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Abstract

This paper provides a new comparative analysis of pooled least squares and fixed effects
estimators of the slope coefficients in the case of panel data models when the time dimension
(T) is fixed while the cross section dimension (N) is allowed to increase without bounds. The
individual effects are allowed to be correlated with the regressors, and the comparison is carried
out in terms of an exponent coefficient, 5, which measures the degree of pervasiveness of the
fixed effects in the panel. The use of exponent & allows us to distinguish between poolability of
small N dimensional panels with large T from large N dimensional panels with small T. It is
shown that the pooled estimator remains consistent so long as & < 1, and is asymptotically
normally distributed if & < 1/2, for a fixed T and as N — oo. It is further shown that when 6 <
1/2, the pooled estimator is more efficient than the fixed effects estimator. We also propose a
Hausman type diagnostic test of 6 < 1/2 which could be used in practice as a simple test of
poolability. In the case where N and T — oo, such that T = O (N, for some d > 0, the condition
for poolability generalizes to 6 < (1 - d)/2. Monte Carlo evidence supports the main theoretical
findings and gives some indications of gains to be made from pooling when 6 < (1 - d)/2.
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1 Introduction

This paper re-examines the issue of pooling in standard panel data models with exogenous
regressors in terms of an exponent coefficient, 0 < § < 1, which measures the degree of perva-

siveness of correlated individual effects, defined by

N
> Bl =0 (N?),
i=1

where NV is the cross- section dimension of the panel, and 7, is the mean zero random part
of the individual effects. The use of exponent § allows us to distinguish between poolability
of small N dimensional panels with large T from large N dimensional panels with small T'.
A set of coefficients could be heterogeneous for a finite N, nevertheless can be deemed as
asymptotically homogeneous if their dispersion tends to zero as N — oco. We use this idea to
motivate conditions under which pooling is valid in large N dimensional panels, both when T’
is fixed and when it rises with V.

Throughout we allow for non-zero correlations between the individual effects and the re-
gressors, and as a result the pooled estimators will be biased in the standard case where § = 1.
We show that the choice between the pooled least squares (PLS) estimator and the fixed effects
(FE) estimator depends on the value of ¢, with the PLS estimator being consistent for all val-
ues of 0 except when d = 1. For inference, the validity of the PLS estimator requires § < 1/2.
Both of these conditions are significantly weaker than the homogeneity assumption made in the
literature requiring that E |n;| = 0 for all . For example, when § = 0 we could have a finite
number of non-zero F |n;|, or more generally when E |n,;| = Kp’, for a fixed positive constant
K, and 0 < p < 1. This corresponds to the sparsity assumption often made in the context of
penalized regressions. But our analysis covers non-sparse structures by allowing the number
of non-zero F |n;|’s to rise with N but not proportionately. The degree to which the number
of units with non-zero F |n,| is allowed to rise with N is governed by ¢. For example, when
0 = 1/2 the number of cross-section units with non-zero random effects could rise with VN ,
with the proportion of such units in total declining to zero at the rate of N —1/2,

The exponent of pervasiveness of individual effects is also closely related to the exponent of
cross-sectional dependence, a, recently introduced in Bailey et al. (2016) to measure the degree
of cross-sectional dependence in panels. Both exponents measure the degree of pervasiveness of
heterogeneity,  relates to the heterogeneity of the individual effects , and « the heterogeneity
of factor loadings in a panel data model with a factor error structure. In a broad sense, § can
also be viewed as an exponent of cross-sectional dependence applied to the intercepts viewed

as a common factor.



Our analysis complements and provides further insights on the discussion of "pool or not to
pool" in the panel literature.! See for example, Baltagi et al (2000), and Baltagi (2008). More
specifically, we derive the asymptotic properties of the pooled least squares estimator when N
is large and T is fixed for different values of d, and derive the bias of PLS when § = 1, and
show that the pooled estimator is more efficient than the fixed effects estimator if § < 1/2. We
also establish the asymptotic equivalence of random effects and PLS estimators when § < 1.
In the case where N and T' — oo, such that T' = O (N d), for some d > 0, the condition for
poolability generalizes to 6 < (1—d)/2. Monte Carlo simulations are conducted to compare the
finite sample properties of PLS and FE estimators. The results confirm the main theoretical
findings and give some indication of the magnitudes of the gains involved from pooling when
0 < (1—-4d)/2.

