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Mechanism Design with Moral Hazard 
 
 

Abstract 
 
This paper studies dynamic mechanism design in the presence of moral hazard. Revelation 
principle extends to models with moral hazard for both full commitment and limited 
commitment, but I also identify environments in which the principal doesn’t benefit from 
eliciting agents’ private information or beliefs. One-shot deviation principle requires the 
knowledge of agents’ private strategies after deviations, and I characterize the necessary and 
sufficient condition for all IC constraints that requires only the knowledge of agents’ 
equilibrium strategies. I also provide two sufficient conditions for smaller set of IC constraints 
that require obedience after a single-period deviation to be sufficient for all IC constraints. I 
illustrate how to apply revelation principle and the smaller set of IC constraints with an 
application allowing for endogenous state. 

Keywords: dynamic mechanism design, adverse selection, moral hazard, revelation principle, 
one-shot deviation principle, endogenous state. 
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1 Introduction

There are many situations where the principal has no private information about the

payoff-relevant state but agents may have private information and can take actions

unobservable to the principal. If the principal only observes an outcome which de-

pends both on the payoff-relevant state and agents’ actions, there is both moral hazard

and (potential) adverse selection. In health insurance, the genetic disposition or the

current health status can be the payoff-relevant state, and agents can take preven-

tive measures or healthier lifestyle including more exercises and healthy eating.1 In

unemployment insurance, the worker’s ability can be the payoff-relevant state, and

workers can decide how much effort to put into job search. If the government doesn’t

know the ability of the unemployed nor effort in job search, it only knows whether

the unemployed finds a new job or not, and again, there is both moral hazard and

(potential) adverse selection. When agents have private information about the payoff-

relevant state, there is adverse selection and moral hazard, and when agents have no

private information, there is moral hazard with ex-ante symmetric uncertainty. If

agents’ actions don’t affect the payoff-relevant state, the state is exogenous, but if

agents’ actions affect the payoff-relevant state, the state is endogenous.

Other examples include endogenous human capital accumulation. If the agent’s

human capital is the payoff-relevant state and it evolves as a result of the agent’s effort,

we have endogenous human capital accumulation. If the principal or the government

doesn’t observe neither the human capital nor the agent’s action, then there is moral

hazard; there could be adverse selection in case the agent has private information

about his own human capital and symmetric uncertainty if the agent doesn’t have

private information. For another example, consider an agent developing a product for

the market. If the agent sees the progress of the product but the principal doesn’t,

then the agent has private information about the payoff-relevant state (progress of the

product). If the development of the product depends on the agent’s action, and the

principal only sees a noisy signal, for example, the sales data of beta products, then

there is also moral hazard and the payoff-relevant state is endogenous. The payoff-

relevant state could also be the match quality between the principal and the agent,

the cost shock, the productivity shock, the market condition, the firm fundamental

1This is different from adverse selection and moral hazard discussed in Einav et al (2013) where
moral hazard comes from overconsumption.
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or the agent’s quality as in Holmström’s career concerns.

The case of exogeneous payoff-relevant state with ex-ante symmetric uncertainty

has been relatively extensively studied,2 but if agents have private information or

the state is endogenous, there are only three publications I’m aware of.3 This is in

part due to technical reasons; in particular, one must account for the possibility of

profitable multi-period deviations when the state is endogenous or agents have private

information. Yet in many of the applications mentioned earlier, the payoff-relevant

state is endogenous, and agents have private information. I develop tools to handle

this class of models in this paper. Specifically, the class of models I consider has four

key assumptions: (i) there is a payoff-relevant state, (ii) the principal has no private

signal on the payoff-relevant state, (iii) agents may have private signals about the

payoff-relevant state (adverse selection or ex-ante symmetric uncertainty) and (iv)

agents’ actions are unobservable to the principal and other agents (moral hazard).

When agents have private information, the most general class of contracts that

the principal can offer to agents is dynamic mechanism design with moral hazard.

When agents don’t have private information at the beginning of first period, this still

can be accomodated by mechanism design approach. In dynamic mechanism design,

revelation principle and one-shot deviation principle are two of the main tools. The

principal can always elicit agents’ private information before choosing an allocation,

and when there is more than one period, agents can always deviate in multiple periods.

I first show that revelation principle, both with full commitment and limited

commitment, extends to models with moral hazard. Then I define what one-shot

deviation principle should mean if there is both adverse selection and moral haz-

ard. Since one-shot deviation principle requires the knowledge of agents’ deviation

strategies after every private history, it is difficult to apply it to characterizion of

the optimal mechanism. I characterize the necessary and sufficient conditon for all

IC constraints (dynamic IC) that requires only the knowledge of agents’ equilibrium

strategies.4 Next, I define what I call on-path single deviation IC which is stronger

2Most of literature on strategic experimentation or dynamic moral hazard with symmetric uncer-
tainty is included in the class of models I study. The quality of the unknown arm is the payoff-relevant
state, and at the onset, none of the principal or agents have any private information about the qual-
ity of the unknown arm. Agents’ actions are their private information, and all players observe an
outcome that depends both on the quality of the unknown arm and actions of agents

3See Garrett-Pavan (2012), Board-Meyer-ter-Vehn (2013), Halac-Kartik-Liu (2016)
4In the single-agent case with full commitment, an equilibrium strategy is the agent’s strategy

when he has never deviated before. On the equilibrium path or off the equilibrium path are with
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than the one-shot deviation IC; on-path single deviation IC only considers strategies

of deviating once from the equilibrium strategy then conforming to the principal’s

expectation thereafter. This might mean the agent deviates from his private strategy

infinitely many times and is different from the one-shot deviation in repeated games,

but a few examples of it have been referred to as one-shot deviation in the mecha-

nism design or contracting literature. When the principal elicits private information

and recommends actions each period, on-path single deviation is the same as obeying

recommendations after a single-period deviation. I provide two sufficient conditions

for when on-path single deviation IC constraints are sufficient for all IC constraints.

In this class of models, even if agents don’t observe the state, there is asymmetric

information off the equilibrium path. If an outcome is a noisy signal of the agent’s

action and the state, the principal updates his belief about the state using the agent’s

equilibrium strategy, (and the outcome distribution induced by it) and the agent’s

deviation leads to belief disagreement off the equilibrium path. If the agent has

a private signal on the state, the agent has more information than the principal

on the equilibrium path. A mechanism designer (or the principal which I will use

interchangeably throughout the paper) can elicit agents’ private information at the

beginning of a period. Revelation principle shows that despite moral hazard, it is

always sufficient to elicit agents’ private information in a given period. But perhaps

what’s more surprising is that in the class of models with symmetric uncertainty,

the principal can do no better by eliciting the agents’ beliefs. Models with symmetric

uncertainty are the models where neither the principal nor agents have a private signal

on the state, agents’ actions are unobservable to the principal and other agents, and

the outcome and the allocation are observed publicly. This implies that in strategic

experimentation or career concerns, there is no benefit from eliciting agents’ beliefs.

There is also a class of models in which the principal doesn’t benefit from eliciting

agents’ private information even if agents have private information. The common

feature in this class of models is that an agent’s equilibrium strategy doesn’t depend

on the state; in particular, if the state is endogenous and the state transition only

depends on the agent’s action and not on the state, the principal never benefits from

eliciting agent’s private information. An immediate corollary is that in the principal-

agent version of Board-Meyer-ter-Vehn (2013), there is no benefit from eliciting the

firm’s private information even though the firm’s quality is its private information

respect to whether the agent has deviated.
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and consumers don’t observe the quality.

After eliciting agents’ private information, most mechanism design problems em-

ploy the sufficiency of local IC constraints. Intertemporally, this would be the one-shot

deviation principle, and intratemporally, this would be the first-order condition IC.

One-shot deviation principle holds with respect to private strategies, but it requires

the knowledge of agents’ deviation strategies after every private history and is difficult

to apply.5 On-path single deviation IC restricts attention to strategies on the equilib-

rium path where the agent deviates once but conforms to the principal’s expectation

from the following period on. This IC only requires the knowledge of the agent’s

equilibrium strategy and is easy to apply. However, this IC is not always sufficient

for all IC constraints, and I provide two sufficient conditions for when this is.

The first sufficient condition is when past actions don’t affect the outcome dis-

tribution nor the state transition and agents observe the payoff-relevant state; then

on-path single deviation ICs are sufficient for all IC constraints. Corollary of this

condition holds when agents observe the payoff-relevant state and the state and the

outcome are Markovian. In particular, this sufficient condition allows for endogenous

states, and to the best of my knowledge, this is the first paper that studies endogenous

states with both adverse selection and moral hazard in the principal-agent setting.6

It also follows that if there is only adverse selection or moral hazard in a Markovian

environment, on-path single deviation ICs are sufficient. In the pure adverse selection

setting, Pavan-Segal-Toikka (2014) refer to this as strongly truthful strategies.

The second sufficient condition requires the agents’ beliefs to satisfy the first-order

stochastic dominance and each agent’s continuation value satisfies increasing differ-

ences in the agent’s action and the state. This might seem strong, but many existing

papers can be verified ex post to satisfy this condition. When the agent doesn’t ob-

serve the state, existing literature has focused on belief disagreement, informational

rent and trade off between efficiency and rent (dynamics over time). Belief disagree-

ment and informational rent hold in the general class of models.

When on-path single deviation ICs are not sufficient, it is necessary to consider

5One-shot deviation principle in repeated games literature is with respect to all private strategies.
In mechanism design or contracting literature, a few papers refer to examples of strategies for
deviating once from the equilibrium strategy and conforming to the principal’s expectation from the
following period on as one-shot deviation. I define this class of strategies as on-path single deviation.

6The only other paper with endogenous states, adverse selection and moral hazard is Board-
Meyer-ter-Vehn and they have competitive market.
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multi-period deviations of the agent. I derive a necessary condition (dynamic IC)

and show that it is sufficient if the principal has limited commitment or continuity

at infinity is satisfied. Dynamic IC implies the on-path single deviation IC, and it

imposes restrictions on dynamics of any incentive-compatible contract.

Once I develop the tools, I illustrate how to apply revelation principle and the

first sufficient condition for on-path single deviation IC constraints to the discrete-

time principal-agent version of Board-Meyer-ter-Vehn (2013). Their model has one

firm and a continuum of consumers. I model the firm as the agent and consumers

effectively being the principal. This application has infinite horizon, endogenous

payoff-relevant state, private information and a continuum of actions. I characterize

properties of optimal contracts and efficient equilibria. One of the properties (back-

loading of payments) has been shown in other contexts, and my result highlights the

driving force of this property. Other properties haven’t been shown in the litera-

ture. For example, it follows from theorem 2 that the principal doesn’t benefit from

eliciting the agent’s belief even though the quality of the firm is the agent’s private

information. I also show that even though the agent is allowed to take any action

from a continuum, the agent only takes the lowest action or the highest action on the

equilibrium path.

Comparing my application with Board-Meyer-ter-Vehn (2013) shows that the

equilibrium definition is crucial for the dynamics of the optimal contract or efficient

equilibria. In particular, the reputation dynamics in Board-Meyer-ter-Vehn (2013) is

not efficient when the firm and the market of consumers can use history-contingent

strategies; their result depends on the Markovian strategies. Any optimal contract

allowing for fully history-contingent strategies also doesn’t have the reputation dy-

namics. Furthermore, backloading of payments has to hold for any signal structure

including the perfect good news and the perfect bad news cases, which again shows

that allowing for history-contingent strategies has a bigger impact than the signal

structure the consumers (or the principal in my application) get. In addition, the

bang-bang result of the agent’s action (the firm’s investment) shows that when the

model is linear, allowing for binary actions is without loss of generality; even though

Board-Meyer-ter-Vehn (2013) allows for a continuum of actions, the IC constraint of

the agent and the optimality for the principal require that the agent will only take

the lowest action or the highest action on the equilibrium path.

The main policy implication of this application is that linearity of the model,
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in particular, the shape of the cost function, is of first-order importance that dom-

inates whether the state is endogenous or the agent has private information. But

this requires a constant marginal cost. In the motivating examples mentioned earlier,

whether the cost of submitting job applications is a linear or convex function of the

number of firms matters more for the shape of the optimal contract than whether

the unemployed knows his own ability perfectly. Similarly, whether exercising three

times a week or five times a week is a linear function or not matters for the shape of

the optimal health insurance.

The scope of tools I develop in the first part of the paper is much wider than

the application in the second half. Revelation principle, dynamic IC and sufficiency

of on-path single deviation IC work with any finite number of agents, and the IC

constraints work both in the mechanism design setting and games. In particular, any

stochastic game with a payoff-relevant state has to satisfy these ICs. Decomposition

of continuation values can also be applied to decision problems and competitive-

market settings, and the application illustrates both usages. Since these IC constraints

are different from the usual one-shot deviation strategies that have been used for

dynamic programming, I provide dynamic programming method to account for the

on-path single deviation IC when it’s sufficient and for multi-period deviations when

the dynamic IC is necessary.

The methodology I develop by itself also highlights economic forces behind this

class of models. Essentially, the tools I develop can be applied to any dynamic model

with moral hazard where the principal has no private information about the payoff-

relevant state and agents may have private information. Detailed discussion of results

are in section 6.

The following section discusses related literature, and the rest of the paper is

organized as follows. Section 2 presents the model, and revelation principle is shown

in section 3. IC constraints and dynamic programming are discussed in section 4, and

section 5 presents the application. Section 6 further discusses results, and section 7

concludes. Omitted proofs and a formal derivation of dynamic programming are in

the online supplementary material.
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1.1 Related Literature

As mentioned earlier, the case when the payoff-relevant state is exogenous and agents

have no private information about the state is extensively studied in the literature.7

If the state is endogenous or the agent has private information, there are very few

publications.

Publications with both adverse selection and moral hazard include Board-Meyer-

ter-Vehn (2013), Garrett-Pavan (2012) and Halac-Kartik-Liu (2016). I focus on

principal-agent setting while Board-Meyer-ter-Vehn (2013) has one firm and a com-

petitive market of consumers; but among three papers, theirs is the only one with

endogenous state, and my application is the discrete-time principal-agent version of

their model. In Garrett-Pavan (2012), managers can be matched randomly if they are

fired, and the paper focuses on the retention policy. Revelation principle provides an

alternative proof for their dynamic direct mechanism, and the first sufficient condition

for on-path single deviation IC constraints is satisfied in their model, but they have

non-linear costs, and their model doesn’t overlap with my application. Halac-Kartik-

Liu (2016) has both the project quality and the agent quality. Since the principal

and the agent start with symmetric uncertainty about the project quality while the

agent knows his own quality, my sufficient conditions for on-path single deviation IC

doesn’t apply to their setting.

Existing literature on endogenous human capital has focused on models where

the government perfectly observes the level of human capital and the investment into

it; this would mean that both the payoff-relevant state and the agents’ actions are

observable to the mechanism designer. (See for example Blundell et al (2016) or

Stantcheva (2015))

I also allow all of the private history to affect the outcome distribution or the state

transition in a given period. Cumulative actions of the agent can be mapped into the

class of models I study; in continuous time, there is Sannikov (2014). Pavan-Segal-

Toikka (2014) with unobservable actions can also be mapped into this class.

Related papers that haven’t been mentioned so far include Myerson (1982) and

Bester-Strausz (2001) for revelation principle. I allow for both full commitment and

limited commitment, and proofs follow these two papers relatively closely. On-path

single deviation IC is also related to obedience in Myerson (1982).

7See for example Bergemann-Hege (1998, 2005), Bhaskar-Mailath (2015), DeMarzo-Sannikov
(2015), Hörner-Samuelson (2013), Prat-Jovanovic (2014)
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Dynamic IC has never been studied in the literature, and most existing papers

satisfy sufficiency of on-path single deviation IC. The closest reference for dynamic

IC would be the impulse response function in Pavan-Segal-Toikka (2014). Section 6

discusses the relationship further.

