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Persistence in the Cryptocurrency Market 
 
 

Abstract 
 
This paper examines persistence in the cryptocurrency market. Two different long-memory 
methods (R/S analysis and fractional integration) are used to analyse it in the case of the four 
main cryptocurrencies (BitCoin, LiteCoin, Ripple, Dash) over the sample period 2013-2017. 
The findings indicate that this market exhibits persistence (there is a positive correlation 
between its past and future values), and that its degree changes over time. Such predictability 
represents evidence of market inefficiency: trend trading strategies can be used to generate 
abnormal profits in the cryptocurrency market. 

JEL-Codes: C220, G120. 
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1. Introduction 

The exponential growth of BitCoin and other cryptocurrencies is a phenomenon that has 

attracted considerable attention in recent years. The cryptocurrency market is rather 

young (BitCoin was created in 2009, but active trade only started in 2013) and therefore 

still mostly unexplored (see Caporale and Plastun, 2017 for one of the very few existing 

studies, with a focus on calendar anomalies). One of the key issues yet to be analysed is 

whether the dynamic behaviour of cryptocurrencies is predictable, which would be 

inconsistent with the Efficient Market Hypothesis (EMH), according to which prices 

should follow a random walk (see Fama, 1970). Long-memory techniques can be 

applied for this purpose. Several studies have provided evidence of persistence in asset 

price dynamics (see Greene and Fielitz, 1977; Caporale et al., 2016), and also found that 

this changes over time (see Lo, 1991), but virtually none has focused on the 

cryptocurrency market. One of the few exceptions is due to Bouri et al. (2016), who 

find lon- memory properties in the volatility of Bitcoin.  

The present study carries out a more comprehensive analysis by considering four 

main cryptocurrencies (the most liquid ones: BitCoin, LiteCoin, Ripple, Dash) and 

applying two different long-memory methods (R/S analysis and fractional integration) 

over the period 2013-2017 to investigate their stochastic properties. Moreover, it also 

examines the evolution of persistence over time (by looking at changes in the Hurst 

exponent). Any predictable patterns could of course be used as a basis for trading 

strategies aimed at making abnormal profits in the cryptocurrency market.  

The layout of the paper is the following. Section 2 provides a brief review of the 

relevant literature. Section 3 describes the data and outlines the empirical methodology. 

Section 4 presents the empirical results. Section 5 provides some concluding remarks.  
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2. Literature Review 

As already mentioned above, the cryptocurrency market has only been in existence for a 

few years, and therefore only a handful of studies have been carried out. ElBahrawy et 

al. (2017) provide a comprehensive analysis of 1469 cryptocurrencies considering 

various issues such as market shares and turnover. Cheung et al. (2015), Dwyer (2014), 

Bouoiyour and Selmi (2015) and Carrick (2016) show that this market is much more 

volatile than others. Halaburda and Gandal (2014) analyse its degree of competitiveness 

Urquhart (2016) and Bartos (2015) focus on efficiency finding evidence for and against 

respectively. Anomalies in the cryptocurrency market are examined by Kurihara and 

Fukushima (2017) and Caporale and Plastun (2017). 

Bariviera et al. (2017) test the presence of long memory in the Bitcoin series 

from 2011 to 2017. They find that the Hurst exponent changes significantly during the 

first years of existence of Bitcoin before becoming more stable in recent times. 

Bariviera (2017) also use the Hurst exponent and detect long memory in the daily 

dynamics of BitCoin as well as its volatility; in addition, they find more evidence of 

informational efficiency since 2014. Bouri et al. (2016) examine persistence in the level 

and volatility of Bitcoin using both parametric and semiparametric techniques; they 

detect long memory in both measures of volatility considered (absolute and squared 

returns). Catania and Grassi (2017) provide further evidence of long memory in the 

cryptocurrency market, whilst Urquhart (2016) using the R/S Hurst exponent obtains 

strong evidence of anti-persistence, which indicates non-randomness of Bitcoin returns. 
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3. Data and Methodology 

We focus on the four cryptocurrencies with the highest market capitalisation and longest 

span of data (see Table 1 below): BitCoin, LiteCoin, Ripple and Dash. The frequency is 

daily, and the data source is CoinMarketCap (https://coinmarketcap.com/coins/). 

