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Abstract 
 
This paper provides a new comparative analysis of pooled least squares and fixed effects 
estimators of the slope coefficients in the case of panel data models when the time dimension 
(T) is fixed while the cross section dimension (N) is allowed to increase without bounds. The 
individual effects are allowed to be correlated with the regressors, and the comparison is carried 
out in terms of an exponent coefficient, δ, which measures the degree of pervasiveness of the 
fixed effects in the panel. The use of exponent δ allows us to distinguish between poolability of 
small N dimensional panels with large T from large N dimensional panels with small T. It is 
shown that the pooled estimator remains consistent so long as δ < 1, and is asymptotically 
normally distributed if δ < 1/2, for a fixed T and as N → ∞. It is further shown that when δ < 
1/2, the pooled estimator is more efficient than the fixed effects estimator. We also propose a 
Hausman type diagnostic test of δ < 1/2 which could be used in practice as a simple test of 
poolability. In the case where N and T → ∞, such that T = O (Nd), for some d > 0, the condition 
for poolability generalizes to δ < (1 - d)/2. Monte Carlo evidence supports the main theoretical 
findings and gives some indications of gains to be made from pooling when δ < (1 - d)/2. 
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1 Introduction

This paper re-examines the issue of pooling in standard panel data models with exogenous

regressors in terms of an exponent coeffi cient, 0 ≤ δ ≤ 1, which measures the degree of perva-

siveness of correlated individual effects, defined by

N∑
i=1

E |ηi| = O
(
N δ
)
,

where N is the cross- section dimension of the panel, and ηi is the mean zero random part

of the individual effects. The use of exponent δ allows us to distinguish between poolability

of small N dimensional panels with large T from large N dimensional panels with small T .

A set of coeffi cients could be heterogeneous for a finite N , nevertheless can be deemed as

asymptotically homogeneous if their dispersion tends to zero as N → ∞. We use this idea to
motivate conditions under which pooling is valid in large N dimensional panels, both when T

is fixed and when it rises with N .

Throughout we allow for non-zero correlations between the individual effects and the re-

gressors, and as a result the pooled estimators will be biased in the standard case where δ = 1.

We show that the choice between the pooled least squares (PLS) estimator and the fixed effects

(FE) estimator depends on the value of δ, with the PLS estimator being consistent for all val-

ues of δ except when δ = 1. For inference, the validity of the PLS estimator requires δ < 1/2.

Both of these conditions are significantly weaker than the homogeneity assumption made in the

literature requiring that E |ηi| = 0 for all i. For example, when δ = 0 we could have a finite

number of non-zero E |ηi|, or more generally when E |ηi| = Kρi, for a fixed positive constant

K, and 0 < ρ < 1. This corresponds to the sparsity assumption often made in the context of

penalized regressions. But our analysis covers non-sparse structures by allowing the number

of non-zero E |ηi|’s to rise with N but not proportionately. The degree to which the number

of units with non-zero E |ηi| is allowed to rise with N is governed by δ. For example, when

δ = 1/2 the number of cross-section units with non-zero random effects could rise with
√
N ,

with the proportion of such units in total declining to zero at the rate of N−1/2.

The exponent of pervasiveness of individual effects is also closely related to the exponent of

cross-sectional dependence, α, recently introduced in Bailey et al. (2016) to measure the degree

of cross-sectional dependence in panels. Both exponents measure the degree of pervasiveness of

heterogeneity, δ relates to the heterogeneity of the individual effects , and α the heterogeneity

of factor loadings in a panel data model with a factor error structure. In a broad sense, δ can

also be viewed as an exponent of cross-sectional dependence applied to the intercepts viewed

as a common factor.
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Our analysis complements and provides further insights on the discussion of "pool or not to

pool" in the panel literature.1 See for example, Baltagi et al (2000), and Baltagi (2008). More

specifically, we derive the asymptotic properties of the pooled least squares estimator when N

is large and T is fixed for different values of δ, and derive the bias of PLS when δ = 1, and

show that the pooled estimator is more effi cient than the fixed effects estimator if δ < 1/2. We

also establish the asymptotic equivalence of random effects and PLS estimators when δ < 1.