The analysis of this paper also shows the importance of knowing ¢ in the choice between
PLS (or RE) and FE estimators. In the case of large N and T panels estimation of § can be
carried out using the approach of Bailey et al. (2016). But for short T' panels, which is of
concern in this paper, such an approach will not be applicable and other suitable techniques
will be required. Accordingly, we also propose a Hausman type diagnostic test of § < (1 —d)/2
which could be used in practice as a simple test of poolability of panel data models.

The rest of the paper is organized as follows. Section 2 sets out the model and its as-
sumptions. Section 3 presents the main theoretical results on the consistency and asymptotic
normality of PLS and FE estimators in terms of different values of §. The diagnostic test of
poolability is presented in Section 4. Monte Carlo simulations are provided in Section 5, with

some concluding remarks in Section 6.

2 Panel data model

Consider the standard panel data model
vie = a;+ 0%y +uy, fori=1,2,... N;t=12...,T (2.1)
o = a+mn;fori=1,2...,N, (2.2)
where «; are the individual effects, x;; is a k x 1 vector of regressors which we decompose as

Xit = 1;8t + Wiy, fori=1,2,... N;t=1,2,...,T. (2.3)

'There is also a related literature that considers the problem of pooling more generally and discusses the issue
of pooling in the case of panel data models with heterogenous slopes. As a recent example, see Paap, Wang
and Zhang (2015) and references cited therein. In this paper we focus on the issue of pooling in the context of
standard panel data models with homogeneous slopes. But our approach and generalization of the concept of

cross-sectional heterogeneity can also be applied to panel data models with heterogeneous slopes.



;8¢ represents the part of x;; which is correlated with the individual effects , a;, with g; being
a k x 1 vector of time effects, and w;; is the part of x;# which is distributed independently of
the individual effects . This is a fairly general specification which allows for non-zero, possibly
time-varying, correlations between x;; and «;, and allows the regressors to have individual-
specific effects and be cross-sectionally correlated. Additional individual-specific effects can be
included in x;; through w;;. For example, using (2.3), and assuming that g§ = 71 Zle g: #0,
then

n; = 7% + v, (2.4)

where ,

] —

' = (g8) g vu=—-(g8) &W,

T T
)_(Z' = T_1 E Xity and V_VZ‘ :T‘_1 E Wit,
t=1 t=1

which is the same as Mundlak (1978) formulation of the individual effects in standard panel
data models.
Throughout we assume 7' is fixed and carry out our analysis for IV large. Except for the
assumption regarding the individual effects, n,, we make the following standard assumptions:
Assumption 1: The individual effects, n, for i = 1,2,..., N, are either deterministic and
bounded (i.e. |n;] < K), or stochastic with second order moments, E (1?) < K, and distributed

independently of g; and wj; for all ¢, j and ¢; satisfying the conditions?
N
N1 ZE In;|° =0 <N5_1> , for s =1 and 2, where 0 < § < 1. (2.5)
i=1

Remark 2.1 The conditions of Assumption 1 are satisfied, for example, if there exists an
ordering of the individual units such that for ¢ in the range [0, 1]
n;, = &, fori=1,2,..., [N‘S],
0, fori=[N°]+1,[N°]+2,...N

where {e; ,i =1,2,..., N} is a sequence of random variables with zero means and finite variances
such that

M—oo

M
lim (M_l ZE \52-\5) =0(1), for s=1 and 2.
i=1

2K represents a generic finite positive constant.



Then,
[N?]

N
N—lZE‘m‘s:Né—l 52’&’ :O(N5‘1>.
=1

Note that the above result holds even if €}s are cross-sectionally correlated. Furthermore, the
condition that n; = 0, for i = [N°] +1,[N°] +2,...,N, can be relazed by requiring. (See also
Bailey et al. (2016)).

N
Z En;l? =0(1), fors=1 and 2.

i=[N?%]+1
This condition holds, for example, if E |n;|° = kisp’, for i = [N°] +1,[N%| +2,..., N, where k;s

are finite positive constants and 0 < p, < 1.

Remark 2.2 Conditions (2.5) also imply

N N
NS0 =0, (M), and NT1Y " i = 0 (N1
i=1 i=1

These results follow by application of Markov inequality to (2.5).

Assumption 2: (a) u; is distributed independently of n; and w for all 4, j, ¢, and ¢'. (b)
wiy ~ I1D(0,02), 0 < 02 < K, and E |uy|[*™ < K, for some small positive €.

Assumption 3: The time effects, g, are bounded such that ||g:g}|| < K < oo, if g; is
deterministic and F ||g;g}|| < K < oo, if g; is stochastic. ||A]| represents the Frobenius norm
of A defined by Tr (AA")"/2.

