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Abstract 
 
This paper investigates the vulnerability of households to climatic disasters in the low-lying 
atoll nation of Tuvalu. Small Island Developing States, particularly the atoll islands, are 
considered to be the most vulnerable to climatic change, and in particular to sea-level rise and its 
associated risks. We construct poverty and hardship profiles for households on the different 
islands of Tuvalu, and combine these with geographic and topographic information to assess the 
exposure differentials among different groups using spatial econometric models. Besides the 
observation that poor households are more vulnerable to negative shocks because they lack the 
resources to respond, we also find that they are also more likely to reside in highly exposed 
areas to disasters (closer to the coasts and at lower elevation) and have less ability to migrate 
(between and within the islands). 

JEL-Codes: C310, I300, Q540, Q560. 

Keywords: vulnerability, exposure, poverty, hardship, Tuvalu, atoll. 
 
 
 

Tauisi Taupo 
School of Economics & Finance 

Victoria Business School 
Victoria University of Wellington 

Wellington / New Zealand 
tauisi.taupo@vuw.ac.nz 

Harold Cuffe 
School of Economics & Finance 

Victoria Business School 
Victoria University of Wellington 

Wellington / New Zealand 
harold.cuffe@vuw.ac.nz 

 
Ilan Noy* 

School of Economics & Finance 
Victoria Business School 

Victoria University of Wellington 
Wellington / New Zealand 

ilan.noy@vuw.ac. 
  
  

*corresponding author 
 
September, 2016 
Sincere thanks to William Cochrane and John Gibson for their initial suggestions about the 
spatial models, to Christopher Edmonds for support and advice about the Pacific, and to 
audiences at the Pacific Update Conference. 



2 
 

1. Introduction 
The Pacific Island Countries (PICs), particularly low-lying islands, are confronted with a range 
of economic challenges by their smallness, remoteness and limited resources. These 
attributes raise the populations' vulnerability to economic shocks, and have hampered the 
islands' capabilities to match rising global living standards. Unfortunately, for households in 
these small atoll islands, many of the same geographical features that raise vulnerability to 
economic shocks, also contribute to heightened exposure and vulnerability to climatic 
shocks. These countries, in particular, have seen their circumstances change with the rise in 
sea levels, and the increase in damage caused by climatic hazards (in particular for this 
group of countries, cyclones). For the islands' poorest people, these dual economic and 
climatic threats pose an even greater challenge.  

Even though poverty has been well researched globally, less attention has been given to 
Small Island Developing States (SIDS), and specifically to the PICs. This is surprising as the 
low-lying atoll island nations in the Pacific—Tuvalu, Kiribati and the Republic of the Marshall 
Islands—lie at the frontlines of climate change.  The World Bank (2014) acknowledges that, 
“although the aggregate or macroeconomic impacts of negative shocks have been relatively 
well studied, much less is known about the impacts on household well-being, in large part 
because of data limitations.” This paper aims to fill that gap by focusing on hardship and 
vulnerability facing households in the context of low-lying SIDS. 

In this paper, we consider the case of Tuvalu, and in particular, the conditions of the 
population which are likely to relate to rising hardship resulting from climate change. To 
date, there has been no previous empirical country study on hardship and vulnerability in 
Tuvalu, or on any other Atoll country. Since disaster risk is the confluence of the hazard 
itself, exposure to the hazard, and the vulnerability of the exposed population, it is 
paramount to examine the current state of exposure and vulnerability in the affected 
countries, rather than focusing exclusively on the hazard triggers. This is our intent in this 
paper. 

Specifically, we aim to explain how and which households in Tuvalu are particularly 
vulnerable and exposed to climatic shocks. Knowing these factors will assist in devising 
policies that reduce vulnerability and contribute to more effective Disaster Risk 
Management (DRM); a crucial and maybe the most important component of climate change 
adaptation. Using detailed expenditure survey data encompassing one third of the nation's 
population, the study is able to take a micro-perspective of the household, presenting 
empirical evidence of hardship and vulnerability to shocks that complements the 
macroeconomic analysis done elsewhere (e.g., Noy, 2015 and Cabezon et al., 2015). The 
work sheds further light on how households are facing and coping with disasters currently.  

The paper proceeds as follows. The next section discusses the context of Tuvalu, section 3 
provides a short survey of the relevant literature, section 4 discusses the measurement of 
poverty and hardship, section 5 discusses Tuvalu’s exposure to disasters, section 6 outlines 



3 
 

the empirical methodology, section 7 describes the data, section 8 explains the empirical 
results, while conclusions are presented  

2. Background 
The increasing frequency and intensity of disasters in the Pacific is well documented, and 
has contributed to the high (proportional) loss of human, natural, financial, social and 
physical capital in the region  (Noy, 2016, World Bank, 2016). Tuvalu is a small low-lying 
country in the equatorial South Pacific. It has a population of about 11,000 people, scattered 
across nine low-lying atolls in the South Pacific. It is surrounded by an exclusive economic 
zone of 900,000 square kilometers (km2) with a landmass of 25.9 km2 that rarely exceed five 
meters above sea level. Population density is highest in the capital Funafuti, which accounts 
for more than half of the population of Tuvalu. Tuvalu has a dual economy consisting of a 
small cash economy and a subsistence economy focussed on its traditional sectors of fishing 
and small scale agriculture. Government revenue largely comes from issuing fishing licenses 
to foreign fishing vessels, ‘.tv’ internet domain revenues, remittances, and foreign aid 
(directly funding the budget, and through funding distributed to the Tuvalu Trust Fund). 
Families in the capital Funafuti are more dependent on cash income than those living in the 
outer-islands. People migrate from the outer-islands to the capital Funafuti in search of job 
opportunities, better access to health facilities, and better education. Food and non-food 
items are mostly imported except for fish and a limited supply of a very narrow range of 
fruits and vegetables. Most of the people currently residing in the capital are originally from 
the outer-islands, and have limited access to land and property ownership on Funafuti. 
Hence the reason for the high dependency on cash income in the capital.1 

Most development and settlement in atoll islands occurs close to the coast, which is 
vulnerable to storms, floods and sea-level rise (World Bank, 2016). As a low-lying coral atoll, 
every high spring tide (King tide) floods properties  situated in low lying-areas (including 
inner parts of the capital Funafuti) as the water rises through the coral ground, destroying 
household plantations. People typically adapt by raising gardens above the ground and 
cementing around and under crops to prevent intrusion of seawater. However, these 
precautions are not fully adequate, and the combination of high tides and storms continue 
to pose considerable threat to households living at low elevation and near the coastline. 
Adding to the problem is the fact that the sea-level rise at Funafuti is three times above the 
global average between 1950 and 2009 (Becker et al., 2012), and this trend will likely 
worsen over time (Yamano et al., 2007). Appendix C shows the increasing trend of sea levels 
in Tuvalu.  