 

 

Table 1: Capitalisation of the cryptocurrency market (27.10.2017) 

# Name Market Cap Price Circulating Supply 
Data starts 

from 

1 Bitcoin $98 035 067 124 $5888.16 16 649 525 BTC 28 Apr 2013 

2 Ethereum $28 411 539 142 $297.97 95 350 974 ETH 07 Aug 2015 

3 Ripple $7 825 254 645 $0.203087 38 531 538 922 XRP  04 Aug 2013 

4 Bitcoin Cash $5 928 832 364 $354.52 16 723 313 BCH 23 Jul 2017 

5 Litecoin $2 974 020 034 $55.53 53 556 032 LTC 28 Apr 2013 

6 Dash $2 179 887 702 $285.10 7 646 019 DASH 14 Feb 2014 

7 NEM $1 786 032 000 $0.198448 8 999 999 999 XEM  01 Apr 2015 

8 BitConnect $1 582 408 231 $216.50 7 308 910 BCC 20 Jan 2017 

9 NEO $1 429 555 000 $28.59 50 000 000 NEO * 09 Sept 2016 

10 Monero $1 331 970 304 $87.21 15 273 032 XMR 21 May 2014 
Cryptocurrency Market Capitalisation. Data source: https://coinmarketcap.com/coins/ 

 

The two approaches followed are R/S analysis and fractional integration 

respectively. The following algorithm is used for the R/S analysis (see Mynhardt et al., 

2014 for additional details):  

1.  A time series of length M is transformed into one of length N = M - 1 

using logs and converting prices into returns: 

)1(,...3,2,1,log 1 −=







= + Mt

Y
YN

t

t
i .   (1) 

https://coinmarketcap.com/coins/
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2.  This period is divided into contiguous A sub-periods with length n, such 

that An = N, then each sub-period is identified as Ia, given the fact that a = 1, 2, 3. . . , A. 

Each element Ia is represented as Nk  with k = 1, 2, 3. . . , N. For each Ia with length n 

the average ae  is defined as: 

А...,3,2,1а,N,...3,2,1k,N
n
1e

n

1k
a,ka =∑ ==

=
.  (2) 

3.  Accumulated deviations Xk,a from the average ae  for each sub-period Ia 

are defined as: 

)eN(X a
k

1i
a,ia,k −= ∑

=
.    (3) 

The range is defined as the maximum index Xk,a minus the minimum Xk,a, within 

each sub-period (Ia): 

.nk1),Xmin()Xmax(R a,ka,kIa ≤≤−=    (4) 

4.  The standard deviation IaS  is calculated for each sub-period Ia: 

5,0

1

2
, )()1( 








−= ∑

=

n

k
aakIa eN

n
S .   (5) 

5.  Each range RIa is normalised by dividing by the corresponding SIa. 

Therefore, the re-normalised scale during each sub-period Ia is RIa/SIa. In step 2 above, 

adjacent sub-periods of length n are obtained. Thus, the average R/S for length n is 

defined as: 

 ∑
=

=
A

1i
IaIan )SR()A1()SR( .   (6) 

6.  The length n is increased to the next higher level, (M - 1)/n, and must be 

an integer number. In this case, n-indexes that include the start and end points of the 

time series are used, and Steps 1 - 6 are repeated until n = (M - 1)/2. 
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7.  The least square method is used to estimate the equation log (R / S) = log 

(c) + H*log (n). The slope of the regression line is an estimate of the Hurst exponent H. 

(Hurst, 1951).  

The Hurst exponent lies in the interval [0, 1]. On the basis of the H values three 

categories can be identified: the series are anti-persistent, returns are negatively 

correlated (0 ≤ H < 0.5); the series are random, returns are uncorrelated, there is no 

memory in the series (H = 0.5); the series are persistent, returns are highly correlated, 

there is memory in price dynamics (0.5 < H ≤ 1).  

To analyse the dynamics of market persistence we use a sliding-window 

approach. The procedure is the following: having obtained the first value of the Hurst 

exponent (for example, for the date 01.04.2004 using data for the period from 

01.01.2004 to 31.03.2004), each of the following ones is calculated by shifting forward 

the “data window”, where the size of the shift depends on the number of observations 

and a sufficient number of estimates is required to analyse the time-varying behaviour 

of the Hurst exponent. For example, if the shift equals 10, the second value is calculated 

for 10.04.2004 and characterises the market over the period 10.01.2004 till 09.04.2004, 

and so on.  