Assumption 4: The variables, w;;, are either deterministic and bounded, namely ||w|| <
K < o0, or they satisfy the moment conditions E ||w;; — ;> < K < oo, for all 7 and ¢, where

=71 Zthl w;¢. Similarly, E ||w; — v_VH2 < K < o0, for all i, where w =N 1 Zfil W;.

Assumption 5: The k£ x k matrices

(Wit — W) (Wi — W),

M=
E

1
Q -
P,N NT

1t=1

i

(Wit — W;) (Wit — W),

1
QrenN = W

||Mz
E

1t=1

are positive definite for all IV, and as N — oo. The probability limits of Qp n and Qrg v, as
N tends to infinity, will be denoted by Qp and Qpg, respectively.

1/2
Remark 2.3 Note that E |w;; — w;|| < [EHV_VZ —v‘v]ﬂ < K < o0, and E||w; —w| <
1/2
E|w; — w|? < K < o0o. Hence under Assumption 4 we also have

El(wie = W)l = E[(wit = Wi + Wi = W)|| < E|(wir — wi) ||+ E [[(W; — W)|| < K < o0. (2.6)



3 Pooled least squares and FE estimators

The PLS and FE estimators, ,@ p and B rE, respectively, can be written as
Bpr = Qpnarny,
and
Brp = QE}E,NQFE,N,
where
;| NI 1 T
QP,N:WZZ it — %) (xit — %), QPN—WZZ Xit — X) (Yit — 1),

=1 t=1 =1 =1
L, N L N
QrenN = WZE xit — X)) (Xit — %), ApE.N = WZZ Xit — %) (Yir — i)
i=1 t=1 i=1 =1
and

il
Il

N T N T
(NT)T 3D xien 5= (NT)' 3D iy
i=1 t=1

i=1 t=1
T T
%, = T1 g =T .
Xi = Xity Yi = Yit-
t=1 t=1

To derive the properties of these estimators, using (2.3), we first note that
Xit — X = (1,8t — 18) + (Wit — W),
and
Yit =y =n; — 0+ B (xit — %) + (uir — @),

where

T N N
g :T_Ith, ﬁ:N_IZnZ-, andﬁ:N_IZui.
t=1 i=1 i=1

3.1 The PLS estimator

Starting with the PLS estimator, using (3.7) in (3.3) we have
TR
Qey = DN (mige + Wi — 18 — W) (n; 81 + Wit — 78 — W)’

NT
=1 t=1

1 N T N -
- WZZ th_— Wzt__>/+<N_1an2) (T_lzgtg,é)—_
=1 t=1

N T
1
+ﬁ ; ; i [(wie — W) gt + gt (Wi —W)'] .

(3.5)

(3.6)



Similarly, using (3.8) in (3.3) we have

arN = NLT Z > (it — %) (yir — 9)

which upon using (3.7) can be written as

T
QPN—QPNIB‘FiZZ Wit — W (m+uit)+NiTZZ(mgt—ﬁ€) (n; + uie), (3.10)

i=1 t=1 =1 t=1

which in turn yields

N T N T
" _ 1 1 __
Bp=B+Qply | 5 2o D (Wit = W) (0 + i) + 5 > D (misge — 78) (0 + i)
i=1 t=1 i=1 t=1
(3.11)
Furthermore,

N T

1 N T 1 N T
7 2 D g —1g) (i +wie) = 5o YD (07— i) ZZ (nig: — N8) uat

i=1 t=1 =1 t=1 2:1 t=1

1 | NI
- NZ(”ZZ_ﬁni)g"’_ﬁzzmigt—ﬁg)uit

N T
| o
BT NT Z Z n;8euit — NEU3.12)

But under Assumption 1 we have

N N
NS Epl=0 (NH) and Bl < N7'Y iyl = 0 (NH) , (3.13)
i=1 =1

and since 7, is distributed independently of g and wu;, then

N T N

1 no - p—

E |57 2 2 (mige = 78) (mi + war) NS B, -
i=1 t=1 i—1

<

E (=l

+SUPE|Uzt’8upE [F=aly ( 1z:Em)+EI??!E!’LLUE(!HEIH)

- o)

7



Similarly

N T
2
'NTZZm (Wi —w gt+gt<w“—v-v>’]H < o 20D il lwi = ) e

i=1 t=1 i=1t=1
N T
S-S L ST Hgt\]

and since under Assumption 1, n, is distributed independently of g; and w;;, we have