In the case where N and T → ∞, such that T = O
(
Nd
)
, for some d > 0, the condition for

poolability generalizes to δ < (1−d)/2. Monte Carlo simulations are conducted to compare the

finite sample properties of PLS and FE estimators. The results confirm the main theoretical

findings and give some indication of the magnitudes of the gains involved from pooling when

δ < (1− d)/2.

The analysis of this paper also shows the importance of knowing δ in the choice between

PLS (or RE) and FE estimators. In the case of large N and T panels estimation of δ can be

carried out using the approach of Bailey et al. (2016). But for short T panels, which is of

concern in this paper, such an approach will not be applicable and other suitable techniques

will be required. Accordingly, we also propose a Hausman type diagnostic test of δ < (1− d)/2

which could be used in practice as a simple test of poolability of panel data models.

The rest of the paper is organized as follows. Section 2 sets out the model and its as-

sumptions. Section 3 presents the main theoretical results on the consistency and asymptotic

normality of PLS and FE estimators in terms of different values of δ. The diagnostic test of

poolability is presented in Section 4. Monte Carlo simulations are provided in Section 5, with

some concluding remarks in Section 6.

2 Panel data model

Consider the standard panel data model

yit = αi + β′xit + uit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T (2.1)

αi = α+ ηi for i = 1, 2, ..., N, (2.2)

where αi are the individual effects, xit is a k × 1 vector of regressors which we decompose as

xit = ηigt + wit, for i = 1, 2, . . . , N ; t = 1, 2, . . . , T. (2.3)
1There is also a related literature that considers the problem of pooling more generally and discusses the issue

of pooling in the case of panel data models with heterogenous slopes. As a recent example, see Paap, Wang

and Zhang (2015) and references cited therein. In this paper we focus on the issue of pooling in the context of

standard panel data models with homogeneous slopes. But our approach and generalization of the concept of

cross-sectional heterogeneity can also be applied to panel data models with heterogeneous slopes.
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ηigt represents the part of xit which is correlated with the individual effects , αi, with gt being

a k × 1 vector of time effects, and wit is the part of xit which is distributed independently of

the individual effects . This is a fairly general specification which allows for non-zero, possibly

time-varying, correlations between xit and αi, and allows the regressors to have individual-

specific effects and be cross-sectionally correlated. Additional individual-specific effects can be

included in xit through wit. For example, using (2.3), and assuming that ḡ = T−1
∑T

t=1 gt 6= 0,

then

ηi = π′x̄i + vi, (2.4)

where ,

π′ =
(
ḡ′ḡ
)−1

ḡ′, vi = −
(
ḡ′ḡ
)−1

ḡ′w̄i,

x̄i = T−1
T∑
t=1

xit, and w̄i = T−1
T∑
t=1

wit,

which is the same as Mundlak (1978) formulation of the individual effects in standard panel

data models.

Throughout we assume T is fixed and carry out our analysis for N large. Except for the

assumption regarding the individual effects, ηi, we make the following standard assumptions:

Assumption 1: The individual effects, ηi for i = 1, 2, ..., N, are either deterministic and

bounded (i.e. |ηi| < K), or stochastic with second order moments, E
(
η2i
)
< K, and distributed

independently of gt and wjt for all i, j and t; satisfying the conditions2

N−1
N∑
i=1

E |ηi|s = O
(
N δ−1

)
, for s = 1 and 2, where 0 ≤ δ ≤ 1. (2.5)

Remark 2.1 The conditions of Assumption 1 are satisfied, for example, if there exists an

ordering of the individual units such that for δ in the range [0, 1]

ηi = εi, for i = 1, 2, ...., [N δ],

= 0, for i = [N δ] + 1, [N δ] + 2, ..., N

where {εi , i = 1, 2, ..., N} is a sequence of random variables with zero means and finite variances
such that

lim
M→∞

(
M−1

M∑
i=1

E |εi|s
)

= O(1), for s = 1 and 2.