                                                           
1 According to the 2012 Census, only 17.7% of the people living on Funafuti are local Funafuti people, while the 
rest are without land ownership, and are renting houses from the locals. Based on the 2012 Census, 84.5% of 
rental houses in Tuvalu are on Funafuti. 
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3. Poverty and Hardship 
There is a broad literature on poverty and vulnerability, but very limited focus on SIDS, 
especially low-lying islands like Tuvalu. Jha et al. (2009) measure the extent of vulnerability 
as expected poverty using cross-sectional data from a household survey in Fiji and find that 
vulnerability is largely a rural phenomenon. Similarly, Jha and Dang (2010) use cross-
sectional data from the 1996 Household Survey for Papua New Guinea (PNG) to assess 
household vulnerability to poverty in PNG. These papers on Fiji and PNG do not focus on 
geographical and climatic factors, and the geographical settings, resource base and 
economic characteristics of these volcanic Pacific islands are different from low-lying atoll 
islands such as Tuvalu. 

We focus on poverty and exposure since they are vital indicators of how vulnerable, 
resilient and responsive households are to crises. According to Haughton and Khandker 
(2009), vulnerability is defined as the risk of falling into poverty in the future, even if the 
person is not necessarily poor at present; it is often associated with the effects of “shocks” 
from disasters and economic crises. Dercon (2005) outlines, for Sub-Saharan Africa, the links 
between risk and vulnerability to poverty thus highlighting the vital role played by them in 
determining people’s livelihoods and opportunities to escape poverty.2 

Abject poverty in Tuvalu is rare or non-existent, partly because of the culture and 
community traditions. Help and support are common from families, communities, religious 
groups and friends. Poverty, as a term, is therefore not frequently used in many of the PICs 
that have similar circumstances and cultural practices.3 We compare poverty levels from the 
three household surveys from different years to examine how poverty levels have changed 
over time. We follow Ravallion (1998) and Haughton and Khandker (2009) in defining and 
measuring poverty. Hence, we define poverty incidence as the percentage of households 
who fall below the food consumption level. Hardship is similarly defined for households 
whose expenditures fall below the benchmark food and non-food consumption levels. The 
vulnerability to poverty incidence refers to the percentage of households who are above the 
hardship threshold, but are vulnerable to falling under the as a result of negative shocks 
(measured as 110% of the hardhip level).4 In addition, we also include the non-resilience 
                                                           
2 Recent papers on Asian and African poverty and vulnerability are Dasgupta and Baschieri (2010); Dutta et al. 
(2011); Echevin (2014); a recent comprehensive survey of this literature is Hallegatte et al. (2016). 
3 Abbott and Pollard (2004) emphasise that ‘hardship’ is a more acceptable terminology. The World Bank 
(2014) also argues that “the label of poverty is considered culturally inappropriate because it is viewed as 
implying a failure of traditional, community-based safety nets”. Below we used hardship and poverty 
interchangeably, to mean “living with less than expected to meet both required food consumption and non-
food essentials.” 
4 In practice, this includes all those below a threshold that is 10% higher than the Basic Needs Poverty Line 
(BNPL). The BNPL was calculated based on Ravallion (1998), and in line with Tuvalu Statistics Office’s policy. 
The hardship threshold is the sum of the Food threshold and the Non-Food threshold. The Food component 
was calculated from a basket of essential basic food items that is estimated to be equivalent to the widely 
used nutritional requirement for good health of 2,100 calories per person per day suggested by the Food and 
Agricultural Organisation (FAO) of the United Nations.  The Non-Food threshold is the average Non-Food 
Expenditure by households in the lowest 3 deciles. The Non-Food threshold is calculated differently for rural 
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incidence which refers to the percentage of households who are still vulnerable to negative 
shocks and could potentially fall into poverty. This non-resilience threshold is determined as 
those households living below 10 USD (purchasing power parity) per person per day 
measure that is believed to be necessary to achieve the degree of economic stability and 
resilience to shocks (see World Bank, 2013).5 Therefore, we identify four thresholds: poverty 
(food), hardship (food and non-food), vulnerability (10% above hardship), and non-resilience 
(10 USD). 

Figure 1 shows that the poverty incidence has increased by less than 2% from 2004/5 to 
2010 at all levels of national, urban and rural. Hardship incidence has also increased by 
around 2% from 2004/5 to 2010 for the urban population, but decreased by 2.22% for the 
rural one. The 1994 hardship incidences from Abbott and Pollard (2004) are higher at all 
three levels. Poverty incidence is usually higher in the urban area when compared with the 
rural one.6 Some possible reasons leading to a higher urban poverty incidence are the 
overcrowding in the urban households and high wage unemployment.7 

Figure 1: Incidence of poverty and hardship in Tuvalu 

 
Source: Authors’ calculations, on data from 2004/5 & 2010 Household Income & Expenditure Survey (HIES).  

