the U.S..
In addition, increases in land supply differentials would lead to a larger rise in house price
dispersion when migration costs are larger.

We also investigate the impulse responses of state level house prices and population to
regional shocks, and consider a negative regional productivity shock to California as an
example. As local productivity drops, agents migrate out from California to other states,
which raises housing demand and house prices in these states. However, the responses of
house prices in the neighboring states of California are faster and stronger than those of the
other states. In addition, migration flows between California and its neighboring states are
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also more responsive to the shock. The impulse responses of the model economy to regional
productivity shocks to New York, Illinois, Florida and Texas also have similar patterns.
These results suggest, perhaps not surprisingly, that migrations between states that are
geographically close are more responsive to changes in wage and housing cost differentials.

The rest of the paper is organized as follows. Section 2 presents the migration module,
and Section 3 presents the rest of the model. Section 4 characterizes the equilibrium and
proves the existence and the uniqueness of the equilibrium and the balanced growth path in
the deterministic case. Section 5 estimates the model. Section 6 examines the ability of the
model in predicting the observed rise in house price dispersion in the U.S.. Sections 7 and 8
study the impacts of land-use regulations on house price dispersion and internal migration.
Section 9 studies the migration linkages between regional housing markets by analyzing the
responses of the economy to regional shocks. Section 10 concludes.

2 A dynamic location-to-location migration model

In this section, we provide a dynamic version of the residential choice model originally devel-
oped by McFadden (1978), and explicitly model the location-to-location migration choices
of agents at the start of each period. In the next section, we will provide a simultaneous
determination of house prices and migration flows across space and over time.

2.1 Geography and migration flows

Time, denoted by t, is discrete and the horizon is infinite, so that t = 0, 1, 2, .... There are n
locations, and the collection of locations is represented by I = {1, 2, ..., n}, where n is fixed
but possibly large (n ≥ 2). The economy is populated by workers who consume goods and
housing services, and live for only one period. At the start of each period, workers decide
whether to reside at locations where they are born, or migrate to a new location. Denote by
lij(t) the number of workers who are born at location i in period t, and choose to reside at
location j, where i and j ∈ In. Denote the population of workers born at location i at the
start of period t by li·(t). Then

li·(t) =

n∑
j=1

lij(t), (1)

and the number of workers who choose to reside at location j in period t, denoted by l·j(t),
is given by

l·j(t) =

n∑
i=1

lij(t). (2)

The number of workers who are born at location i at the start of period t equals to the
number of workers who reside at that location in period t− 1, plus an intrinsic exogenously
given population change.6 Denote the intrinsic rate of population change (growth rate if

6The intrinsic population changes are made up of, for example, the net natural population increases (i.e.
birth minus death) and the net migration flows from other countries.
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positive) of location i in period t by gl,it. Thus, the number of workers born in location i at
the start of period t is given by

li·(t) = egl,itl·i(t− 1), (3)

where it is assumed that gl,it follows an exogenously given deterministic process, for i ∈ In,
to be specified below.

We model migration probabilities as a Markov process. The probability that an individ-
ual worker born at location i chooses to reside at location j in period t is denoted by ρij(t),
where ρij(t) > 0 and

∑n
j=1 ρij(t) = 1. Workers’location choices are assumed to be condi-

tionally independent given the location-specific wage rates and housing service prices. Thus,
according to the law of large numbers, the fraction of workers born in location i who choose
to reside at location j converges to ρij(t) as population increases. We ignore any randomness
due to finite population and assume the migration flow from location i to location j, lij(t),
is determined by

lij(t) = li·(t)ρij(t). (4)

Thus, by combining (2), (3) and (4), we obtain

l·j(t) =
n∑
i=1

egl,itl·i(t− 1)ρij(t), for j = 1, 2, ..., n. (5)

The above system of equations can be re-written more compactly as

l(t) = l(t− 1)G(t)R(t), (6)

where l(t) ≡ [l·1(t), l·2(t), ..., l·n(t)] is the 1 × n (row) vector of location-specific population,
and G(t) is the n × n diagonal matrix of population growth rates and R(t) is the n × n
Markovian migration probability matrix, defined by

G(t) ≡


egl,1t 0 · · · 0

0 egl,2t · · · 0
...

...
. . .

...
0 0 · · · egl,nt

 , and R(t) ≡


ρ11(t) ρ12(t) · · · ρ1n(t)
ρ21(t) ρ22(t) · · · ρ2n(t)
...

...
. . .

...
ρn1(t) ρn2(t) · · · ρnn(t)

 .

In the standard Markov chain model of migration, transition matrix is exogenously given.
However, in our model, we allow R(t) to be time varying and endogenously determined. We
consider the endogenous determination of R(t) in the following sections.

2.2 Location choice

At the start of each period, workers decide where to reside by maximizing their utilities
in terms of consumption and housing services across all locations, and then choosing the
location that gives them the highest level of utility. Consider an individual worker τ who is
born at location i in period t, and considers moving to location j ∈ In, where j could be i
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(namely not moving). We adopt a log-linear utility function and assume that if the worker
decides to reside in location j, then her utility will be given by

uτ ,t,ij = (1− η) ln cτ ,t,ij + η ln sτ ,t,ij − ψ lnαij + ετ ,t,ij, (7)

where cτ ,t,ij and sτ ,t,ij are her consumption of goods and housing services, respectively, η
represents the relative preference for housing service to consumption goods with η ∈ (0, 1),
lnαij is the route-specific migration cost, ψ is the relative weight of migration costs in
utility function, and ετ ,t,ij represents the idiosyncratic component of worker’s relative location
preference over (i, j) location pair. We assume αij > 1, if j 6= i, and, αij = 1, if j = i. In
addition, suppose that ετ ,t,ij is distributed independently of cτ ,t,ij and sτ ,t,ij, and over time
t. Also, following the literature on utility-based multiple choice decision problem, we shall
assume that at each point in t, ετ ,t,ij are independently and identically distributed (IID) as
extreme value distribution. (see, for example, McFadden (1978)).

Each worker inelastically supplies one unit of labor and allocate her wage income between
consumption of goods and housing services. Denoting the wage rate and the price of housing
services at location j in period t by wjt and qjt respectively, the budget constraint of the
worker is given as

cτ ,t,ij + qjtsτ ,t,ij = wjt.

The utility maximization is done in two steps. First, the worker maximizes her utility in
terms of consumption of goods and housing services across locations. Denote by ũτ ,t,ij the
maximized utility of worker τ if she chooses to reside at location j. It is given as

ũτ ,t,ij = ujt − ψ lnαij + ετ ,t,ij, (8)

where ujt is the maximal utility one can get in location j, which is determined as

ujt ≡ max
{cτ,t,ij , sτ,t,ij}

(1− η) ln cτ ,t,ij + η ln sτ ,t,ij, (9)

s.t. cτ ,t,ij + qjtsτ ,t,ij = wjt.

By solving the above optimization problem, we obtain:

cjt = (1− η)wjt, (10)

sjt =
ηwjt
qjt

, (11)

where the subscripts τ and i of cτ ,t,ij and sτ ,t,ij are dropped for convenience, since the optimal
levels of consumption of goods and housing services of each worker only depend on j and t.
Thus, the indirect utility function associated with location j can be obtained by substituting
(10) and (11) into (9) to yield:

ujt = u0 + lnwjt − η ln qjt, (12)

where u0 ≡ (1− η) ln(1− η) + η ln η is a scalar.
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Second, the worker chooses the location with the highest utility. Using (8) and (12), the
net utility gain of worker τ migrating to location j, denoted by vτ ,t,ij, is given by

vτ ,t,ij = ũτ ,t,ij − ũτ ,t,ii,
= (lnwjt − lnwit)− η (ln qjt − ln qit) + (ετ ,t,ij − ετ ,t,ii)− ψ lnαij.

Given the realizations of {ετ ,t,ij}nj=1, the worker chooses the destination with the highest
vτ ,t,ij. Let j∗τ ,t,i denote the location chosen by the worker. Then,

j∗τ ,t,i = argmax
j∈In

vτ ,t,ij.

Since by assumption ετ ,t,ij is distributed as IID extreme value, it can be shown that the
probability for the worker in location i to migrate to location j is given by (see Appendix
A1.1 for a derivation)

ρij(t) =
evt,ij∑n
s=1 e

vt,is
, (13)

where
vt,ij ≡ (lnwjt − lnwit)− η (ln qjt − ln qit)− ψ lnαij. (14)

Thus, ρij(t) is a function of wage rate differentials, lnwjt− lnwit, and housing cost differen-
tials, ln qjt − ln qit.

3 Production and housing supplies

In this section, we discuss how output, wage rates, housing service prices, and house prices
are determined.

3.1 Production

We assume that location-specific wage rates are competitively determined in local labor
markets, and allow for agglomeration effects in production. We further assume that the
production of final goods is given by

yit = φit (aitl·i(t))
vl , (15)

where yit is the output of final goods in location i in period t, l·i(t) is the labor used in the
production, ait is the location-specific labor productivity, vl ∈ (0, 1) is the share of labor
costs in output, and φit stands for total factor productivity given by

φit = φ̄iy
vφ
it , (16)

where φ̄i > 0, and vφ ∈ [0, 1). It is assumed that total factor productivity, φit, increases with
production scale, which captures agglomeration effects of production. Parameter vφ governs
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the magnitude of agglomeration effects, with vφ = 0 corresponding to no agglomeration
effect. The profit of the representative final goods producer at location i is given by

πyit = yit − witl·i(t), (17)

where wit is the wage rate in location i. The representative final goods producer chooses
l·i(t) to maximize its profits (17) subject to (15), while taking φit as given. The first order
condition for l·i(t) is given by,

wit = υl

(
yit
l·i(t)

)
. (18)

By substituting (15) and (16) into (18), we obtain the labor demand function:

wit = τw,ia
λa
it l·i(t)

−λl , (19)

where τw,i ≡ υlφ̄
1/(1−vφ)
i is a location-specific scalar, and λa and λl are the elasticities of

wage rate with respect to labor productivity and labor input respectively, which are defined
by

λa ≡
vl

1− vφ
, and λl ≡

1− vl − vφ
1− vφ

. (20)

To ensure that wage rates, wit, decrease with labor inputs, l·i(t), we assume 1− vl − vφ > 0,
which in turn implies 1 > λl > 0.7 We further assume that final goods producers consume
all the profits they earn in each period. Thus, cyit = πyit, where c

y
it denotes the consumption

of final goods by producers at location i in period t.
We adopt a relatively general specification of ait and assume that ln ait comprises of a

linear trend component, ln ai + gat, a national common (unobserved) component, ft, and a
local component za,it:

ln ait = ln ai + gat+ λift + za,it, (21)

where ga is the national growth rate of labor productivity, and λi is the location-specific
coeffi cient on the national component, with E (λi) > 0. In addition, za,it and ft are assumed
to follow first-order autoregressive (AR(1)) processes:

ft = ρfft−1 + σfεf,t, (22)

za,it = ρa,iza,i,t−1 + σa,iεa,it, (23)

where εf,t and εa,it are IID across locations and over time.

3.2 Housing supplies

We assume that location-specific housing service prices are competitively determined in local
rental markets. Suppose that each unit of existing houses provides a unit of housing services

7It is easily seen that τw,i > 0 and λa > 0, since φ̄i and υl > 0, and vφ ∈ [0, 1).
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in each period, while new houses begin to provide housing services a period after they are
built. Thus, the market clearing condition is given by

hi,t−1 =

(
ηwit
qit

)
l·i(t), (24)

where hi,t−1 is the quantity of houses that are available for rent at location i in period t,
ηwit/qit is the per capita consumption of housing services given by (11).

For determination of housing stocks, hi,t, and house prices, pi,t, we suppose that in each
period t, a representative contractor is endowed with κit > 0 units of unused or reclaimed
land in location i that can be used for new house construction. New houses are constructed
by combing residential land and final goods using a Cobb-Douglas technology. Denote the
amount of new houses built at location i in period t by xit, and note that

xit = τx,iκ
ακ,i
it m

1−ακ,i
it , (25)

where τx,i > 0 is a scalar constant, ακ,i ∈ (0, 1) is the share of land in house value, and
mit is the amount of final goods used for investments in residential structures at location
i. Contractors are assumed to be homogeneous and operate competitively across locations.
The profit of the representative contractor in period t, denoted by πct , is given as

πct =
n∑
i=1

pitxit −mit.