N T 9 N
zz [(wie — %) gh + g (it — )] sNzEmr{ 12Euwzt— HHgtH]}]-

However, by Cauchy—Schwarz inequality and under Assumptions 3 and 4

Ell[(wi —w)| ||gell] < [E (Wit — V_V)HQ] 1/2 [E HgtHﬂ 1/2 <K,

and

NTZZWZ Wit — W) g + gt (Wit — W

i=1 t=1

N
2K _
< N ZEW@\ :O(N6 1)-
i=1

Using (3.13) and the above result in (3.9) we obtain

N

T
Qpy = % DN (Wit — W) (wir — W) + O, (N‘s*l) ,

i=1 t=1

which establishes that under 6 < 1 (for a fixed T" and as N — o0)

— . __/
QrN —p QP—A}EIIOOZZ;;E wit — W) (Wir — w)'] > 0. (3.14)

Consider now the second component of (3.11), and note from (3.12) that since by assumption

n;, Wi, and g; are distributed independently, then

N T
ZZ mgal| < om0 S0 Bl Bl Blua
=1 t=1 i=1 t=1
N
< BBl =0 (8.

i=1
Hence, in view of (3.14) and using the above results we have
N T
NT Z Z (Wit — W) (1; + uit)
i=1 t=1

Bp =B+ +0, (N5_1) . (3.15)




Furthermore
| N7 | N
72 > (Wi = W) m =y (Wi — W),
i=1 t=1 i=1
and since by Assumption 1,7, and W; — w are independently distributed and by Assumption
4, E||w; — w|| < K, then

1 N T
Nizz wzt__

1 & K&
< NZEW\E”V_W—V_VH < NZEW\ :O<N571)~
=1 i=1

Therefore, (3.15) simplifies further to

T
WZZ(Wz‘t—V_\’)Uit

=1 t=1

Bp=p+Qp +0, (NH) . (3.16)

Using this result and noting that under Assumptions 2 and 4,

T
NT 2 2 (Wit = W) uie = 0,
NT i=1 t=1
we have the following proposition.
Proposition 3.1 Consider the panel data model given by equations (2.1), (2.2) and (2.3) and
suppose that Assumptions 1-5 hold. Then the pooled least square estimator defined by (3.1) is

consistent for estimation of 3, as long as § < 1.

Remark 3.2 The bias of the pooled least squares estimator in the case of d =1 is given by

p lim (Bp) =B+02Q5',

where N
UT] = ]\llgnooN 12(7% _’F/)Za
i=1
and N T
Qe = lim > > B[ — %) (xin = %)

For a derivation see Section 26.3 in Pesaran (2015). As a corollary it also follows that Haus-
man’s (1978) mis-specification test that compares the pooled and FE estimators will only be

consistent if 6 < 1.



To derive the asymptotic distribution of B p we note that
T
T 2 2 (Wit = W) i

=1 t=1

VN (B - 8) = 5! +0, (N12). (3.17)

Also under Assumptions 2, 4 and 5, using standard results from panel data literature, we have
(for a fixed T and as N — o0)

1 N T
ﬂ Z Z (Wz‘t - V_V) Wit —q N (0,0'inlﬂp) .

i=1 t=

[y

Hence, for a fixed T and as N — oo
VN (BP — 5) —a N (00277105 | if 6 < 1/2. (3.18)

3.2 The FE estimator

Consider now the FE estimator, B, defined by (3.2). Then using (3.4) we obtain

1

TVN &

7

VN <BFE - 5) = Qrpy (%3 — i) (wip — Us) | - (3.19)

N T
=1

Noting that x;; — X; = (Wit — W;) +n; (8¢ — &), and v — 7 = OB (xit — X;) + (uir — 4;), we also
have

L NoT
QFE,N = ﬁ Z Z (th - Xz) (th - xz)
i=1 t=1
1 N T 1 N T
= NT DD (wi— W) (wip — W) + NT SO ni(wie — W) (g0 — 8)
i=1 t=1 i=1 t=1
| NoT 1 T
T D D i (g — &) (wir — Wi) + NZU?) (TZ(gt—g)(gt—§)> ,
i=1 t=1 i=1 t=1
and
1 N T 1 N T
7T\/N ; ; (it — X;) (wig — ;) = TN ; ; (Wit — W;) +1; (8 — 8)] (uir — 1)
;N
= 4~ (uz _uz) (Wz —W;)
TVN ;tzl ! !