In addition we also employ I(d) techniques for the log prices series, both 

parametric and semiparametric. Note that the differencing parameter d is related to the 

Hurst exponential described above through the relationship H = d + 0.5. Also, R/S 

analysis is used for the return series (the first differences of the log prices), while I(d) 

models are estimated for the log prices themselves, in which case the relationship 

becomes H = (d – 1) + 0.5 = d – 0.5. We consider processes of the form: 

,...,2,1,)1( ==− tuxB tt
d   (7) 
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where B is the backshift operator (Bxt = xt-1); ut is an I(0) process (which may 

incorporate weak autocorrelation of the AR(MA) form) and, xt are the errors of a 

regression model of the form: 

,...,2,1t;txt10ty =+β+β=   (8) 

where yt stands for the log price of each of the cryptocurrencies. Note that under the 

Efficient Market Hypothesis the value of d in (7) should be equal to 1 and ut a white 

noise process. As mentioned before, we use both parametric and semiparametric 

methods, in each case assuming uncorrelated (white noise) and autocorrelated errors in 

turn. More specifically, we use first the Whittle estimator of d in the frequency domain 

(Dahlhaus, 1989; Robinson, 1994), and then the “local” Whittle estimator initially 

proposed by Robinson (1995) and then further developed by Velasco (1999), Phillips 

and Shimotsu (2005), Abadir et al. (2007) and others. 

 

4. Empirical Results  

The results of the R/S analysis for the return series of the four cryptocurrencies are 

presented in Table 2.  

 
Table 2: Results of the R/S analysis for the different crypto currencies, 2004-2017 

Period Daily frequency 

Bitcoin 0,59 

LiteCoin 0,63 

Ripple 0,64 

Dash 0,60 

 

As can be seen, the series do not follow a random walk, and are persistent, 

which is inconsistent with market efficiency. The most efficient cryptocurrency is 

Bitcoin, which is the oldest and most commonly used, as well as the most liquid. 
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The dynamic R/S analysis shows the evolution over time of persistence in the 

cryptocurrency market (see Figure 1). 

 

Figure 1: Results of the dynamic R/S analysis, (step=50, data window=300) 
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As can be seen the degree of persistence varies over the time, and fluctuates 

around its average. Time variation is particularly evident in the case of Litecoin, with 

the exponent dropping significantly from 0.7 in 2013 to 0.50 in 2017. This represents 

evidence in favour of the Adaptive Market Hypothesis (see Lo, 1991 for details) and 

also of efficiency increasing over time. In the case of Litecoin the market was initially 

rather inefficient, but after 2-3 years it became more liquid, and the number of 

participants, trade volumes and efficiency all increased.  

Next we estimate an I(d) model specified as: 

,...,2,1t,ux)B1(,xty tt
d

tt ==−+β+α=   (9)  

and test the null hypothesis: 

,: oo ddH =     (10) 

in (9) for do-values equal to -1, -0.99, …. -0.01, 0, 0,01,  … , 0.99 and 1 under different 

modelling assumptions for the I(0) error term ut. 

In Table 3 we assume that ut in (1) is a white noise process, and consider the 

three cases of: i) no deterministic terms, ii) an intercept, and iii) an intercept with a 

linear time trend. This table shows that the estimates are around 1 in all cases, which 

implies non-stationary behaviour. A time trend is required in the cases of Bitcoin and 

Dash, but not for the other two series, Litecoin and Ripple. 
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Table 3: Estimates of d and confidence bands for the case of no autocorrelation 

Log series No terms An intercept A linear time trend 

BITCOIN 0.992 
(0.961,  1.040) 

1.009 
(0.983,  1.039) 

1.009 
(0.983,  1.039) 

LITECOIN 1.005 
(0.977,  1.038) 

1.021 
(0.994,  1.053) 

1.021 
(0.994,  1.053) 

RIPPLE 1.028 
(0.997,  1.064) 

1.053 
(1.023,  1.086) 

1.053 
(1.023,  1.087) 

DASH 0.966 
(0.933,  1.005) 

0.985 
(0.954,  1.022) 

0.986 
(0.954,  1.022) 

 

Finally Table 4 (which focuses on the selected model for each series on the basis 

of the deterministic terms) shows that the I(1) hypothesis cannot be rejected for three 

series, namely Bitcoin, Litecoin and Dash. However, for Ripple it is rejected in favour 

of d > 1. The implied values of the H exponent are slightly smaller than those reported 

before: since H = d – 0.5, they are 0.51, 0.52, 0.53 and 0.48 respectively for Bitcoin, 

Litecoin, Ripple and Dash, and the confidence intervals provide evidence of market 

inefficiency only in the case of Ripple. 