The contractor chooses {xit,mit}ni=1 to maximize her profits subject to house construction
technology, (25), while taking the new land supplies, κit, as given. By solving the contractor’s
optimization problem, we obtain the supply function for new houses

xit = τκ,iκitp
λp,i
it , (26)

where τκ,i ≡ τ
1+λp,i
x,i (1−ακ,i)λp,i is the location-specific scalar, and λp,i is the elasticity of the

new housing supply with respect to the house price, defined by

λp,i ≡
1− ακ,i
ακ,i

. (27)

We assume that contractors consume all the profits they earn in each period. Thus, cct = πct ,
where cct denotes the consumption of contractors in period t. Housing stock depreciates at
rate δ. The total supply of houses in location i in period t is given by

hit = (1− δ)hi,t−1 + xit, (28)

where δ ∈ (0, 1) is the depreciation rate of housing stocks, and (1 − δ)hi,t−1 is the existing
houses in that location. Finally, we assume

lnκit = lnκi + gκ,it+ zκ,it (29)

10



where gκ,i is the trend growth rate of new land supplies, and zκ,it is the state-specific land
supply shock assumed to follow the AR(1) process:

zκ,it = ρκ,izκ,i,t−1 + σκ,iεκ,it, (30)

where εκ,it are IID across locations and over time.
In each location, homogeneous landlords own local housing stocks and rent them to

workers, and derive utility from consuming their profits. The population of landlords in
location i, denoted by loit, grows over time at the common rate of gl, where gl > 0. Thus,
loit = egltloi0, where l

o
i0 > 0 is the initial population of landlords in location i. The life time

utility of landlords (as a group) in location i is given by

Et

∞∑
s=0

(βegl)s ln(coi,t+s), (31)

where coit is the consumption of the ‘representative’landlord in location i, and βe
gl ∈ (0, 1)

is the adjusted discount factor that allows for the growing number of landlords. The realized
net return on housing investment in location i in period t, denoted by roit, is given by

roit = (1− θi)
[
qit + (1− δ)pit

pi,t−1

]
, (32)

where θi ∈ (0, 1) is the location-specific cost of housing investment. The landlords’budget
constraint is then given by

coitl
o
it + pithit = roit (pi,t−1hi,t−1) . (33)

Landlords maximize (31) subject to (33). The Euler condition for this optimization is given
by

Et
(
Λi,t+1r

o
i,t+1

)
= 1, (34)

where Λi,t+1 is the stochastic discount factor, defined by Λi,t+1 = β
(
coit/c

o
i,t+1

)
. Pre-multiplying

both sides of (34) by pit, and using (32), we can write the house price, pit, as the sum of the
expected present value of rents net of depreciation:

pit =

∞∑
s=1

Et

[
(1− δ)s−1 (1− θi)s

(
s∏

υ=1

Λi,t+v

)
qi,t+s

]
.

Since the utility function of landlords is assumed to be logarithmic, a closed form solution
for landlords’optimization problem exists. The optimal rules for housing investment and
consumption are given by

pithit = βegl (1− θi) [qit + (1− δ)pit]hi,t−1, (35)

and
coitl

o
it = (1− βegl) (1− θi) [qit + (1− δ)pit]hi,t−1. (36)
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4 Theoretical properties

We now consider the theoretical properties of the model economy set out in Sections 2 and
3. Section 4.1 summarizes the set of equilibrium conditions by which the key variables are
determined. Section 4.2 proves the existence and uniqueness of the short-run equilibrium
and the balanced growth path.

4.1 Dynamic system of equations

We first summarize the set of equilibrium conditions by which the key variables are deter-
mined. We use bold lowercase letters with only time subscripts to denote the vectors of prices
and quantities for all locations. For example, pt ≡ [p1t, p2t, ..., pnt], which is a 1 × n vector.
We denote the aggregate population by Lt ≡

∑n
i=1 l·i(t). We focus only on the key variables

that are related to migration and local housing markets, including pt, qt,wt,xt,ht, l(t) and
R(t), and the subset of equilibrium conditions by which they are determined, which can be
categorized into two groups:

• Migration. The first block of equilibrium conditions describe how migration proba-
bilities, R(t), and local population values, l(t), are determined, given wage rates, wt,
and housing service prices, qt, which include

l(t) = l(t− 1)G(t)R(t), (37)

where G(t) = diag (egl,1t , egl,2t , ..., egl,nt) is the n × n diagonal matrix of exogenous
intrinsic population growth rates, R(t) =

(
ρij(t)

)
is the n × n matrix of migration

probabilities, and

ρij(t) =
α−ψij (wjt/wit) (qjt/qit)

−η∑n
s=1 α

−ψ
is (wst/wit) (qst/qit)

−η , for i and j ∈ In. (38)

• Regional labor and housing markets. The second block of equilibrium conditions
describe how wage rates, wt, housing service prices, qt, and house prices, pt, are
determined given local population, l(t), which include

wit = τw,ia
λa
it l·i(t)

−λl , for i and j ∈ In, (39)

hi,t−1 = (ηwit/qit) l·i(t), for i and j ∈ In, (40)

xit = τκ,iκitp
λp,i
it , for i and j ∈ In, (41)

hit = (1− δ)hi,t−1 + xit, for i and j ∈ In, (42)

pithit = βegl (1− θi) [qit + (1− δ)pit]hi,t−1, for i and j ∈ In. (43)

As shown in Appendix A1.2, equations (37)-(43) can be written compactly as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (44)

χt = g (ζt,at,κt;Θ) , (45)
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where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector,
and χt = [pt,ht] is a 1× 2n vector. The stochastic processes of at are given by

lnat = lna +gat +λ ft+za,t, (46)

ft = ρfft−1 + σfεf,t, (47)

za,t = za,t−1diag(ρa,1, ρa,2, ...ρa,n) + εa,tdiag(σa,1, σa,2, ...σa,n), (48)

and the stochastic processes of κt are given by

lnκt = lnκ+ gκt+zκ,t, (49)

zκ,t = zκ,t−1diag(ρκ,1, ρκ,2, ...ρκ,n) + εκ,tdiag(σκ,1, σκ,2, ...σκ,n). (50)

and the values of gl,t, for t = 1, 2, ..., are exogenously given.

4.2 Equilibrium and the balanced growth path

We now consider the non-stochastic version of the model economy set out in Sections 2 and 3,
characterize its short-run and long-run equilibria and prove the existence and uniqueness of
the short-run equilibrium and the balanced growth path. The non-stochastic specification is
obtained by setting to zero the innovations to the national and location-specific components
of labor productivities (εf,t and εa,it in (22) and (23)), and the innovations to the location-
specific land supply shocks ( εκ,it in (30)), namely εf,t = 0, εa,it = 0, and εκ,it = 0, for
i = 1, 2, ...n, and t = 1, 2, ... In this set up, local productivities are given by

ait = egatai, for i = 1, 2, ...n, and t = 1, 2, .... (51)

In addition, to obtain a balanced growth path we assume the same intrinsic population
growth rate, gl, across locations:

gl,it = gl, for i = 1, 2, ...n, and t = 1, 2, .... (52)

Finally, we assume that the location-specific land supplies are given by

κit = eg
∗
κ,itκi, for i = 1, 2, ...n, and t = 1, 2, ..., (53)

where g∗κ,i is the state-specific land supply growth rate. On the balanced growth path, prices
pt, qt,wt (quantities l(t),xt,ht) should grow at a common rate as t→∞. To find conditions
under which the economy has a balanced growth path, using (41) we note that

ln

(
xit
xi,t−1

)
= ln

(
κit
κi,t−1

)
+ λp,i ln

(
pit
pi,t−1

)
.

Note also that on the balanced growth path by definition we have ln (xit/xi,t−1) = gl,
ln (κit/κi,t−1) = g∗κ,i, and ln (pit/pi,t−1) = gw, where gw is the wage growth rate, and (39)
implies gw = λaga − λlgl. Hence, for a balanced growth path to exist we must have

g∗κ,i = (1 + λp,iλl) gl − λp,iλaga, for i = 1, 2, ..., n. (54)
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The above condition states that the growth rate of new land supplies, g∗κ,i, and the growth
of productivity for production of residential structures, ga, should ensure that enough new
houses can be produced to accommodate the housing requirements of the growing population
in all locations. The land supply regime under which land growth rates are given by (54)
will be referred to as the balanced growth path land supply regime. The analysis of the
equilibrium properties of the stochastic version of the model is complicated, and will be
conducted by simulations. The deterministic solution provides information on the local
equilibrating properties of the stochastic version for suffi ciently small-size shocks.

We use letters with stars and time subscripts to denote the corresponding detrended vari-
ables. Specifically, w∗it ≡ e−gwtwit,w

∗
t ≡ [w∗1t, w

∗
2t, ..., w

∗
nt], p

∗
it ≡ e−gwtpit, p∗t ≡ [p∗1t, p

∗
2t, ..., p

∗
nt],

h∗it ≡ e−glthit, and h
∗
t ≡ [h∗1t, h

∗
2t, ..., h

∗
nt]. Note that the detrended exogenous variables are

time invariant by construction (see (51)-(53)). For example, a∗it = ai and κ∗it = κi. Hence
equilibrium conditions (37)-(43) can be re-written in terms of the detrended variables as
follows

l∗(t) = l∗(t− 1)R∗(t), (55)

where R∗(t) ≡
(
ρ∗ij(t)

)
is the n× n matrix of migration probabilities, and

ρ∗ij(t) =
(w∗jt/w

∗
it)(q

∗
jt/q

∗
it)
−η(αij)

−ψ∑n
s=1(w

∗
st/w

∗
it)(q

∗
st/q

∗
it)
−η(αis)−ψ

, for i and j ∈ In, (56)

and

w∗it = τw,ia
λa
i (l∗·i(t))

−λl , for i ∈ In, (57)

h∗i,t−1 = (ηw∗it/q
∗
it) l
∗
·i(t), for i ∈ In, (58)

x∗it = τκ,iκi(p
∗
it)
λp,i , for i ∈ In, (59)

h∗it = (1− δ)e−glh∗i,t−1 + x∗it, for i ∈ In, (60)

p∗ith
∗
it = β (1− θi) [q∗it + (1− δ)p∗it]h∗i,t−1, for i ∈ In, (61)

Then the short-run and the balanced growth path equilibria of the economy can be defined
in terms of detrended variables as follows:

Definition 1 (Short-run equilibrium) Consider the dynamic spatial equilibrium model
set up in Sections 2 and 3 by equations (37)-(43), which can be written equivalently in terms
of detrended variables by equations (55) to (61). Suppose that the vectors of exogenous
processes for labor productivities, at, land supplies, κt, and the intrinsic population growth
rates, glt, for t = 1, 2, ..., are given by (51)-(53), condition (54) holds, and the initial values
for local population and housing stocks ( l0 and h0) are strictly positive. Then, a short-run
equilibrium is defined as series of non-negative prices [p∗t , q

∗
t ,w

∗
t ] and allocations [l∗(t),x∗t ,h

∗
t ]

that solve the system of equations (55)-(61), for given values l∗·i(t− 1) and h∗i,t−1, for i ∈ In.

Definition 2 (Balanced growth path equilibrium) Consider the dynamic spatial equi-
librium model set up in Sections 2 and 3 by equations (37)-(43), which can be written equiv-
alently in terms of detrended variables by equations (55) to (61). Suppose that the vectors
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of exogenous processes for labor productivities, at, land supplies, κt, and the intrinsic pop-
ulation growth rates, glt, for t = 1, 2, ..., are given by (51)-(53), condition (54) holds, and
the initial values for local population and housing stocks ( l0 and h0) are strictly positive.
Then, a balanced growth path equilibrium is defined as a path on which the economy is in
short-run equilibrium in the sense set out in Definition 1 in each period, and the de-trended
prices [p∗t , q

∗
t ,w

∗
t ] and quantities [l∗(t),x∗t ,h

∗
t ] converge to non-negative limits as t→∞.

The existence and uniqueness of the short-run equilibrium is established in the online
supplement (see Section S1). In what follows we focus on the existence and uniqueness of
the long-run balanced growth path which plays a more fundamental role in our simulation
exercises.

Proposition 1 (Existence and uniqueness of the long-run balanced growth path)
Consider the dynamic spatial equilibrium model set up in Sections 2 and 3 by equations
(37)-(43). Suppose that the vectors of exogenous processes for labor productivities, at, land
supplies, κt, and intrinsic population growth rates, glt, for t = 1, 2, ..., are given by (51)-(53),
and condition (54) holds, and the initial values for local population and housing stocks ( l0
and h0) are strictly positive. Then the model has a unique balanced growth path as set out
in Definition 2.

Proof: By post-multiplying both sides of (55) by τ , an n× 1 vector of ones, we have

L∗t = l∗(t)τ = l∗(t− 1)R∗(t)τ = l∗(t− 1)τ = L∗t−1,

which implies
L∗t = L∗t−1, ...,= L∗1 = L0, (62)

where L0 is the detrended aggregate population for t = 0, 1, .... Using (55), l∗(t) can be
written as

l∗(t) = l(0)
[
Πt
s=1R

∗(s)
]
, (63)

where l(0) > 0 is the vector of the initial local populations, and R∗(1),R∗(2), ...,R∗(t), are
a series of stochastic matrices. Lemma A1 in Appendix A1.4 establishes the existence of the
balanced growth path by showing that l∗(t) converges to some time invariant non-negative
population vector l∗, as t→∞.

We use letters with only stars to denote the steady states of the corresponding detrended
variables. To establish that l∗is unique, we first note that (62) implies

n∑
i=1

l∗·i = L0. (64)

By imposing the balance growth path conditions, the equilibrium conditions (55) to (61) can
be written as follows

l∗ = l∗R∗, (65)
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where R∗ ≡
(
ρ∗ij
)
is the n× n matrix of migration probabilities, and

ρ∗ij =
(w∗j/w

∗
i )(q

∗
j/q
∗
i )
−η(αij)

−ψ∑n
s=1(w

∗
s/w

∗
i )(q

∗
s/q
∗
i )
−η(αis)−ψ

, for i and j ∈ In, (66)

and

w∗i = τw,ia
λa
i (l∗·i)

−λl , for i ∈ In, (67)

h∗i = (ηw∗i /q
∗
i ) l
∗
·i, for i ∈ In, (68)

x∗i = τκ,iκi(p
∗
i )
λp,i , for i ∈ In (69)

h∗i =
[
1− (1− δ) e−gl

]−1
x∗i , for i ∈ In, (70)

p∗i = β (1− θi) [q∗i + (1− δ)p∗i ] , for i ∈ In, (71)

Thus, to prove the uniqueness of the balanced growth path, in what follows we show that
the system of equations given by (64)-(71), has a unique positive solution. In the rest of
the proof, we show that given L0,a and κ , then w∗,p∗, q∗,x∗,h

∗, l∗ and R∗ are uniquely
determined.