Sufficiency of on-path single deviation IC has been shown in specific cases in the

mechanism design or contracting literature, but the first sufficient condition I show

has never been shown. The second sufficient condition can be verified ex post to

be satisfied in many existing models in strategic experimentation, career concerns or

dynamic moral hazard with symmetric uncertainty.

2 Model

I first present a binary model in section 2.1 then the general model in section 2.2.

I use the binary model to illustrate the intuition in sections 4.1 and 4.2, but the

sufficient conditions for on-path single deviation ICs in section 4.3 require the general

model.

2.1 Binary Model

The class of models I study makes four key assumptions: (i) There is a payoff-relevant

state, (ii) the principal has no private signal on the payoff-relevant state, (iii) agents

may have private signals and (iv) agents’ actions are unobservable to the principal

and other agents. The binary model in this section captures the simplest case with

endogenous state and limited commitment.

Formally, a principal hires an agent over the infinite horizon, t = 1, 2, · · · . The

principal and the agent share the common discount factor δ ∈ (0, 1). Each period,

the principal offers a contract, and the agent decides whether to accept. If the agent

accepts, the agent chooses an effort a ∈ [0, 1] which is his private information. An

outcome is realized and observed by both parties. The principal makes a payment

specified in the contract, and they move to the next period. If the agent rejects, the

parties receive their outside options and continue in the following period.

In the binary model in this section, I don’t allow the principal to elicit the agent’s

private information, but since the agent receives no private signal, this is without loss

of generality and is shown formally in theorem 1.
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There are three relevant variables in each period: they are the underlying state,

the agent’s action and the outcome. There are two states, ω1 and ω2. The states are

unobservable to both the principal and the agent, and the parties start with a common

prior π1 in the beginning of period 1. The agent’s action is his private information

which leads to moral hazard, and it controls the transition probabilities of the state,

which makes the state endogenous. When the agent chooses a, the probability of

going from ω2 this period to ω1 next period is a. The probability of staying in ω1 is

r(a) ∈ [0, 1), where r(·) is differentiable. Let P (a) be the transition matrix for the

states when the agent chooses a; Pij(a) is the probability of going from state ωi to

state ωj next period. P (a) is given by

P (a) :=

(
r(a) 1− r(a)

a 1− a

)
.

The cost of effort for the agent is c(·) which is differentiable, weakly convex, increasing

and c(0) = 0. An outcome is denoted by y, and the set of outcomes is Y ⊂ R. The

probability of each outcome is pinned down by the underlying state. Let f1(y), f2(y)

be probabilities of outcome y in states 1 and 2, respectively. I assume that the

distributions are atomless and satisfy full support, i.e., f1(y), f2(y) > 0 for all y ∈ Y .

The state transition depends on the current state and the agent’s effort, and the

outcome only depends on the current state.

If the agent accepts the contract, the state changes at the end of the period after

the principal makes a payment. If the principal doesn’t offer a contract or the agent

rejects it, the state doesn’t change. The outside option for each party are normalized

to 0. The principal is risk neutral, and the agent’s vNM utility function from payment

is u(·) which is increasing, concave and u(0) = 0.

No one observes the state, and the agent knows his effort and the outcome. The

principal only observes the outcome each period, and he offers payments conditional

on the history of all outcomes. I consider perfect Bayesian equilibria of the game.

Let at, yt, wt be the agent’s action, the outcome and the payment in period t.

{w̄t(y)}y is the contract offered by the principal, and since the principal’s history

coincides with the public history, I use the shorthand notation and denote the pay-

ments as a function of current-period outcomes. The formal definition is in the next

paragraph. dt = 1(0) denotes that the agent accepts (rejects) the contract in period

t. The public history, which coincides with the principal’s history, at period t after
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the outcome is realized is

ht,P = ({w̄0(y)}y, d0, y0, w0, {w̄1(y)}y, d1, y1, w1, · · · , {w̄t(y)}y, dt, yt) ∈ Ht,P .

If dt = 0, then yt = ∅ = wt. If the principal doesn’t offer a contract, {w̄t(y)}y, dt, yt, wt =

∅. The agent’s private history at period t is

ht,A = ({w̄0(y)}y, d0, a0, y0, w0, · · · , {w̄t−1(y)}y, dt−1, at−1, yt−1, wt−1) ∈ Ht,A.

Let Σt,P be the set of all measurable functions σt,P : Ht,P → R. Σt,P is the set of

all contracts {w̄t(y)}y that the principal can offer in period t, and the principal can

also choose not to offer any contract which corresponds to ∅. The agent’s strategy is

σt,A : Ht,A → {∅}∪[0, 1). If the agent chooses ∅, dt = 0; the agent rejects the contract,

and the parties receive their outside options and move to the next period. If the agent

chooses a ∈ [0, 1), then dt = 1 and at = a; the agent accepts the contract and takes

action a. Throughout the paper, hat denotes the agent’s private history/strategy the

principal believes is the true history/strategy.

I assume the agent plays a pure strategy, and it is also without loss of generality to

assume that the principal doesn’t randomize over transfers. The principal is allowed

to randomize over continuation contracts, and there is a public randomization device.

2.2 General Model

A principal (mechanism designer) hires N ≥ 1 agents for t = 1, 2, · · · , T where T can

be ∞. The principal’s discount factor is δP ∈ (0, 1), and agents’ discount factors are

δiA ∈ (0, 1), i = 1, 2, · · · , N . Each period, there is a payoff-relevant state ωt ∈ Ωt,

and agent i receives a private signal sit ∈ S it then sends a message mi
t ∈ Mi

t. The

mechanism recommends an action rit ∈ Ait to agent i, agent i takes an action ait ∈ Ait,
an outcome yt ∈ Yt is realized and there is an allocation zt = (x1

t , w
1
t , · · · , xNt , wNt ) ∈

Zt = ΠN
i=1(X i

t×R). xit is the allocation for agent i, wit is the transfer from the principal

to agent i, and zit = (xit, w
i
t).

Ωt, S it , Mi
t, Ait, Yt, X i

t are metric spaces, and they are allowed to be ∅. I assume

all functions are measurable. Let gt : Ωt → ΠN
i=1S it be the signal structure. The cost

of action is cit : Ait → R. The distribution of outcome and the transition probabilities

of the state are allowed to depend on all past states, signals, actions, outcomes and
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allocations. Let St = ΠN
i=1S it , At = ΠN

i=1Ait and denote the outcome distribution and

the state transition in period t by ft, Pt, respectively:

ft : Πt−1
j=1(Ωj × Sj ×Aj × Yj ×Zj)× Ωt × St ×At → σ(Yt),

Pt : Πt
j=1(Ωj × Sj ×Aj × Yj ×Zj)→ σ(Ωt+1)

where σ(X) denotes the set of all probability measures on X.

The principal values outcome yt with v : Y → R, Y = ∪Tt=1Yt. I assume the

principal is risk neutral with respect to wt, and agent i values (xit, w
i
t) with vNM

utility function uit : X i
t × R → R. uit is strictly increasing, weakly concave with

respect to the second argument. When the allocation only consists of transfers and

the agent is risk neutral with respect to transfer, I assume limited liability to rule out

the residual claimant argument,8 but otherwise, I don’t assume limited liability.

I will consider different information structures on the state for agents, but the

following is maintained throughout the paper: The principal doesn’t observe the

state, agents’ actions are unobservable to the principal and other agents, and the

outcome and the allocation are publicly observed. Messages and recommendations

are private. In the beginng of period 1, the principal’s prior on the payoff-relevant

state, ω1, is πP and agent i has prior πA,i.

With full commitment, the outside options of the principal and agents are v̄ and

ū, respectively. If the principal doesn’t offer a mechanism or any agent doesn’t par-

ticipate, all players receive their outside options. Since the game is over if agents

don’t participate in the mechanism in the first period, I define histories only for the

case when the principal offers the mechanism on the equilibrium path, and all agents

participate in the mechanism; the mechanism and participation decisions are omit-

ted from histories. The message space for agent i in period t, Mi
t, is determined

when the principal offers the mechanism. The mechanism consists of message spaces

Mi
t, ∀t, i and allocation which is specified below. The timing within each period is

(i) agents receive private signals (ii) agents send messages (iii) the mechanism rec-

ommends an action to each agent (iv) agents take actions (v) an outcome is realized

(vi) an allocation is made (vii) the state changes.

8When there is both adverse selection and moral hazard, risk neutrality of the agent doesn’t
always imply that the principal can sell the firm. See Kwon (2017).
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The private history of agent i in period t after receiving a signal is

ht,i,m = (si1,m
i
1, r

i
1, a

i
1, y1, z1, · · · , sit−1,m

i
t−1, r

i
t−1, a

i
t−1, yt−1, zt−1, s

i
t) ∈ Ht,i,m.

The private history of agent i in period t after the mechanism recommends an action

is

ht,i,a = (si1,m
i
1, r

i
1, a

i
1, y1, z1, · · · , sit−1, r

i
t−1, a

i
t−1, yt−1, zt−1, s

i
t,m

i
t, r

i
t) ∈ Ht,i,a.

The public history in the beginning of period t is ht = (y1, z1, · · · , yt−1, zt−1) ∈ Ht.

The principal’s history after messages are sent in period t is

ht,P,r = (m1, r1, y1, z1, · · · ,mt−1, rt−1, yt−1, zt−1,mt) ∈ Ht,P,r

where mt = (m1
t , · · · ,mN

t ), rt = (r1
t , · · · , rNt ). The principal’s history after the

outcome is realized in period t is

ht,P,z = (m1, r1, y1, z1, · · · ,mt−1, rt−1, yt−1, zt−1,mt, rt, yt) ∈ Ht,P,z.

The reporting strategy of agent i is σt,i,m : Ht,i,m → σ(Mi
t), and the action strategy

of agent i is σt,i,a : Ht,i,a → Ait. The recommendation by the mechanism is σt,P,r :

Ht,P,r → σ(×iAit), and the allocation is σt,P,z : Ht,P,z → Zt. I assume agents play

pure strategies and the principal doesn’t randomize over allocations. The principal is

allowed to randomize over continuation contracts, and there is a public randomization

device. All strategies are measurable functions. I also define st = (s1
t , · · · , sNt ), at =

(a1
t , · · · , aNt ) and

h̄t = (ω1, s1,m1, r1, a1, y1, z1, · · · , ωt−1, st−1,mt−1, rt−1, at−1, yt−1, zt−1, ωt, st)

to be the compilation of private histories in period t. The compilation of private his-

tories is the union of all private histories of agents and the payoff-relevant state. The

set of compilation of private histories in period t is denoted by H̄t. The last notation

regarding histories is H̄(ht,i,·) which denotes all compilations of private histories in

period t that are consistent with agent i’s private history ht,i,·. A complitaion of

private histories in H̄(ht,i,·) is denoted by h̄(ht,i,·).

Let µ(ht,i,a) be the probability distribution over H̄(ht,i,a) conditional on ht,i,a and

13



all other agents playing equilibrium strategies; let µ(a−it |h̄(ht,i,a)) be the probability

distribution over other agents’ actions conditional on h̄(ht,i,a) and all other agents

playing equilibrium strategies. Throughout the paper, (ht, hk) denotes history ht

followed by hk.

With limited commitment, I assume the principal offers a mechanism at the be-

ginning of each period, and agents decide whether to participate. The mechanism

consists of the message space for each agent in the current period and allocation. If

agents participate, the rest of the period is the same as with full commitment. If

an agent doesn’t participate or if the principal doesn’t offer a mechanism, the prin-

cipal and agents receive their per-period outside options v̄ and ū, respectively. The

state transition in a period where they receive outside options is given by P 0. Anal-

ogous results hold also if agents first receive private signals then the principal offers

a mechanism.

I focus on undetectable deviations and assume that the principal and agents take

their outside options forever once a deviation is detected. Since the mechanism offered

by the principal, whether agents participated and allocations are publicly observed,

I focus on agents’ IC constraints for report and action choices. I focus on perfect

Bayesian equilibria of the game.

3 Revelation Principle

This section shows that revelation principle extends to models with moral hazard.

Since each agent’s choices of report and action in each period is sequential, proofs

extend naturally and follow Myerson (1982) and Bester-Strausz (2001) closely. When

agents take actions in addition to having private information, the mechanism can

recommend actions based on reports. The principal can commit to the mechanism

within each period, even with limited commitment, and the mechanism can randomize

on behalf of agents by the action profile recommended to agents. The mechanism

knows both reports and the recommended action profile, and therefore, the allocation

can be chosen as in Myerson or Bester-Strausz.

When agents have private information, revelation principle extends in a straight-

forward manner. However, an important implication is when there is symmetric

information on the equilibrium path, i.e., agents receive no private signal on the

payoff-relevant state. In this case, it is without loss of generality not to ask agents
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for reports. In light of revelation principle, it almost seems trivial given that the set

of private signals for a particular agent in a given period is an empty set. But this

implies that in strategic experimentation or career concerns, there is no gain from

eliciting agents’ beliefs on the payoff-relevant state. In particular, even though agents

have no private information on the equilibrium path in this class of models, agents

have private information off the equilibrium path. Once an agent starts deviating, he

knows his past actions, and in addition, he can update his belief on the payoff-relevant

state using the correct probability distributions induced by the actions he took; the

principal updates his belief using the probability distributions induced by the agent’s

equilibrium actions, and the principal has a wrong belief on the payoff-relevant state.

Therefore, when the principal doesn’t observe agents’ actions, which implies that the

principal doesn’t know whether agents have deviated, it is not immediate that the

principal cannot benefit by asking agents to report their beliefs on the payoff-relevant

state. My result shows that this intuition is wrong, and the principal cannot benefit

by eliciting agents’ beliefs.

Any proof that is not in the main text is in the online supplementary material.

Theorem 1 (Revelation Principle). Regardless of the commitment power, direct

mechanisms with S it as the message space for agent i in period t are without loss

of generality. With full commitment, if S it = ∅, then not eliciting the belief of agent i

in period t is without loss of generality. With limited commitment, if S it = ∅ for all i

in a given period, not eliciting beliefs is without loss of generality. When the princi-

pal has full commitment, there exists a direct mechanism where truthful reporting is

an optimal strategy for each agent, but when the principal has limited commitment,

agents might randomize. Agents follow actions recommended by the mechanism after

the report.

The next theorem shows that there is another class of models in which the prin-

cipal doesn’t benefit from eliciting agents’ private information, and in this case, it is

despite agents having private information on the equilibrium path. This is an example

of environments in which the principal doesn’t benefit from eliciting private informa-

tion, and there are other variations as well. This again may not seem particularly

interesting as it is, but the discrete-time principal-agent version of Board-Meyer-ter-

Vehn (2013) is a special case and further discussed in section 5.
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Theorem 2. Suppose (i) the outcome distribution only depends on the current state,

(ii) the state transition Pt is Markovian and (iii) can be decomposed as

Pt = Mt + atM
′
t

where at ∈ R, Mt,M
′
t don’t depend on at and M ′

t doesn’t depend on the current state

ωt. It is without loss of generality not to elicit agents’ private information in period

t.

4 IC constraints

Results on IC constraints are in this section. I first show how I decompose agents’

continuation values in section 4.1 then derive the necessary and sufficient condition

for all IC constraints (dynamic IC) in section 4.2. This condition only requires the

knowledge of the agents’ equilibrium strategies. Section 4.3 shows sufficient conditions

for on-path single deviation IC to be sufficient for all IC constraints, and section 4.4

describes dynamic programming.