2K represents a generic finite positive constant.
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Then,

N−1
N∑
i=1

E |ηi|s = N δ−1

N−δ [Nδ]∑
i=1

|εi|s
 = O

(
N δ−1

)
.

Note that the above result holds even if ε′is are cross-sectionally correlated. Furthermore, the

condition that ηi = 0, for i = [N δ] + 1, [N δ] + 2, ..., N , can be relaxed by requiring. (See also

Bailey et al. (2016)).
N∑

i=[Nδ]+1

E |ηi|s = O(1), for s = 1 and 2 .

This condition holds, for example, if E |ηi|s = κisρ
i
s for i = [N δ] + 1, [N δ] + 2, ..., N , where κis

are finite positive constants and 0 ≤ ρs < 1.

Remark 2.2 Conditions (2.5) also imply

N−1
N∑
i=1

η2i = Op

(
N δ−1

)
, and N−1

N∑
i=1

|ηi| = Op

(
N δ−1

)
.

These results follow by application of Markov inequality to (2.5).

Assumption 2: (a) uit is distributed independently of ηj and wjt′ for all i, j, t, and t′. (b)

uit ∼ IID(0, σ2u), 0 < σ2u < K, and E |uit|4+ε < K, for some small positive ε.

Assumption 3: The time effects, gt, are bounded such that ‖gtg′t‖ < K < ∞, if gt is

deterministic and E ‖gtg′t‖ < K < ∞, if gt is stochastic. ‖A‖ represents the Frobenius norm
of A defined by Tr (AA′)1/2.

Assumption 4: The variables, wit, are either deterministic and bounded, namely ‖wit‖ <
K <∞, or they satisfy the moment conditions E ‖wit − w̄i‖2 < K <∞, for all i and t, where
w̄i = T−1

∑T
t=1wit. Similarly, E ‖w̄i − w̄‖2 < K <∞, for all i, where w̄ =N−1

∑N
i=1 w̄i.

Assumption 5: The k × k matrices

ΩP,N =
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (wit − w̄)′ ,

ΩFE,N =
1

NT

N∑
i=1

T∑
t=1

(wit − w̄i) (wit − w̄i)
′ ,

are positive definite for all N , and as N → ∞. The probability limits of ΩP,N and ΩFE,N , as

N tends to infinity, will be denoted by ΩP and ΩFE , respectively.

Remark 2.3 Note that E ‖wit − w̄i‖ ≤
[
E ‖w̄i − w̄‖2

]1/2
< K < ∞, and E ‖w̄i − w̄‖ ≤[

E ‖w̄i − w̄‖2
]1/2

< K <∞. Hence under Assumption 4 we also have

E ‖(wit − w̄)‖ = E ‖(wit − w̄i + w̄i − w̄)‖ ≤ E ‖(wit − w̄i)‖+E ‖(w̄i − w̄)‖ < K <∞. (2.6)
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3 Pooled least squares and FE estimators

The PLS and FE estimators, β̂P and β̂FE , respectively, can be written as

β̂P = Q−1P,NqP,N , (3.1)

and

β̂FE = Q−1FE,NqFE,N , (3.2)

where

QP,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (xit − x̄)′ , qP,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (yit − ȳ) , (3.3)

QFE,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (xit − x̄i)
′ , qFE,N =

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (yit − ȳi) , (3.4)

and

x̄ = (NT )−1
N∑
i=1

T∑
t=1

xit, ȳ = (NT )−1
N∑
i=1

T∑
t=1

yit, (3.5)

x̄i = T−1
T∑
t=1

xit, ȳi = T−1
T∑
t=1

yit. (3.6)

To derive the properties of these estimators, using (2.3), we first note that

xit − x̄ = (ηigt − η̄ḡ) + (wit − w̄) , (3.7)

and

yit − ȳ = ηi − η̄ + β′ (xit − x̄) + (uit − ū), (3.8)

where

ḡ = T−1
T∑
t=1

gt, η̄ = N−1
N∑
i=1

ηi, and ū = N−1
N∑
i=1

ui.