We first show that for given values of l∗, a and κ, the solution for w∗,p∗, q∗,x∗ and h∗

is unique and can be obtained using (67)-(71), and then ρ∗ij can be written as a function of
l∗ as following:

ρ∗ij =
ψij
(
l∗·j
)−ϕj∑n

s=1 ψis (l∗·s)
−ϕs , (72)

where ϕj and ψij are positive constants. See the detailed derivation of the above equation in
Appendix A1.3. Recall that R∗ is the migration probability matrix on the balanced growth
path, with a typical element ρ∗ij given by (66). Thus, R∗ can be written as a function of l∗,
namely R∗ ≡ R(l∗). Then, (65) can be written as

l∗ = l∗R(l∗), (73)

which is a system of non-linear equations in l∗. Lemma A1 in Appendix A1.4 establishes
that there exists a l∗ that solves (73), and Lemma A2 establishes that (73) cannot have
more than one solution. Therefore, l∗ exists and is unique. Then, using the solution of l∗,
the other variables of the model, namely, w∗,p∗, q∗,x∗,h∗and R∗, can be solved for using
equations (67) and (A.13)-(A.17) in Appendix A1.3.�

5 Estimation and calibration of the model

In order to better understand how land-use regulations affect house price dispersion and
internal migration, and carry out counterfactual analyses, we first estimate the model using
the subset of the available data on interstate migration flows and housing markets over the
period 1976-1999 (training sample). Thus, the period indexed by 0 (i.e., the initial period)
corresponds to 1976, and the periods indexed by 1, 2, ..., T1 correspond to the years 1977 to
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1999 (inclusive). Then, we will conduct out-of-sample forecasts using the estimated model
for the period 2000-2014 (evaluation sample) in Section 6, and thus the periods indexed by
T1 + 1, T1 + 2, ..., T correspond to the years 2000 to 2014.

We calibrate some of the parameters, and then estimate the rest of them using the panel
data of the 49 states (including the District of Columbia) in the U.S. mainland with yearly
observations over the period 1977-1999. The model parameters can be divided into five
groups, which include the parameters that characterize preferences, migration flows, housing
supplies and investment, labor productivities, and land supply processes. In what follows,
we consider these five sets of parameters in turn.

5.1 Preference parameters

The relative weight of housing in workers’utility function (9), η, is set to 0.24, as estimated
by Davis and Ortalo-Magné (2011).8 The discount factor of landlord β is set to 0.98 to
match the risk-free annual real interest rate of the U.S. over the period 1960-1999, which is
estimated to be around 2 per cent. The spreads between the risk-free interest rate and the
location-specific returns on housing investments are captured by the parameters θi, which
will be calibrated in Section 5.3 below.

5.2 Migration and intrinsic population growth rates

To estimate route-specific migration cost parameters, αij, using (13), we first note that

ρij(t)

ρii(t)
=
α−ψij wjtq

−η
jt

α−ψii witq
−η
it

,⇒ αψij =

(
wjtq

−η
jt

witq
−η
it

)(
ρii(t)

ρij(t)

)
αψii.

Also from (4), we have ρij(t) = lij(t)/li·(t), and therefore

αψij =

(
wjtq

−η
jt

witq
−η
it

)(
lii(t)

lij(t)

)
αψii.

We set ψ to unity, and normalize αii to one, for i = 1, 2, ..., n. Note that the Internal
Revenue Service (IRS) migration flow data that we will be using are only available from 1990
onward. Thus, we estimate αij using the above equation as follows:

α̂ij =
1

10

t1999∑
t=t1990

wjtq
−η
jt

witq
−η
it

lii(t)

lij(t)
, for i 6= j, and i and j ∈ In, (74)

where t1990 and t1999 are the time indices corresponding to 1990 and 1999, respectively, η is
calibrated in Section 5.1, wit are inferred using (18), and qit and lij(t) are observed data.

8These authors also provide evidence that the shares of expenditure on housing are constant over time
and across U.S. MSAs.
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In addition, the balanced growth path intrinsic population growth rate, gl, defined by
(52), is set to 1%, which is the average growth rate of the U.S. population over the period
1977-1999. The actual state-level intrinsic population growth rates, gl,it, over the period
1977-1999 are measured using the IRS data. For further details, see Appendix A2.1.

5.3 Housing supplies and investment

We estimate the housing depreciation rate, δ, as the average ratio of aggregate depreciation
to aggregate housing stock over the period 1977-1999 using the data from the Fixed Assets
Tables compiled by the Bureau of Economic Analysis (BEA), and obtain δ̂ = 2%. To
calibrate the state-specific supply functions for new houses, given by (26), we estimate, ακ,i,
location-specific share of land in house values, by the state level average land values relative
to total value of housing stocks over the 1977-1999 period.9 The location-specific housing
investment cost parameter, θi, is estimated as follows. Using the housing investment function
on the balanced growth path given by (71), we have

θi = 1− 1

β

[
q∗i
p∗i

+ (1− δ)
]−1

,

which suggests the following estimate

θ̂i = 1− 1

β

[
1

1
T1

∑T1
t=1 qit/pit + (1− δ̂)

]
, (75)

where periods 1 and T1 correspond to 1977 and 1999, respectively, β and δ are previously
calibrated and estimated, and qit and pit are observed data.

5.4 Productivity processes

The share of labor costs in output, vl, is set to 0.67 as estimated by Valentinyi and Herrendorf
(2008). The agglomeration effect, vφ, is set to 0.06 according to the estimation by Davis et al.
(2014). To distinguish between scale effects of φit and ait in (15), we set φ̄i defined by (16) to
1. We infer the state level wage rates, wit, using (18), where the worker population, l·i(t), is
measured using the actual state level population, and the state level output, yit, is measured
by multiplying realized real per capita disposable income of the state by its population. To
infer the state-specific labor productivities, ait, we first note that (18), (19) and (20) imply

ln ait = − 1

1− vφ
ln φ̄i +

1− vφ
vl

ln yit − ln l·i(t). (76)

Thus, the estimates of ait are obtained by evaluating (76) using the parameter estimates and
realized values of l·i(t) and yit, for t = 0, 1, ..., T1. To estimate the stochastic process of ait,
defined by (21), (22) and (23), recall that ait is given by

ln ait = ln ai + gat+λift + za,it, (77)

9The data on state level land share in house values are obtained from Davis and Heathcote (2007).
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where t = 1, 2, ..., T 1 (1977-1999). To identify the unobserved common factor, ft, we impose
the following restrictions:

n−1
n∑
i=1

λi = 1. (78)

and

T−11

T1∑
t=1

ft = 0, (79)

Restriction (78) is required to distinguish between scales of λi and ft, and (79) is required
to separate the linear trend from the common factor. We take the common growth rate of
state-level incomes, ga, as a known parameter, and set it to match the average annual growth
rate of the U.S. real per capita income during the period 1977-1999, which is around 0.02.
Then, in view of (79), we estimate ai by

âi = exp

[
T−11

T1∑
t=1

(ln ait − ĝat)
]
. (80)

Let ea,it be the deviation of ln ait from its trend, which is given by

ea,it = λift + za,it, (81)

and estimated as êa,it = lnait− ln âi − ĝat, for t = 0, 1, 2, ..., T . To estimate ft, we first note
that n−1

∑n
i=1 λi = 1 (see (78)). By summing up both sides of (81), we have n−1

∑n
i=1 ea,it =

ft + n−1
∑n

i=1 za,it, where by assumption za,it are cross-sectionally independent. As a result,

ft = n−1
n∑
i=1

êa,it +Op

(
T
− 1
2

1

)
+Op

(
n−

1
2

)
,

which gives a consistent estimator of ft:

f̂t = n
−1

n∑
i=1

êa,it. (82)

The parameters ρf and σf in (22) are estimated by running the OLS regression of f̂t on f̂t−1,
for t = 1, 2, ..., T 1. To estimate the associated loading coeffi cients, λi, for each i we run the
OLS regressions of êa,it on f̂t, and obtain the residuals, ẑa,it, for t = 0, 1, 2, ..., T 1. Then, we
estimate ρa,i and σa,i in (23) by running OLS regressions of ẑa,it on ẑa,i,t−1, over the period
t = 1, 2, ..., T 1.

5.5 Land supplies

To estimate κit, we first note that equilibrium conditions (18), (24), (26), (35) and (28) imply

κit =
γit
τκ,i

, (83)
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where10

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
p
(1−ακ,i)/ακ,i
it

. (84)

Note that β, gl, θi, η, ακ,i, υl and δ are previously calibrated and estimated, and that yit, qit
and pit are observed data. Thus, an estimator of γit can be obtained by evaluating (84)
using the parameter estimates and realized values of yit, qit and pit, for t = 0, 1, ..., T1, which
corresponds to the period of 1976-1999.

We assume that used land, denoted by URit, is turned into unused land when houses on
these lands are depreciated. Thus, URit would shrink at rate δ in the absence of any new
constructions. Therefore, URit follows as:

URit = κit + (1− δ)URi,t−1. (85)

To estimate τκ,i in (83), we make use of published data on major land uses in the U.S.
compiled by the U.S. Department of Agriculture (USDA). We consider only the observations
before 2000 and estimate τκ,i using the USDA urban area size data for 1978 and 1992 as
follows. Note that (85) implies

URi,t1992 =

t1992∑
t=t1979

(1− δ)t1992−t κi,t + (1− δ)14 URi,t1978 , (86)

where t1978, t1979 and t1992 are the time indices for 1978, 1979, and 1992. Using (83) in (86)
to eliminate κit, we obtain the following estimator of τκ,i:

τ̂κ,i =

∑t1992
t=t1979

(1− δ)t1992−t γ̂i,t
URi,t1992 −

(
1− δ̂

)14
URi,t1978

. (87)

Then, we compute κ̂it using (83) as

ln κ̂it = ln γ̂it − ln τ̂κ,i, for i = 1, 2, ..., n and t = 0, 1, ..., T1. (88)

We estimate κi and gκ,i in (29) by running OLS regressions of ln κ̂it on a linear time trend
(including a constant), for i = 1, 2, ..., n, and obtain the residuals, ẑκ,it, for t = 0, 1, ..., T1.11

Finally, for each i we estimate ρκ,i and σκ,i by running OLS regressions of ẑκ,it on ẑκ,i,t−1,
over the period t = 1, 2, ..., T1.

Figure 3 plots ĝκ,i versus the state level Wharton Residential Land Use Regulatory Index,
which are complied by Gyourko et al. (2008) and denoted by WRIi, for the 48 states on
the U.S. mainland. Washington, D.C. is excluded since its WRI data is not available. Note
that WRIi is an index constructed from surveys carried out in 2004 and is intended to
characterizes the local residential land-use regulatory environment, which increases with the

10For details of the derivations, see Appendix A1.5.
11It is worth noting that our estimates of gκ,i reflect the average tightness of state-level land-use regulations

over the period 1977-1999, and need not to be good proxies for particular years or sub-periods.
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tightness of land-use regulation.12 Therefore, the data used to construct WRIi have little
overlap with the time series data and parameter calibrations we employ to back out κit.
Thus, the significant negative correlation between ĝκ,i and WRIi, as shown in Figure 3,
indicates that the land use regulation can be an important factor that affects local house
prices through the supplies of new land. By running an OLS regression of ĝκ,i on WRIi, for
the 48 states on the U.S. mainland, we obtain

ĝκ (WRIi) = 0.0468
(0.0115)

− 0.0607
(0.0116)

WRIi, R2 = 0.37 (89)

where ĝκ (WRIi) is the fitted value, R2 is the squared correlation coeffi cient, and the figures
in brackets are standard errors of the estimated coeffi cients.

Figure 3: Estimated land supply growth rates and the WRI

Notes: This figure shows the estimated state level growth rates of land supplies and the state level Wharton
Residential Land Use Regulatory Index (WRI), complied by Gyourko et al. (2008), of the 48 states on the
U.S. mainland. Washington, D.C. is excluded since its WRI data is not available.

12More specifically, the Wharton Residential Land Use Regulatory Index is based on the Wharton survey
on land-use regulations conducted in 2004, and complied by Gyourko et al. (2008), who use factor analysis
to create the aggregate index, which is then standardized so that its sample mean is zero and its standard
deviation equals one. Since Alaska and Hawaii are excluded from our analysis, we re-scale the WRIs of the
remaining states so that the mean and the standard deviation of the sub-sample we use are zero and one,
respectively.
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6 Can the model predict the rise in house price dis-
persion?

We now consider whether the estimated model can quantitatively account for the observed
rise in the house price dispersion in the U.S.. To this end, we simulate the estimated model
over the evaluation sample (2000-2014), and compare the predicted values to the realized
ones. Recall that the periods indexed by T1 + 1, T1 + 2, ..., T correspond to the years 2000
to 2014.