I will describe the intuition using the model from section 2.1. Theorem 1 shows

that in this case, it is without loss of generality not to elicit the agent’s belief, and I

focus on the IC constraint for action choices.

4.1 Decomposition of Continuation Values

This section describes the main building block for results in section 4. The results I

derive in section 4 use an unconventional dynamic programming method, and I will

describe the first step in this section. I am going to describe it with the binary model

in section 2.1 then present the result for the general model.

The key to my dynamic programming method is the decomposition idea. Instead

of considering one continuation value for a given history of outcomes, I decompose

it into a linear combination of hypothetical continuation values. The number of

hypothetical continuation values I need depends on the number (cardinality) of the

states and the outcomes.

Before going into detail, let me describe how standard dynamic programming

would approach this problem, and why it doesn’t give us the results in this model. In

order to use dynamic programming, we need to be able to express the continuation
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value of the agent by some value function. But we also need an expression for the

deviation payoff of the agent as we need to compare the two in the IC constraint. In

this class of models, we can’t use the same value function on and off the equilibrium

path that only depends on the principal’s history. Given a history of outcomes, we

know what’s the payment the principal is going to make. However we also need

to know what’s the cost of action for the agent, and more importantly, we need to

know the probability of reaching each history. Suppose we know what the agent is

going to do in the continuation game. Given a continuation strategy of the agent,

we know the cost of action, but we still need to know the probability of reaching

each history. The value function needs the agent’s belief on the state as one of its

arguments. Furthermore, once the agent deviates, the principal and the agent have

different beliefs on the state and the principal doesn’t even know the agent’s belief

on the state.

Let me illustrate the last point a bit more. Suppose the belief on the state in the

beginning of period t is πt. The agent’s equilibrium strategy is to choose a. When an

outcome y is realized, the belief on the state is updated to

π0 =

(
πt1f1(y)

πt1f1(y) + πt2f2(y)
,

πt2f2(y)

πt1f1(y) + πt2f2(y)

)
.

If the agent takes action a, both the principal and the agent believe

πt+1 = π0P (a) =

(
πt1f1(y)

πt1f1(y) + πt2f2(y)
,

πt2f2(y)

πt1f1(y) + πt2f2(y)

)(
r(a) 1− r(a)

a 1− a

)

in the beginning of period t+1. However, if the agent deviates to a′ 6= a, the principal

still believes πt+1, but the agent believes

π̃t+1 = π0P (a′) =

(
πt1f1(y)

πt1f1(y) + πt2f2(y)
,

πt2f2(y)

πt1f1(y) + πt2f2(y)

)(
r(a′) 1− r(a′)
a′ 1− a′

)
.

In order to know the agent’s deviation payoff, we need to understand how the value

function depends on the belief on the state, and this problem becomes even more

complicated when the agent deviates multiple periods. At the bottom line, we cannot

use the same value function on and off the equilibrium path.

The decomposition idea circumvents this problem by representing the agent’s con-
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tinuation value, both on and off the equilibrium path, by a linear combination of a set

of hypothetical continuation values. The agent’s belief on the state enters the linear

combination as weights on hypothetical continuation values. The agent’s action also

enters the linear combination as weights.

To give a concrete example, suppose there are two outcomes. The probability of

a high outcome is pg ∈ (0, 1] in the good state and 0 ≤ pb < pg in the bad state.

The continuation payoff of the agent from period t + 1 on depends on continuation

strategies of the principal and the agent and the agent’s belief πt+1. The deviation

payoff of the agent from period t+ 1 on depends on the continuation strategy of the

principal conditional on observing outcome y, the continuation strategy of the agent

after having deviated to a′ 6= a and the agent’s belief π̃t+1.

Now I can decompose the continuation values as follows. Suppose (i) an outcome

y is realized in period t, (ii) the state in period t + 1 is ωi, (iii) the agent does what

the principal expects him to do from the following period on and (iv) the principal

follows his equilibrium strategy. If the agent hasn’t deviated up to period t, point (iii)

just means that the agent follows his equilibrium strategy. If the agent has deviated

at some point in the first t periods, point (iii) could mean that the agent deviates

from his strategy conditional on his private history; but conforming to the principal’s

expectation is an available strategy for the agent, and suppose for the moment that’s

the agent’s continuation strategy. I define this class of strategies as on-path single

deviation and discuss them further in the following two sections. Furthermore, this

strategy includes many of the local IC constraints that have been referred to as one-

shot deviation in the contracting literature. If the agent diverts cash only for this

instance and doesn’t divert any more in the future, or if the agent misreports his type

only this period and reports truthfully from next period on, on-path single deviation

includes these strategies. The formal definition is as follows.

Definition 1. On-path single deviation is deviating in a single period then following

the strategy that the principal believes is the agent’s equilibrium strategy given the

principal’s private history. If the principal elicits the agent’s private information and

recommends an action each period, on-path single deviation is equivalent to obeying

the recommendation every period after a single-period deviation.

For example, in the binary model from section 2.1, given the principal’s history

ht,P , there exists a private history of the agent ĥt,A that the principal believes is

the agent’s true private history. On-path single deviation in period t is formally a
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strategy σt+k,A′ such that σt+k,A′(ht,A, dt, a
′, yt, wt, h

k) = σt+k,A(ĥt,A, dt, at, yt, wt, h
k)

for all k, hk.

When the three conditions are met, we can express the agent’s continuation value

by some number Vyωi
. Since we fixed the strategies of the principal and the agent, we

know the agent’s action and the principal’s payment after each history. If we know the

agent’s action each period and the state in period t+1, we know the probability of each

continuation history from period t+ 1 on and can find the continuation value of the

agent. I call Vyωi
a hypothetical continuation value for (y, ωi) because it is conditional

on getting outcome y this period and going to state ωi in the following period. Neither

the principal nor the agent observes the state, and even if they happen to be in state

ωi in the following period, they will never know that the agent’s true continuation

value is Vyωi
. Nevertheless, we can compute the hypothetical continuation value for

each pair of (y, ωi).

The next step is to express the agent’s continuation value from period t on in

terms of Vyωi
’s. Consider figure 1. There are two outcomes, H or L in period t, and

Hπ1pg + π2pb

ω1 : VHω1

πH1 r(a) + πH2 a

ω2 : VHω2πH1 (1− r(a)) + πH2 (1− a)

Lπ1(1− pg) + π2(1− pb)
ω1 : VLω1

πL1 r(a) + πL2 a

ω2 : VLω2πL1 (1− r(a)) + πL2 (1− a)

Figure 1: Decomposition with two outcomes

there are two states we could be in period t + 1, ω1 and ω2. πH , πL are beliefs on

the state after outcome H and L, respectively. We can use figure 1 to write down the

agent’s continuation value with VHω1 , VHω2 , VLω1 , VLω2 , but we can decompose it one

step further, and I think it helps with intuition.

Essentially, even though the principal and the agent don’t know the state they’re

in, if they knew which state they are in, they know the exact probabilities of outcomes

H and L and the transition probabilities of the state. This explains the probabilities

of events in figure 2. What needs a bit more attention is the continuation values
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π1

ω1

Hpg

ω1 : VHω1r(a)

ω2 : VHω21− r(a)

L
1− pg

ω1 : VLω1r(a)

ω2 : VLω21− r(a)

π2

ω2

Hpb

ω1 : VHω1a

ω2 : VHω21− a

L
1− pb

ω1 : VLω1a

ω2 : VLω21− a

Figure 2: Decomposition with two outcomes (2)

from period t+ 1 on. There are eight cases to consider: there are two states and two

outcomes in period t, and there are two states in period t+ 1. Note that the agent’s

hypothetical continuation value doesn’t depend on the current state.9 The payment

in period t depends on the outcome, but not the actual state in period t. Once we

factor out the effects of the state on probabilities in period t, the state in period t no

longer affects the continuation value from period t+1 on. The continuation value from

period t+ 1 on only depends on the continuation strategies and probabilities of each

history from that point on; the continuation strategies depend on the history, not the

state in period t, and once we consider hypothetical continuation values conditional

on the state in period t + 1, the current state no longer matters. Therefore, if the

outcome is y and the state in period t + 1 is ωi, then the agent’s continuation value

is Vyωi
regardless of the current state, and we can express the agent’s continuation

value as follows:

− c(a) + π1(pg(u(w(H)) + δ(r(a)VHω1 + (1− r(a))VHω2))

+(1− pg)(u(w(L)) + δ(r(a)VLω1 + (1− r(a))VLω2)))

9The last point depends on the Markovian assumption of the binary model. The general model
allows all of the history to affect the state transition.
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+π2(pb(u(w(H)) + δ(aVHω1 + (1− a)VHω2)) + (1− pb)(u(w(L)) + δ(aVLω1 + (1− a)VLω2)))

where w(y) is the payment for outcome y in period t.

This idea generalizes to more than two outcomes.

Proposition 1. Suppose in period t, the agent accepts the contract and chooses a ∈
[0, 1). Let Vyωi

be the hypothetical continuation value of the agent from period t+1 on

if (i) an outcome y is realized in period t, (ii) the state in period t+ 1 is ωi, (iii) the

agent’s continuation strategy coincides with what the principal expects him to do, i.e.,

σt+k,A′(ht,A, dt, a
′, yt, wt, h

k) = σt+k,A(ĥt,A, dt, at, yt, wt, h
k) for all k, hk and (iv) the

principal follows his equilibrium strategy. Given the agent’s belief π in the beginning

of period t, the agent’s continuation value from period t on is given by

−c(a)+π1

∫
u(w(y))+δ(r(a)Vyω1+(1−r(a))Vyω2)dF1+π2

∫
u(w(y))+δ(aVyω1+(1−a)Vyω2)dF2.

Hypothetical continuation values conditional on history up to period t− 1 are

V1 = −c(a) +

∫
u(w(y)) + δ(r(a)Vyω1 + (1− r(a))Vyω2)dF1,

V2 = −c(a) +

∫
u(w(y)) + δ(aVyω1 + (1− a)Vyω2)dF2,

in state ω1 and ω2, respectively.

We can also generalize it to the general model in section 2.2. We can represent the

agent’s continuation value at any point and theorem 3 is one example. Essentially, for

each agent i given his private history ht,i,·, there is one hypothetical continuation value

corresponding to every compilation of private history h̄t that is consistent with ht,i,·.

And the multiplicity of representation comes from the timing we take the expectation

over all compilations of private histories consistent with ht,i,·. If there is only one

agent as we saw in the binary model, the agent’s expectation is over the payoff-

relevant state. If there is more than one agent, each agent also takes an expectation

over other agents’ private signals and actions. Since it’s already notationally heavy, I

express the continuation value only in terms of agents’ action choices. When agents

send messages and the mechanism recommends actions, we need to take expectations

over reports and action recommendations as well, but conceptually, we just need to

integrate all hypothetical continuation values.
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Theorem 3 (General model). Let V : H̄t+1,i,a(ht+1,i,a) → R be the hypothetical con-

tinuation value of agent i if from the following period on, all agents take actions

expected by the mechanism designer and the mechanism designer plays the equilib-

rium strategy. The agent’s continuation value from period t on is given by

∫
H̄(ht,i,a)

∫
Πj 6=iAj

t

−cit(ãit) +

∫
Yt

(
uit(z

i
t(h

t,P,z)) + δiA

∫
Ωt+1×St+1

V (h̄(ht,i,a), ãit, a
−i
t , yt, zt, ωt+1, st+1)

gt+1(st+1)dst+1Pt(ωt+1)dωt+1

)
ft(yt)dytdµ(a−it |h̄(ht,i,a))dµ(ht,i,a).

Corollary 1 (Markovian environment with no private signal). Suppose the outcome

distribution and the state transition are Markovian and S it = ∅ for all t, i. Let V :

Ht+1 × Ωt+1 → R be the hypothetical continuation value of agent i conditional on (i)

the public history and the state in period t+1 and (ii) from period t+1 on, all agents

take actions expected by the mechanism designer and the mechanism designer plays

the equilibrium strategy. If the agent i’s prior in the beginning of period t is π, the

agent’s continuation value from period t on is given by

∫
Ωt

−cit(ãit) +

∫
Yt

(
uit(z

i
t(h

t,P,z)) + δiA

∫
Ωt+1

V (ht, yt, zt, ωt+1)Pt(ωt+1)dωt+1

)
ft(yt)dytdπ.

Theorem 3 allows for mixed strategies, but I assume agents play pure strate-

gies, and for each compilation of history, µ(a−it |h̄t,i(ht,i)) is a degenerate distribution.

Corollary 1 shows that the expression simplifies greatly if the environment is Marko-

vian and agents have no private signals. Since we already know from theorem 1

that there is no benefit from eliciting beliefs when agents have no private signal, the

mechanism designer doesn’t need to ask for reports. The only type of undetectable

deviations are action choices, and the expression in corollary 1 is without loss of

generality. Since the outcome distribution and the state transition are Markovian, if

agent i deviates to ãit, it affects both ft and Pt. However, from period t+ 1 onwards,

the agent’s action in period t doesn’t matter for hypothetical continuation values.

The decomposition uses more than one hypothetical continuation values to ex-

press the agent’s continuation value, but its advantage is that we can express the

agent’s deviation payoffs using the same hypothetical continuation values. Consider

proposition 1 for the binary model. Because both the agent’s prior and the agent’s
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action enter the continuation value of the agent as weights on hypothetical contin-

uation values, we just need to change the weights to express deviation payoffs, and

there’s no longer any need for additional value functions. If the agent has a different

prior π̃, the agent’s continuation value from period t on would be

−c(a)+π̃1

∫
u(w(y))+δ(r(a)Vyω1+(1−r(a))Vyω2)dF1+π̃2

∫
u(w(y))+δ(aVyω1+(1−a)Vyω2)dF2.

If the agent deviates to a′ 6= a in period t, the agent’s deviation payoff would be

−c(a′)+π1

∫
u(w(y))+δ(r(a′)Vyω1+(1−r(a′))Vyω2)dF1+π2

∫
u(w(y))+δ(a′Vyω1+(1−a′)Vyω2)dF2.

Now we’re ready to discuss the IC constraints.

4.2 Dynamic IC

This section presents the necessary and sufficient condition for all IC constraints that

requires only the knowledge of agents’ equilibrium strategies. I continue describing

the result with the binary model in section 2.1.

First consider the on-path single deviation defined in definition 1. The agent

hasn’t deviated in the first t− 1 periods. He deviates in period t but conforms to the

principal’s expectation from period t+ 1 on. This is different from the usual one-step

deviation in repeated games; the agent’s strategy might dictate that after a deviation,

the continuation strategy of the agent is different from what the principal expects him

to do. If the agent conforms to the principal’s expectation from the following period

on, this could mean that the agent deviates from his private strategy infinitely many

times. But in any case, if the agent does an on-path single deviation, the agent’s IC

constraint looks like the following:

− c(a) + π1

∫
u(w(y)) + δ(r(a)Vyω1 + (1− r(a))Vyω2)dF1

+ π2

∫
u(w(y)) + δ(aVyω1 + (1− a)Vyω2)dF2

≥− c(a′) + π1

∫
u(w(y)) + δ(r(a′)Vyω1 + (1− r(a′))Vyω2)dF1

+ π2

∫
u(w(y)) + δ(a′Vyω1 + (1− a′)Vyω2)dF2. (1)
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Remember the agent follows a strategy σt+k,A′(ht,A, dt, a
′, yt, wt, h

k) = σt+k,A(ĥt,A, dt, at, yt, wt, h
k)

for all k, hk. I’ve used proposition 1 to express the agent’s continuation values on and

off the equilibrium path. Since we consider a deviation where the agent conforms

to the principal’s expectation from t + 1 on, we can express the agent’s payoffs in a

tractable way. For now, we only know that this is a necessary condition. Because the

agent is allowed to follow this strategy, this type of IC constraint has to be satisfied

after every history on the equilibrium path.