Under Assumptions 1-4, using the above results and following the same line of reasoning as in

Section 3.1 we have (for a fixed T and as N — 00)

QFE,N = ]\}gnoo ﬁ Z Z E Wzt W; (Wzt - Wz) ]

1 N i=1 t=1 1 .
+<N§:EM3><T§:EK&—§M&—EH>
= QFE—i-Op <N6_1>, (3.20)

where

Qrp = lgnooNTz;;E wir — W) (Wi — WZ)]. (3.21)

Similarly, since n; is distributed independently of u;; and g;, then

Zuzt < E ZE Uit — Ug t —
'fT;;” -8 < o ZZ il B (i — 05) (g — )
< sup B |(ui — ) (8¢ — ( WZEW>

1/2 1/2
But E|(uit — ;) (g8 — )| < [E (wit — 61)2} [E llg: — §H2] < K, and by Assumptions 1
and 2, it follows that

5—1/2
> §O<N ).

Zznz U'Lt_uz gt_ )
=1

Finally, under Assumptions 2-4, using standard results from panel data literature we have

ZZ Wi — ;) (Wip — W;) —>dN(OU T 'QpE) ,
i=1 t=1

where Qpp is already defined by (3.21).

Consequently, combining the above derivation yields

VN (IBFE‘ - ﬂ) Qrp.n + 0 (N(S 1/2> (3.22)

\/7 Z Z Wi — W; (uzt - U'L)

=1 t=1

Therefore, for a fixed T and as N — oo, we have
VQV(BFE——B)—ad]V(OpﬁThlﬂ;E),ﬁﬂ(5<]/2. (3.23)

Using (3.18) and the above result now yields the following proposition

11



Proposition 3.3 Suppose that the exponent coefficient, &, defined by Assumption 1, is less
than 1/2, and Assumptions 1-5 hold. Then for a fixzed T, and as N — oo

VNT (BP — ,6) —g N (0,039;1) ,

and

VNT (BFE _ ,6) 4 N (0,02Q7L) .
Furthermore, BP 18 asymptotically more efficient than BFE, as long as § < 1/2.

Remark 3.4 In the case where T = O (Nd), for some d > 0, the condition for Bp to be
asymptotically more efficient than BFE is given by 06 < (1 —d)/2, as N and T — oo. This
result follows if the expressions in (3.17) and (3.22) are pre-multiplied by VT, and T replaced
by (Nd). When N and T expand at the same rate, and d = 1, the FE estimator is always more
efficient.

To establish the relative asymptotic efficiency of E p we first note that
- -1 N -1
[Asyvcw (\/TNﬁPH - [Asyvar (x/TNBFE)} = 2[Qp — Qrp]. (3.24)

Also, we note that since

1 N T 1 N T 1 N
NT DD (Wi — W) (wir — W) = NT DN (Wit — W) (Wit — V_Vz‘)/+ﬁ > (Wi — W) (W — W),
i=1 t=1 i=1 t=1 i=1
then
Qp = Qrp + Qc, (3.25)
where
| N
. — — — —\/

and by Assumption 5, Q¢ is a positive definite matrix. Using (3.25) in (3.24) we have
. \1-1 . ~1
[AsyVar (\/ TNBP)] — [AsyVar (\/ TNBFE)] =0.2Qc >0,

and hence

AsyVar (WBFE> > AsyVar (ﬂ,@_})) .

Consistent estimators of Qp and Qpp are given by Qn, and Qn rg, respectively. (see
(3.14)).

12



3.3 Random effects and PLS estimators

Finally, it is easily seen that random effects (RE) and the pooled least squares estimators of 3
are asymptotically equivalent. The RE estimator is given by (see, for example, Chapter 26 in
Pesaran (2015)).

Bre = (Qren +vQcen) ' (areN + Yacy),

where Qrp v and qrg, N, are defined by (3.4),

N N
Qen=N"> (% -%) (&% -%),acn=N"'> (&K -%) 7 -7
=1 i=1

and

o2

=4 . 3.26
4 ToZ+ o2 (3:26)

However, under (2.5), 0727 =0 (N‘s*l), and for a fixed T', we have ¢ = 1+ O (N‘;*l), and using
(3.3) and (3.4) we obtain®

QrenN +9YQeNn = (¥
qreN +Ydon = (¥

)Qon + Qpn,

—1
—1lacny +arn

Hence (for a fixed T')

\/N(BRE_BP) —>p0, aSN—>OO, 1f§<].7
which establishes the asymptotic equivalence of random effects and pooled least squares esti-
mators as N — oo, for § < 1 and a fixed T.