Except for the non-resilience measure, we do not observe dramatic increases in 
poverty, hardship and vulnerability in the five years separating the two surveys. Worryingly, 
                                                                                                                                                                                     
and urban (Funafuti) areas as the non-food expenditure, especially housing, is quite different between the 
regions. Expenditure is derived as the sum of Food Expenditure and Non-Food Expenditure. 
5 USD refers to United States Dollars while AUD refers to Australian Dollars. 
6 This is also reported by Abott and Polard (2004) but unlike the case for Fiji reported in Jha et al. (2009). 
7 Other possibilities can be traced to the availability of more employment in the rural sector from the island 
council, clinics, island development projects, and small scale businesses (after the collapse of the Tuvalu 
Cooperative Society). Informal work allocation in the outer-islands is also more equally distributed amongst 
families and may not rely educational qualification as much as in the urban area of Funafuti. 
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however, we observe higher incidence of all the lower threshold measures (poverty, 
hardship and vulnerability) in the urban areas relative to rural ones. As the urban population 
is increasing faster than the rural one (mostly because of rural-urban migration), this may 
indicate a trend decrease in well-being. However, the non-resilience incidence is higher in 
the rural areas, and has increased significantly, between 2005 and 2010, exclusively in the 
rural area by 10%, while it decreased in the urban setting. These tabulations demonstrate 
that more severe poverty is found in the urban region, but that the well-being in the rural 
areas is also potentially fragile as households do not have sufficient resources to cushion 
against disaster shocks (such as cyclone Pam that hit many of the outer islands in March 
2015). 

Appendix D displays maps of hardship incidences in the islands for different villages, we 
are able to construct these maps as households have been geo-located in the surveys. It is 
evident that households close to central areas have lower hardship incidences. We also 
observe that in the capital Funafuti, hardship incidence is much higher for those households 
living in the narrow parts of the island to the North and South and further away from the 
central area. Tuvalu’s main atoll Funafuti is just 12.5 km long and no more than 800 meters 
wide.8 

4. Exposure to Natural Disasters 
Many households in low-lying islands are geographically exposed to climatic disasters, and 
in this section we quantify this exposure in Tuvalu. Figure 2 analyzes the vulnerability of 
households to disasters for all the islands.9 The islands were divided into three groups, i.e. 
the Northern Islands (Nanumea, Nanumaga and Niutao), the Central Islands (Nui, 
Nukufetau, Vaitupu and Funafuti) and the Southern Islands (Nukulaelae and Niulakita). In 
terms of vulnerability and exposure to climatic disasters, for each island we measured the 
proximity to hazard locations in reference to households living within 100 meters in land 
width (i.e. narrow parts of the island), households living within 20 meters of the pits10 and 
ponds, households living within 100 meters of the east coast, households living within 100 
meters of the coastline, households living less than 5 meters of elevation, households living 
in non-concrete houses, and households who have less than 16,000 liters of water storage 
capacity.11 

 
Figure 2: Household vulnerability and exposure indicators to disasters by island. 

                                                           
8 Authors’ calculations from digitized maps. 
9 Niulakita, the smallest island, was excluded from the household survey. 
10 Borrow pits (we will refer to it as “pits” onward) were created by digging/borrowing of soil by the American 
military from parts of the island of Fongafale (Funafuti) during World War II in order to construct the airplane 
runway. The 20 meters to the pits is based on the assumption that during kind tides, a house within that range 
will most likely be flooded. 
11 The assumed 16,000 liters water capacity storage threshold used is the median of household water storage 
for all households surveyed in the 2010 HIES, which is assumed to be sufficient if water is used efficiently. 
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Source:  Author’s calculations from 2010 Household Income & Expenditure Survey (HIES) data. 

 

The Northern Islands have higher exposure indices (compared to the Central and 
Southern Islands). The Central Islands have the highest percentage of households residing in 
narrow parts of the islands which are prone to disasters. On the capital Funafuti, 13% of 
households reside in narrow parts of the island which are exposed to storms, while 9.3% of 
households live beside pits and ponds which are prone to flooding during king tides.12 While 
no surveyed households in the Northern and Southern Islands reside fewer than 50 meters 
to the east coastline, it is not uncommon in the Central Islands, particularly Funafuti, with 
17.2% of households living within 50 meteres of the coast. Many of the households in 
Nukulaelae (27.3% of households), Nui (16.2% of households), and Funafuti (12.5%) reside 
at low elevation compared to the other islands.13 Regarding house structures, 44.7% of 
households have concrete houses which are better able to withstand strong winds and 
storm surges. However, regarding vulnerability to droughts, Nanumea and Nui have the 
highest insufficient water storage capacity. Figure 3 displays exposure in terms of elevation 
and proximity to coastlines by income classification (hardship/non-hardship). In general, 
while we observe some differences across the two groups: the non-hardship group is 
                                                           
12 This problem has been mostly solved in 2015 by  the  Tuvalu  Borrow  Pits  Remediation  (BPR) project 
funded under the NZ Aid Programme, where ten borrow pits on Fongafale island were filled with sand except 
for Tafua pond to the north eastern side of the airstrip, which is a natural pond. It is yet to be seen if we will 
observe any future flooding in these filled up pits. 
13 This was obvious since Nui and Nukulaelae were flooded during the 2015 Cyclone Pam.  However, the three 
islands Nanumaga, Niutao and Vaitupu who have higher elevation, did not experience flooding during Cyclone 
Pam, but only storm surge and coastal intrusion of sea waves from the western side. All islands build their 
harbour and houses on the western side of the island away from easterly winds, but a cyclone that strikes from 
the west side will badly hit most islands without lagoons and islets on the west as shields. 
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somewhat more likely to live closer to the coast, but also in higher elevation. However, 
these differences are not consistent across islands and do not represent a statistically 
significant difference across these samples. 

Figure 3:  Household exposure. 
Source:  Authors’ calculations from the 2015 HIES. 

  

  
Source:  Authors’ calculations from the 2015 HIES. 

 

5. Estimation Methods 
Olivia et al. (2009) argued that ignoring spatial dependencies across households, when using 
household survey data to estimate poverty levels, may lead to misleading estimates. Gibson 
and McKenzie (2007) further argue for the importance of using precise geo-location systems 
(e.g., GPS) to determine locations and distances between households. Their work suggests 
that distance from households to numerous geographic features like roads, markets, 
schools, and health clinics might be important in understanding poverty. Olivia et al. (2011) 
also outlined the importance of identifying environmental factors that influence poverty. 
Theoretical links are discussed in World Bank (2007) while Jalan and Ravallion (1998, 2002) 
provide empirical evidence linking the poor to geographical variables. Gibson and Rozelle 
(2002) used a probit estimation to show that poverty in Papua New Guinea (PNG) is 
primarily rural and is associated with communities with poor access to services, markets, 
and transportation. 
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Spatial regression methods permit us to account for spatial effects or spatial 
dependence between observations, where spatial data were geo-coded for location. 
Generally, spatial dependence refers to a situation where values observed at one household 
location, say household i, depend on the values of neighboring households at nearby 
locations. Suppose we let households i and j represent neighbors, then the value taken by yi 

depends on that of yj. The spatial matrix identifies neighbors or spatially close households 
and their effects, and the need to account for the spatial dependence in the regression 
model.14 Spatial models, similar to the one estimated here, have been used in other 
contexts in real estate economics, economic geography, and urban and regional science.  