If we look at the IC constraint more closely, one can see that this equalizes the

marginal cost and the marginal benefit. (1) is equivalent to

δ(π1(r(a)−r(a′))
∫
Vyω1−Vyω2dF1 +π2(a−a′)

∫
Vyω1−Vyω2dF2) ≥ c(a)− c(a′). (2)

Since the agent can deviate to any a′ ∈ [0, 1), we need to consider both the cases

a′ > a and a′ < a. If (2) is satisfied for all a′, then

δ(π1r
′(a)

∫
Vyω1 − Vyω2dF1 + π2

∫
Vyω1 − Vyω2dF2) = c′(a) (3)

must hold for a 6= 0. Let
∫
Vyω1 − Vyω2dFi = Wi. In (3), Vyω1 − Vyω2 is the marginal

benefit of going to ω1 rather than ω2 in t + 1. Therefore, W1 is the expected benefit

of going to ω1 when the outcome in t hasn’t been realized yet and they’re in ω1 in t.

W2 is the analogue for ω2 in t. When the agent deviates to a′ 6= a, the cost of effort

is different, but it also changes the transition probabilities into the next period. The

left-hand side of (3) is the marginal benefit of increasing a, and the right-hand side is

the marginal cost of effort. If the agent conforms to the principal’s expectation from

t+ 1 on, the IC constraint for on-path single deviation equalizes the marginal benefit

and the marginal cost.

Proposition 2. Suppose the agent’s prior in the beginning of period t is π. Any

incentive-compatible contract must satisfy the on-path single deviation IC after every

history on the equilibrium path:

δ(π1r
′(a)W1 + π2W2) = c′(a), ∀a 6= 0,

δ(π1r
′(0)W1 + π2W2) ≤ c′(0).

Now consider the following deviation. The agent hasn’t deviated in the first t− 1
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periods. He then deviates two periods in a row, in t and t + 1, and conforms to the

principal’s expectation from t+ 2 on. In t, the agent deviates to a′ 6= a, and in t+ 1,

the agent deviates to a′(y) 6= a(y) where I used the short-hand notation that after

the first deviation in period t, the only new information is the outcome y, and the

agent is allowed to condition his second deviation on the realization of y. Consider

expanding figure 2 one more period allowing for the continuum of outcomes.

π1

ω1 yf1(y)

ω1
r(a)

z
f1(z)

ω1 : Vyzω1

r(a(y))

ω2 : Vyzω21− r(a(y))

ω2
1− r(a)

z
f2(z)

ω1 : Vyzω1a(y)

ω2 : Vyzω21− a(y)

π2

ω2 yf2(y)

ω1
a

z
f1(z)

ω1 : Vyzω1r(a(y))

ω2 : Vyzω21− r(a(y))

ω2
1− a

z
f2(z)

ω1 : Vyzω1a(y)

ω2 : Vyzω21− a(y)

Figure 3: Decomposition for two periods

With a slight abuse of notation, let Vyzωi
be the agent’s hypothetical continuation

value if outcomes in period t and t+ 1 are y and z, respectively, and the state in t+ 2

is ωi. Let Wyi =
∫
Vyzω1 − Vyzω2dFi(z). If we expand the continuation value of the

agent from Proposition 1 for one more period, this is what we get:

− c(a) + π1

∫ (
u(w(y)) + δ

(
r(a)(−c(a(y)) +

∫
u(w(z)) + δ(r(a(y))Vyzω1 + (1− r(a(y)))Vyzω2)dF1)

+ (1− r(a))(−c(a(y)) +

∫
u(w(z)) + δ(a(y)Vyzω1 + (1− a(y))Vyzω2)dF2)

))
dF1

+ π2

∫ (
u(w(y)) + δ

(
a(−c(a(y)) +

∫
u(w(z)) + δ(r(a(y))Vyzω1 + (1− r(a(y)))Vyzω2)dF1)
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+ (1− a)(−c(a(y)) +

∫
u(w(z)) + δ(a(y)Vyzω1 + (1− a(y))Vyzω2)dF2)

))
dF2.

If the agent deviates two periods in a row, the IC constraint looks like

− c(a) + π1

∫ (
u(w(y)) + δ

(
r(a)(−c(a(y)) +

∫
u(w(z)) + δ(r(a(y))Vyzω1 + (1− r(a(y)))Vyzω2)dF1)

+ (1− r(a))(−c(a(y)) +

∫
u(w(z)) + δ(a(y)Vyzω1 + (1− a(y))Vyzω2)dF2)

))
dF1

+ π2

∫ (
u(w(y)) + δ

(
a(−c(a(y)) +

∫
u(w(z)) + δ(r(a(y))Vyzω1 + (1− r(a(y)))Vyzω2)dF1)

+ (1− a)(−c(a(y)) +

∫
u(w(z)) + δ(a(y)Vyzω1 + (1− a(y))Vyzω2)dF2))

))
dF2

≥− c(a′) + π1

∫ (
u(w(y)) + δ

(
r(a′)(−c(a′(y)) +

∫
u(w(z)) + δ(r(a′(y))Vyzω1 + (1− r(a′(y)))Vyzω2)dF1)

+ (1− r(a′))(−c(a′(y)) +

∫
u(w(z)) + δ(a′(y)Vyzω1 + (1− a′(y))Vyzω2)dF2)

))
dF1

+ π2

∫ (
u(w(y)) + δ

(
a′(−c(a′(y)) +

∫
u(w(z)) + δ(r(a′(y))Vyzω1 + (1− r(a′(y)))Vyzω2)dF1)

+ (1− a′)(−c(a′(y)) +

∫
u(w(z)) + δ(a′(y)Vyzω1 + (1− a′(y))Vyzω2)dF2))

))
dF2.

(4)

(4) looks complicated, but it can be simplified in the following way.

δ(π1(r(a)− r(a′))W1 + π2(a− a′)W2)

+ δ2

∫
(r(a(y))− r(a′(y)))Wy1(π1r(a

′)dF1 + π2a
′dF2)

+ δ2

∫
(a(y)− a′(y))Wy2(π1(1− r(a′))dF1 + π2(1− a′)dF2)

≥c(a)− c(a′) + δ

∫
c(a(y))− c(a′(y))(π1dF1 + π2dF2). (5)

(5) tells us that the first deviation changes the marginal benefit of the second

deviation. When (3) is satisfied, the agent’s deviation in period t alone is not prof-
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itable. However it changes the marginal benefit of the period-(t+1) deviation through

π1r(a
′)dF1 +π2a

′dF2 and π1(1− r(a′))dF1 +π2(1− a′)dF2, and it might become prof-

itable to deviate in t+ 1.

Looking at (5) more closely, one can see that W1 is the marginal benefit of in-

creasing the probability of being in ω1 in the following period, conditional on being

in ω1 this period. W2 is the marginal benefit of increasing the probability of being

in ω1 in the following period if they’re in ω2 this period. Wy1 is the marginal benefit

of increasing the probability of being in ω1 in t + 2, conditional on the history up

to t and being in ω1 in t + 1. When the agent deviates to a′(y) 6= a(y), it changes

the probability of being in ω1 in t + 2, and (r(a(y)) − r(a′(y)))Wy1 is the benefit of

deviating to a′(y) if they’re in ω1 in t+1. Furthermore, if the agent deviated to a′ 6= a

in period t, π1r(a
′)dF1 +π2a

′dF2 is the probability of having y in period t and being in

ω1 in t+1. Therefore, from period-t perspective, the benefit of period-(t+1) deviation

conditional on being in ω1 in t+1 is δ2
∫

(r(a(y))−r(a′(y)))Wy1(π1r(a
′)dF1+π2a

′dF2),

which depends on both the period-t deviation and the period-(t+ 1) deviation. Sim-

ilarly, Wy2 is the marginal benefit of increasing the probability of being in ω1 in t+ 2,

conditional on the history up to t and being in ω2 in t + 1. From period-t perspec-

tive, the benefit of period-(t + 1) deviation conditional on being in ω2 in t + 1 is

δ2
∫

(a(y)− a′(y))Wy2(π1(1− r(a′))dF1 + π2(1− a′)dF2).

If the agent only deviates in t+ 1, it wouldn’t be profitable, but because of period

t deviation, now it might become profitable. Even if (3) for all histories are satisfied,

it doesn’t automatically imply

δ

∫
(r(a(y))− r(a′(y)))Wy1(π1r(a

′)dF1 + π2a
′dF2)

+ δ

∫
(a(y)− a′(y))Wy2(π1(1− r(a′))dF1 + π2(1− a′)dF2)

≥
∫
c(a(y))− c(a′(y))(π1dF1 + π2dF2)

if the agent deviates to a′ 6= a in period t. This is why these dynamic IC constraints

are also necessary, and if these are not satisfied, (3) alone is not sufficient.

(5) generalizes to any N -period deviation:

t+N−1∑
n=t

δn−t
∫ (

δ
(
π̃n1 (r(an(ĥn,A))− r(a′n(hn,A)))W1(ĥn+1,A)
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+ π̃n2 (an(ĥn,A)− a′n(hn,A))W2(ĥn+1,A)
)
−
(
c(an(ĥn,A))− c(a′n(hn,A))

))
dGn(hn,A) ≥ 0.

where π̃n is the agent’s belief given his private history in the beginning of period n and

Gn is the CDF of the agent’s private history hn,A. hn,A is the agent’s private history

at the beginning of period n, and ĥn,A is what the principal believes is the agent’s

private history. an is the agent’s equilibrium strategy, and a′n is the deviation strategy.

We also know that the N -period IC constraint is sufficient for the (N − 1)-period IC

constraint, and if we take the limit as N →∞, then we get

∞∑
n=t

δn−t
∫ (

δ
(
π̃n1 (r(an(ĥn,A))− r(a′n(hn,A)))W1(ĥn+1,A)

+ π̃n2 (an(ĥn,A)− a′n(hn,A))W2(ĥn+1,A)
)
−
(
c(an(ĥn,A))− c(a′n(hn,A))

))
dGn(hn,A) ≥ 0.

which I call the dynamic IC. The dynamic IC also turns out to be sufficient for all

IC constraints in the binary model from section 2.1. In general, the dynamic IC is

sufficient if there is limited commitment or continuity at infinity is satisfied.

Proposition 3. Suppose the agent’s prior in the beginning of period n given his

private history is π̃n. A contract is incentive compatible if and only if it satisfies the

dynamic IC constraint after every history on the equilibrium path:

∞∑
n=t

δn−t
∫ (

δ
(
π̃n1 (r(an(ĥn,A))− r(a′n(hn,A)))W1(ĥn+1,A)

+ π̃n2 (an(ĥn,A)− a′n(hn,A))W2(ĥn+1,A)
)
−
(
c(an(ĥn,A))− c(a′n(hn,A))

))
dGn(hn,A) ≥ 0.

Since the agent is always allowed to deviate to the strategies described above,

we already know that the dynamic IC constraint is necessary. The main idea of the

proof for sufficiency is somewhat related to the proof of one-shot deviation principle.

Suppose there is a profitable deviation σ′ for the agent that satisfies the dynamic

IC constraint. Suppose σ′ gives an ε-higher payoff to the agent than his equilibrium

strategy. In a perfect Bayesian equilibrium, we have continuity at infinity, and there

exist N sufficiently large and another deviation strategy σ′′ such that the agent’s
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payoff from σ′′ is at least ε/2 higher than his equilibrium payoff and

σ′′(ht,A, hk,A) =σ′(ht,A, hk,A) for k = 0, · · · , N − 1,

σ′′(ht,A, hk,A) =σ(ĥt,A, ĥk,A) for k ≥ N.

In σ′′, the agent deviates for N periods as in σ′, but after N periods, the agent

conforms to the principal’s expectation for the rest of the infinite horizon. However,

this contradicts the dynamic IC, and there does not exist a deviation strategy σ′ that

gives at least ε > 0 more to the agent than his equilibrium payoff.

In the general model, the dynamic IC is given by the following theorem. As in

theorem 3, I focus on action choices. Allowing for reports and action recommendations

require expanding the integral twice more within each period.

Theorem 4 (General model). Let V : ∪tH̄t+1,i,a(ht+1,i,a) → R be the hypothetical

continuation value of agent i if from the following period on, all agents take actions

expected by the mechanism designer and the mechanism designer plays the equilibrium

strategy. The dynamic IC after ht,i,a is given by

∞∑
n=t

δn−t
∫
H̄(ht,i,a,hk,i)

(∫
Πj 6=iAj

t+k

−(cit+k(a
i
t+k)− cit+k(ai′t+k))

+

∫
Yt+k

(
uit+k(z

i
t+k(h

t+k,P )) + δiA

∫
Ωt+k+1×St+k+1

V (h̄(ht+k,i,a), at+k, yt+k, zt+k, ωt+k+1, st+k+1)

gt+k+1(st+k+1)dst+k+1Pt+k(ωt+k+1|ait+k)dωt+k+1

)
ft+k(yt+k|ait+k)dyt+k

−
∫
Yt+k

(
uit+k(z

i
t+k(h

t+k,P )) + δiA

∫
Ωt+k+1×St+k+1

V (h̄(ht+k,i,a), (ai′t+k, a
−i
t+k), yt+k, zt+k, ωt+k+1, st+k+1)

gt+k+1(st+k+1)dst+k+1Pt+k(ωt+k+1|ai′t+k)dωt+k+1

)
ft+k(yt+k|ai′t+k)dyt+k

dµ(a−it+k|h̄(ht,i,a, hk,i))

)
dµ(h

t,i,a, hk,i) ≥ 0

where ait+k is the equilibrium action, and ai′t+k is agent i’s deviation strategy.

The dynamic IC after each history on the equilibrium path is necessary. It is

sufficient if there is limited commitment or continuity at infinity.
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Corollary 2 (Markovian environment with no private signal). Suppose the outcome

distribution and the state transition are Markovian and S it = ∅ for all t, i. Let V :

∪t(Ht+1 × Ωt+1) → R be the hypothetical continuation value of agent i conditional

on (i) the public history and the state in period t + 1 and (ii) from period t + 1

on, all agents take actions expected by the mechanism and the mechanism plays the

equilibrium strategy. The dynamic IC in period t is given by

∞∑
n=t

δn−t
∫ (∫

Ωn

−(cin(ain)− cin(ãin)) +

∫
Yn

uin(zin(hn,P,z))(fn(yn|ain)− fn(yn|ãin))dyn

+ δiA

(∫
Yn

∫
Ωn+1

V (hn, yn, zn, ωn+1)Pn(ωn+1|ain)dωn+1fn(yn|ain)dyn

−
∫
Yn

∫
Ωn+1

V (hn, yn, zn, ωn+1)Pn(ωn+1|ãin)dωn+1fn(yn|ãin)dyn

)
dπ̃in

)
dGn(hn,i,a) ≥ 0

where Gn is the distribution of agent i’s private history in period n, π̃in is his private

belief in period n, ain is the equilibrium action and ãin is the deviation in period n.

4.3 Sufficient Conditions for On-path Single Deviation IC

The advantage of decomposition in section 4.1 and the dynamic IC in section 4.2 is

that we have an explicit expression for agents’ continuation values both on and off

the equilibrium path, and the dynamic IC only requires the knowledge of the agents’

equilibrium strategies. However, in general one still needs to consider all possible

deviations to verify the dynamic IC. I will show in this section when on-path single

deviation IC is sufficient for all IC constraints. When it is sufficient, we only need to

verify that the agent doesn’t want to deviate from the equilibrium strategy in a single

period and conform to the principal’s expectation thereafter, and we don’t even need

to worry about the private continuation strategies of agents after a deviation.