3.1 The PLS estimator

Starting with the PLS estimator, using (3.7) in (3.3) we have

QP,N =
1

NT

N∑
i=1

T∑
t=1

(ηigt + wit − η̄ḡ − w̄) (ηigt + wit − η̄ḡ − w̄)′

=
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (wit − w̄)′ +

(
N−1

N∑
i=1

η2i

)(
T−1

T∑
t=1

gtg
′
t

)
− η̄2

(
ḡḡ′
)

+
1

NT

N∑
i=1

T∑
t=1

ηi
[
(wit − w̄) g′t + gt (wit − w̄)′

]
. (3.9)
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Similarly, using (3.8) in (3.3) we have

qP,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (yit − ȳ)

=
1

NT

N∑
i=1

T∑
t=1

(xit − x̄)
[
ηi − η̄ + β′ (xit − x̄) + uit − ū

]
= QP,Nβ +

1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (ηi − η̄ + uit − ū) ,

which upon using (3.7) can be written as

qP,N = QP,Nβ +
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (ηi + uit) +
1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ) (ηi + uit) , (3.10)

which in turn yields

β̂P = β + Q−1P,N

[
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (ηi + uit) +
1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ) (ηi + uit)

]
.

(3.11)

Furthermore,

1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ) (ηi + uit) =
1

NT

N∑
i=1

T∑
t=1

(
η2igt − η̄ηiḡ

)
+

1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ)uit

=
1

N

N∑
i=1

(
η2i − η̄ηi

)
ḡ +

1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ)uit

=

[
N−1

N∑
i=1

(ηi − η̄)2
]

ḡ +
1

NT

N∑
i=1

T∑
t=1

ηigtuit − η̄ḡū.(3.12)

But under Assumption 1 we have

N−1
N∑
i=1

E |ηi|2 = O
(
N δ−1

)
, and E |η̄| ≤ N−1

N∑
i=1

|ηi| = O
(
N δ−1

)
, (3.13)

and since ηi is distributed independently of ḡ and uit, then

E

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(ηigt − η̄ḡ) (ηi + uit)

∣∣∣∣∣ ≤
[
N−1

N∑
i=1

E (ηi − η̄)2
]
E (‖|ḡ|‖)

+ sup
i,t
E |uit| sup

t
E (‖gt‖)

(
N−1

N∑
i=1

E |ηi|
)

+ E |η̄|E |ū|E (‖|ḡ|‖)

= O
(
N δ−1

)
7



Similarly∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ηi
[
(wit − w̄) g′t + gt (wit − w̄)′

]∥∥∥∥∥ ≤ 2

NT

N∑
i=1

T∑
t=1

|ηi| ‖(wit − w̄)‖ ‖gt‖

=
2

N

N∑
i=1

|ηi|
[
T−1

T∑
t=1

‖(wit − w̄)‖ ‖gt‖
]
,

and since under Assumption 1, ηi is distributed independently of gt and wit, we have

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ηi
[
(wit − w̄) g′t + gt (wit − w̄)′

]∥∥∥∥∥ ≤ 2

N

N∑
i=1

E |ηi|
[{

T−1
T∑
t=1

E [‖(wit − w̄)‖ ‖gt‖]
}]

.

However, by Cauchy—Schwarz inequality and under Assumptions 3 and 4

E [‖(wit − w̄)‖ ‖gt‖] ≤
[
E ‖(wit − w̄)‖2

]1/2 [
E ‖gt‖2

]1/2
< K,

and

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ηi
[
(wit − w̄) g′t + gt (wit − w̄)′

]∥∥∥∥∥ ≤ 2K

N

N∑
i=1

E |ηi| = O
(
N δ−1

)
.