LeSage and Pace (2009) outline the two main motivations for estimation of spatial 
dependence. First, spillovers stemming from congestion effects may warrant estimation of spatial 
dependence models, as neighbors’ outcomes directly impact one another. Second, spatial models 
may reduce estimation bias stemming from unobserved omitted variables which exhibit spatial 
dependence.15 Following this literature,16 we employed four spatial models (as described in 
the equations below) and also include the standard Ordinary Least Squares (OLS) model for 
comparison.17 The standard OLS model or the non-spatial linear regression model takes the 
form 

Yi = αiιN + Xiβi + εi      (1) 

where Y is the income that denotes an N × 1 vector consisting of one observation on the 
dependent variable for the N units (households) in the sample (i=1, ..., N), ιN is an N × 1 
vector of ones associated with the constant term parameter to be estimated, X denotes an 
N × K matrix of exogenous explanatory variables, β is an associated K × 1 vector with 
unknown parameters to be estimated, and ε = (ε1, ..., εN )T is a vector of disturbance terms, 
where εi is assumed to be independently and identically distributed for all with zero mean 
and variance σ2. 

We employ Maximum Likelihood estimation for the family of spatial regression models 
including Spatial Autoregressive Model (SAR), Spatial Error Model (SEM), Spatial Durbin 
Model (SDM) and Spatial Autocorrelation Model (SAC). The SAR, SEM, SDM and SAC models 
take the specifications described in (2), (3), (4) and (5), respectively, below. 

Yi = αiιN + ρWYi + Xiβi + εi     (2) 

                                                           
14 ArcGIS was used for geo-coding of locations (households, schools, hospitals/clinics, etc), creating a digitized 
map for all islands and islets in Tuvalu. These were then used in STATA for the empirical analysis. 
15 LeSage and Pace (2009) state that “omitted variables may easily arise in spatial modeling because 
unobservable factors such as location amenities, highway accessibility, or neighborhood prestige may exert an 
influence on the dependent variable. It is unlikely that explanatory variables are readily available to capture 
these types of latent influences.” 
16 See Anselin (1988), Elhorst (2014), Gibson and McKenzie (2007), Gibson and Rozelle (2002), Jalan and 
Ravallion (1998 and 2002), LeSage and Pace (2009), and Olivia et al. (2011). 
17 Elhorst (2014) shows the relationship between the different spatial dependence models for cross-section 
data. 
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Yi = αiιN + Xiβi + ui,    where ui = λWu + εi.   (3) 

Yi = αiιN + ρWYi + Xiβi + WXiγ +εi    (4) 

Yi = αiιN + ρW1Yi + Xiβi + ui, where ui = λiW2ui + εi.  (5) 

WY denotes the endogenous interaction effects among the dependent variable, and Wu 
the interaction effects among the disturbance term of the different units. The parameter ρ 
is the so-called spatial autoregressive coefficient, while λ is the spatial autocorrelation 
coefficient. There is no spatial dependence in the vector of cross-sectional observations Y if 
ρ takes the value of zero, thus yielding to the OLS model.   W is a non-negative N × N matrix 
describing the spatial configuration or arrangement of the units in the sample. The spatial 
weight matrices will then be ‘row-standardized’ where the weights need to sum up to one 
on each row, or otherwise equal to zero if there are no neighbors.18 The spatial weight 
matrix is defined as W with elements wij indicating whether observations i and j are spatially 
close, that is, wij = 1/dij for neighbors where dij is the distance between households i and j 
(inverse distance weights) and otherwise wij = 0. Beyond a certain distance, we assume that 
there are no spatial effects.  

We also employ a binary outcome model (a probit) that is estimated with the 
dependent variable as the probability of a household experiencing hardship and an identical 
set of independent variables used in the non-spatial OLS regression. Following Gibson and 
Rozelle (2002) and Jha et al. (2009), the dependent variable in this case is a dummy defined 
as 

Pr(Povi = 1|xi) = F(Xβ)       (6) 

where X is the vector of explanatory variables, β is the set of parameters reflecting the 
impact of changes in on the probability. The F(Xβ) is the cumulative distribution function 
(CDF) of the standard normal distribution. This approach estimates the households’ 
probability of being poor, but includes no spatial component. We estimate the limited 
dependent variable model as a robustness check and since this is a common methodology in 
the literature. 

6. Data 
We utilize the Household Income and Expenditure Survey (HIES) data collected by the 
Central Statistics Division (CSD) of the Tuvalu Government for the years 2004/5 and 2010, 
which provides information on income and expenditures of households in Tuvalu. The 2010 
HIES collected information from 541 households from all of the islands except for Niulakita19 
while the 2005 HIES has a sample of 459 households. The households surveyed were 
randomly selected. The surveys represent around 33% of the population of Tuvalu; this large 
                                                           
18 For our case, every household has at least one neighbor. Therefore, each row sums up to 1. 
19 The smallest island in Tuvalu with only four households (based on the 2012 Census). 
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sample was necessary for accuracy as a representative sample at the national level. The 
sample selection was spread proportionally across all the islands with a selection process 
that listed each dwelling on the islands by their geographical position and systematically 
skipped through the list to achieve the 33% randomly selected sample. 

For spatial analysis purposes, we used the 490 households with available Global 
Position System (GPS) locations for the 2010 HIES. The survey includes both individual and 
household variables. For our model, the dependent variable used both income and 
expenditure as a measure of poverty and welfare. Additionally, we used a set of control 
variables of household characteristics and geographical measurments.  