The rest of section 4 discusses results with the general model in section 2. I will

first state the results then explain the intuition. When the mechanism elicits private

information, on-path single deviation is defined as deviating once in (report, action)

but reporting truthfully and obeying recommendations by the mechanism from the

following period on.

Corollary 3 provides an alternative proof for direct mechanism in Garret-Pavan

(2012), but apart from their paper, theorem 5 hasn’t been shown in the literature
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even as special cases. Theorem 6 can be verified ex post to be satisfied in many

papers on strategic experimentation, career concerns or dynamic moral hazard with

ex-ante symmetric uncertainty, and it identifies the underlying economic intuition

across those models.

Theorem 5 (Sufficient Condition 1). Suppose (i) each agent observes the state every

period, (sit = ωt) (ii) the domain of the outcome distribution ft is Πt−1
j=1(Ωj×Yj×Zj)×

Ωt ×At, and (iii) the domain of the state transition Pt is Πt
j=1(Ωj × Yj × Zj)×At.

On-path single deviation ICs are sufficient for all IC constraints.

Corollary 3 (Markovian environment). Suppose (i) each agent observes the state

every period, (sit = ωt) (ii) the domain of the outcome distribution ft is Ωt × At,
and (iii) the domain of the state transition Pt is Ωt × At × Yt × Zt. On-path single

deviation ICs are sufficient for all IC constraints.

Theorem 6 (Sufficient Condition 2). Suppose (i) the outcome distribution and the

state transition are Markovian, (allowing for fully persistent states) (ii) S it = ∅ for

all t, i, (iii) each agent can only deviate downwards, (iv) the posterior of each agent

dominates the equilibrium belief in the sense of first-order stochastic dominance after

a deviation and (v)

∫
Yt

(
uit(z

i
t(h

t,P,z)) + δiA

∫
Ωt+1

V (ht, yt, zt, ωt+1)Pt(ωt+1)dωt+1

)
ft(yt)dyt

is supermodular in ωt and ãit. On-path single deviation ICs are sufficient for all ICs.

Corollary 3 shows that if the outcome distribution and the state transition are

Markovian and agents observe the state every period, on-path single deviation ICs

are sufficient. In this environment, the optimal continuation strategy of each agent

only depends on the current state and the continuation strategy of the mechanism

designer and other agents; in particular, past deviations don’t matter for the max-

imum continuation value the agent can generate with any strategy. Therefore, the

maximum deviation payoff the agent can get from this period onward coincides with

the maximum deviation payoff from on-path single deviations, and on-path single

deviation ICs are sufficient for all IC constraints.

Theorem 5 allows non-Markovian environments as long as each agent observes the

state every period and past actions don’t affect neither the outcome distribution nor
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the state transition. This still allows past states, outcomes and allocations to affect

future outcome distribution and state transition, and the mechanism designer can

endogenously affect the environment; it is further discussed in section 6. Theorem

5 also naturally extends to pure moral hazard models where (i) there is no state

or (ii) the principal and agents observe the state each period. In pure adverse selec-

tion, Pavan-Segal-Toikka (2014) refer to this as strongly truthful strategies in Markov

environments.

Generically, if past actions affect the continuation game, through beliefs, the out-

come distribution or the state transition, on-path single deviation ICs are not suffi-

cient. In particular, if agents don’t know the state, on-path single deviation ICs are

generally not sufficient even if the outcome distribution and the state transition is

Markovian. This is because of learning. When the agent doesn’t perfectly observe the

state, the agent learns about the state from an outcome each period, and the agent’s

deviation has lasting effects through his belief on the state until there is a perfectly

informative signal.

The second sufficient condition (theorem 6) shows when we still have sufficiency of

on-path single deviation ICs when past actions affect the continuation game. When

agents’ hypothetical continuation values satisfy increasing differences and an agent’s

belief satisfies first-order stochastic dominance after a deviation, the agent’s contin-

uation value from conforming to the principal’s expectation thereafter is minimized

on the equilibrium path. If the agent has deviated in the past, his continuation value

from conforming to the principal’s expectation is weakly greater than what his equi-

librium payoff would have been given the public history. Further deviations are taken

care of by increasing differences. Theorem 6 is a condition on hypothetical continua-

tion values which are endogenous, but it can be verified ex post after solving for the

optimal mechanism subject to on-path single deviation ICs.

4.4 Dynamic Programming

When the on-path single deviation IC is sufficient, the standard dynamic program-

ming can allow for adverse selection or ex-ante symmetric uncertainty together with

moral hazard. However, when the dynamic IC is necessary, i.e., one must account

for multi-period deviations, the standard dynamic programming no longer works. In

order to characterize the optimal mechanism only with the dynamic IC, one needs
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to make sure that the dynamic IC is also sufficient. This happens when there is lim-

ited commitment or continuity at infinity. I will describe the intuition for dynamic

programming when the dynamic IC is necessary and sufficient in this section. The

formal derivation is in the online supplementary material, and I will focus on the

single agent case in a Markovian environment.

Essentially, one can use transfinite induction to account for multi-period devia-

tions, and readers should feel free to jump to section 5 which discusses the application.

Dynamic programming requires technical assumptions, but they can be dispensed

with whenever the environment is finite.

The standard dynamic programming starts with the candidate set of payoffs (typ-

ically the set of all individually rational payoffs) and apply a contraction mapping

until it reaches the fixed point. Existing literature has focused on cases when on-path

single deviation ICs are sufficient, and when they are sufficient, the contraction map-

ping corresponds to the on-path single deviation given the public history up to that

point.

With the dynamic IC and multi-period deviations, it is no longer sufficient to

apply one contraction mapping until it reaches the fixed point. There is a sequence

of operators, which are monotone but not necessarily contraction mappings, and the

dynamic programming requires transfinite induction on this sequence of operators.

However, since each operator leads to a monotone sequence of set of payoffs, one can

still start with the candidate set of payoffs and apply each operator until it reaches the

fixed point. The difference from the standard dynamic programming is that once it

reaches the fixed point with the N -th operator TN , it goes on to apply the (N + 1)-th

operator TN+1 until it reaches the next fixed point. Figure 4 shows how the transfinite

induction works, where WN,0 is the initial set for TN and WN,k = (TN)k(WN,0).

The state variable for dynamic programming is (π, V (·, ·), V P ) which takes into

account the belief on the state, hypothetical continuation values for the agent and

the supremeum of principal’s payoffs, all on the equilibrium path. With one agent,

the dynamic IC only requires hypothetical continuation values on the equilibrium

path, and there is only one dynamic IC after every history on the equilibrium path;

it is sufficient to take the variables on the equilibrium path. Multi-period deviations

are taken care of within each dynamic IC, and we don’t need to worry about belief

disagreement off the equilibrium path for the state variable.

In the first stage, the candidate set of payoffs is W 0 = {(π, V (·, ·), V P )||V (y, ω)| ≤
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W 0 = W 1,0

W 1,1

W 1,2

W 1,∞

T1

W 1,∞ = W 2,0

W 2,1

W 2,2

W 2,∞

T2

W 2,∞ = W 3,0

W 3,1

T3

W̄

Figure 4: Trans-finite Induction

V̄ } for some V̄ . All that matters at this point is that there is a uniform upper bound

on hypothetical continuation values of the agent, since otherwise, no matter how many

times one applies monotone mappings to the initial set, it might never converge to a

set with finite measure. With limited commitment or continuity at infinity, the agent’s

expected utility on the equilibrium path is uniformly bounded. But we still need to

show that hypothetical continuation values are bounded; hypothetical continuation

values integrate up to a finite expected utility, but in principle, they can still diverge

or even be infinite on a set of measure zero. The proof follows from the fact that the

hypothetical continuation value is continuous in ω and a, and any continuous function

on a compact set is uniformly bounded.

Let T1 be the operator with the on-path single deviation IC. One can find all

points in W that can be generated by W , and this corresponds to the usual mapping

in the standard dynamic programming except that it is weakly decreasing and not

strictly a contraction mapping. Since T1(W ) ⊆ W , (T1)j(W 0) = W 1,j converges to a

set-theoretic limit. We can define TN to be the mapping with the N -period IC and

use the fact that the dynamic IC is equivalent to satisfying the N -period IC for every

N . Each TN is non-increasing, and the limit of a monotone sequence is well-defined.

For each TN , N -period deviations are taken care of as follows. First, given πt, we

know πt+1 when the agent takes action a and outcome y is realized. By induction,

we can choose Vt+2(y, ω) for each πt+1 such that from period t+ 1 on, (N − 1)-period

deviation ICs are satisfied. Next, choose wt+1(y) such that Vt+1(y, ω) generated by

wt+1(y), Vt+2(y, ω) satisfy IR and the promise-keeping constraint. We know the

equilibrium beliefs, actions for the next N periods, and we need to verify the N -

period deviation IC.
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N -period deviation IC is satisfied by backward induction. Let Ṽt+k+1 be the

agent’s maximum deviation payoff from any deviation between period t + k + 1 and

t+N−1; the agent conforms to the principal’s expectation from period t+N onwards.

In period t + N − 1, given the agent’s private belief π̃t+N−1 and his hypothetical

continuation values Vt+N(y, ω), the agent has the optimal action. In period t + k,

given the agent’s private belief π̃t+k and the maximum deviation payoff from t+k+1

on, Ṽt+k+1, the agent has the optimal action. We can continue doing the backward

induction, and in period t, we have π̃t = πt and the equilibrium payoff has to be

weakly better than the most profitable deviation payoff. The rest of the argument

follows from the agent’s deviation payoff being a continuous function of his private

belief and action; the set of beliefs and the set of actions are compact sets.

Since I take care of all private beliefs the agent might have in period t+ k when I

verify the N -period deviation IC, there is no need to keep track of the agent’s private

belief as the state variable.

5 Discrete-Time Principal-Agent Version of Board-

Meyer-ter-Vehn (2013)

This section discusses the discrete-time principal-agent version of Board-Meyer-ter-

Vehn (2013). It is a special case of the binary model from section 2.1 except allowing

for a ∈ [0, 1] and illustrates how revelation principle and the first sufficient condition

for on-path single deviation ICs can be applied. I characterize properties of optimal

contracts and efficient equilibria.

I will first discretize Board-Meyer-ter-Vehn (2013) then map it into the principal-

agent version. In the discrete-time version of Board-Meyer-ter-Vehn, the firm sells

one unit of good at price of expected quality each period. The quality (state) is

θt ∈ {L,H}, where L = 0, H = 1, and the firm makes investment at ∈ [0, 1]

at constant marginal cost c > 0. Initially, the firm’s quality θ0 is exogenous, and

thereafter, θt = θs where s ≤ t is the most recent shock. The shock arrives with

probability λ > 0, and when it arrives, the firm’s quality changes with Pr(θs = H) =

as. Consumers don’t observe neither the quality θt nor investment at, and they get

a public signal with probability µθ each period. The firm knows its own quality and

is risk-neutral. They characterize Markov Perfect Equilibria of the game. Since their
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model is in continuous time, I discretize it in each period in the order of (i) the firm

makes investment, (ii) the quality may change, (iii) there may be a public signal, (iv)

consumers buy at the given price.

In the principal-agent version, consumers are the principal, and the firm is the

agent. Since the firm is risk-neutral, it maps into having a risk-neutral agent, and I

assume limited liability to rule out the residual claimant argument. The cost function

is c(a) = ca, and from Pr(θs = H) = as, the state transition is given by

P =

(
λat + 1− λ λ(1− at)

λat 1− λat

)

where Pij is the probability of transition from quality i to quality j, and the first

column and the first row correspond to the high quality. The transition matrix follows

from the fact that if the firm is high quality, with probability 1−λ, the quality doesn’t

change and the firm remains high quality. When the quality changes with probability

λ, the firm remains high quality with probability a. If the firm is low quality, it

becomes high quality if and only if the shock arrives, which happens with probability

λ, and when it does arrive, the probability of becoming a high-quality firm is a.

Since consumers don’t observe the firm’s quality in Board-Meyer-ter-Vehn, I as-

sume that the principal gets payoff s if there is a public signal and ∅ if there is no

public signal. I normalize values of s, ∅ so that the expected per-period payoff is 1

if the firm is high quality and 0 if the firm is low quality, i.e., µHs + (1 − µH)∅ =

1, µLs+ (1− µL)∅ = 0. The principal can condition his payment on all of the public

history up to that point.

The first observation is that the optimal investment doesn’t depend on the current

quality. This is because of the state transition. If the shock doesn’t arrive, the firm’s

investment is irrelevant to its payoff, and when it arrives, the probability of becoming

a high-quality firm is λa for both qualities. In this case, whether the firm knows its

own quality or not doesn’t matter for strategies, and in particular, this maps into

theorem 2 where not eliciting the agent’s belief is without loss of generality. The

principal doesn’t benefit from asking the firm to report its quality.

Second of all, the discrete-time principal-agent version of Board-Meyer-ter-Vehn

is a Markovian environment with both adverse selection and moral hazard. From

corollary 3, on-path single deviation ICs are sufficient for all IC constraints.
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The on-path single deviation IC with high quality is given by

− cat + (λat + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− at)(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + (λa′ + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− a′)(µLV (s, L) + (1− µL)V (∅, L)),

for all a′ and with low quality, it’s given by

− cat + λat(µHV (s,H) + (1− µH)V (∅, H)) + (1− λat)(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + λa′(µHV (s,H) + (1− µH)V (∅, H)) + (1− λa′)(µLV (s, L) + (1− µL)V (∅, L)), ∀a′.

I dropped the public history up to the beginning of the period in the notation and

expressed hypothetical continuation values only in terms of current period signal and

and the quality. One can see that the on-path single deviation IC is identical for both

the high quality and the low quality:

− cat + λat(µHV (s,H) + (1− µH)V (∅, H))− λat(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + λa′(µHV (s,H) + (1− µH)V (∅, H))− λa′(µLV (s, L) + (1− µL)V (∅, L)), ∀a′.

The third observation is that the on-path single deviation IC is linear in the firm’s

investment at: for all a′,

(at−a′)(−c+λ((µHV (s,H)+(1−µH)V (∅, H))−(µLV (s, L)+(1−µL)V (∅, L)))) ≥ 0.

In particular, let VH , VL be the firm’s payoff conditional on the current quality. We

get

VH = −cat + (λat + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− at)(µLV (s, L) + (1− µL)V (∅, L)),

VL = −cat + λat(µHV (s,H) + (1− µH)V (∅, H)) + (1− λat)(µLV (s, L) + (1− µL)V (∅, L)).

It follows that

VH − VL = (1− λ)(µHV (s,H) + (1− µH)V (∅, H)− µLV (s, L)− (1− µL)V (∅, L)),
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and we get

at = 1 if VH − VL >
1− λ
λ

c,

at = 0 if VH − VL <
1− λ
λ

c.

Unless the coefficient on at − a′ is 0, i.e., VH − VL = 1−λ
λ
c, linearity implies that the

firm chooses the extreme points at = 0 or at = 1. But one can easily see that if the

coefficient is 0 and the firm chooses an interior at ∈ (0, 1), the principal can offer

ε more to signal s and let the firm choose at = 1. The bang-bang result requires

linearity of the cost function c(a) and the state transition r(a). Generically, the firm

chooses an interior solution if either of c(a), r(a) is non-linear.

Results so far don’t depend on details of the model including the signal structure,

equilibrium definition, or whether it’s a competitive market or principal-agent setting

except for the optimality argument in the bang-bang result. The bang-bang result

shows that any Markov Perfect Equilibrium has to be characterized by cutoffs in the

belief space, and the MPE with perfect learning in Board-Meyer-ter-Vehn are still

equilibria in the discrete-time version.

In the principal-agent version, one can also characterize the first best. The first

best is a = 1 every period for all beliefs if

c ≤ λ

1− δ(1− λ)
.