 
Table 4: Estimated coefficients in the selected models from Table 3 

Log series d (95% band) Intercept Time trend 

BITCOIN 1.009 
(0.983,  1.039) 

4.897 
(114.15) 

0.002 
(1.79) 

LITECOIN 1.021 
(0.994,  1.053) 

1.470 
(21.60) 

--- 

RIPPLE 1.053 
(1.023,  1.086) 

-5.313 
(-66.89) 

--- 

DASH 0.986 
(0.954,  1.022) 

-0.984 
(-11.37) 

0.005 
(2.34) 

 

Next we allow for autocorrelated disturbances, and for this purpose we use the 

exponential spectral model of Bloomfield (see Bloomfield, 1973 for details). Table 5 

displays the estimates of d for the three cases of no regressors, an intercept and a linear 

time trend while Table 6 focuses on the selected models. As in the case of uncorrelated 
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errors, a time trend is required for Bitcoin and Dash but not for the other two series. As 

before, the estimates of d are within the I(1) interval for all series except Ripple, for 

which the estimate of d is significantly higher than 1, which implies a high degree of 

persistence. 

 

Table 5: Estimates of d and confidence bands for the case of autocorrelation 
Log series No terms An intercept A linear time trend 

BITCOIN 0.962 
(0.920,  1.013) 

1.031 
(0.988,  1.074) 

1.032 
(0.988,  1.074) 

LITECOIN 0.983 
(0.944,  1.030) 

1.016 
(0.972,  1.064) 

1.016 
(0.972,  1.064) 

RIPPLE 1.048 
(0.991,  1.113) 

1.052 
(1.012,  1.110) 

1.052 
(1.012,  1.110) 

DASH 0.911 
(0.8733,  0.953) 

0.963 
(0.920,  1.013) 

0.963 
(0.920,  1.013) 

 

Table 6: Estimated coefficients in the selected models from Table 5 
Log series d (95% band) Intercept Time trend 

BITCOIN 1.032 
(0.988,  1.074) 

4.897 
(114.23) 

0.002 
(1.73) 

LITECOIN 1.016 
(0.972,  1.064) 

1.470 
(21.56) 

--- 

RIPPLE 1.052 
(1.012,  1.110) 

-5.131 
(-66.84) 

--- 

DASH 0.963 
(0.920,  1.013) 

-0.977 
(-11.30) 

0.004 
(2.68) 

 
 

Given the differences between the results from the (non-parametric) R/S analysis 

and the parametric I(d) estimation, we also employ a semiparametric I(d) method, 

namely a “local” Whittle estimator in the frequency domain (see Robinson, 1995, etc.). 

The estimates for selected bandwidth parameters are shown in Table 7.1 

 
                                                           
1  The choice of m is important since there is a trade-off between bias and variance that affects the 
estimates of d. 
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Table 7: Estimates of d based on a semiparametric Whittle method 

Log series 30 32 34 36 38 40 42 44 46 38 50 

BITCOIN 1.072 1.099 1.078 1.081 1.108 1.142 1.152 1.109 1.186 1.107 1.100 

LITECOIN 1.123 1.173 1.096 1.125 1.141 1.174 1.122 1.101 1.101 1.103 1.076 

RIPPLE 1.153 1.091 1.125 1.137 1.096 1.088 1.064 1.042 1.047 1.011 1.022 

DASH 1.170 1.081 1.150 1.200 1.235 1.228 1.216 1.202 1.154 1.145 1.162 

Lower I(1) 1.150 1.145 1.141 1.137 1.133 1.130 1.126 1.124 1.121 1.118 1.114 

Upper I(1) 0.849 0.854 0.858 0.862 0.866 0.869 0.873 0.876 0.878 0.881 0.883 

In bold those cases where the estimates of d are significantly higher than 1 at the 5% level. 

 

The unit root hypothesis (i.e., d = 1) is rejected in many cases, especially for 

Dash, but also for the other three series. 

Figure 2 displays the estimates of d for all bandwidth parameters and Figure 3 

focuses on values of m from 25 to 200. 

 
 
Figure 2: Estimates of d based on semiparametric methods 
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Ripple 

 

Dash 

 
 
 
Figure 3: Estimates of d based on semiparametric methods (with m = 25, …, 200) 
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interval or above 1. Therefore there is strong evidence that mean reversion does not 

occur, which suggests market inefficiency.  

 

5. Conclusions 

This paper uses R/S analysis and fractional integration long-memory techniques to 
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cryptocurrency market is still inefficient, but is becoming less so. This is especially true 

of the Litecoin market, where the Hurst exponent dropped considerably over time.  

The results obtained using I(d) methods are less conclusive, since the estimated 

values of d are higher than but not significantly different from 1 in a number of cases, 

the main exception being Ripple for which the parametric estimate of d is significantly 

higher than 1. The semiparametric I(d) results are very sensitive to the choice of the 

bandwidth parameter, and market inefficiency is found in a number of cases. 

Persistence implies predictability, and therefore represents evidence of market 

inefficiency, suggesting that trend trading strategies can be used to generate abnormal 

profits in the cryptocurrency market.  
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