To simulate the model given by (44) and (45), we need to set the initial values and the
exogenous variables. In the out-of-sample simulation, the initial values, ζT1 , correspond to
the realized values in 1999. Recall that ζt ≡ [l(t), qt], and l(T1) and qT1 are observed data.
We take the intrinsic population growth rates, gl,t, as deterministic exogenous variables, and
set gl,t, for t = T1 + 1, T1 + 2, ..., T , to their balanced growth path level, gl. The state level
productivities and land supplies for the initial period, aT1 and κT1 , correspond to the realized
values in 1999, and at and κt, for t = T1 + 1, T1 + 2, ..., T , are simulated using the estimated
versions of (46) - (50).13 We simulate the model for five hundred replications, and the mean
values are approximated as the averages across replications.

Figure 4: Changes in log house price-to-income ratios of U.S. states over the evaluation
sample (2000-2014)

Notes: This figure displays the model predicted changes in log house price-to-income ratios of U.S. states
during the evaluation sample (2000-2014) against the counterpart realized values.

13For further details, see Appendix A3.1.
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The simulation results are summarized as follows: First, the model can capture the trends
in the house price-to-income ratios at state level as shown in Figure 4.

Second, the model replicates reasonably well the trends in the dispersions of house price-
to-income ratios at both national and regional levels, as shown in Figure 5. The model
generated between-state dispersion increases from 0.24 to 0.39 during the evaluation sam-
ple (2000-2014), while the associated realized value rises from 0.24 to 0.34. In addition,
the model captures the different trends at different geographical levels, i.e., the substantial
increase in the between-region dispersion and the moderate increases of within-region dis-
persions. As will be shown in Section 9, this can be partially due to the stronger migration
linkages between states that are geographically close, which tends to prevent the house price
differences between these states from increasing.
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Figure 5: Dispersions of log house price-to-income ratios between- and within- U.S. regions
during the evaluation sample (2000-2014) (Solid-blue: simulated; Dashed-red: data)

Notes: This figure plots the realized and simulated dispersions of log house price-to-income ratios between-
and within- U.S. regions over the evaluation sample (2000-2014). Average within-region dispersion refers to
the average of the within-region dispersions of the five U.S. regions.

Third, the model matches the observed trends in the interstate migration. Figure 6 com-
pares the actual accumulated net migration inflows of the U.S. states during the evaluation
sample (2000-2014) with the model generated counterparts. As can be seen, the model cap-
tures the significant migration outflows from states with rising house price-to-income ratios,
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such as California, and New York, and the substantial inflows towards states with decreasing
house price-to-income ratios, such as Florida and Texas.
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Figure 6: Net inward migration flows by states during the evaluation sample (2000-2014)
(Upper-blue: simulated; Lower-red: data)

Notes: This figure shows the realized and simulated accumulated net migration inflows towards U.S. states
during the evaluation sample (2000-2014). States are arranged from top to bottom in alphabetical order.
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7 Land-use regulations and house price dispersion

We now conduct a series of counterfactual exercises to examine the contributions of spatial
heterogeneities of land-use regulations in driving up house price dispersion in the U.S.. In
addition, we investigate the impacts of the land-use regulations in California and Texas on
local house prices and populations and conduct counterfactual simulations by varying the
land supply growth rates of California and Texas, in turn.

7.1 Land-use regulations in the U.S.

Baseline: In this case, we simulate the model using the realized state level productivities,
land supplies and intrinsic population growth rates. To do so, we take productivities, land
supplies and intrinsic population growth rates, i.e., at, κt and gl,t, as deterministic exogenous
variables, and set them to their realized values, for t = T1 + 1, T1 + 2, ..., T .14 The initial
values, ζT1 , correspond to the realized values in 1999 as before. As shown in the Panel (2)
of Table 1, the simulated values are in line with the associated realized values.

Land supply growth rates proxied by the WRI: To examine the extent to which the
heterogeneity in regulatory environments, as measured byWRIi, can explain the rising house
price dispersion, we useWRIi to proxy the state level growth rates of land supplies according
to (89).15 Then, we set the state-specific land supplies, lnκit, as lnκit = ln κ̂iT1 + ĝwriκ,i t+ẑκ,it,
for i = 1, 2, ..., 49 and t = T1 + 1, T1 + 2, ..., T , where ĝwriκ,i are the state-specific land supply
growth rates proxied by WRIi, and ẑκ,it are the realized land supply shocks. Then, we
conduct a simulation using the counterfactual land supplies with proxied land supply growth
rates, while keeping everything else the same as in the baseline simulation. As shown in the
Panel (3) of Table 1, the results are not changed much from those of the baseline simulation,
which suggests that the rising house price dispersion can be largely explained by the spatial
heterogeneity in land-use regulations.

Homogeneous land supply growth rates: To examine the importance of spatial
heterogeneity in land supply growth rates in driving up the house price dispersion, we conduct
a counterfactual simulation in which land supply growth rates of all states are set equal to
their national average, denoted by ¯̂gκ = 1

49

∑49
i=1 ĝκ,i, where ĝκ,i is the state-specific land

supply growth rate estimated in Section 5.5. Then, we set the state-specific land supplies,
lnκit, as lnκit = ln κ̂iT1 + ¯̂gκt+ ẑκ,it, for i = 1, 2, ..., 49 and t = T1+1, T1+2, ..., T . Then, we
conduct simulations using the counterfactual land supplies with homogeneous land supply
growth rates, while keeping everything else the same as in the baseline simulation. As shown
in Panel (4) of Table 1, the model fails to capture the upward trends in house price-to-income
ratio dispersions when land supply growth rates are assumed to be the same across states,
which suggests that spatial heterogeneity in land supply growth rates is an essential factor
behind the increasing house price dispersion.

14For further details, see Appendices A2.1 and A3.2.
15Since the WRI data is not available for Washington, D.C., we keep D.C.’s land supply growth rate as it

is in the baseline simulation.
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7.2 Land-use regulations in California and Texas

According to Gyourko et al. (2015), the residential land-use regulatory environments of some
areas in the U.S. started to become stricter from 1970s onward. Land-use regulations can
have important implications not only for local house prices but could also for the spatial
allocation of population. Deregulation in states with stricter land-use restrictions can af-
fect the population allocation across U.S. states through the house price channel. Here, we
investigate the impacts of local land-use regulations, which are the main factors that deter-
mine the land supplies for housing, on house prices and population allocation. In particular,
we consider California and Texas in our counterfactual experiments, which are at the two
extreme poles of land-use regulation continuum, with California being the most regulated
state, and Texas being the least regulated state. In what follows, we let the land supply
growth rates of California and Texas to vary between their actual values and the national
average land supply growth rate. Let gκ,CA(%) and gκ,TX(%) denote the counterfactual land
supply growth rates of California and Texas, and consider the following rates

gκ,i∗(%) = (1− %)ĝκ,i∗ + %¯̂gκ, for i∗ = CA, TX, (90)

with % ∈ [0, 1], where ¯̂gκ is the national average of land supply growth rate, and ĝκ,i∗ is the
estimated actual land supply growth rate of state i∗. Then, we set the land supplies of state
i∗, lnκi∗,t, as

lnκi∗,t = ln κ̂i∗,T1 + gκ,i∗(%)t+ ẑκ,i∗,t, for t = T1 + 1, T1 + 2, ..., T , for i∗ = CA, TX, (91)

where ẑκ,i∗,t are the actual land supply shocks.

Table 2: Effects of loosening of land-use regulations in California

Notes: This table shows the impacts of land-use deregulation in California on the local house prices and
population. The third column reports the results from the baseline simulation. The fourth to last columns
report the results from the counterfactual simulations in which the land supply growth rate of California is
set to gκ,CA(%), given by (90), where % = {1/4, 1/2, 3/4, 1}.

We first consider the effects of a land-use deregulation in California. To this end, we
simulate the model while setting the land supply growth rate of California to gκ,CA(%), given
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by (90), for % = {1/4, 1/2, 3/4, 1}, and its land supply κCA,t according to (91), while keeping
everything else the same as in the baseline simulation described in Section 7.1. Note that
the estimated land growth rate of California, ĝκ,CA, is less than the national average, ¯̂gκ.
Thus, a larger % corresponds to a higher degree of deregulation. As shown in Table 2, the
land supply growth rate of California has considerable impacts on the local house prices, but
by comparison has small impacts on the local population. For example, our model predicts
that increasing the average land supply growth rate of California to the national average
from 2000 onward induces the population of California in 2014 to rise by 0.1 million (around
0.2 per cent of California population), whilst such a de-regulation could reduce the annual
growth rate of real house prices from 3 per cent realized during the 2000-2014 period to a mere
0.8 per cent counterfactually. In addition, the reallocation of population towards California
are mainly from Texas, and the neighboring states of California, such as Arizona, Nevada,
Oregon, and Washington. For further details, see Section S4.3 of the online supplement.

Table 3: Effects of tightening of land-use regulations in Texas

Notes: This table shows the impacts of tightening land-use regulation in Texas on the local house prices and
population. The third column reports the results from the baseline simulation. The fourth to last columns
report the results from the counterfactual simulations in which the land supply growth rate of Texas is set
to gκ,TX(%), given by (90), where % = {1/4, 1/2, 3/4, 1}.

We then consider the effects of a tightening of land-use regulation in Texas. To this end,
we simulate the model while setting the land supply growth rate of Texas to gκ,TX(%), given
by (90), for % = {1/4, 1/2, 3/4, 1}, and its land supply κTX,t according to (91), while keeping
everything else the same as in the baseline simulation. Since the estimated land growth rate
of Texas, ĝκ,TX , is higher than the national average, ¯̂gκ, then a larger % corresponds to
more tightened land-use regulation. Similar to the deregulation experiment in California,
tightening land-use regulation in Texas significantly impact local house prices, but only has
marginal effects on the State’s population (see Table 3). For example, reducing the average
land supply growth rate of Texas to the national average reduces Texas’s population in 2014
by 0.1 million (around 0.4 per cent of Texas population), but increases the annual growth
rate of real house prices from a realized value of 1.1 per cent to a counterfactual rate of
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2.5 per cent. In addition, the reallocation of population from Texas are mainly towards
California, Florida, and the neighboring states of Texas, such as Louisiana and Oklahoma.
For further details, see Section S4.3 of the online supplement.

Overall, our counterfactual exercises do show that changes in local land-use regulations
can affect population allocation via the house price channel, but its effects tend to be mod-
erate. However, changes in land use regulations affect house prices much more as compared
to their effects on allocation of population.

8 Mobility and house price dispersion

To examine how land supply growth differentials and migration costs jointly contribute to
the rise in house price dispersion, we now carry out simulations assuming different levels of
land supply growth differentials and migration costs. We experiment with different levels
of migration costs through changing the weight of migration cost, ψ, in the utility function
(see (14)). As ψ increases, population mobility drops. In addition, we adjust the degree
of land supply growth differentials by letting the state level land supply growth rates vary
between their actual levels and the national average. Let % denote the counterfactual land
supply regime. Under regime %, the growth rates of land supplies are given as before by
gκ,i(%) = (1 − %)ĝκ,i + %¯̂gκ, for i = 1, 2, ..., n, and the state-specific land supplies, lnκit, are
set as lnκit = ln κ̂iT1 +gκ,i(%)t+ ẑκ,it, for t = T1 + 1, T1 + 2, ..., T and i = 1, 2, ..., n (see (90)
and (91)). Thus, the level of land supply differentials is measured by 1− %.

We simulate the model for different pairs of (% and ψ) = (0.60, 0.80, 1, 1.2, 1.4), whilst
keeping everything else the same. The results are summarized in Table 4, and show that
the dispersion of log house price-to-income ratios would be significantly lower if migration
costs are reduced. For example, when % = 0, dispersion would be around 0.4 (0.6) less when
ψ is reduced to 0.8 (0.6). Decreases in ψ also lower the national log house price-to-income
ratio, since more people would move out of high price growth states as migration costs are
reduced. However, it has much smaller impacts on the level than on the dispersion of house
price-to-income ratios. In addition, both land supply growth differentials and migration
costs play important roles in driving up house price dispersion; reducing either of them can
significantly lower house price dispersion in the U.S.. Moreover, increases in land supply
growth differentials would lead to larger rises in house price dispersion when migration costs
are larger. For example, when ψ = 0.6 dispersion increases by 0.085, from 0.248 to 0.333,
as the level of land supply growth differentials, 1 − %, increases from 0.6 to 1.4. But, when
ψ = 1.4, dispersion would increase by 0.111, from 0.318 to 0.429, as 1− % increases from 0.6
to 1.4.
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9 Spatial impulse responses of regional shocks

To better understand the migration linkages between regional housing markets, we analyze
the responses of the economy to a regional shock. In particular, we assume that the economy
is initially on the balanced growth path and consider a one standard deviation negative
regional productivity shock to California. The simulated innovations used in the computation
of the impulse responses are independently drawn from the standard normal distribution.
For the details of the computation of the impulse responses, see Section S2 of the online
supplement. The impulse responses are shown in Figures 7-10. Figure 7 shows the responses
of the house price-to-income ratio (left panel) and the population (right panel) of California
after the shock. As can be seen from these figures, the adjustments of population and house
prices to the shock are very slow, taking decades to complete. This is due to the slow
depreciation of housing stocks and the sluggishness in the migration flows. Figures 8 and
9 show the responses of house price-to-income ratios and populations of U.S. states to the
negative regional productivity shock to California, where the states are ordered by their
distances to California. Figure 10 shows the snapshots of the responses of house price-to-
income ratios of U.S. states. Each panel shows the responses in the period noted at the top.
In each panel, the horizontal axis corresponds to state’s rank in terms of their geographical
closeness to California. In response to the shock, house price-to-income ratios rise in all
states. However, the responses in the neighboring states (e.g., Nevada and Arizona), and
in some of the West Coast states (e.g., Washington, D.C. and New York) are quicker and
stronger. The responses in these states reach their peaks more quickly, and their peak values
tend to be larger as well. Thus, the snapshots of the responses tend to be U shaped.
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Figure 7: Reponses of California to a negative regional shock to local productivity

Notes: This figure shows the responses of log house price-to-income ratio and log population of California
to a one standard deviation negative regional shock to local productivity.
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Figure 10: Snapshots of the responses of the log house price-to-income ratios
of U.S. states to a negative regional productivity shock to California

Notes: Each panel shows the responses of the log house price-to-income ratios of U.S. states (except for
California) to a one standard deviation negative regional productivity shock to California for the period
noted at the top. The unit of t is year. States are ordered ascendingly by their distances to California. The
horizontal axis corresponds state’s rank in terms of distance to California. The unit on the vertical axis is
per cent.
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10 Concluding remarks

This paper presents and solves a dynamic spatial equilibrium model of regional housing mar-
kets in which regional house prices are jointly determined with migration flows. It extends
existing studies on regional housing markets by explicitly modelling location-to-location mi-
gration flows. The model can be viewed as an example of a dynamic network where regional
housing markets interact with each other via migration flows, and provides a theoretically
coherent framework to study the effects of changes in regional supply and demand conditions
on regional house prices through endogenized migration flows. The theoretical model can
also be adapted to study other types of spatial spill-overs in regional economies that operate
through migration; for example, spill-over effects in regional labor markets.