The proof follows from adapting decomposition of continuation values for one-person

decision problem, and essentially, since the continuation game doesn’t depend on the

history nor the current quality, exerting the maximum effort every period is optimal

if the cost of effort is not too high.

The last result is backloading; if we don’t impose Markov strategies, from risk

neutrality and limited liability, an optimal contract (principal-agent) or an efficient

equilibrium (competitive market) backloads payments until it can implement the first

best (a = 1) every period. One can also solve for the minimum rent to implement

the first best every period and characterize the evolution of hypothetical continuation

values.

Theorem 7. Consider the discrete-time version of Board-Meyer-ter-Vehn (2013).
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For any signal structure and in any equilibrium (both in competitive market or principal-

agent setting) the optimal investment is independent of the firm’s quality, and there’s

no benefit from eliciting the firm’s quality. On-path single deviation ICs are sufficient

for all ICs. In an optimal contract, the firm always chooses either 0, 1 and never

chooses an interior a ∈ (0, 1). The first best is a = 1 every period if

c ≤ λ

1− δ(1− λ)
.

With full commitment, an optimal contract also backloads payments until the firm can

be incentivized to take the first-best action every period with any signal structure.

Compared to Board-Meyer-ter-Vehn (2013), theorem 7 shows that equilibrium

definition matters for the dynamics of an optimal contract. Reputation dynamics in

Board-Meyer-ter-Vehn is not optimal if consumers (the principal) and the firm can

use fully history-contingent strategies. Markov strategy is crucial for their result. The

first three points hold for risk-averse firm as well.

It also shows that an optimal contract or an efficient equilibrium shares simi-

larities with models with exogenous states or without adverse selection. Linearity

is a stronger driving force than endogeneity of state transition for backloading and

dominates the difference between exogenous states and endogenous states.

Theorem 7 also shows that in this class of models, allowing for a continuum of

actions leads to the same equilibrium behavior as having binary actions.

6 Discussion

As mentioned earlier, the class of models I can allow for has four key assumptions: (i)

there is a payoff-relevant state, (ii) the principal has no private signal on the payoff-

relevant state, (iii) agents may have private signals, and (iv) each agent’s action

is unobservable to the principal and other agents. Within each period, there is a

payoff-relevant state, private signal, action, outcome and allocation. I can allow both

the outcome distribution and the state transition to be endogenous and depend on

everything that has happened up to that point, including cumulative actions.

Main results on IC constraints are that what has been referred to has one-shot

deviation in the contracting literature is stronger than the one-shot deviation in re-

peated games literature, and it is not always sufficient for all IC constraints. I provide
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two sufficient conditions for when it is sufficient, but when it isn’t, the principal must

account for multi-period deviations which is captured by the dynamic IC.

Most existing papers on this class of models satisfy the second sufficient condition,

and Garrett-Pavan (2012) is the only one that satisfies the first sufficient condition.

The sufficiency of on-path single deviation IC has been proved for individual cases

in these papers, and by providing sufficient conditions for bigger class of models, I

identify the underlying economic force for the sufficiency of on-path single deviation

IC.

The first sufficient condition essentially requires that the optimal continuation

strategy doesn’t depend on agents’ private information. This happens when each

agent observes the state perfectly, which breaks the intertemporal linkage through

agents’ private beliefs on the payoff-relevant state, and the outcome distribution and

the state transition only depend on the current period action profile. This allows the

outcome distribution and the state transition to depend on anything that is publicly

observable, i.e., all past outcomes and allocations. From each agent’s perspective,

the environment is effectively Markovian because their past actions don’t matter for

the continuation game, but the principal can endogenously control the environment

through allocation. The second sufficient condition requires increasing differences of

each agent’s hypothetical continuation value and first-order stochastic dominance of

each agent’s belief on the payoff-relevant state.

Proofs for both theorems 5 and 6 are not mathematically involved. Once we

decompose each agent’s continuation value as a linear combination of hypothetical

continuation values, proofs follow immediately. However, the decomposition of con-

tinuation value is one of the main innovations of this paper that led to the characteri-

zation of all results. In particular, if one represents the agent’s continuation value as a

function of his private belief, then any change (from deviation) to the agent’s private

belief requires all his private beliefs in future periods to be updated differently. This

continues until there is a perfectly informative signal on the state which resets all

beliefs of the principal and agents to common prior. If one were to follow this route,

particularly if there is no perfectly informative signal, one needs to keep track of the

change in beliefs through Bayesian updating which is nonlinear and depends on the

signal and outcome distributions in each period. Normal distribution makes it easier

to track changes in beliefs, which I believe is part of the reason why most papers on

this class of models either have binary environment or linear-Gaussian environment.
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In my decomposition, I express the agent’s continuation value as a linear com-

bination of hypothetical continuation values, and this breaks the linkage through

the agent’s private belief. In a Markovian environment, a hypothetical continuation

value is conditional on the payoff-relevant state in the following period and continu-

ation strategies of the principal and agents from the following period onwards. If the

environment is not Markovian, it is conditional on the compilation of private histo-

ries. However, once each agent’s continuation value is decomposed into hypothetical

continuation values, then the agent’s private belief is the weight on hypothetical con-

tinuation values in the current period, and current period only. The agent’s private

belief doesn’t affect hypothetical continuation values, and there is no need to keep

track of how beliefs get updated.

However, in the usual way of defining continuation value as a function of private

belief, the belief matters for the continuation value in two ways. The belief matters

for the probability of each history, but it also affects the agent’s continuation strategy.

The argument in the previous paragraph shows how hypothetical continuation value

circumvents the linkage through the probability of events, but it also takes care of

the second source as well. When I define hypothetical continuation values, it is

conditional on the continuation strategies of the principal and agents. Once we fix

the continuation strategies, then beliefs don’t matter for strategies, and any change

in private belief of the agent only matters as weights on the linear combination.

This definition of hypothetical continuation value requires one to fix the contin-

uation strategies of the principal and agents. However, what has been referred to as

one-shot deviation in the contracting literature does precisely this; it assumes that

the agent will follow the continuation strategy the principal is expecting given the

principal’s history. In addition, the biggest challenge in this class of models is the

private strategy. Agents might receive private information each period, but even

in the ex-ante symmetric uncertainty case where there is no private signal, there is

asymmetric information off the equilibrium path because the payoff-relevant state is

unobservable to the principal and agents. The lack of papers on this class of models in

a more general setting is linked to the lack of papers on private monitoring repeated

games with a fixed discount factor bounded away from one. Most papers on private

monitoring repeated games either study folk theorem or belief-free equilibrium.

In order to account for private strategies with the one-shot deviation principle

as in repeated games, one needs to know the agent’s continuation strategy after
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a deviation. Without characterizing all possible private strategies after deviations,

the one-shot deviation principle doesn’t help very much. Hypothetical continuation

values require fixing continuation strategies of the principal and agents, but if we

fix the continuation strategies to be the equilibrium strategies, then one can express

each agent’s continuation value only using the equilibrium strategies, and one must

characterize equilibrium strategies anyway.

Results on IC constraints apply to stochastic games with a payoff-relevant state as

well. Suppose there is a payoff-relevant state unobservable to all players, and players

may receive private signals. Players may communicate before taking actions, and after

players take actions, which are unobservable to other players, an outcome is realized

and observed by all players. Each player’s payoff can depend on all past payoff-

relevant states and private histories of all players. Results on revelation principle

from section 3 require a mediator. But IC constraints apply immediately to this class

of models.

When on-path single deviation ICs are not sufficient, one needs to take care of

profitable multi-period deviations, and this requires the dynamic IC. The dynamic

IC takes an infinite sum, but still each expression only requires equilibrium strategies

of the principal and agents. Essentially, each expression in the infinite sum captures

the benefit of one more deviation given private history up to that point; after the last

deviation, the agent follows the strategy the principal expects him to follow given the

principal’s private history. When on-path single deviation ICs are sufficient, the net

benefit of additional deviations are weakly negative. After the initial deviation, any

further deviation gives a weakly lower benefit than the net benefit on the equilibrium

path conditional on the public history up to that point. Therefore, even though the

dynamic IC still has to be satisfied in principle, it is sufficient to verify the on-path

single deviation ICs, and the on-path single deviation ICs imply the dynamic IC which

in turn implies all IC constraints. On-path single deviation ICs are not sufficient if

there can be profitable multi-period deviations. Even if all on-path single deviation

ICs are satisfied, they don’t necessarily imply that the dynamic ICs are satisfied,

and even if each agent never benefits from a single-period deviation, there can be

profitable multi-period deviations.

In this class of models, once an agent deviates, it affects the outcome distribution,

and therefore the allocation this period. It can also affect the state transition this

period, and even if the state is exogenous, the agent knows his own deviation and
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updates his private belief accordingly, while the principal and all other agents update

their posterior beliefs using the wrong outcome distribution induced by the agent’s

equilibrium strategy. I allow the outcome distribution and the state transition in

subsequent periods to depend on this period’s deviation, but the intuition can be

seen in a Markovian environment. In the dynamic IC, each expression captures the

benefit of one additional deviation, but this benefit depends on the agent’s private

belief given his own private strategy. When the on-path single deviation IC given

the public history is satisfied, the net benefit given the agent’s private belief on

the equilibrium path is satisfied. The agent has a different private belief after a

deviation, and therefore, the net benefit from the additional deviation is different and

can be positive. However, since each expression is also integrated with respect to the

probability of each private history, the integrand of the dynamic IC ends up being the

weighted sum of hypothetical continuation values with respect to the probability of

private histories. At the end of the day, the net benefit from one more deviation comes

from different outcome distribution and state transition through different probabilities

of private histories.

I study full implication of the dynamic IC in another project, but the closest

reference to the dynamic IC in the literature is the impulse response function in Pavan-

Segal-Toikka (2014). Compared to their impulse response function, the dynamic IC

of my model is not strictly an orthogonalization, because the axes I project the

continuation value on are not orthogonal to each other. However, one can rewrite

the dynamic IC as a series of projections, where each projection corresponds to one

additional deviation. This requires rewriting the infinite sum in the form of x1 +

(x2 + (x3 + · · · and requires separating out the probability of each private history by

individual periods.

7 Conclusion

I study mechanism design with moral hazard in this paper. I show that revelation

principle extends to models with moral hazard, both with full commitment and limited

commitment, and not eliciting agents’ beliefs is without loss of generality if there is

symmetric information on the equilibrium path or the agent’s optimal strategy doesn’t

depend on the payoff-relevant state. One-shot deviation principle as in the repeated

games literature holds in this environment, but it requires the knowledge of agents’
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private strategies after every history; I show a necessary and sufficient condition

(dynamic IC) that requires only the knowledge of agents’ equilibrium strategies. The

dynamic IC however still has to be satisfied against every possible deviation and has

to take into account multi-period deviations. I then show two sufficient conditions

for on-path single deviation ICs to be sufficient for all ICs. I also provide dynamic

programming for the dynamic IC.

The class of models I study allows for any degree of commitment power, risk

aversion, persistence and any objective function by the principal. Decomposition of

continuation value, the tool I used to derive the IC constraints and develop dynamic

programming, can also be adapted to decision problems and competitive-market set-

tings. I allow for non-Markovian environments, endogenous states, and agents may

or may not have private information on the payoff-relevant state.

The scope of the tools I develop in this paper is much wider than the application

in section 5; the application (the principal-agent version of Board-Meyer-ter-Vehn)

is an example of how the revelation principle and the sufficiency of on-path single

deviation ICs can be applied. It also shows how decomposition of continuation values

can be adapted to decision problems, and I show the bang-bang result of the agent’s

action and the backloading of payments. The bang-bang result also shows why in

linear models, having binary actions is without loss and allowing for an interval only

leads to the extreme actions on the equilibrium path. Together with backloading, it

shows that linearity is a stronger driving force than endogeneity of state transition.
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Supplementary Material

A Dynamic Programming with Dynamic IC

This section presents a formal derivation of dynamic programming in section 4.4.

When the dynamic IC is necessary, one needs to do transfinite induction to find

the set of payoffs that can be obtained by any incentive-compatible mechanism. I

consider a Markovian environment with endogenous state and a single agent. If the

agent perfectly observes the state each period, then we know from theorem 5 that

on-path single deviation IC constraints are sufficient for all IC constraints. I consider

the ex-ante symmetric information case in this section, i.e., both the principal and

the agent start with a common prior in the beginning of the game, and there is no

private signal on the payoff-relevant state.

A.1 Setup

Existence of optimal mechanism requires some technical assumptions as described

below. However, they are automatically satisfied whenever the environment is finite.

ω ∈ Ω: set of states (non-empty compact Borel subset of a Polish (complete, separa-

ble, metric) space)

p ∈ A: set of actions (non-empty compact Borel subset of a Polish space)

y ∈ Y : set of outcomes (non-empty compact Borel subset of a Polish space)

Pωω′(p): probability of going from state ω to ω′ when the agent chooses p. (proba-

blility measure on ω′ given ω, p) Assume P is jointly continuous in ω, ω′, p.

c(p) ∈ R: cost of action p. Assume it’s continuous in p.

fω(y): pdf of outcome y in state ω. (measurable, non-negative and
∫
Y
fω(y)dy = 1

for all ω ∈ Ω) Assume fω(y) is a continuous function of ω, y and
∫
Y
yfω(y)dy < M for

some M, all ω ∈ Ω. Also assume full support, atomless, positive density everywhere.

π(ω): belief on state ω.

Assume f, P are such that if we start with a uniformly bounded π, then resulting

beliefs in all subsequent periods are also uniformly bounded. Or more precisely, sup

norm is well-defined for resulting beliefs. If there are a finitely many states, it is

automatically satisfied.
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A.2 Quick Summary of Dynamic IC

After outcome y is observed, the belief is updated from π(·) to

π0(ω) =
π(ω)fω(y)∫

Ω
π(ω′)fω′(y)dω′

,

and in the following period, the belief is

π̃(ω̂) =

∫
Ω

π(ω)fω(y)Pωω̂(p)∫
Ω
π(ω′)fω′(y)dω′

dω.

For π0 to be well defined, I need fω(y) to be measurable in ω. For π̃ to be well

defined, I need P given ω̂, p to be measurable in ω.

Since P is jointly continuous in ω, p and Ω is compact, for given ω̂ and δ > 0,

there exists ε(ω̂, δ) > 0 such that |Pωω̂(p′) − Pωω̂(p)| < δ for all |p′ − p| < ε(ω̂, δ).

Since P is also continuous in ω̂, we can find ε(ω̂, δ) continuous in ω̂, and together

with the compactness of Ω, we get ε(δ) > 0 such that |̃πp′(ω̂) − π̃p(ω̂)| < δ for all

ω̂, |p′ − p| < ε(δ), and π̃ is a continuous function of p. π̃ is a continuous function of

π0. (P is jointly continuous on a compact set) When Ω, Y are compact and fω(y)

is continuous in ω, y, π0 is a continuous function of π. Up to here, I used pointwise

convergence and sup norm.

The hypothetical continuation value of the agent is∫
Ω

∫
Y

−c(p) + u(w(y)) + δ

∫
Ω

V (y, ω̂)Pωω̂(p)dω̂fω(y)dyπ(ω)dω.

I need to make sure u(w(y)) is measurable in y and V (y, ω) is measurable in y, ω.

But it seems reasonable to assume that the principal can offer w(y) as a measurable

function of y, and by our definition of V (y, ω), it should be measurable in both

y, ω. The limited liability from section 2.2 is sufficient if w(y) ≥ −M for some M

sufficiently large.