Income per capita was used as the measure of welfare for the non-spatial and spatial 
regressions while expenditure per capita was used to determine hardship lines where an 
acceptable minimum standard of that indicator was established (Ravallion, 1998; Pradhan 
and Ravallion, 2000; Ravallion, 1996a, 1996b). We also used the binary indicator (hardship 
and non-hardship) as our dependent variable regressing on the same household 
characteristics used in the spatial and non-spatial regressions. Appendix Table A provides 
more description of the dependent and independent variables and their sources. 

7. Estimation Results and Discussions 
Table 2 compares the means of selected variables and indicators for the years 2004/5 and 
2010. Household size on average is higher in the urban areas. Education levels of heads of 
households increased between the two surveys with more educated household heads in the 
urban area; though the differences are not very large. Urban households have a higher 
number of dependents, depend more on cash income, live in areas of lower elevation, 
narrower land width, in higher density (i.e. more than three times compared to rural), and 
closer to coastlines. Although those in the urban area have less access to land, house 
ownership, fisheries and agricultural activities, they are have better access to the economic 
opportunities present in the capital. 

Table 2: Comparing means of selected indicators 

 
2004/5  2010  

Rural Urban National Rural Urban National 
Household size  4.839 

(2.4228) 
6.301 

(3.2771) 
5.409 

(2.8739) 
4.721 

(2.5089) 
6.757 

(3.6047) 
5.420 

(3.0839) 
Depend    1.993 

(1.4869) 
2.408 

(2.0828) 
2.136 

(1.724) 
Age 52.157 

(13.9806) 
46.245 

(12.8297) 
49.851 

(13.8336) 
51.724 

(12.3203) 
47.461 

(12.1625) 
50.260 

(12.4203) 
Gender 0.782 

(0.4135) 
0.754 

(0.4317) 
0.771 

(0.4204) 
0.817 

(0.3869) 
0.763 

(0.4263) 
0.798 

(0.4013) 
Marital status 0.782 

(0.4135) 
0.849 

(0.3588) 
0.808 

(0.3940) 
0.817 

(0.3869) 
0.810 

(0.3929) 
0.815 

(0.3886) 
Ethnic 0.950 

(0.2183) 
0.960 

(0.1943) 
0.954 

(0.2091) 
0.965 

(0.1816) 
0.934 

(0.2474) 
0.955 

(0.2068) 
Literate    0.702 

(0.4577) 
0.928 

(0.2575) 
0.780 

(0.4143) 
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Education years 7.689 
(3.2736) 

9.564 
(5.4007) 

8.420 
(4.3246) 

7.851 
(3.3533) 

10.526 
(4.184) 

8.770 
(3.8708) 

Work    0.275 
(0.4474) 

0.609 
(0.4893) 

0.390 
(0.4883) 

House owner     0.839 
(0.3680) 

0.526 
(0.5007) 

0.731 
(0.4435) 

Urban  0.000 
(0.0000) 

1.000 
(0.0000) 

0.389 
(0.4882) 

0.000 
(0.0000) 

0.952 
(0.2129) 

0.390 
(0.4883) 

Distant to the central    256.016 
(136.8334) 

1.157 
(1.4703) 

168.437 
(164.1853) 

Distant primary    0.399 
(0.4161) 

0.959 
(1.3881) 

0.592 
(0.9185) 

Distant to the hospital    0.450 
(0.4580) 

1.261 
(1.3193) 

0.728 
(0.9389) 

Distant to the government    256.1234 
(136.8127) 

1.348 
(1.5264) 

168.609 
(164.1447) 

Land width    2.1465 
(2.2384) 

0.347 
(0.2125) 

1.528 
(2.0080) 

Distant to the coast    0.201 
(0.1570) 

0.096 
(0.0688) 

0.165 
(0.1423) 

Distant to the borrow pits    68.811 
(58.3149) 

0.382 
(0.4024) 

45.305 
(57.3436) 

Elevation    10.659 
(2.7163) 

6.634 
(1.5654) 

9.277 
(3.0559) 

Rainfall    2382.575 
(525.7113) 

2765.869 
(83.8429) 

2514.235 
(465.6705) 

Density    858.487 
(1080.921) 

3349.086 
(594.264) 

1713.998 
(1512.862) 

Observations 280 179 459 323 169 492 
Source: Authors’ estimations from 2004/5 and 2010 HIES data. Standard deviations in parentheses. 

The diagnostic tests for spatial dependence of the spatial models were carried out using 
the Moran's I and Lagrange Multiplier tests.20 Moreover, the Moran’s I test statistic 
indicates the strength of the spatial autocorrelation of the residuals while the simple 
Lagrange Multiplier (LM) tests for missing spatially lagged dependent variable and the 
Robust LM tests for error dependence in the possible presence of a missing lagged 
dependent variable. The diagnostic tests provide most support to the SDM specification; as 
they indicate the presence of spatial dependence for all levels. ρ is the spatial 
autoregressive coefficient while λ is the spatial autocorrelation coefficient. The values of R2 
indicate the goodness of fit of the model. 

Table 3: Estimation Results - LHS income per person (2010) 
 OLS SLM SEM SAC SDM 

(National) 
SDM 

(Urban) 
SDM 

(Rural) 
hholdsize -0.114*** -0.114*** -0.114*** -0.114*** -0.113*** -0.0935*** -0.125*** 
 (0.00978) (0.00971) (0.00971) (0.00970) (0.00964) (0.0133) (0.0145) 
age 0.00741*** 0.00751*** 0.00752*** 0.00757*** 0.00811*** 0.0168*** 0.00917*** 
 (0.00249) (0.00247) (0.00247) (0.00247) (0.00250) (0.00427) (0.00327) 

                                                           
20 The Moran’s I test statistic is used to test if the data has spatial dependence. According to Olivia et al. 
(2009), the Moran’s I for a row standardized spatial matrix where e is a vector of OLS residuals and W is the 
spatial weight matrix, asymptotically normally distributed with an expected value of −1/(N−1) and its statistical 
significance can be evaluated from a standardized normal table. It is expressed as I=elWe/ele. The Lagrange 
Multiplier (LM) tests for SEM and SAR whether (λ = 0) and (ρ = 0). The Robust LM tests were also developed by 
Anselin et al. (1996) to cater for the presence of both SEM and SAR (which is a weakness for the LM test as LMλ 
and LMρ have power against the other alternative). Olivia et al. (2009) provides more detailed discussion of the 
tests. 