The model is utilized to study the effects of land-use regulations on house price dispersions
and interstate migrations in the U.S.. The estimated model can simultaneously account for
the observed rises in the house price dispersions at both national and regional levels, and the
observed interstate migration flows over the period 2000-2014. As a result, our work bridges
the gap between the studies on house price dispersions in the U.S. and those on the impacts
of land-use regulations on spatial allocation of population. In addition, our model can further
account for the observed differences in trends in house price dispersions within and between
U.S. regions. Finally, in addition to spatial heterogeneity in land-use regulations, degree
of population mobility is also found to be an important factor in determining house price
dispersion. Spatial house price dispersion tends to rise when mobility is low and fall when
mobility is high.

The analysis of this paper on regional housing markets can be extended in a number
of directions. The financial side of the housing market can be incorporated into the analy-
sis, with the aim of investigating possible implications of rising house price dispersion for
macroeconomic fluctuations. An econometrically estimated version of the model can also be
used for the analysis and predication of house price diffusion across states or MSAs. Finally,
given the importance of labor mobility for a stable spatial house price dispersion, it is also
worth considering the factors that determine population mobility, their nature and variations
overtime and across space.
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Appendices

A1 Mathematical derivations and proofs

A1.1 Derivation of migration probabilities

Here we derive the migration probability equation (13). For the worker τ who is born in
location i, the probability of residing in location j∗ is

Prob (j∗ is chosen) = Prob (vτ ,t,ij∗ > vτ ,t,ij ∀j 6= j∗) ,

where
vτ ,t,ij = (lnwjt − lnwit)− η (ln qjt − ln qit) + (ετ ,t,ij − ετ ,t,ii)− ψ lnαij.

Recall that ετ ,t,ij is IID for all τ , t, i and j, and has an extreme value distribution, with
the cumulative distribution function F (ε) = e−e

−ε
, and the probability density function

f(ε) = e−εe−e
−ε
. Consider the following decomposition of vτ ,t,ij,

vτ ,t,ij = vt,ij + (ετ ,t,ij − ετ ,t,ii)

where
vt,ij = (lnwjt − lnwit)− η (ln qjt − ln qit)− ψ lnαij.

Note that vt,ij is known by worker τ , and will be treated as given. The probability that
worker τ selects region j∗ as her migration destination can be written as

Prob (j∗ is chosen) = Prob (vt,ij∗ + ετ ,t,ij∗ − ετ ,t,ii > vt,ij + ετ ,t,ij − ετ ,t,ii, ∀j 6= j∗) ,

= Prob (ετ ,t,ij∗ + vt,ij∗ − vt,ij > ετ ,t,ij, ∀j 6= j∗) .

Conditional on ετ ,t,ij∗ , the probability that location j∗ is chosen by worker τ is given by

Prob (j∗ is chosen |ετ ,t,ij∗) =
∏
j 6=j∗

F (ετ ,t,ij∗ + vt,ij∗ − vt,ij) .

Since ετ ,t,ij∗ is also random, the probability that location j∗ is chosen is the integral of
Prob (j∗ is chosen |ετ ,t,ij∗) over its support and weighted by its density function, namely

Prob (j∗ is chosen) =

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+vt,ij∗−vt,ij)

]
e−εe−e

−ε
dε

=

∫ +∞

−∞

[∏
j 6=j∗

e−e
−(ε+vt,ij∗−vt,ij)

]
e−εe−e

−(ε+vt,ij∗−vt,ij∗)
dε

=

∫ +∞

−∞

[∏
j

e−e
−(ε+vt,ij∗−vt,ij)

]
e−εdε

=

∫ +∞

−∞
exp

[
−e−ε

∑
j

e−(vt,ij∗−vt,ij)

]
e−εdε.
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Define s = e−ε. Thus, ds = −e−εdε. Then,

Prob (j∗ is chosen) =

∫ +∞

0

exp

[
−s
∑
j

e−(vt,ij∗−vt,ij)

]
ds

= −
exp

[
−s
∑

j e
−(vt,ij∗−vt,ij)

]
∑

j e
−(vt,ij∗−vt,ij)

∣∣∣∣∣∣
+∞

0

=
1∑

j e
−(vt,ij∗−vt,ij)

=
evt,ij∗∑
j e

vt,ij
.

A1.2 Compact form of equilibrium conditions

To derive the compact form of the equilibrium conditions, i.e., (44)-(45), we first note that
(43) implies

pit =
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ) . (A.1)

Also, by substituting (41) into (42), we have

hit = (1− δ)hi,t−1 + τκ,iκitp
λp,i
it . (A.2)

Then, substituting (A.1) into (A.2) we obtain

hit = (1− δ)hi,t−1 +

τκ,iκit

[
βegl (1− θi) qit

hit/hi,t−1 − βegl (1− θi) (1− δ)

]λp,i
. (A.3)

Then, by substituting (40) into (A.3), we can eliminate hit and hi,t−1, and after lagging the
resultant equation by one period we have

η

(
wit
qit

)
l·i(t) = (1− δ)η

(
wi,t−1
qi,t−1

)
l·i(t− 1)+

τκ,iκi,t−1

 βegl (1− θi) qi,t−1(
wit

wi,t−1

)(
l·i(t)
l·i(t−1)

)(
qi,t−1
qit

)
− βegl (1− θi) (1− δ)

λp,i . (A.4)

Thus, equations (37), (38) and (39), together with (A.4), provide 2n non-linear dynamic
equations in l·i(t), i = 1, 2, ..., n, and qit, i = 1, 2, ..., n, which can be written compactly as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (A.5)
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where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector.
In addition, using (39), (40) in (A.2) and (A.1) to eliminate wit and hi,t−1, we have

pit =
βegl (1− θi) qit

hitqit/
(
ητw,ia

λa
it l·i(t)

1−λl
)
− βegl (1− θi) (1− δ)

, (A.6)

hit = (1− δ)
(
ητw,ia

λa
it

qit

)
l·i(t)

1−λl + τκ,iκitp
λp,i
it . (A.7)

Note that using (A.6) and (A.7), we can solve for pit and hit, for given values of l·i(t), qit, ait
and κit. Thus, pt and ht are functions of l(t), qt,at and κt:

χt = g (ζt,at,κt;Θ) , (A.8)

where χt = [pt,ht] is a 1× 2n vector.

A1.3 Derivation of balanced growth path migration probabilities

To derive the balanced growth path migration probability equation (72), we first observe
that the long run rent-to-price ratio in location i can be obtained from (71) and is given by

q∗i
p∗i

= Γi, (A.9)

where Γi is given by

Γi =
1

β (1− θi)
− (1− δ). (A.10)

Note that β and θi ∈ (0, 1), which implies β−1 (1− θi)−1 > 1. Since δ > 0, it follows that
Γi > δ > 0. Using this result in (68), we obtain the long-run demand function for housing
in location i:

h∗i =
ηw∗i l

∗
·i

Γip∗i
(A.11)

By substituting (70) into (69), we obtain the long-run housing supply function in location i:

h∗i = δ̃−1τκ,iκi(p
∗
i )
λp,i , (A.12)

where δ̃ ≡ 1− (1− δ) e−gl . By substituting (A.12) into (A.11) for h∗i , we have

δ̃−1τκ,iκi(p
∗
i )
λp,i =

ηw∗i l
∗
·i

Γip∗i
.

Using the above equation, we can solve for p∗i

p∗i =

(
δ̃η

τκ,iκi

) 1
1+λp,i

Γ
− 1
1+λp,i

i (w∗i l
∗
·i)

1
1+λp,i , (A.13)
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and by substituting (A.13) into (A.9) for p∗i , we have

q∗i =

(
δ̃η

τκ,iκi

) 1
1+λp,i

Γ

λp,i
1+λp,i

i (w∗i l
∗
·i)

1
1+λp,i . (A.14)

By substituting (A.13) into (A.12) for p∗i , we obtain

h∗i =

(
δ̃

τκ,iκi

)− 1
1+λp,i

(
η

Γi

) λp,i
1+λp,i

(w∗i l
∗
·i)

λp,i
1+λp,i . (A.15)

Finally, by substituting (A.15) into (70) for h∗i , we obtain

x∗i =

(
1

τκ,iκi

)− 1
1+λp,i

(
δ̃η

Γi

) λp,i
1+λp,i

(w∗i l
∗
·i)

λp,i
1+λp,i , (A.16)

Therefore, p∗i , q
∗
i , x

∗
i and h

∗
i can be obtained uniquely in terms of l

∗
·i, w

∗
i ,and κi using (68) -

(71).
By substituting (67) and (A.14) into (66) for q∗i and w

∗
i , then ρ

∗
ij can be written as a

function of l∗:

ρ∗ij =
ψij
(
l∗·j
)−ϕj∑n

s=1 ψis (l∗·s)
−ϕs , (A.17)

where

ϕj =
η

1 + λp,j
+ λl

(
1− η

1 + λp,j

)
,

ψij = α−ψij

(
δ̃η

τκ,jκj

)− η
1+λp,j

Γ
− ηλp,j
1+λp,j

j

(
τw,ja

λa
j

)1− η
1+λp,j .

Since λl and λp,j > 0, and η ∈ (0, 1), it follows that ϕj > 0, for any i ∈ In. In addition, note
that ψij > 0, for any i and j ∈ In, since αij, δ̃, η, τκ,i, τw,i, κj and aj > 0, and Γj, given by
(A.10), is strictly positive as previously shown.

A1.4 Lemmas: statements and proofs

Lemma A1 Consider the following Markovian process in l∗(t)

l∗(t) = l∗(t− 1)R∗(t) (A.18)

where l∗(t) = [l∗·1(t), l
∗
·2(t), ..., l

∗
·n(t)] is the 1×n row vector of detrended population values, and

R∗(t) = (ρ∗ij(t)) is the n×n transition matrix with the typical element, ρ∗ij(t) defined by (56)
that depends non-linearly on l∗(t), and n is a fixed integer. Suppose that the initial population
vector, l∗(0) = l(0), is given and satisfies the conditions l(0) > 0, and

∑n
i=1 l·i(0) = L0,

where 0 < L0 < K. Then l∗(t) converges to a finite population vector, l∗ (∞), or simply
l∗ = [l∗·1, l

∗
·2, ..., l

∗
·n], as t→∞, with l∗·i ≥ 0, and

∑n
i=1 l

∗
·i = L0
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Proof: We first note that by construction 0 ≤ ρ∗ij(t) ≤ 1 for all i and j, and
∑n

j=1 ρ
∗
ij(t) =

1, for all j. Hence, for each t, R∗(t) is a right stochastic matrix with R∗(t)τ n = τ n, where
τ n is an n × 1 vector of ones, for all t. Recursively solving (A.18) forward from l∗(0), we
have

l∗(t) = l∗(0)
[
Πt
s=1R

∗(s)
]
,

But it is easily seen that [Πt
s=1R

∗(s)] τ n = τ n, and hence

n∑
i=1

l∗·i(t) = l∗(t)τ n = l∗(0)τ n = L0. (A.19)

Also, since l∗(0) = l(0) > 0, ρ∗ij(t) ≥ 0, and n is finite, then l∗(t) = [l∗·1(t), l
∗
·2(t), ..., l

∗
·n(t)] ≥ 0,

for all t, and in view of (A.19) we have supit(l
∗
·i(t)) ≤ L0 < K. Therefore, l∗(t) must converge

to some vector l∗ which is bounded in t, as t→∞. �

Lemma A2 Consider the system of non-linear equations in l·i, for i ∈ In:

l = lR (l) (A.20)

where l = [l·1, l·2, ..., l·n], l ≥ 0,
∑n

i=1 l·i = L0, 0 < L0 < K, n is fixed, and the typical element
of matrix R is given by

ρij =
ψij (l·j)

−ϕj∑
s∈In ψis (l·s)

−ϕs , (A.21)

where ψij and ϕj > 0, for any i and j ∈ In. Then, the solution to (A.20) must be strictly
positive, l·i > 0 for i ∈ In, and unique.