4 Diagnostic test of § < %

In the above analysis, we establish the asymptotic properties of pooled LS and FE estimator.
We also compare the efficiency of PLS and FE in Proposition (3.3) and show that the PLS
estimator is more efficient than the FE estimator when § < % Hence, it would be desirable
to use the PLS estimator for model (2.1) in terms of efficiency if § < 1/2. Here we propose a
Hausman type diagnostic test (Hausman, (1978)) for the test of

1
Hy:0 = 376 against Hp:0 > 1/2, (4.1)

*Note tha Qp.n = Qrr,N + Qc,n, and qp.N = Qre,N + do,N-

13



where 0 < € < % Such a test will be based on the difference between the PLS and FE estimators.
For PLS estimator (3.1) and FE estimator (3.2) of model (2.1), both of them are consistent,
but under null hypothesis (4.1), (3.1) is more efficient than (3.2). Let

q:BP_BFEv (42)

then the Hausman test examines whether the PLS and FE estimators are significantly different.

Then under the null, we have

Var(q) = Var <BFE) —Var (BP> , (4.3)
which can be estimated as
Var (@) = Var (Bpg) — Var (Bp). (4.4)

where Var <B F E) and Var (B p> are the estimated covariance of 3 rg and B p obtained under
the assumption that errors, u;, are serially uncorrelated and homoscedastic. Under this setting,

the Hausman test statistics is given by
— -1
H=§ |[Var @] & (4.5)
which is distributed as X% for N sufficiently large, where k is the number of regressors in model
(2.1).
If the Hausman test statistics (4.5) can’t reject the null hypothesis Hy in (4.1), then by using
the result in Proposition (3.3), it is more efficient to pool the data and use the PLS estimator.
However, it should be noted that the above test does not apply if the errors wu; are serially

correlated or cross-sectionally heteroskedastic. In this case, we can still show that both B p and

B rp are consistent, but neither is efficient. Therefore, the Hausman formula for variance of the
difference doesn’t apply, namely Var (BP — BFE> # Var (BFE> —Var (BP). But we notice

a=(Br-8) - (Bre-8). (4.6)
and
E (BP - BFE’X) =0, (4.7)
by using the results in the previous section.

For the term (4.6), in order to control the effects of § and sample sizes (N, T'), suppose now
T=0 (Nd), for some d > 0. In case T is fixed, then d is close to zero. For (4.2), we have

VNTa=VNT (Bp — B) ~ VNT (Brr - B) .

14



and using the results in (3.17) and (3.22) we have
1 NI d
VNT§ = —— Z Z [Q;}N (Wit — W) — Qpp n (Wit — v‘vi)} wit + O, <N5+§—1/2) ., (4.8)
where the first term will contribute to the limiting distribution, and the second will vanish if
d 1
6+§—1/2<0 or 5<§(1—d). (4.9)
This is the same as the poolability condition discussed in Remark 3.4

Remark 4.1 [t would be very interesting to point out that both § and d have significant impact
on the validity of the test. From (4.8), the second term on the RHS will disappear if and only if
§ < 3 (1—d). By definition of d, we have d = InT/In N, thus we require § < 3 (1 —InT/InN).
It should be noted that InT/In N will not be a small number even if T is fized and N is large.
For instance, d = 0.1590 if N = 1000 and T = 3, and d = 0.2330 if N = 1000 and T = 5. As
a result, the magnitude of InT/In N matters for the size of the Hausman type tests, a feature

which is apparent from the Monte Carlo simulations reported below.

For the implementation of the Hausman by direct derivations we have
Var (\/NTq) — NT x Var (BP - ﬁm)
— NTVar (Bp) + NTVar (ﬁFE> — NTCou (BFE, B;») — NTCou <BP, ,é(ﬁ,;)))

and it can be shown that

NT x Var (Bp - BFE) = QEI% i zT:UiE [(Wit — v_v)z} Q'
U;:l]\ilT
—i—QE}Eﬁ ; ; E [(wi — W) (Wi — ;)] Qpgg
9 N T
-Qpp Xf} Z D E[(wir — W) (wi — )] Qp'
02 2;1 t;l
~Qp! = YN B [(wie = W) (wie = )] Qi + O (N

i=1 t=1

which in turn gives

VATVar (Bp— Bes)| " VAT (Bp - Brs) —a N (0.1)
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and .
(BP - BFE)/ [VCW (BP - BFE)} ) (BP - BFE) —d Xk
i.e., the Hausman type test statistics (4.5).