13 
 

gender 0.0143 0.0130 0.0127 0.00809 0.00870 -0.108 -0.214 
 (0.0830) (0.0820) (0.0820) (0.0824) (0.0862) (0.143) (0.145) 
maritalstat 0.149* 0.147* 0.147* 0.151* 0.151* 0.336** 0.138 
 (0.0886) (0.0876) (0.0876) (0.0878) (0.0909) (0.134) (0.142) 
educ 0.0279*** 0.0284*** 0.0284*** 0.0282*** 0.0304*** 0.0745*** 0.0256* 
 (0.00830) (0.00824) (0.00824) (0.00825) (0.00884) (0.0146) (0.0133) 
formalwork 0.268*** 0.272*** 0.272*** 0.271*** 0.264*** 0.209** 0.308*** 
 (0.0662) (0.0656) (0.0656) (0.0655) (0.0664) (0.0996) (0.0959) 
houseowner -0.129* -0.136** -0.136** -0.131* -0.124* -0.101 -0.468*** 
 (0.0681) (0.0681) (0.0680) (0.0684) (0.0682) (0.108) (0.101) 
urban 0.552*** 0.572*** 0.573*** 0.545*** 0.566***   
 (0.0811) (0.0856) (0.0850) (0.0937) (0.102)   
elevation -0.0446*** -0.0449*** -0.0448*** -0.0426*** -0.0268* 0.00161 -0.0328* 
 (0.0113) (0.0112) (0.0112) (0.0115) (0.0147) (0.0461) (0.0176) 
dcoast 0.437** 0.455** 0.457** 0.471** 0.336 -1.287 0.316 
 (0.214) (0.213) (0.213) (0.214) (0.238) (0.966) (0.236) 
w1x_hholdsize     -0.00568** 0.0119 -0.710** 
     (0.00224) (0.00726) (0.308) 
w1x_age     0.00138* 0.00171 0.236*** 
     (0.000759) (0.00134) (0.0515) 
w1x_gender     0.00378 -0.237** -4.112 
     (0.0347) (0.105) (3.702) 
w1x_maritalstat     0.0315 0.00496 2.985 
     (0.0393) (0.0630) (3.011) 
w1x_educ     0.00267 0.0266*** -0.0315 
     (0.00319) (0.00795) (0.296) 
w1x_formalwork     -0.0147 -0.0999*** 2.331 
     (0.0211) (0.0368) (1.793) 
w1x_houseowner     0.00887 0.00476 -5.899*** 
     (0.0151) (0.0371) (1.876) 
w1x_urban     0.0216   
     (0.0151)   
w1x_elevation     -0.000854 -0.000106 0.0696 
     (0.000830) (0.0111) (0.0449) 
w1x_dcoast     -0.0255 -0.877** -2.097 
     (0.0313) (0.362) (1.601) 
constant 9.119*** 9.143*** 9.144*** 9.160*** 8.894*** 7.870*** 19.39*** 
 (0.226) (0.227) (0.227) (0.229) (0.267) (0.543) (6.152) 
Rho  -0.0000622  0.000870 -0.00952* -0.0119 -1.510*** 
  (0.0000922)  (0.000930) (0.00573) (0.00865) (0.466) 
Sigma  0.607*** 0.607*** 0.606*** 0.594*** 0.534*** 0.592*** 
  (0.0194) (0.0194) (0.0194) (0.0190) (0.0292) (0.0238) 
Lambda   -0.0000685 -0.00111    
   (0.0000963) (0.00126)    
N 490 490 490 490 490 169 321 
R2 0.393 0.393 0.389 0.287 0.387 0.418 0.329 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Rho ρ is the spatial 
autoregressive coefficient while Lambda λ is the spatial autocorrelation coefficient.  

 
Table 3 shows the model estimation results explaining income with the independent 

(RHS) variables (i.e. household characteristics, distance and location characteristics of 
households, and geographic variables).21 For comparison of models and approaches, we 
show results from the standard linear model (column 1), the four spatial models previously 
described (columns 2-5) and divide the sample into the urban and rural observations 
(columns 6-7) with the prefered SDM estimation method (equation 4).  

The age of the household head (age), marital status of the household head 
(maritalstat), education level of the household head (educ), household head working in the 
formal sector (formalwork), living in the urban (urban), and the distant to the coast (dcoast) 

                                                           
21 We classified Funafuti as the urban and outer-islands as rural since Funafuti is the capital and where the 
central government, commerce, main hospital, seaport and airport are located. 



14 
 

were all highly significant with positive correlations with income. Household size (hholdsize), 
house owner (houseowner) and elevation (elevation) are also highly significant, but with 
negative correlations with income.22 The R2 for all models are 0.3-0.4, at most explaining 
40% of the variation in income across households. In this case, our diagnostic tests support 
the use of the SDM model.23 In terms of the geographic variables that will most likely be 
important when considering future changes in climatic conditions, we find that, ceteris 
paribus, poorer households locate in higher elevation areas in the outer islands, but in lower 
elevation in the main island of Funafuti (where we already observed the poor are on the 
narrower parts of the island). However, the distance to the coast variable, which is much 
more variable in the outer islands, will dominate any determination of income levels in 
these islands. Consistently, we find that the further that households locate from the coast, 
the higher their income is. For the urban area, our econometric specification does not yield 
statisitcally signficant results with respect to the geographic variables when the urban 
sample is exclusively estimated. However, the number of observations used in the 
regression is reduced dramatically, so this reflects, at least in part, the expected drop in 
statistical precision.  