Proof. We first show that l·i > 0, and hence 1 > ρij > 0, for all i and j ∈ In. Consider
a population vector l that solves (A.20). Note that

∑n
i=1 l·i > 0, and l·i is non-negative for

any i ∈ In. Thus, l·i > 0 has to hold for at least one i. Without loss of generality, we assume

l·1 > 0. (A.22)

Note also that since l·1 is the first element in l, then from (A.20) we have

l·1 =

n∑
i=1

ρi1l·i, (A.23)

where, upon using (A.21), ρi1 is given by

ρi1 =
1

1 +
∑

s 6=i

(
ψis
ψi1

)
(l·1)

ϕ1

(l·s)
ϕs

, for i = 1, 2, ..., n. (A.24)

Note that by assumption ψij and ϕj > 0, and it is supposed that l·1 > 0. Hence, if l·s = 0,
for any s ∈ {2, 3, ..., n}, then ρi1 = 0, for all i ∈ In, and using (A.23) it follows that l·1 = 0,
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which contradicts our supposition. The same line of reasoning can be applied to any other
elements of l, and we must have l·i > 0, for any i ∈ In.

Given that l·i > 0, for all i, we now show that (A.20) cannot have more than one solution.
Suppose there exist two solutions l(1) and l(2), with l(1) and l(2) > 0, l(1) 6= l(2), such that
l(1) = l(1)R

(
l(1)
)
and l(2) = l(2)R

(
l(2)
)
. Denote the jth elements of l(1) and l(2) by l(1)·j and

l
(2)
·j , respectively. Split the locations into two groups, I+n and I−n , where I+n ≡ {j | l

(2)
·j > l

(1)
·j ,

j ∈ In}, and I−n ≡ {j | l
(2)
·j ≤ l

(1)
·j , j ∈ In}, and note that I+n ∩ I−n = ∅ and I+n ∪ I−n = In.

That is,

l
(2)
·j

{
> l

(1)
·j if j ∈ I+n

≤ l
(1)
·j if j ∈ I−n

. (A.25)

Further, since
∑n

j=1 l
(1)
j =

∑n
j=1 l

(2)
j = L0, and l

(1) 6= l(2), it also follows that neither I+n nor
I−n can be empty. Thus, we have ∑

j∈I+n

l
(2)
·j >

∑
j∈I+n

l
(1)
·j . (A.26)

Recall that ρ(1)ij and ρ
(2)
ij are the typical elements of R

(
l(1)
)
and R

(
l(2)
)
, respectively. For

any i ∈ In, using (A.21), we have (recall that l(1)·j > 0 and l(2)·j > 0)

∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

=

∑
j∈I+n ψij

(
l
(2)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(2)
·j

)−ϕj , (A.27)

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

=

∑
j∈I+n ψij

(
l
(1)
·j

)−ϕj
∑

j∈I−n ψij

(
l
(1)
·j

)−ϕj . (A.28)

Since by (A.25), l(2)·j > l
(1)
·j , if j ∈ I+n , and l

(2)
·j ≤ l

(1)
·j , if j ∈ I−n , then (recall that ψij > 0 and

ϕj > 0)

∑
j∈I+n

ψij

(
l
(2)
·j

)−ϕj
<

∑
j∈I+n

ψij

(
l
(1)
·j

)−ϕj
,

∑
j∈I−n

ψij

(
l
(2)
·j

)−ϕj
≥

∑
j∈I−n

ψij

(
l
(1)
·j

)−ϕj
.

Hence, using the above results in (A.27) and (A.28) we have∑
j∈I+n ρ

(2)
ij∑

j∈I−n ρ
(2)
ij

<

∑
j∈I+n ρ

(1)
ij∑

j∈I−n ρ
(1)
ij

, ∀ i ∈ In,
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and it follows that∑
j∈I+n ρ

(2)
ij +

∑
j∈I−n ρ

(2)
ij∑

j∈I+n ρ
(2)
ij

>

∑
j∈I+n ρ

(1)
ij +

∑
j∈I−n ρ

(1)
ij∑

j∈I+n ρ
(1)
ij

, ∀ i ∈ In.

Since ρ(1)ij and ρ
(2)
ij are migration probabilities,∑

j∈I+n

ρ
(2)
ij +

∑
j∈I−n

ρ
(2)
ij =

∑
j∈I+n

ρ
(1)
ij +

∑
j∈I−n

ρ
(1)
ij = 1.

Thus, we have ∑
j∈I+n

ρ
(2)
ij <

∑
j∈I+n

ρ
(1)
ij , ∀ i ∈ In. (A.29)

Note that l(1)·j and l(2)·j are given by

l
(1)
·j =

∑
i∈In

ρ
(1)
ij l

(1)
·i and l

(2)
·j =

∑
i∈In

ρ
(2)
ij l

(2)
·i .

Thus, we have ∑
j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j =

∑
j∈I+n

∑
i∈In

ρ
(2)
ij l

(2)
·i −

∑
j∈I+n

∑
i∈In

ρ
(1)
ij l

(1)
·i ,

=
∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(2)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij .

Since
∑

j∈I+n ρ
(2)
ij <

∑
j∈I+n ρ

(1)
ij as previously shown in (A.29), then∑

j∈I+n

l
(2)
·j −

∑
j∈I+n

l
(1)
·j <

∑
i∈In

l
(2)
·i

∑
j∈I+n

ρ
(1)
ij −

∑
i∈In

l
(1)
·i

∑
j∈I+n

ρ
(1)
ij ,

=
∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 . (A.30)

Since by (A.25), l(2)·i > l
(1)
·i , if i ∈ I+n , and l

(2)
·i ≤ l

(1)
·i , if i ∈ I−n , and

∑
j∈I+n ρ

(1)
ij > 0 by

construction, then

∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij


=

∑
i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

+
∑
i∈I−n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 ,
<

∑
i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 .
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Note that ρ(1)ij are migration probabilities, and
∑

j∈I+n ρ
(1)
ij < 1 by construction, and that

l
(2)
·i − l

(1)
·i > 0, if i ∈ I+n . Then, we have∑

i∈I+n

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

(
l
(2)
·i − l

(1)
·i

)
,

and thus ∑
i∈In

(l(2)·i − l(1)·i ) ∑
j∈I+n

ρ
(1)
ij

 < ∑
i∈I+n

l
(2)
·i −

∑
i∈I+n

l
(1)
·i ,

which contradicts (A.30). Thus, l 6= l∗ cannot hold.�

A1.5 Derivation of new land supplies, κit
To derive (83), we first note that by using (18) in (24) to eliminate wit, we have

hi,t−1 = ηυl

(
yit
qit

)
. (A.31)

By using the above equation in (35) to eliminate hi,t−1, we have

hit = βegl (1− θi)
[
qit
pit

+ (1− δ)
]
ηυl

(
yit
qit

)
. (A.32)

Then, by using (A.31) and (A.32) in (28), we have

xit = hit − (1− δ)hi,t−1,

=

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
.

By combing the above equation with (27) and (26), we have

κit =
γit
τκ,i

,

where

γit =

{
βegl (1− θi)

[
qit
pit

+ (1− δ)
]
− (1− δ)

}
ηυl

(
yit
qit

)
p
(1−ακ,i)/ακ,i
it

.

A2 Data sources and measurements

A2.1 Interstate migration and population growth

Between states migration flows are measured using annual data from the Internal Revenue
Service (IRS).A1 The IRS compiles state-to-state migration data using year-to-year address
A1For further information on the IRS migration flow data, see https://www.irs.gov/uac/

soi-tax-stats-migration-data.
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changes reported on individual income tax returns filed with the IRS, which are available
from 1990 to 2014.A2 Those who file income tax returns with the IRS in two consecutive
years in the same state are considered as non-migrants, and migrants otherwise. We focus
on the 48 states and the District of Columbia on the U.S. mainland, and treat Alaska and
Hawaii as “foreign countries”in our analysis.

For the years 1990-2014, we compute migration flows and the intrinsic population growth
rates of U.S. states using the IRS state-to-state migration flow data. Migrants are considered
as the residents of the destination states for the year they migrate.A3 Thus, the population
of State j in year t is measured as the number of tax filers (and their dependents) who report
a home address in State j at the start of year t+1 as recorded by the IRS for the period from
t to t+ 1. We decompose the population changes of U.S. states into an intrinsic component
(due to births and deaths) and a net inward migration component. Let

li·(t) ≡
n∑
j=1

lij(t), and l·j(t) ≡
n∑
i=1

lij(t), (A.33)

where for i 6= j, lij(t) denotes the population flow from State i to State j in year t, measured
using the IRS data (see also (1) and (2)). The number that remain in State i is denoted by
lii(t). li·(t)− lii(t) measures the outward migration from State i, and l·i(t)− lii(t), measures
the inward migration to State i. The change in population of State i in period t, defined by
l·i(t)− l·i(t− 1) can now be decomposed as:

l·i(t)− l·i(t− 1) = [l·i(t)− li·(t)] + [li·(t)− l·i(t− 1)] . (A.34)

where the first component l·i(t)−li·(t) is the net inward migration to State i, and the reminder
term, li·(t)− l·i(t− 1), which we refer to as the intrinsic population change of State i. Thus,
the actual state level intrinsic population growth rates, ĝl,1t, for i = 1, 2, ..., n, are measured
as

ĝl,it =
l·i(t)− l·i(t− 1)∑n

i=1 l·i(t− 1)
(A.35)

For the period of 1976-1990, state level populations are measured using Census population
data, which are scaled such that their 1990 values match those implied by the IRS migration
flow data.

A2.2 State level real per capita incomes

The state level per capita annual disposable incomes are obtained from the Bureau of Eco-
nomic Analysis (BEA).A4 Real incomes are computed by dividing state level nominal incomes

A2The total number of exemptions recorded by the IRS each year is around 80% of the U.S. population.
A3For example, suppose a person files income tax returns with the IRS at the starts of year t and year t+1,

and the two addresses reported are in State i and State j respectively. If i = j, this person is considered as
a resident in State j in year t. However, if i 6= j, the time she migrates to State j can be any point between
the starts of year t and year t+ 1. In our analysis, we consider this person as a resident in State j for year t.
A4For further information on the BEA state level per capita annual disposable income data (Table SA51),

see https://www.bea.gov/index.htm.
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by state level prices of non-housing consumption goods. The relative prices of non-housing
consumption goods across U.S. states for the year 2000 are estimated following the proce-
dure in Holly et al. (2010) (see their Table A.1), where the American Chamber of Commerce
Researchers Association (ACCRA) cost of living indices for non-housing items are used at
the metropolitan statistical areas.A5 Similarly, state level non-shelter Consumer Price Index
(CPI) series are constructed using the U.S. Bureau of Labor Statistics (BLS) non-shelter
CPIs of the cities and areas according to the Holly et al. (2010) procedure.A6 Then, state
level prices of non-housing consumption goods are complied by combining the relative prices
of non-housing goods across U.S. states for 2000 and the state level non-shelter (CPI) series
over 1976-2014.

A2.3 State level real house prices and rents

The state level median house prices for 1976-2014 are complied by combining the state level
median house prices in 2000 obtained from the Historical Census of Housing Tables, and the
state level House Price Index obtained from U.S. Federal Housing Finance Agency (FHFA).A7

The FHFA House Price Index are available over the period 1976Q1 to 2015Q4. The annual
house price index is computed using the simple average of the quarter indices over the year.
Real house prices are obtained by dividing nominal house prices by prices of non-housing
consumption goods.

The state level annual housing rents are computed for 1976-2014 by combing the state
level annual housing rents for 2000 obtained from the Historical Census of Housing Tables,
and the state level shelter-CPIs.A8 We construct the state level shelter-CPI series based on
the BLS shelter-CPI data and the procedure followed by Holly et al. (2010) (Table A.1).A9

Real annual rents are obtained by dividing the nominal annual rents by the prices of non-
housing consumption goods.

A2.4 Land-use regulations and supplies

The state level Wharton Residential Land Use Regulatory Index is due to Gyourko et al.
(2008), and the state level land share in house value is compiled by Davis and Heathcote
(2007).A10 The state-level data on urban area sizes are from the United States Department

A5The Cost of Living Index (COLI), formerly the ACCRA Cost of Living Index is a measure of living cost
differences among urban areas in the United States compiled by the Council for Community and Economic
Research. For further information, see http://coli.org/.
A6For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
A7For further information on the Historical Census of Housing Tables of Home Values, see https://www.

census.gov/hhes/www/housing/census/historic/values.html. For further information on the FHFA
state level house price index, see http://www.freddiemac.com/finance/fmhpi/archive.html.
A8For further information on the Historical Census of Housing Tables of Housing Rents, see https://www.

census.gov/hhes/www/housing/census/historic/grossrents.html.
A9For further information on the BLS city level CPI data, see https://www.bls.gov/data/.
A10For further information on the data of state level land share in house value, see http://datatoolkits.
lincolninst.edu/subcenters/land-values/land-prices-by-state.asp.
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of Agriculture (USDA).A11

A3 Setting values for the exogenous variables in sim-
ulations

A3.1 Simulated productivities and land supplies

For the simulations conducted in Section 6, the state level productivities and land supplies
are simulated using the estimated versions of (46) - (50). To do so, we first set the number
of replications, R, to 500, and independently draw innovations, i.e., ε(r)f,t , ε

(r)
a,it and ε

(r)
κ,it,

for i = 1, 2, ..., n, t = T1 + 1, T1 + 2, ..., T and r = 1, 2., ..., R, from the standard normal
distribution. Then, we obtain f (r)t , z

(r)
a,it and z

(r)
κ,it using the estimated versions of (47), (48) and

(50), and the simulated innovations, ε(r)f,t , ε
(r)
a,it and ε

(r)
κ,it, for i = 1, 2, ..., n, t = T1+1, T1+2, ..., T

and r = 1, 2., ..., R, while f (r)T1
, z(r)a,iT1 and z

(r)
κ,iT1

, for i = 1, 2, ..., n, being always set to the

realized values in 1999 for all replications r = 1, 2., ..., R. Finally, a(r)it and κ
(r)
it are obtained

by using the estimated versions of (46) and (49), and the simulated shocks, f (r)t , z
(r)
a,it and

z
(r)
κ,it, for i = 1, 2, ..., n, t = T1 + 1, T1 + 2, ..., T and r = 1, 2., ..., R.