The on-path single deviation IC is equivalent to∫
Ω

∫
Y
−c(p) + u(w(y)) + δ

∫
Ω
V (y, ω̂)Pωω̂(p)dω̂fω(y)dyπ(ω)dω

≥
∫

Ω

∫
Y
−c(p′) + u(w(y)) + δ

∫
Ω
V (y, ω̂)Pωω̂(p′)dω̂fω(y)dyπ(ω)dω

⇔
∫

Ω

∫
Y
c(p′)− c(p) + δ

∫
Ω
V (y, ω̂)(Pωω̂(p)− Pωω̂(p′))dω̂fω(y)dyπ(ω)dω ≥ 0

If we assume Pωω̂(p) is differentiable in p, we can take the left and right limits
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(after dividing by p′ − p) and get the equality constraint.

The dynamic IC is given by

∞∑
n=t

δn−t
∫ ∫

Ω

∫
Y

c(p′n(h̃n))−c(pn(ĥn))+δ

∫
Ω

Vyω̂(Pωω̂(pn(ĥn))−Pωω̂(p′n(h̃n)))dω̂fω(y)dyπ̃n(ω)dωdG ≥ 0

where G is the cdf of reaching each history given the agent’s true private history.

A.3 Dynamic programming

Hypothetical continuation values V (y, ω) can be thought of as a bounded function

V : Y × Ω → R. It is bounded because the principal has no commitment power

and the expected outcome in each state is uniformly bounded. If the principal has

full-commitment power, I need to show that the expected utility is bounded. (this is

necessary both for the agent’s optimal action to be well-defined and also for continuity

at infinity)

Lemma 1. Hypothetical continuation values on the equilibrium path are uniformly

bounded.

Proof. We know that the equilibrium payoffs are uniformly bounded, but a priori,

we cannot rule out having unbounded hypothetical continuation values on a set

of measure zero; I restrict attention to equivalent classes that coincide on a set

of measure one. I’ll show that V (yt−1, ωt) is a continuous function of ωt and pt.

Given V (yt−1, ωt), we have w(yt), Vt+1(yt, ωt+1) such that V (yt−1, ωt) =
∫
Y
−c(pt) +

u(w(yt))+δ
∫

Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1fωt(yt)dyt. I’ll first show that

∫
Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1

is continuous in ωt, pt. Define g(ω, p) =
∫

Ω
V (y, ω′)Pωω′(p)dω′ and consider a sequence

ωn → ω. Since P is jointly continuous, V (y, ω′)Pωnω′(p)→ V (y, ω′)Pωω′(p) almost ev-

erywhere. Together with the compactness of Ω, the joint continuity of P implies that

for given ω, there exists a neighborhood Nω such that Pωnω′(p) ≤ κPωω′(p) for some

κ > 0 and all ω′, p and ωn ∈ Nω. We already know that V (y, ω′)Pωω′(p) is integrable,

and limited liability implies that hypothetical continuation values are bounded from

below. Then there exists a neighborhood N ′ω ⊆ Nω such that |V (y, ω′)| is also inte-

grable on N ′ω. By the dominated convergence theorem, g(ωn, p)→ g(ω, p). The proof

for continuity in pt is similar. The proof of continuity of V (yt−1, ωt) in ωt, pt is similar,

and we use the fact that −c(pt) +u(w(yt)) + δ
∫

Ω
V (yt, ωt+1)Pωtωt+1(pt)dωt+1fωt(yt) is
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bounded from below. Therefore, the hypothetical continuation value is a continuous

function on a compact set and is bounded.

I’ll use the fact that the dynamic IC is equivalent to satisfying any N -period IC

for all N .

Theorem 8. The dynamic programming is well-defined, i.e., there exists a sequence

of set operations such that the set-theoretic limit is the largest self-generating set.

The agent’s optimal actions for any N-period IC in the largest self-generating set is

well-defined. The supremum of the principal’s payoff is well-defined.

Proof. I will set up the dynamic programming problem and show that at each iter-

ation, the most profitable deviation for the agent is well-defined. The sequence of

sets we get after each iteration is non-increasing and has a well-defined limit in the

set-theoretic sense. The largest self-generating set is non-empty because the agent

choosing the cheapest action and the principal making no payment is an equilibrium.

With the compact action set and the continuous cost function, the cheapest action ex-

ists. With no commitment, the relevant constraints for the dynamic programming are

(i) the principal offers the equilibrium contract (ii) the agent accepts/rejects accord-

ing to the equilibrium strategy (iii) the agent’s dynamic IC (iv) the principal makes

the payment (v) the promise-keeping constraint. With within-period commitment,

the relevant constraints for the dynamic programming are (i) the principal offers the

equilibrium contract (ii) the agent accepts/rejects according to the equilibrium strat-

egy (iii) the agent’s dynamic IC (iv) the promise-keeping constraint. Whether the

principal has no commitment power or within-period commitment power matters for

the minmax NE. I’m not going to specify the minmax NE here, but if either the

principal or the agent prefers his outside option over the minmax NE, then they’ll

take their outside options. This pins down the lower bound on payoffs for the IR

constraints. For the rest of the proof, I assume within-period commitment power and

ignore the principal’s incentives to make payments he promised; with no commitment

power, this will put an upper bound on the payment the principal can make (the

continuation payoff minus the minmax NE or the outside option). Computationally,

I can just impose the outside options and see the minmax NE from the largest self-

generating set. If the minmax NE is better than the outside option for both the

principal and the agent, then I need to use the minmax NE instead of the outside
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options. I could also just assume that the minmax NE we get by imposing IR with

outside options is worse than taking their outside options.

I will construct a sequence of operations so that the limit is the largest self-

generating set we want. I don’t think I need the agent’s optimal action to be unique,

but I still need the agent to play a pure strategy. The state space for the dynamic

programming is (π, V (·, ·), V P ) where V P is the principal’s expected payoff. The

argument I’m going to use for N -period ICs works as long as there is continuity at

infinity. If there is continuity at infinity, there must be a profitable N -period deviation

for N sufficiently large, and we can do backward induction.

I need to specify the sequence of operations: I start with the on-path single

deviation IC, and for each N, I iterate the operation for the N -period deviation IC

until I reach the limit. Once I have the limit for N -period deviations, I continue with

(N+1)-period deviations. And I take the limit as N →∞. Let’s start with W 0where

V (·, ·) are just assumed to be bounded by the uniform bound on the hypothetical

continuation values. The iteration for the N -period deviation IC is TN , and the limit

of TN starting with WN−1 is WN . Also define TN(WN,i−1) = WN,i, WN,0 = WN−1.

T1 is just the standard largest self-generating set with the on-path single deviation IC

constraint. Among the constraints, (i) and (ii) just mean that the payoffs are weakly

greater than the outside options (or minmax NE). (iv) can be taken care of as follows:

Suppose we have Vt+2. When we choose wt+1(y) for each y, we can pin down Vt+1 that

is consistent with the promise-keeping constraint. First find the largest self-generating

set subject to (ii), (iv) and the on-path single deviation IC (without worrying about

the principal’s payoff). Once we have W 1, we know V P for each pair of (π, V (·, ·))
and can keep only those that satisfy (i). If there are multiple V P s corresponding to

(π, V (·, ·)) then choose the supremum of V P (following the principle of optimality).

At this point, we haven’t shown that whether the supremum can be obtained as the

maximum. But we also know that once we have V P we can generate any V̂ P < V P as

long as it’s weakly greater than the principal’s outside option. For T1, we can show

that the agent’s optimal action is well-defined because the agent’s expected utility

is bounded and is a continuous function of his action. Generally speaking, to show

that the most profitable N -period deviation is well-defined, I need to show a version

of selection theorem, and I need Ω to be a Borel subset of a Polish space, A to be a

compact metric space and the agent’s expected utility from an N -period deviation to

be bounded and upper semi-continuous.
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TN for N ≥ 2 are defined as follows: Fix πt and an action p, and we can find the

beliefs πt+1 that are consistent with πt, p. Choose Vt+2(y, ω) fromWN,i and wt+1(y) for

each πt+1 such that Vt+1, V
P
t+1 given by the promise-keeping constraint also satisfies

(i), (ii) and the on-path single deviation IC constraint for period t is satisfied at

p. By construction, there are no profitable (N − 1)-period deviations starting with

Vt+2(y, ω), and we can find optimal actions for the next N −1 periods and Vt+N(y, ω)

from period t + N on. We should have the payments after each history from period

t+ 1 to period t+N − 1. We also know the equilibrium belief after each history. Fix
˜πt+N−1 for each history and we can find the most profitable deviation for the agent

in t+N − 1 and therefore assign the agent’s maximum deviation payoff from period

t + N − 1 on as a function of ˜πt+N−1 given the continuation game from t + N − 1

on the equilibrium path. Fix ˜πt+N−2 then conditional on the agent’s action p′t+N−2

we know the agent’s beliefs ˜πt+N−1and his maximum deviation payoff. We can find

the most profitable deviation for the agent in period t+N − 2 and assign the agent’s

deviation payoff from t + N − 2 on as a function of ˜πt+N−2 and the continuation

game from t + N − 2 on the equilibrium path. We can repeat this until we reach

π̃t. To show that the most profitable deviation is well-defined, suppose we are in

period t+n with π ˜t+n, pt+n, wt+n(·), Ṽt+n+1(·, ·) where Ṽt+n+1 is the agent’s maximum

deviation payoff from period t+ n+ 1 on. (in period t+N − 1, these will just be the

hypothetical continuation values from period t + N on) In period t + n, the agent’s

expected utility from period t + n on is a continuous function of π ˜t+n, pt+n and we

know that it is finite for ˜πt+n = πt+n and the equilibrium action pt+n. The proof

follows the proof of lemma 1 closely, and we know from limited liability that Ṽt+n+1

is bounded from below. Since there is no profitable (N − 1)-period deviation, if the

agent starts with πt+n and chooses pt+n, his maximum deviation payoffs from the next

period on coincides with his equilibrium payoffs; it follows that the agent’s expected

utility from period t+ n on is bounded. Since the set of priors and the set of actions

is compact, we know that the product of the two is compact (Tychonoff’s Theorem).

Therefore, the agent’s deviation payoff from period t+ n on is a continuous function

on a compact set and is bounded. Therefore, for given ˜πt+n, there exists the maximum

deviation payoff for the agent, and the agent has the most profitable deviation. But

in period t, the principal and the agent share the same prior π̃t = πt. Keep Vt+1(y, ω)

for πt if and only if it is incentive compatible with respect to the maximum deviation

payoff. (I use backward induction to find the most profitable N -period deviation for
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the agent, but I also use backward induction to show that the maximum deviation

payoff for the agent is a continuous function of his belief and his action in the given

period. This needs a proof because the agent’s maximum deviation payoff from the

next period on depends on his belief in the next period)

Since each operation TN : WN,i−1 → WN,i satisfies WN,i = T (WN,i−1) ⊆ WN,i−1,

we have a monotone sequence, and the limit is well-defined in the set-theoretic sense.

By construction, it is the largest self-generating set satisfying all four conditions. It

also follows from the previous paragraph that the agent’s optimal actions for any

N -period IC is well-defined. The supremum of the principal’s payoff for any given π

is well-defined.

B Proofs

Proof of Theorem 1. First consider the case when the principal has full commitment.

If the agent i’s strategy σt,i,m involves randomizing over messages, the principal can

ask the agent to report his private information and randomize on behalf of the agent.

We just need to take care of the possibility that the agent conditioned his action on

his report and his private history in the original contract.

Formally, given a contract (×iMi
t, σ

t,P,r, σt,P,z)t, let histories and strategies de-

noted as in section 2. Given a compilation of private histories h̄t, ht,i,m(h̄t), ht,i,a(h̄t), ht,P,r(h̄t), ht,P,z(h̄t)

denote histories consistent with h̄t; for given h̄t, there is a unique private history at

each point consistent with h̄t, and these are well-defined functions.

The principal can offer an alternative contract with M̃i
t = S it each period. Start-

ing from period 1, define H̄t(st) to be the compilation of private histories that

contain st, the messages, recommended actions until period t − 1 and rik = aik
for all k < t, i. It is a subset of H̄t and there is a natural probability distribu-

tion over the payoff-relevant state ωk, k ≤ t on the equilibrium path. Let µ be

the measure on H̄t(st) induced by this probability distribution. With probability∫
H̄t(st)

×iσt,i,m(mi
t|ht,i,m(h̄t)) × σt,P,r(rt|ht,P,r(h̄t))dµ, the mechanism recommends rit

along with the hypothetical message mi
t to agent i. If each agent has been reporting

truthfully and obeying the recommendation by the mechanism, then the randomiza-

tion probabilities this period are the same, and the expected utility of each agent

doesn’t change; truthful reporting is incentive-compatible for each agent this period

as well.
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With limited commitment, the contract is essentially the combination of Bester-

Strausz (2001) and the above argument. When the principal doesn’t commit to the

contract, we need to satisfy the principal’s incentives for recommendation and alloca-

tion. The principal’s incentives for allocation is the same as in the original contract,

and for recommendation, the same argument as in Bester-Strausz (2001) ensures that

the principal’s belief after messages are sent is the same across all messages that are

sent with positive probabilities.

When the principal has full commitment and agent i has no private signal in

period t, the agent’s message space in the new mechanism is an empty set, and it

is without loss of generality not to ask for reports. When the principal has limited

commitment and all agents have no private signal in period t, it is without loss of

generality not to ask for reports.

Proof of Theorem 2. Since the outcome distribution only depends on the state and

the state transition is Markovian, the agent’s action this period only affects the

current-period state transition once we decompose the agent’s continuation value.

From the assumption on the state transition, the optimal action from both the prin-

cipal’s perspective and the agent’s perspective don’t depend on the current state, and

the principal doesn’t benefit from eliciting the agent’s belief.

Proof of Proposition 1. When the agent conforms to the principal’s expection from

period t+1 on, the principal and the agent have correct beliefs about the continuation

game. Suppose the principal follows his equilibrium strategy given ht in period t, we

know the strategies of both parties from period t + 1 on. Furthermore, conditional

on the state in t+ 1, we know the probability of each history. Therefore, there exist

Vyωi
for each pair of (y, ωi) such that the agent’s continuation value from period t+ 1

on conditional on being in ωi in period t + 1 is Vyωi
. In the beginning of period t, if

the agent accepts the contract, he has to choose a ∈ [0, 1). The agent’s action affects

the probability of (y, ωi), and the agent’s expected payoff is

−c(a)+π1

∫
u(w(y))+δ(r(a)Vyω1+(1−r(a))Vyω2)dF1+π2

∫
u(w(y))+δ(aVyω1+(1−a)Vyω2)dF2.

Conditional on the state in t, the agent’s hypothetical continuation values are

V1 = −c(a) +

∫
u(w(y)) + δ(r(a)Vyω1 + (1− r(a))Vyω2)dF1,
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V2 = −c(a) +

∫
u(w(y)) + δ(aVyω1 + (1− a)Vyω2)dF2.

Proof of Theorem 3. A compilation of private histories contains all private informa-

tion up to that point. If all agents and the principal follow the equilibrium strategy

from the following period on, there is a unique hypothetical continuation value for

each agent, and the rest is just taking the expectation over the compilation of private

histories consistent with agent i’s private history up to that point.

Proof of Corollary 1. Theorem 1 shows that it is without loss of generality not to

ask for messages. The proof follows from theorem 3 after taking care of degenerate

distributions.

Proof of Proposition 2. Suppose the agent’s prior at the beginning of period t is π.

The agent’s expected payoff from choosing a is

−c(a)+π1

∫
u(w(y))+δ(r(a)Vyω1+(1−r(a))Vyω2)dF1+π2

∫
u(w(y))+δ(aVyω1+(1−a)Vyω2)dF2.