Table 4: Estimation Results - LHS poverty binary indicator (2010) 
 National Urban Rural 
hholdsize 0.176*** 0.162*** 0.191*** 
 (0.0264) (0.0386) (0.0390) 
age -0.00116 -0.00494 0.00340 
 (0.00619) (0.0107) (0.00797) 
gender 0.0329 0.0943 -0.0512 
 (0.222) (0.343) (0.327) 
maritalstatus -0.141 -0.432 0.0753 
 (0.231) (0.350) (0.343) 
educ -0.0517** -0.0786** -0.0263 
 (0.0222) (0.0339) (0.0311) 
formalwork -0.654*** -0.269 -1.110*** 
 (0.189) (0.279) (0.309) 
houseowner 0.461** 0.464* 0.408 
 (0.194) (0.267) (0.309) 
urban 0.264 0.0946 0.00669 
 (0.216) (0.566) (0.356) 
elevation 0.0538* -0.00133 0.0943** 
 (0.0289) (0.0804) (0.0377) 
dcoast -0.152 0.716 -0.0899 
 (0.558) (2.134) (0.597) 
Constant -2.064*** -1.032 -3.040*** 
 (0.593) (1.010) (0.855) 
N 490 169 321 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
 

                                                           
22 The elevation projected from the Digital Elevation Model (DEM) may differ marginally with land elevation. 
Variations between elevation and Mean Sea Level (MSL) is explained in http://www.esri.com/ 
news/arcuser/0703/geoid1of3.html 
23 Moran’s I test is highly significant at 1% level, indicating spatial autocorrelation. 
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Furthermore, we examined household characteristics that make households more likely 
or less likely to be in hardship. We used the probit model for all levels of national, rural and 
urban by regressing a binary dependent variable (poverty indicator, i.e.  1 if poor, else 0) 
with the same control variables we used for the linear income models. The estimation 
results in Table 4 shows that households with higher household size (hholdsize), reside on a 
higher elevation (elevation), and owned a house (houseowner) are more likely to be poor. 
Nevertheless, households with higher household head’s level of education (educ) and with 
formal work (formalwork) are less likely to be poor. 

We also replicate the same regressions after splitting the sample into urban and rural 
households to compare the differences in vulnerability and exposure. It generally shows 
very similar results with the national level, but with a few exceptions. The minor differences 
is the fact that the urban sample shows significant levels with a positive correlation between 
income and owning a house, a negative correlation between distance to the coast and 
income, and a positive correlation between land width and the household size. 

Last, we used a panel of 130 households that we were able to identify in both the 
2004/5 and 2010 HIES to estimate income and poverty; we estimated this model using both 
fixed- and random-effects models and present these results in the appendix.24 The results in 
appendix Table B3 shows that higher values of education (educ), higher distant to the coast 
(dcoast), migrating between islands (b_islands), household movements within islands 
(w_islands) and migrating to the urban (urban_mig), are associated with higher values of 
income. On the other hand, household size (hhsize) is associated with lower values of 
income. Similar results were obtained from the panel data models estimating the binary 
poverty indicator.  

Statistics from the panel illustrate that a total of 26% of households migrated between 
islands where 85% are non-poor households. Non-poor households dominate movements 
between islands except for movements of households from the capital island Funafuti to the 
outer-islands where the poor represent 67%. Table 6 shows that most of the movements 
within islands happen with the capital Funafuti as either source or destination. It is evident 
that the poor and low-income households move less both between and within islands. The 
domination in movements by non-poor households is due to higher access to human and 
financial capital that is required for these moves. 

Table 6: Internal Migration of Households 

Movement type 
Households 
that moved  

 

Non-poor 
households 
that moved  

 

Households 
that moved to 

wider land 
width areas 

Households 
that moved 
closer to the 

coast 

                                                           
24 The Hausman panel test indicated a strong perference for the fixed-effects model over random-effects; 
while the Breusch-Pagan indicated the panel models are prefereable to the OLS estimation. However, we 
present all three specfications in the appendix for comparison. 
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(% of 
households in 
source region) 

(% of houses 
that moved 

from the 
source region) 

(% of houses 
that moved 

from the 
source region) 

(% of houses 
that moved 

from the 
source region) 

Outer-islands to capital 20 94 18 82 
Capital to outer-islands 12 33 100 0 
Between outer-islands 13 100 36 55 

Within the capital 20 90 80 60 
Within outer-islands 2 100 100 100 

Source: Authors' calculations from the 2004/5 and 2010 HIES data. 
There are more movements from the outer-islands to the capital Funafuti and within 

the capital itself. Unlike the capital Funafuti, the fewer movements in the outer islands is 
due to a few rented houses. Some of the reasons for frequent movements of households on 
Funafuti are civil servants moving between government houses or rented houses, civil 
servants on long-term training overseas availing their government or rented houses for 
others, civil servants elevating in their work positions moving to higher level government 
houses or move to higher rented houses.  Government houses on Funafuti are closer to the 
center of the island which is the wider part of the island in terms of land width. Household 
movements to the outer-islands is mainly due to those who are retiring civil servants, those 
who cannot find work in the capital, and professionals (teachers, nurses, police) who have 
to relocate for work from one island to another.25 All outer-islands have primary schools and 
clinics. The main secondary school is located in the outer-islands on Vaitupu Island. It is 
evident that not only are the poor or low-income households more vulnerable and exposed 
to climatic disasters, they have less capacity for movements within and between islands. 

8. Conclusion 
Hardship is a challenge that merits the attention of policy makers in the Pacific. Our findings 
indicate that poverty has increased in Tuvalu over the past decade, but other potential 
measures of hardship and vulnerability show a decrease over time. However, we can 
confidently conclude that hardship levels are higher in the urban area (Funafuti) compared 
to the rural outer islands. The proportion of households who are potentially vulnerable to 
falling into hardship if there is a shock is also higher in the urban area and increasing.  

In general, households on the urban region of Funafuti are also more exposed and 
vulnerable to disasters, once we account for their proximity and direction of exposure to the 
coast, and elevation. We also find that not only are the poor more likely to reside in areas 
prone to disasters in both the rural islands and the capital, they also tend to migrate less 
compared to non-poor households. This observation may end up being important in the 
future if migration becomes the only viable adaptation option to sea level rise (as many 
observers foresee). 