Using (3.13) and the above result in (3.9) we obtain

QP,N =
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (wit − w̄)′ +Op

(
N δ−1

)
,

which establishes that under δ < 1 (for a fixed T and as N →∞)

QP,N →p ΩP = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄) (wit − w̄)′

]
> 0. (3.14)

Consider now the second component of (3.11), and note from (3.12) that since by assumption

ηi, uit, and gt are distributed independently, then

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ηigtuit

∥∥∥∥∥ ≤ 1

NT

N∑
i=1

T∑
t=1

E |ηi|E ‖gt‖E |uit|

≤ K

N

N∑
i=1

E |ηi| = O
(
N δ−1

)
.

Hence, in view of (3.14) and using the above results we have

β̂P = β + Ω−1P

[
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (ηi + uit)

]
+Op

(
N δ−1

)
. (3.15)
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Furthermore
1

NT

N∑
i=1

T∑
t=1

(wit − w̄) ηi =
1

N

N∑
i=1

(w̄i − w̄) ηi,

and since by Assumption 1, ηi and w̄i − w̄ are independently distributed and by Assumption

4, E ‖w̄i − w̄‖ < K, then

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(wit − w̄) ηi

∥∥∥∥∥ ≤ 1

N

N∑
i=1

E |ηi|E ‖w̄i − w̄‖ ≤ K

N

N∑
i=1

E |ηi| = O
(
N δ−1

)
.

Therefore, (3.15) simplifies further to

β̂P = β + Ω−1P

[
1

NT

N∑
i=1

T∑
t=1

(wit − w̄)uit

]
+Op

(
N δ−1

)
. (3.16)

Using this result and noting that under Assumptions 2 and 4,

1

NT

N∑
i=1

T∑
t=1

(wit − w̄)uit →p 0,

we have the following proposition.

Proposition 3.1 Consider the panel data model given by equations (2.1), (2.2) and (2.3) and

suppose that Assumptions 1-5 hold. Then the pooled least square estimator defined by (3.1) is

consistent for estimation of β, as long as δ < 1.

Remark 3.2 The bias of the pooled least squares estimator in the case of δ = 1 is given by

p lim
N→∞

(
β̂P

)
= β + σ2ηQ

−1
P ḡ,

where

σ2η = lim
N→∞

N−1
N∑
i=1

(ηi − η̄)2 ,

and

QP = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

E
[
(xit − x̄) (xit − x̄)′

]
.

For a derivation see Section 26.3 in Pesaran (2015). As a corollary it also follows that Haus-

man’s (1978) mis-specification test that compares the pooled and FE estimators will only be

consistent if δ < 1.
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To derive the asymptotic distribution of β̂P we note that

√
N
(
β̂P − β

)
= Ω−1P

[
1

T
√
N

N∑
i=1

T∑
t=1

(wit − w̄)uit

]
+Op

(
N δ−1/2

)
. (3.17)

Also under Assumptions 2, 4 and 5, using standard results from panel data literature, we have

(for a fixed T and as N →∞)

1

T
√
N

N∑
i=1

T∑
t=1

(wit − w̄)uit →d N
(
0,σ2uT

−1ΩP

)
.