For this variance term (4.11), it is infeasible since it depends on unobservable component
wi:. In order to have a feasible estimator for this variance, we notice that under assumptions
Al, A3-A5,

Var (Br) = 77Q5 VrQp! +0(1), (412)

where

T T
Vp= hm Vpn = 1£nooﬁzz_:z_: (Wit — W) (wiy — W), (4.13)

with v;(t,t) = E (uguje |X) = v;(t,¢), if i = j and t # ¢/. And

“ 1 _ _
Var (5FE> = WQF}EVFEQF}E,N +o(1), (4.14)
where
N T T
Vrg = hm VrenN = hm WZZZ% (t,t') (Wi — W) (Wi — Wl) . (4.15)
oo =1 t=1t'=1
Furthermore, we can obtain
N N 1 _ _
Cov (ﬁFEaBP) = WQF}EVFEPQpl +o(1), (4.16)
where
N T T
Vrep = hm VeppnN = lfloo Ni Zl Z Z (Wit — Wi) (Wipr — W)’ (4.17)
and )
Cov (BPa BFE) = WQ?VPFEQE}E +o(1), (4.18)
with
N T T
Vprg = hm VprenN = hmoo ﬁ Z Z Z Yi(t, 1) (Wi — W) (wir — W) (4.19)
=1 t=1t'=1

Hence combining (4.12)-(4.18) yields

1

- - QrpVrEQpp + Qp' VPQL!
Var (513 _ BFE) - == FE FE P P

¥ i ° . (4.20)
_QFEVFEPQP - QP VPFEQFE
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which reduces to the standard formula if it is assumed that the errors are serially uncorrelated
and homoskedastic. To see this note that in the case of serially uncorrelated errors, v,(t,t') =0
if t # ¢, and ~,(t,t) = 02, we have

.1 _ _
Vrep = A}ET)IOO NT ; ; o2 (wir — W;) (Wi — W)’
1 N T

=l v 2 2ok (i = %) [l = )+ (R = )
N T

= o2Qpp+ lim DN ok (wir — W) (Wi — W)’
i=1 t=1

= UzQFE

Similarly, Vprg = 02Qpg. Therefore, in this case

- ~ 1 Q:l QFEﬂil + Qilﬂpﬂil
Var (ﬁp - ﬁFE\X> = ﬁaﬁ gt oh 1
—QppQreQlp — Qp QreQlpy
1

= §7o (s =)
= Var <BFE) —Var (BP) )

which accords with the Hausman’s variance formula in (4.3).
Given the consistent estimator of (4.20), a general Hausman test statistics of (4.1) has the

form
-1

H=¢ {Vaﬂ“ (IBP - BFE)} q, (4.21)
which is distributed as xi for N sufficiently large. In the general case where the errors are

serially correlated or cross-sectionally heteroskedastic, using (4.20), under the null hypothesis,

Var (B p— I¢] Ve E) can be consistently estimated by*

o —

Var (BP - BFE) = %

Qe VrE N Qg y + Qe VENTQply (4.22)

_QE}QNVFEP,NQ;}N — QE}NVPFE,NQEE,N
where (see (3.14) and (3.20))

N T

N T
QFE,N:%ZZ th_Xz th_ii)/; QP,N:%ZZ th Xlt_x)

i=1 t=1 i=1 t=1

*See Pesaran (2015, pp 653-655).
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and

1 N 1 N
Vepn = —= 3 XiMrafa;/MrX, Venr = — Y Xii onsl) 16X
LS4t
) NT 7 () ) g NT W, i,
=1 i=1
1 N
- . A y L .
i=1
/ -~ 7 </ < = 5
where XZ = (Xﬂ’XiQ’ ce 7XiT) ’ u;k = MT (yl - XZIBFE> ’ X’L = (Xil — X, X2 — X, ..., X7 — X) )
N ~ ~ ~ /. ~ — =\ 7
W, 015 = (Gi1,0LS, Wi2,0LS; - WiT,0LS) With @it ors =yt —§ — (xie —X) Bp for t =1,...,T,

and My = Iy — 77(757r) " 17) with 77 being a vector of ones of length T.