                                                           
25 All outer-islands have primary schools, clinics and police stations. The main boarding secondary school is 
located in the outer-island on Vaitupu. 
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Appendix Table A: Description of Variables 
No. Variable Description Source 

1 Iinc Logarithm of income per person.  

Authors' calculations based 
on household data from the 

Central Statistics Division 
(CSD), Government of 

Tuvalu. 

2 hholdsize  Number of persons in the household. 
4 age Years of age of the household head. 
5 gender Gender of the household head. Dummy, takes the 

value of 1 if the household head is a male, otherwise 0. 
6 maritalstat Marital status of the household head. Dummy, takes 

the value of 1 if the household head is married, 
otherwise 0. 

7 ethnic The ethnicity of the household head, whether is a 
Tuvaluan or not. Dummy, takes the value of 1 if the 

household head is from Tuvalu, otherwise 0. 
8 lit Household head potential to read and write in both 

English and Tuvaluan languages. Dummy, takes the 
value of 1 if the household head knows both Tuvalu & 

English, otherwise 0. 
9 educ Years of education of the household head. 
10 formalwork Dummy, 1 if the household head works in the formal 

sector, otherwise 0.  
11 houseowner Dummy, takes the value of 1 if the household head 

owns a house, otherwise 0. 
12 urban  The capital island Funafuti is referred to as urban while 

rural refers to all the outer islands. Dummy, takes the 
value of 1 when the household is in the urban, 

otherwise 0. 

Authors' calculations based 
on GPS locations of 

households using reference 
system UTM Zone S60 with 

elipsoid WGS 84 and the 
Digital Elevation Model 

(DEM). 

13 d_cent Distant of the household to the Central in meters. This 
was calculated from the household Geographical 

Position System (GPS) location of the household to the 
Government Building on Funafuti island. 

14 d_pri Distant to the nearest Primary school in kilometers 
(km) 

15 d_hosp Distant to the nearest Hospital and or Clinic in km. 
16 d_govt Distant to the Government and Commercial area at 

the capital Funafuti in km. 
17 dwide Distant from lagoon-coast to the sea-coast in km. 
18 dcoast Distant to the nearest coastline in kilometers. 
19 d_pits Distant to the nearest borrow pits and ponds in km. 
20 density Population per kilometer square. 
21 elevation Elevation in meters. 
22 b_islands Dummy, 1 if household moved between islands. 

Additional variables for 
panel data. Authors' 

calculations based on GPS 
household locations & 

household data for 2004/5 
and 2010 from CSD. 

23 w_islands Dummy, 1 if household moved within islands. 
24 urban_mig Dummy, 1 if household moved from outer-islands to 

the capital. 
25 migrate_oi Dummy, 1 if household moved between outer-islands. 
26 rural_mig Dummy, 1 if household moved from the capital to the 

outer-islands. 
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Appendix B: Panel data models estimating income 
 Pooled  

OLS 
Fixed  

Effects 
Random  
Effects 

Pooled  
OLS 

Fixed  
Effects 

Random  
Effects 

educ 0.0541*** 0.0696*** 0.0544*** 0.0593*** 0.0587** 0.0590*** 
 (0.0120) (0.0263) (0.0129) (0.0119) (0.0255) (0.0129) 
       
hhsize -0.0611*** -0.0939*** -0.0676*** -0.0564*** -0.0965*** -0.0638*** 
 (0.0158) (0.0287) (0.0164) (0.0161) (0.0277) (0.0167) 
       
sex 0.164 -0.474** 0.0822 0.145 -0.333 0.0575 
 (0.112) (0.236) (0.120) (0.112) (0.237) (0.121) 
       
age 0.000648 -0.00131 0.000191 0.000428 -0.00551 -0.000183 
 (0.00311) (0.00699) (0.00336) (0.00314) (0.00701) (0.00342) 
       
ethnic 0.186 0.00472 0.147 0.156 0.219 0.117 
 (0.205) (0.614) (0.226) (0.208) (0.593) (0.231) 
       
dcoast 0.000283 0.000609** 0.000350* 0.000243 0.000716** 0.000352* 
 (0.000195) (0.000305) (0.000200) (0.000198) (0.000300) (0.000203) 
       
dwide -0.00022*** -0.000170 -0.00021*** -0.00021*** 0.0000808 -0.00018*** 
 (0.0000569) (0.000115) (0.0000610) (0.0000591) (0.000148) (0.0000651) 
       
b_islands 0.199 0.419*** 0.251**    
 (0.120) (0.145) (0.115)    
       
w_islands 0.499*** 0.139 0.426**    
 (0.190) (0.227) (0.181)    
       
urban_mig    0.211 0.982*** 0.347** 
    (0.171) (0.253) (0.167) 
       
migrate_oi    0.363* 0.267 0.328* 
    (0.196) (0.226) (0.186) 
       
rural_mig    -0.305 -0.346 -0.210 
    (0.268) (0.372) (0.258) 
       
_cons 3.675*** 4.393*** 3.812*** 3.682*** 4.115*** 3.809*** 
 (0.287) (0.639) (0.305) (0.289) (0.619) (0.308) 
N 260 260 260 260 260 260 
R2 0.236 0.327 0.263 0.228 0.365 0.277 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
Source: Authors' estimations from 2004/5 and 2010 HIES data 
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Appendix C: Sea levels 

 

Notes: The left panel shows the maximum sea levels on Funafuti (Tuvalu) from 1993 to 2014. Author’s 
calculations, on data from the Tuvalu Meteorological Service (TMS). The floods cause sea water to come from 
the ground in the inner parts of Funafuti Island. From 1993 to 2002, the average number of times the sea level 
rose above 3 meters is 8 per year, and 10 for 2003 to 2012. The right panel shows the mean sea level on 
Funafuti (Tuvalu) from 1993 to 2014. 
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Appendix D: Hardship maps 

 

Source: Authors’ digitized maps. 

Figure D1: Hardship incidence in the Northern Islands. 
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Source: Authors’ digitized maps. 

Figure D2: Hardship incidence in the Southern Islands. 
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Appendix E: Elevation maps 
 

 

Source: Authors’ digitized maps. 

Figure E1: Elevation in the Northern Islands. 
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Source: Authors’ digitized maps. 

Figure E2: Elevation in the Southern Islands. 
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