Hence, for a fixed T and as N →∞
√
N
(
β̂P − β

)
→d N

(
0,σ2uT

−1Ω−1P
)
, if δ < 1/2. (3.18)

3.2 The FE estimator

Consider now the FE estimator, β̂FE , defined by (3.2). Then using (3.4) we obtain

√
N
(
β̂FE − β

)
= Q−1FE,N

[
1

T
√
N

N∑
i=1

T∑
t=1

(xit − x̄i) (uit − ūi)
]
. (3.19)

Noting that xit− x̄i = (wit − w̄i) + ηi (gt − ḡ), and yit− ȳi = β′ (xit − x̄i) + (uit − ūi), we also
have

QFE,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (xit − x̄i)
′

=
1

NT

N∑
i=1

T∑
t=1

(wit − w̄i) (wit − w̄i)
′ +

1

NT

N∑
i=1

T∑
t=1

ηi (wit − w̄i) (gt − ḡ)′

+
1

NT

N∑
i=1

T∑
t=1

ηi (gt − ḡ) (wit − w̄i)
′ +

(
1

N

N∑
i=1

η2i

)(
1

T

T∑
t=1

(gt − ḡ) (gt − ḡ)′
)
,

and

1

T
√
N

N∑
i=1

T∑
t=1

(xit − x̄i) (uit − ūi) =
1

T
√
N

N∑
i=1

T∑
t=1

[(wit − w̄i) + ηi (gt − ḡ)] (uit − ūi)

=
1

T
√
N

N∑
i=1

T∑
t=1

(uit − ūi) (wit − w̄i)

+
1

T
√
N

N∑
i=1

T∑
t=1

ηi (uit − ūi) (gt − ḡ) .
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Under Assumptions 1-4, using the above results and following the same line of reasoning as in

Section 3.1 we have (for a fixed T and as N →∞)

QFE,N = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄i) (wit − w̄i)

′]
+

(
1

N

N∑
i=1

E
(
η2i
))( 1

T

T∑
t=1

E
[
(gt − ḡ) (gt − ḡ)′

])
= ΩFE +Op

(
N δ−1

)
, (3.20)

where

ΩFE = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄i) (wit − w̄i)

′] . (3.21)

Similarly, since ηi is distributed independently of uit and gt, then

E

∣∣∣∣∣ 1√
NT

N∑
i=1

T∑
t=1

ηi (uit − ūi) (gt − ḡ)

∣∣∣∣∣ ≤ 1√
NT

∣∣∣∣∣
N∑
i=1

T∑
t=1

E |ηi|E |(uit − ūi) (gt − ḡ)|
∣∣∣∣∣

≤ sup
i
E |(uit − ūi) (gt − ḡ)|

(
N−1/2

N∑
i=1

E |ηi|
)
.

But E |(uit − ūi) (gt − ḡ)| ≤
[
E (uit − ūi)2

]1/2 [
E ‖gt − ḡ‖2

]1/2
< K, and by Assumptions 1

and 2, it follows that

E

∣∣∣∣∣ 1√
NT

N∑
i=1

T∑
t=1

ηi (uit − ūi) (gt − ḡ)

∣∣∣∣∣ ≤ O (N δ−1/2
)
.

Finally, under Assumptions 2-4, using standard results from panel data literature we have

1

T
√
N

N∑
i=1

T∑
t=1

(uit − ūi) (wit − w̄i)→d N
(
0,σ2uT

−1ΩFE

)
,

where ΩFE is already defined by (3.21).

Consequently, combining the above derivation yields

√
N
(
β̂FE − β

)
= Q−1FE,N

[
1

T
√
N

N∑
i=1

T∑
t=1

(wit − w̄i) (uit − ūi)
]

+O
(
N δ−1/2

)
. (3.22)

Therefore, for a fixed T and as N →∞, we have
√
N
(
β̂FE − β

)
→d N

(
0,σ2uT

−1Ω−1FE
)
, for δ < 1/2. (3.23)

Using (3.18) and the above result now yields the following proposition

11



Proposition 3.3 Suppose that the exponent coeffi cient, δ, defined by Assumption 1, is less

than 1/2, and Assumptions 1-5 hold. Then for a fixed T , and as N →∞
√
NT

(
β̂P − β

)
→d N

(
0, σ2uΩ

−1
P

)
,

and √
NT

(
β̂FE − β

)
→d N

(
0, σ2uΩ

−1
FE

)
.