A3.2 Realized productivities and land supplies

For the simulations conducted in Sections 7 and 8, the realized state level productivities, ait,
for i = 1, 2, ..., n, and t = T1+ 1, T1+ 2, ..., T , are inferred using the estimated version of (76)
and realized values of l·i(t) and yit. The realized land supplies, κit, for i = 1, 2, ..., n, and
t = T1+1, T1+2, ..., T , are inferred using the estimated versions of (83) and (84), and realized
values of yit, qit and pit. Finally, the realized land supply shocks, zκ,it, for i = 1, 2, ..., n, and
t = T1 + 1, T1 + 2, ..., T , are inferred using the estimated version of (29) and estimates of κit.

A11For further information on the USDA land use data, see https://www.ers.usda.gov/data-products/
major-land-uses.
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S1 Existence and uniqueness of short-run equilibrium

Proposition S1 Consider the dynamic spatial equilibrium model set up in Sections 2 and
3 by equations (37)-(43), which can be written equivalently in terms of detrended variables
by equations (55) to (61). Suppose that the vectors of exogenous processes for labor produc-
tivities, at, land supplies, κt, and the intrinsic population growth rates, glt, for t = 1, 2, ...,
are given by (51)-(53), condition (54) holds, and the initial values for local population and
housing stocks ( l0 and h0) are strictly positive. Then the model has a unique short-run
equilibrium in the sense set out in Definition 1.

Proof: To prove the existence and uniqueness of the short-run equilibrium, we show that
given l∗t−1 and h

∗
t−1, then w

∗
t , q
∗
t ,p

∗
t , l
∗
t ,x

∗
t ,h

∗
t and R∗t are uniquely determined by equations

(55) to (61). We first show that l∗·i(t) > 0, and hence 1 > ρ∗ij(t) > 0, for all i and j ∈ In.
Consider a population vector l∗t that solves (55) to (61). Note that

∑n
i=1 l

∗
·i(t) > 0, and l∗·i(t)

is non-negative for any i ∈ In. Thus, l∗·i(t) > 0 has to hold for at least one i. Without loss
of generality, we assume

l∗·1(t) > 0. (S.1)

Note also that since l∗·1(t) is the first element in l
∗
t , then from (55) we have

l∗·1(t) =
n∑
i=1

ρ∗i1(t)l
∗
·i(t− 1), (S.2)

where, upon using (56), (58) and (57), ρ∗i1(t) is given by

ρ∗i1(t) =
α−ψi1

(
τw,1a

λa
1

)1−η (
h∗1,t−1

)η
(l∗·1(t))

−[η+λl(1−η)]∑n
s=1 α

−ψ
is (τw,saλas )1−η

(
h∗s,t−1

)η
(l∗·s(t))

−[η+λl(1−η)]
(S.3)

which implies

S1



ρ∗i1(t) =
1

1 +
∑

s 6=i

(
α−ψis (τw,saλas )

1−η
(h∗s,t−1)

η

α−ψi1 (τw,1aλa1 )
1−η

(h∗1,t−1)
η

)(
l∗·1(t)
l∗·s(t)

)η+λl(1−η) , for i = 1, 2, ..., n. (S.4)

Note that since η ∈ (0, 1) and λl, τw,s, αis and as > 0 by assumption, and that also h∗s,t−1 > 0,
for t = 1, 2, ..., since hs0 > 0 and the depreciation rate of housing stock δ is less than one.
Thus, α−ψis

(
τw,sa

λa
s

)1−η (
h∗s,t−1

)η
> 0. In addition, it is supposed that l∗·1(t) > 0. Hence, if

l∗·s(t) = 0, for any s ∈ {2, 3, ..., n}, then ρ∗i1(t) = 0, for all i ∈ In, and using (S.4) it follows
that l∗·1(t) = 0, which contradicts our supposition. The same line of reasoning can be applied
to any other elements of l∗t , and we must have l

∗
·1(t) > 0, for any i ∈ In.

Second, let Lt(ε) with ε > 0, be a set of population vector:

Lt(ε) ≡
{

(l∗·1(t), ..., l
∗
·n(t))

∣∣∣∣∣L0 ≥ l∗·i(t) ≥ ε for any i, where ε > 0,
n∑
i=1

l∗·i(t) = L0

}
Consider a mapping F , define

F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1),

where l∗t−1 and h
∗
t−1 are given, and R(l∗t ,h

∗
t−1) is the migration probability matrix with

typical element ρ∗ij(t), which is given by (S.3). Thus, for (55) to hold, the above mapping
should have a fixed point. Consider a l∗t ∈ Lt(ε). Note that l∗·i(t) is the ith element of l∗t and
satisfies L0 ≥ l∗·i(t) ≥ ε, for i = 1, 2, ..., n. Then, by using (S.3), we have

ρ∗ij(t) =
α−ψij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η (
l∗·j(t)

)−[η+λl(1−η)]∑n
s=1 α

−ψ
is (τw,saλas )1−η

(
h∗s,t−1

)η
(l∗·s(t))

−[η+λl(1−η)]

>
α−ψij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η
(L0)

−[η+λl(1−η)]∑n
s=1 α

−ψ
is (τw,saλas )1−η

(
h∗s,t−1

)η
(ε)−[η+λl(1−η)]

=
α−ψij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η
(L0)

(1−η)(1−λl)∑n
s=1 α

−ψ
is (τw,saλas )1−η

(
h∗s,t−1

)η
(ε)(1−η)(1−λl)

ε

L0
.

Since η and λl ∈ (0, 1), then (1− η) (1− λl)> 0. Suppose ε is small enough such that

ρ∗ij(t) >
ε

L0
, for i and j ∈ In.

Define l∗
′

t = F (l∗t ) = l∗t−1R(l∗t ;h
∗
t−1). Thus we have

l∗
′

·j (t) =
n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) >

n∑
i=1

(
ε

L0

)
L0 = ε for any j ∈In.

In addition,

n∑
j=1

l∗
′

·j (t) =
n∑
j=1

n∑
i=1

ρ∗ij(t)l
∗
·i(t− 1) =

n∑
i=1

l∗·i(t− 1)
n∑
j=1

ρ∗ij(t) =
n∑
i=1

l∗·i(t− 1) = L0.
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Therefore, when ε is small enough such that ρ∗ij(t) > ε/L0 for any i, j ∈ In, then l∗t ∈
Lt(ε) ⇒ l∗

′

t = F (l∗t ) ∈ Lt(ε). Thus, F is a continuous mapping from Lt(ε) to itself, where
Lt(ε) is a compact convex set. Thus, Brouwer Fix Point Theorem is applicable to ensure
the existence of fixed point. Then, using the solution of l∗t , the other variables of the model,
namely, p∗t , q

∗
t ,x

∗
t ,h

∗
tand R∗t , can be solved for using equations (56) to (61).

Third, to show the uniqueness, suppose there are l∗(1)t , l
∗(2)
t ∈ Lt(ε), with l∗(1)t 6= l

∗(2)
t ,

and l∗(1)t = F (l
∗(1)
t ), l∗(2)t = F (l

∗(2)
t ). Define I+n ≡ {j| l∗

(2)

·j (t) > l∗
(1)

·j (t), j ∈ In} and
I−n ≡ {j| l∗

(2)

·j (t) ≤ l∗
(1)

·j (t), j ∈ In}. Thus, neither I+n nor I−n is empty, and we have∑
j∈I+n

l∗
(2)

·j (t) >
∑
j∈I+n

l∗
(1)

·j (t). (S.5)

Note that by using (S.3), we have

∑
j∈I+n ρ

∗(2)
ij (t)∑

j∈I−n ρ
∗(2)
ij (t)

=

∑
j∈I+n α

−ψ
ij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η (
l
∗(2)
·j (t)

)−[η+λl(1−η)]
∑

j∈I+n α
−ψ
ij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η (
l
∗(2)
·j (t)

)−[η+λl(1−η)] ,

<

∑
j∈I+n α

−ψ
ij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η (
l
∗(1)
·j (t)

)−[η+λl(1−η)]
∑

j∈I+n α
−ψ
ij

(
τw,ja

λa
j

)1−η (
h∗j,t−1

)η (
l
∗(1)
·j (t)

)−[η+λl(1−η)] ,
=

∑
j∈I+n ρ

∗(1)
ij (t)∑

j∈I−n ρ
∗(1)
ij (t)

.

Note also that ∑
j∈I+n

ρ
∗(2)
ij (t) +

∑
j∈I−n

ρ
∗(2)
ij (t) =

∑
j∈I+n

ρ
∗(1)
ij (t) +

∑
j∈I−n

ρ
∗(1)
ij (t) = 1.

Thus, ∑
j∈I+n

ρ
∗(2)
ij (t) <

∑
j∈I+n

ρ
∗(1)
ij (t) for any i ∈ In. (S.6)

Since l∗(1)t = F (l
∗(1)
t ), l∗(2)t = F (l

∗(2)
t ), thus for any j ∈ I

l
∗(2)
·j (t) =

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1) and l

∗(1)
·j (t) =

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)
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Then, we have∑
j∈I+n

(l
∗(2)
·j (t)− l∗(1)·j (t)) =

∑
j∈I+n

∑
i∈I

ρ
∗(2)
ij (t)l∗·i(t− 1)−

∑
j∈I+n

∑
i∈I

ρ
∗(1)
ij (t)l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

(
ρ
∗(2)
ij (t)− ρ∗(1)ij (t)

)
l∗·i(t− 1)

=
∑
i∈I

∑
j∈I+n

ρ
∗(2)
ij (t)−

∑
j∈I+n

ρ
∗(1)
ij (t)

 l∗·i(t− 1)

< 0

Thus, the above contradicts with (S.5), which implies that l∗(1)t 6= l
∗(2)
t cannot be true. �

S2 Computation of the impulse responses

The impulse responses reported in the paper are computed using the Monte Carlo techniques
developed by Koop et al. (1996). As discussed in Section 4.1, the model economy set out in
Sections 2 and 3 can be written in a compact form as:

ζt = f
(
ζt−1,at,at−1,κt−1, gl,t;Θ

)
, (S.7)

where Θ is a row vector that contains all the parameters, ζt = [l(t), qt] is a 1 × 2n vector,
and

χt = g (ζt,at,κt;Θ) , (S.8)

where χt = [pt,ht] is a 1× 2n vector.
Define ξt = [ζt,χt], which is a 1× 4n vector. Then, the (S.7) and (S.8) can be combined

and written as

ξt = ψ
(
ξt−1,at,at−1,κt,κt−1, gl,t;Θ

)
. (S.9)

The stochastic processes of at and κt, are given by

lnat = lna +gat +λ ft+za,t, (S.10)

ft = ρfft−1 + σfεf,t, (S.11)

za,t = za,t−1diag(ρa,1, ρa,2, ...ρa,n) + εa,tdiag(σa,1, σa,2, ...σa,n), (S.12)

and

lnκt = lnκ+ gκt+zκ,t, (S.13)

zκ,t = zκ,t−1diag(ρκ,1, ρκ,2, ...ρκ,n) + εκ,tdiag(σκ,1, σκ,2, ...σκ,n), (S.14)

and the values of state level intrinsic population growth rates, gl,t, for t = 0, 1, 2, ..., are
exogenously given.
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Impulse response function: To illustrate the computation algorithm, we take the
computation of the impulse responses to a standard deviation negative productivity shock
to State i∗ as an example. Note that the model is Markovian. Thus, the relevant history is
only the period before the start of simulation. Let the shock hits the economy in period 1.
Then, the impulse response function is given by

GIξ(t, εa,i∗1, ξ0,a0,κ0) = E(ξt|εa,i∗1, ξ0,a0,κ0)− E(ξt|ξ0,a0,κ0)
for t = 1, 2, ..., T,

where T is the horizon of the impulse response analyses, E(ξt|ξ0,a0,κ0) is the expectation
of ξt conditional only on ξ0,a0 and κ0, and E(ξt|εa,i∗1, ξ0,a0,κ0) is the expectation of ξt
conditional on both ξ0,a0,κ0 and εa,i∗1. Recall that εa,i∗1 is the innovation to the local
productivity shock in State i∗ in period 1.