5 Monte Carlo simulations

To compare the performance of the FE and pooled least square estimators when 7' is fixed as
well as Zf\il In;| = O(N?), we conduct several Monte Carlo simulations. The data generating

process (DGP) is given by
Yit = 1+ni+w1,it/81+x27it52+uit7 1= 17277N7t: 1727"'7T7

with 8, = L and 3, = 2, N = 100, 500, 1000, 2000 and 7" = 3,5, 10. We assume u;; ~ iidN (0, 02),
with 02 ~ TIDx%(2), n; ~ #dN(0,2) for i = 1,2,...,[N% and n; = 0, for i = [N°] 4+ 1,[N?] +
2,...,N. We let § to take the following values 1, 0.95, 0.75, 0.5, 0.4, 0.25 and 0. The elements

of Xt = (z1,i¢, T2,4) , are generated as
i =1+ aj;+ gjm; +wjq, for j =1,2,
with oj; ~ 9dN(0,1), gj+ ~ IIDU[0.1,0.9] and w;; generated by

Wijit = PjiWkit—1 t Ejit for j =1,2,

where wj0 = 0, p;; ~ IIDU[0.05,0.95], gji0 = 0, and ;s ~ iidN(0,05 ;) with o3 _; ~
IIDx?(2) for j = 1,2. For the DGP described above, the first 50 observations are discarded,
and the number of replications is set to 1000.

We compute the PLS and FE estimates and the associated bias, absolute bias and RMSE.
These estimation results are summarized in Table 1-6. As suggested by the theory the RMSE
of the PLS estimator is much smaller than those of the FE estimator for values of § < 1/2.
However, the PLS estimator starts to show significant bias as § is allowed to increase beyond

the 1/2 threshold, and the RMSE of PLS estimator is much larger than the FE estimator.
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The results of the poolability test using the Hausman type statistic are summarized in Table
7. We can observe that the empirical size is very close to the 5% nominal value when § < 0.25,
which makes sense since for all our combinations of (IV,7T), the minimum d is 0.1445 and the
maximum d is 0.5. The proposed poolability test has good power for values of § > (1 — d)/2,
as predicted by the theory.

6 Conclusion

This paper introduces a new approach to the analysis of the relative efficiency of fixed effects
and pooled least square estimators for standard panel data models. We show that the potential
benefit from pooling is directly related to the degree with which the heterogeneity of individual
effects is pervasive across the individual units in the panel. We characterize this feature by an
exponent, d, and show that pooled least square estimator is consistent for values of § < 1. Our
specification allows for non-zero correlations between the individual effects and the regressors
which renders the pooled least squares and random effects inconsistent if § = 1. We also derive
the asymptotic distributions of the pooled least squares, FE and RE estimators for different
values of ¢ and establish the relative efficiency of the pooled least squares estimator over the FE
estimator when § < (1 —d)/2, where d is given by In7'/In N. We also propose a Hausman type
diagnostic test of poolability. The theoretical results are supported by small sample evidence

from Monte Carlo experiments.
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Table 7: Empirical rejection frequencies for the Hausman type test at 5% significance level

)
N T 0 0.25 0.4 0.45 0.5 0.55 0.75 0.95 1
3 161% | 74% | 7.6% | 7.3% | 87% | 88% | 22.5% | 74.2% | 90.6%
100 5 | 7.6% | 5.7% | 82% | 81% | 10.2% | 15.5% | 56.7% | 99.4% | 100%
10 | 5.2% | 6.7% | 14.2% | 12.2% | 20.7% | 3.85% | 98.5% | 100% | 100%
5.6% | 52% | 7.5% | 82% | 85% | 11.5% | 59.8% | 100% | 100%
500 5 | 59% | % | 74% | 14.4% | 13.2% | 26.8% | 99.2% | 100% | 100%
10 | 4.6% | 5.6% | 11.3% | 37.9% | 36.9% | 88.5% | 100% | 100% | 100%
31 ™% 6% 6% % 81% | 92% | 71.3% | 100% | 100%
1000 5 | 7.1% | 5.9% | 8.1% | 13.4% | 14.5% | 26.8% | 100% | 100% | 100%
10 | 5.2% | 6.2% | 21.9% | 23% | 53.9% | 94.4% | 100% | 100% | 100%
42% | 5.4% | 5.9% | 83% | 92% | 10% | 88.7% | 100% | 100%
2000 5 | 45% | 6% | 6.9% | 15.4% | 18.4% | 31.5% | 100% | 100% | 100%

10 | 5.2% | 4.7% | 20.2% | 51.4% | 71.7% | 97% | 100% | 100% | 100%
Note: The 5% significance level for x? (2) is 5.991.
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