If the agent deviates to a′ 6= a but conforms to the principal’s expection from period

t+ 1 on, his expected payoff is

−c(a′)+π1

∫
u(w(y))+δ(r(a′)Vyω1+(1−r(a′))Vyω2)dF1+π2

∫
u(w(y))+δ(a′Vyω1+(1−a′)Vyω2)dF2.

Since the agent’s strategy from period t + 1 on coincides with the principal’s expec-

tation from period t+ 1 on, the agent’s continuation value conditional on the state in

t + 1 is the same as on the equilibrium path. The agent’s deviation only affects the

transition probabilities in period t. Therefore, the local IC constraint is

− c(a) + π1

∫
u(w(y)) + δ(r(a)Vyω1 + (1− r(a))Vyω2)dF1

+ π2

∫
u(w(y)) + δ(aVyω1 + (1− a)Vyω2)dF2

≥− c(a′) + π1

∫
u(w(y)) + δ(r(a′)Vyω1 + (1− r(a′))Vyω2)dF1

+ π2

∫
u(w(y)) + δ(a′Vyω1 + (1− a′)Vyω2)dF2
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⇔ δ(π1

∫
(r(a)− r(a′))(Vyω1 − Vyω2)dF1 + π2

∫
(a− a′)(Vyω1 − Vyω2)dF2) ≥ c(a)− c(a′).

Let Wi =
∫
Vyω1 − Vyω2dFi. Since the IC constraint has to hold for all p′, it has to

hold for both the left limit and the right limit as a′ → a, and we have

δ(π1r
′(a)W1 + π2W2) = c′(a), ∀p 6= 0.

When a = 0, we only have the right limit, and we get

δ(π1r
′(0)W1 + π2W2) ≤ c′(0).

Proof of Proposition 3. Suppose the agent’s prior in the beginning of period t is π and

the agent deviates N periods. After N periods, the agent conforms to the principal’s

expectation. Let a(hn) denote the agent’s equilibrium action and a′(hn) denote the

deviation. Conditional on history h̃t, having no detectable deviations and the agent

conforming to the principal’s expectation from period t+N on, one can express the

agent’s expected payoff as a function of his strategy from period t to t + N − 1,

X(ãt, · · · , ãt+N−1). The agent’s IC constraint is

X(at, · · · , at+N−1)−X(a′t, · · · , a′t+N−1) ≥ 0,

which is equivalent to

X(at, · · · , at+N−1)−X(a′t, at+1, · · · , at+N−1)

+X(a′t, at+1, · · · , at+N−1)−X(a′t, a
′
t+1, at+2, · · · , at+N−1)

+ · · ·

+X(a′t, · · · , a′t+N−2, at+N−1)−X(a′t, · · · , a′t+N−1)

≥ 0.

Let π̃n be the agent’s belief in period n given his private history where n ∈
{t, · · · , t + N − 1}. If the agent conforms to the principal’s expectation from period
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n+ 1 on, the net loss from the one more deviation is

X(a′t, · · · , a′n−1, an, · · · , at+N−1)−X(a′t, · · · , a′n, an+1, · · · , at+N−1).

From Proposition 2, we can rewrite the net loss from the one more deviation given

history h̃n as

δ(π̃n1

∫
(r(an(ĥn))− r(a′n(h̃n)))(V1(ĥn+1)− V2(ĥn+1))dF1

+ π̃n2

∫
(an(ĥn)− a′n(h̃n))(V1(ĥn+1)− V2(ĥn+1))dF2)

− (c(an(ĥn))− c(a′n(h̃n)))

where Vi(ĥ
n) is the hypothetical continuation value of the agent conditional on history

ĥn and being in state ωi in period n. Let
∫
V1(ĥn)− V2(ĥn)dFi = Wi(ĥ

n). Note that

there are two histories h̃n and ĥn. I consider a particular deviation strategy such that

after one more deviation, the agent conforms to the principal’s expectation. ĥn is

the agent’s private history the principal believes with probability 1. h̃n is the agent’s

true private history. Furthermore, the agent reaches h̃n with the pdf generated by his

true private history. Therefore, from period−t perspective, the net loss of one more

deviation in period n is

δn−t
∫
δ(π̃n1 (r(an(ĥn))−r(a′n(h̃n)))W1(ĥn+1)+π̃n2 (an(ĥn)−a′n(h̃n))W2(ĥn+1))−(c(an(ĥn))−c(a′n(h̃n)))dG.

The N−period IC constraint is

t+N−1∑
n=t

δn−t
∫
δ(π̃1(r(an(ĥn))− r(a′n(h̃n)))W1(ĥn)

+ π̃2(an(ĥn)− a′n(h̃n))W2(ĥn))− (c(an(ĥn))− c(a′n(h̃n)))dG ≥ 0.

This dynamic IC constraint has to be satisfied for any N . Furthermore, given the

N−period IC, we can always let a′t+N−1 = at+N−1, and the (N − 1)−period IC is

implied by the N−period IC. Therefore, after every history ht on the equilibrium
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path, the following IC constraint must hold:

∞∑
n=t

δn−t
∫
δ(π̃n1 (r(an(ĥn))−r(a′n(h̃n)))W1(ĥn+1)+π̃n2 (an(ĥn)−a′n(h̃n))W2(ĥn+1))−(c(an(ĥn))−c(a′n(h̃n)))dG.

I’ll next show the sufficiency of the dynamic IC. Since the dynamic IC constraint

implies the IC constraint for any N−period deviations, it is sufficient to show that

the agent cannot improve his payoff without violating one of these IC constraints.

Suppose the agent didn’t deviate in the first t periods and has a profitable de-

viation strategy σ′ from period t on. Suppose σ′ provides ε more to the agent than

his equilibrium strategy σ. By continuity at infinity, there exists N sufficiently large

and another deviation strategy σ′′ such that the agent’s payoff from σ′′ is at least ε
2

higher than his equilibrium payoff and

σ′′(ht,A, hk,A) =σ′(ht,A, hk,A) for k = 0, · · · , N − 1,

σ′′(ht,A, hk,A) =σ(ĥ
t,A, ĥk,A), k ≥ N.

σ′′ coincides with σ′ for the first N periods and coincides with the principal’s expecta-

tion from period t+N on; ĥ is the private history of the agent the principal believes

is the agent’s true private history. It gives the agent ε
2

more than his equilibrium

payoff. But this is a contradiction to the assumption that there exists no profitable

N−period deviation. Therefore, there exists no profitable deviation strategy.

Proof of Theorem 4. Compared to proposition 3, we just need to take expectations

over all compilations of private histories that are consistent with agent i’s private

history. In the binary model from section 2.1, the principal has limited commitment

which provides continuity at infinity, and the dynamic IC is necessary and sufficient

in proposition 3. Otherwise, the dynamic IC is necessary but it is sufficient only if

there is limited commitment or continuity at infinity.

Proof of Corollary 2. The proof follows from theorem 4 after accounting for degener-

ate distributions.

Proof of Theorem 5. Theorem 5 assumes (i) each agent observes the state every pe-

riod, (sit = ωt) (ii) the domain of the outcome distribution ft is Πt
j=1Ωj×At×Πt−1

j=1Yj×
Πt−1
j=1Zj, and (iii) the domain of the state transition Pt is Πt

j=1Ωj × At × Πt
j=1Yj ×

Πt
j=1Zj. Conditions (ii) and (iii) imply that past actions of the agent doesn’t matter
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for the outcome distribution nor the state transition. No matter which action the

agent takes in period t, after observing the state in period t + 1, the agent’s con-

tinuation value only depends on the continuation strategies of the principal and the

agent. In particular, given the public history up to the beginning of period t + 1,

the equilibrium strategy of the agent corresponding to the private history the prin-

cipal believes is the agent’s true private history is an optimal continuation strategy.

Therefore, on-path single deviation ICs are sufficient for all IC constraints.

Proof of Corollary 3. Corollary 3 is a special case of theorem 5 where ft, Pt are

further restricted to be Markovian.

Proof of Theorem 6. Suppose (i) the outcome distribution and the state transition

are Markovian, (allowing for fully persistent states) (ii) S it = ∅ for all t, i, (iii) each

agent can only deviate downwards, (iv) the posterior of each agent dominates the

equilibrium belief in the sense of first-order stochastic dominance after a deviation

and (v)

∫
Yt

(
uit(z

i
t(h

t,P,z)) + δiA

∫
Ωt+1

Vt+1(ht, ãit, a
−i
t , yt, zt, ωt+1)Pt(ωt+1)dωt+1

)
ft(yt)dyt

is supermodular in ωt and ãit.

When agents have no private information on the state, theorem 1 shows that it is

without loss of generality not to ask for messages. The dynamic IC on the equilibrium

path from corollary 2 is

∞∑
n=t

δn−t
∫ (∫

Ωn

−(cin(ain)− cin(ãin))

+

(∫
Yn

uit(z
i
n(hn,P,z)) + δiA

∫
Ωn+1

Vn+1(hn, an, yn, zn, ωn+1)Pn(ωn+1|ain)dωn+1fn(yn|ain)dyn

−
∫
Yn

uit(z
i
n(hn,P,z)) + δiA

∫
Ωn+1

Vn+1(hn, ãin, a
−i
n , yn, zn, ωn+1)Pn(ωn+1|ãin)dωn+1fn(yn|ãin)dyn

)
dπ̃in

)
dGn(hn,i,a) ≥ 0

Conditional on history hn,i,a, if agent i has already deviated in the past, his belief

π̃in dominates the equilibrium belief πin in the sense of first-order stochastic dominance.
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Since∫
Yn

uit(z
i
n(hn,P,z)) + δiA

∫
Ωn+1

Vn+1(hn, an, yn, zn, ωn+1)Pn(ωn+1|ain)dωn+1fn(yn|ain)dyn

is supermodular in ωt and ait and the agent can only deviate downwards, if on-path

single deviation IC holds on the equilibrium path, we have

arg max
ãin

(∫
Ωn

−(cin(ain)− cin(ãin))

+

(∫
Yn

ui(zin(hn,P,z)) + δiA

∫
Ωn+1

Vn+1(hn, an, yn, zn, ωn+1)Pn(ωn+1|ain)dωn+1fn(yn|ain)dyn

−
∫
Yn

ui(zin(hn,P,z)) + δiA

∫
Ωn+1

Vn+1(hn, ãin, a
−i
n , yn, zn, ωn+1)Pn(ωn+1|ãin)dωn+1fn(yn|ãin)dyn

)
dπ̃in

)
= ain.

On-path single deviation ICs are sufficient for all ICs.

Proof of Theorem 7. The first three points in the theorem is already proved in the

main text. I replicate them here for completeness.

The first observation is that the optimal investment doesn’t depend on the current

quality. This is because of the state transition. If the shock doesn’t arrive, the firm’s

investment is irrelevant to its payoff, and when it arrives, the probability of becoming

a high-quality firm is λa for both qualities. In this case, whether the firm knows its

own quality or not doesn’t matter for strategies, and in particular, this maps into

the symmetric uncertainty case in theorem 1 where not eliciting the agent’s belief

is without loss of generality. The principal doesn’t benefit from asking the firm to

report its quality.

Second of all, the discrete-time principal-agent version of Board-Meyer-ter-Vehn

is a Markovian environment with both adverse selection and moral hazard. From

corollary 3, on-path single deviation ICs are sufficient for all IC constraints.

The on-path single deviation IC with high quality is given by

− cat + (λat + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− at)(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + (λa′ + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− a′)(µLV (s, L) + (1− µL)V (∅, L)),
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for all a′ and with low quality, it’s given by

− cat + λat(µHV (s,H) + (1− µH)V (∅, H)) + (1− λat)(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + λa′(µHV (s,H) + (1− µH)V (∅, H)) + (1− λa′)(µLV (s, L) + (1− µL)V (∅, L)), ∀a′.

I dropped the public history up to the beginning of the period in the notation and

expressed hypothetical continuation values only in terms of current period signal and

and the quality. One can see that the on-path single deviation IC is identical for both

the high quality and the low quality:

− cat + λat(µHV (s,H) + (1− µH)V (∅, H))− λat(µLV (s, L) + (1− µL)V (∅, L))

≥ − ca′ + λa′(µHV (s,H) + (1− µH)V (∅, H))− λa′(µLV (s, L) + (1− µL)V (∅, L)), ∀a′.

The third observation is that the on-path single deviation IC is linear in the firm’s

investment at: for all a′,

(at−a′)(−c+λ((µHV (s,H)+(1−µH)V (∅, H))−(µLV (s, L)+(1−µL)V (∅, L)))) ≥ 0.

In particular, let VH , VL be the firm’s payoff conditional on the current quality. We

get

VH = −cat + (λat + 1− λ)(µHV (s,H) + (1− µH)V (∅, H)) + λ(1− at)(µLV (s, L) + (1− µL)V (∅, L)),

VL = −cat + λat(µHV (s,H) + (1− µH)V (∅, H)) + (1− λat)(µLV (s, L) + (1− µL)V (∅, L)).

It follows that

VH − VL = (1− λ)(µHV (s,H) + (1− µH)V (∅, H)− µLV (s, L)− (1− µL)V (∅, L)),

and we get

at = 1 if VH − VL >
1− λ
λ

c,

at = 0 if VH − VL <
1− λ
λ

c.

Unless the coefficient on at − a′ is 0, i.e., VH − VL = 1−λ
λ
c, linearity implies that the

firm chooses the extreme points at = 0 or at = 1. But one can easily see that if the
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coefficient is 0 and the firm chooses an interior at ∈ (0, 1), the principal can offer

ε more to signal s and let the firm choose at = 1. The bang-bang result requires

linearity of the cost function c(a) and the state transition r(a). Generically, the firm

chooses an interior solution if either of c(a), r(a) is non-linear.

Results so far don’t depend on details of the model including the signal struc-

ture, equilibrium definition, or whether it’s a competitive market or principal-agent

setting. The bang-bang result shows that any Markov Perfect Equilibrium has to be

characterized by cutoffs in the belief space, and the MPE with perfect learning in

Board-Meyer-ter-Vehn are still equilibria in the discrete-time version.

In the principal-agent version, one can also characterize the first best as follows.

Let XH , XL be the total surplus from the current period on if the current state is the

high quality or the low quality, respectively. We have

XH = −ca+ (1− λ+ λa)(1 + δ(µHXH(s) + (1− µH)XH(∅)))

+ λ(1− a)δ(µLXL(s) + (1− µL)XL(∅)),

XL = −ca+ λa(1 + δ(µHXH(s) + (1− µH)XH(∅)))

+ (1− λa)δ(µLXL(s) + (1− µL)XL(∅)),

⇒ XH −XL = (1− λ)(1 + δ(µHXH(s) + (1− µH)XH(∅))− δ(µLXL(s) + (1− µL)XL(∅)))

where XH(s), XH(∅), XL(s), XL(∅) are total surplus from the next period on condi-

tional on the state in the next period and the signal in the current period. If a = 1

every period for all beliefs, we have XH = XH(s) = XH(∅), XL = XL(s) = XL(∅).
Plugging them into above equalities, we know that the first best is a = 1 every period

for all beliefs if

c ≤ λ

1− δ(1− λ)
.

Since both the principal and the firm are risk-neutral, the principal can always

delay payments and provide better incentives. We just need to make sure that the

promise-keeping constraint is satisfied, and as long as the contract doesn’t terminate,

after sufficient number of periods, the continuation value of the agent from the de-

layed payment becomes bigger than the continuation value to implement the first-best

action every period. But even when the contract dictates that the agent should be

fired, the principal can provide zero incentives from there on until the continuation

value from the delayed payment becomes sufficiently big at which point the agent can
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be incentivized to take the first-best action every period. Therefore, in an optimal

contract, the payments are backloaded until the agent can be incentivized to take the

first-best action every period. This doesn’t depend on the signal structure.
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