Initial values: In our impulse response simulations, we assume that the economy is
on the balanced growth path when t = 0. Recall that in Section 4.2, we established the
uniqueness of the balanced growth path by showing that for given values of L0,κ and a, the
steady states of the detrended variables are uniquely determined by the equation system (64)-
(71). Note that detrended variables equal non-detrended variables when t = 0. Thus, we use
the steady state values of the detrended variables as the initial values for the corresponding
non-detrended variable in the impulse response simulations, which implies that the economy
is on the balanced growth path when t = 0.

Deterministic variables: The intrinsic population growth rates of all states are set
equal to the balanced growth path level given by (52):

gl,t = [ĝl, ĝl, ..., ĝl] , for t = 1, 2, ..., T ,

where gl is the balanced growth path intrinsic population growth rate, which is assumed to
be common to all states, and estimated as the average growth rate of the national population
over the period 1976-2014.

Stochastic processes: The state level productivities and land supplies, at and κt, are
simulated using the estimated (S.10) - (S.14), where f0, za0 and zκ0 are set to 0.

We set the numbers of replications and horizons to R and T , and independently draw
innovations from the standard normal distribution. Let ε(r)f,t , ε

(r)
a,t and ε

(r)
κ,t denote the sim-

ulated εf,t, εa,t and εκ,t, for replication r, where ε(r)a,t =
[
ε
(r)
a,1t, ε

(r)
a,2t, ..., ε

(r)
a,nt

]
and ε(r)κ,t =[

ε
(r)
κ,1t, ε

(r)
κ,2t, ..., ε

(r)
κ,nt

]
. The innovations, ε(r)f,t , ε

(r)
a,it and ε

(r)
κ,it, for i = 1, 2, ..., n, t = 1, 2., ..., T and

r = 1, 2., ..., R, are independently drawn from the standard normal distribution.
Productivity processes without shock: When there is no shock, for each replication r,

we plug the simulated innovations, ε(r)f,t and ε
(r)
a,t , into (S.10) - (S.12), and obtain a series of

simulated productivities, a(r)t , for t = 1, 2., ..., T .
Productivity processes with shock: When there is shock, for each replication r, we plug

the simulated innovations, ε(r)f,t and ε
(r)
a,t , with the i

∗th element of ε(r)a,1, i.e., ε
(r)
a,i∗1, being

replaced by -1 (a negative shock), into (S.10) - (S.12), and obtain another series of simulated
productivities, ǎ(r)t , for t = 1, 2., ..., T .
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Land supply processes: For both the cases with and without shock, for each replication r,
we plug the simulated innovations, ε(r)κ,t, into (S.13) - (S.14), and obtain a series of simulated

productivities, κ(r)t , for t = 1, 2., ..., T .
Computation: To compute E(ξt|ξ0,a0,κ0) and E(ξt|εa,i∗1, ξ0,a0,κ0) numerically, we

conduct the following two simulations.

• Simulation 1 (no shock): For each replication r, given the initial values, ξ0,a0 and κ0,
and the deterministic processes of gl,t, we simulate the model (S.9) using the simulated

productivity processes, a(r)t and κ(r)t , for t = 1, 2, ..., T , and obtain a series of realized
ξt, i.e., ξ

(r)
t , for t = 1, 2, ..., T :

ξ
(r)
t = ψ

(
ξ
(r)
t−1,a

(r)
t ,a

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.

• Simulation 2 (with shock): For each replication r, given the initial values, ξ0,a0 and κ0,
and the deterministic processes of gl,t, we simulate the model (S.9) using the simulated

productivity processes, ǎ(r)t and κ(r)t , for t = 1, 2, ..., T , and obtain a series of realized
ξt, i.e., ξ̌

(r)

t , for t = 1, 2, ..., T :

ξ̌
(r)

t = ψ
(
ξ̌
(r)

t−1, ǎ
(r)
t , ǎ

(r)
t−1,κ

(r)
t ,κ

(r)
t−1, gl,t; Θ

)
.

Here, ξ(r)t and ξ̌
(r)

t are the simulated ζt in replication r in Simulation 1 and Simulation
2, respectively. Then, the two expectations, E(ξt|ξ0,a0,κ0) and E(ξt|εa,i∗1, ξ0,a0,κ0), are
approximated as the averages across replications:

Ê(ξt|ξ0,a0,κ0) =
1

R

R∑
r=1

ξ
(r)
t and Ê(ξt|εa,i∗1, ξ0,a0,κ0) =

1

R

R∑
r=1

ξ̌
(r)

t .

Thus, the approximated impulse response in period t is given as

GIξ(t, εa,i∗1, ξ0,a0,κ0) =
1

R

R∑
r=1

ξ̌
(r)

t −
1

R

R∑
r=1

ξ
(r)
t .
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S3 Calibration and estimation of parameters

Table S1: Benchmark calibration and estimation of parameters

Value Description
I. Preference

η Calibrated 0.24 Share of housing in consumption; Davis and Ortalo-Magné (2011).

β Calibrated 0.98 Discount factor of landlords; Match the risk-free interest rate of 2%.

II. Migration and intrinsic population growth rates

ψ - 1.00 Weight of migration costs in utility function; Set to one.

αij Estimated See text Route-specific migration costs.

gl Estimated 0.01 Intrinsic population growth rate; Match the U.S. average population growth

rate over the period 1977-1999.

III. Housing supplies and investment

ακ,i Estimated See text Location-specific shares of land in house values; Set to the state level average

land values relative to total value of housing stocks over the period 1977-1999.

θi Estimated See text Location-specific housing investment costs; Match the state level average

rent-to-price ratios over the period 1977-1999.

δ Estimated 0.02 Depreciation rate of housing stocks; Set to the national housing stock

depreciation rate over the period 1977-1999.

IV. Labor productivity processes

vl Calibrated 0.67 Share of labor cost in output; Valentinyi and Herrendorf (2008).

vφ Calibrated 0.06 Effects of agglomeration on TFP; Davis et al. (2014).

φ̄i - 1.00 Location-specific intercepts in the functions for agglomeration effects; Set to one.

ai Estimated See text Location-specific intercepts in the labor productivity processes.

ga Calibrated 0.02 Growth rate of labor productivities. Match the average annual growth rate of

the U.S. real per capita income during the period 1977-1999.

ρf Estimated 0.92 AR(1) autoregressive coeffi cient for ft.
σf Estimated 0.03 Standard deviation of the innovation to ft.
λi Estimated See text Location-specific loading coeffi cients for ft.
ρa,i Estimated See text AR(1) autoregressive coeffi cients for za,it.
σa,i Estimated See text Standard deviations of the innovations to za,it.
V. Land supply processes

τκ,i Estimated See text Location-specific scalars in the housing supply functions.

κi Estimated See text Location-specific intercepts in the land supply processes.

gκ,i Estimated See text Location-specific land supply growth rates.

ρκ,i Estimated See text AR(1) autoregressive coeffi cients for zκ,it.
σκ,i Estimated See text Standard deviations of the innovations to zκ,it.
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Table S2: Location-specific parameters related to housing supplies and investment
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Table S3: Location-specific parameters of the labor productivity processes
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Table S4: Location-specific parameters of the land supply processes

Notes: The average WRI is computed across the 48 states on the U.S. mainland, since Alaska and Hawaii
are excluded from our analyses. The WRIs of the states we included are re-scaled such that the mean and
the standard deviation of the sub-sample are zero and one, respectively.

S10



S4 Supplementary results

S4.1 House price dispersion between U.S. states

We divide the District of the Columbia and the 48 states on the U.S. main land (referred to
as 49 U.S. states for short) into five regions following the regional categorization by National
Geographic Society. The time series plots of log house price-to-income ratios during 1976-
2014 for the 49 U.S. states separately are displayed in Figure S1. As can be seen the house
price-to-income ratios of states within the same region share similar dynamic patterns. Figure
S2 shows the log house price-to-income ratios aggregated at the five U.S. regions. Regional-
level house price-to-income ratio is measured as the population weighted average of state level
house price-to-income ratios, where the population weights are computed based on state level
population data over the period 1976-2014. This figure shows that house price-to-income
ratio has significantly increased in the West, and considerably dropped in the Southwest and
the Southeast. The difference in house price-to-income ratio between the Southwest and the
West is increasing overtime. In addition, a dispersion decomposition shows that around 70%
of the between-state variance is due to the between-region differences (Figure S3).
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Figure S1: State level log house price-to-income ratios (grouped in to five U.S. regions)
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Figure S2: Log house price-to-income ratios of U.S. regions
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Figure S3: Regional decomposition of log house price-to-income ratio dispersion

Notes: This figure shows the decomposition of the variance of log house price-to-income ratio across U.S.
states. The between-state variance is decomposed into between-region variance (yellow) and weighted within-
region variances (blue, green, red, pink, cyan).
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S4.2 House price dispersion between MSAs

We investigate the patterns of house price dispersions between Metropolitan Statistical Areas
(MSAs) using data from Van Nieuwerburgh and Weill (2010). As shown in Figure S4, the
dispersion of log house price-to-income ratios across MSAs has significantly increased during
1975-2007. We then decomposed the house price-to-income ratio dispersion between MSAs
into within- and between- state dispersion. In doing so, we group the MSAs in the U.S.
mainland by state. A multi-state MSA is equally split across the states shared by the MSA
in question.S1 For instance, Kansas city, which is on the Kansas-Missouri boarder, is equally
divided between Kansas and Missouri. A “state”is considered as a group of MSAs,S2 and the
dispersion across these groups is referred to as between-state dispersion and the dispersion
across MSAs within a group is referred to as within-state dispersion. Figure S4 shows the
decomposition of between-MSA dispersion of log house price-to-income ratios. It is clear that
increases in within-state dispersions contributed very little to the increases in the between-
MSA dispersions during 1975-2007.

Year
1980 1985 1990 1995 2000 2005

0.1

0.2

0.3

0.4

0.5
The U.S.
Betw een­state
Within­state

Figure S4: Dispersion of log house price-to-income ratios between- and within- U.S. states

Notes: The line designated with ’o’shows the dispersion of log house price-to-income ratio across all MSAs.
The line designated with ’+’shows the dispersion of log house price-to-income ratio across the U.S. states.
The line designated with ’*’shows the average of within-state dispersions, where within-state dispersion is
the standard deviation of log house price-to-income ratio across the MSAs that are within a given state.

S1In the sample, around 10% of the MSAs are multi-state MSAs.
S2In the US, around 86% of its population live in MSAs. In the most populated states, such as, California,

New York, Texas, Illinois, and Florida, more than 95% of their population live in MSAs.
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S4.3 Land-use regulations in California and Texas
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Figure S5: Effects of loosening of land-use regulations in California on population by states

Notes: This figure shows the counterfactual changes in U.S. population by states in 2014 in response to an
exogenous increase in land supply growth rate of California to the national average.
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Figure S6: Effects of tightening of land-use regulations in Texas on population by states

Notes: This figure shows the counterfactual changes in U.S. population by states in 2014 in response to an
exogenous decrease in land supply growth rate of Texas to the national average.
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S5 Derivation of dispersion decomposition formula

Let U.S. states be indexed by i, and denote the collection of all states by I , where i ∈ I, and
I = {1, 2, ..., 49}. Let j denote the index for regions and J be the collection of all regions,
where j ∈ J and J = {1, 2, ..., 5}. Let Ij be the collection of the indices of the states in
region j, with I = ∪j∈J Ij, and Ij1 ∩ Ij2 = ∅, if j1 6= j2. Further, let ωi be the population
share of State i. Define νj ≡

∑
i∈Ij ωi to be the weight of region j in the U.S. mainland,

with
∑

j∈J νj = 1. It is now easily seen that the weight of State i in region j is ωi/νj, with
i ∈ Ij, and

∑
i∈Ij ωi/νj = 1.

The dispersion of log house price-to-income ratios across all states is given by

σ̂2xt ≡
∑
i∈I

ωi(xit − x̄t)2, where x̄t ≡
∑
i∈I

ωixit.

The dispersion of log house price-to-income ratios within region j is given by

σ̂2xjt ≡
∑
i∈Ij

ωi
νj

(xit − x̄jt)2, where x̄jt ≡
∑
i∈Ij

ωi
νj
xit,

and the dispersion of log house price-to-income ratios across regions is given by

σ̂2xrt ≡
∑
j∈J

νj(x̄jt − x̄t)2.

It is easy to see that the following decomposition of variance holds:

σ̂2xt =
∑
j∈J

∑
i∈Ij

ωi(xit − x̄jt + x̄jt − x̄t)2

=
∑
j∈J

∑
i∈Ij

ωi
[
(xit − x̄jt)2 + (x̄jt − x̄t)2 + 2 (xit − x̄jt) (x̄jt − x̄t)

]
=

∑
j∈J

∑
i∈Ij

ωi (x̄jt − x̄t)2 +
∑
j∈J

νj
∑
i∈Ij

ωi
νj

(xit − x̄jt)2

+2
∑
j∈J

(x̄jt − x̄t)
∑
i∈Ij

ωi (xit − x̄jt) (x̄jt − x̄t)

=
∑
j∈J

νj (x̄jt − x̄t)2 +
∑
j∈J

νjσ̂
2
xjt

= σ̂2xrt +
∑
j∈J

νjσ̂
2
xjt.

Finally, the average within-region dispersion, σ̂xwt, is given by

σ̂xwt ≡
(∑
j∈J

νjσ̂
2
xjt

)0.5
,

where σ̂xjt is the standard deviation of log house price-to-income ratios across states within
region j, and νj is the population weight of region j.
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