Furthermore, β̂P is asymptotically more effi cient than β̂FE, as long as δ < 1/2.

Remark 3.4 In the case where T = O
(
Nd
)
, for some d > 0, the condition for β̂P to be

asymptotically more effi cient than β̂FE is given by δ < (1 − d)/2, as N and T → ∞. This
result follows if the expressions in (3.17) and (3.22) are pre-multiplied by

√
T , and T replaced

by
(
Nd
)
. When N and T expand at the same rate, and d = 1, the FE estimator is always more

effi cient.

To establish the relative asymptotic effi ciency of β̂P we first note that[
AsyV ar

(√
TN β̂P

)]−1
−
[
AsyV ar

(√
TN β̂FE

)]−1
= σ−2u [ΩP −ΩFE ] . (3.24)

Also, we note that since

1

NT

N∑
i=1

T∑
t=1

(wit − w̄) (wit − w̄)′ =
1

NT

N∑
i=1

T∑
t=1

(wit − w̄i) (wit − w̄i)
′+

1

N

N∑
i=1

(w̄i − w̄) (w̄i − w̄)′ ,

then

ΩP = ΩFE + ΩC , (3.25)

where

ΩC = lim
N→∞

1

N

N∑
i=1

E
[
(w̄i − w̄) (w̄i − w̄)′

]
,

and by Assumption 5, ΩC is a positive definite matrix. Using (3.25) in (3.24) we have[
AsyV ar

(√
TN β̂P

)]−1
−
[
AsyV ar

(√
TN β̂FE

)]−1
= σ−2u ΩC > 0,

and hence

AsyV ar
(√

TN β̂FE

)
> AsyV ar

(√
TN β̂P

)
.

Consistent estimators of ΩP and ΩFE are given by QN,p and QN,FE , respectively. (see

(3.14)).
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3.3 Random effects and PLS estimators

Finally, it is easily seen that random effects (RE) and the pooled least squares estimators of β

are asymptotically equivalent. The RE estimator is given by (see, for example, Chapter 26 in

Pesaran (2015)).

β̂RE = (QFE,N + ψQC,N )−1 (qFE,N + ψqC,N ) ,

where QFE,N and qFE,N , are defined by (3.4),

QC,N = N−1
N∑
i=1

(x̄i − x̄) (x̄i − x̄)′ , qC,N = N−1
N∑
i=1

(x̄i − x̄) (yi − y) .

and

ψ =
σ2u

Tσ2η + σ2u
. (3.26)

However, under (2.5), σ2η = O
(
N δ−1), and for a fixed T , we have ψ = 1 +O

(
N δ−1), and using

(3.3) and (3.4) we obtain3

QFE,N + ψQC,N = (ψ − 1) QC,N + QP,N ,

qFE,N + ψqC,N = (ψ − 1) qC,N + qP,N

Hence (for a fixed T )

√
N
(
β̂RE − β̂P

)
→p 0, as N →∞, if δ < 1,

which establishes the asymptotic equivalence of random effects and pooled least squares esti-

mators as N →∞, for δ < 1 and a fixed T .

4 Diagnostic test of δ < 1
2

In the above analysis, we establish the asymptotic properties of pooled LS and FE estimator.

We also compare the effi ciency of PLS and FE in Proposition (3.3) and show that the PLS

estimator is more effi cient than the FE estimator when δ < 1
2 . Hence, it would be desirable

to use the PLS estimator for model (2.1) in terms of effi ciency if δ < 1/2. Here we propose a

Hausman type diagnostic test (Hausman, (1978)) for the test of

H0 : δ =
1

2
− ε, against H1 : δ ≥ 1/2, (4.1)

3Note tha QP,N = QFE,N +QC,N , and qP,N = qFE,N + qC,N .
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where 0 < ε ≤ 1
2 . Such a test will be based on the difference between the PLS and FE estimators.

For PLS estimator (3.1) and FE estimator (3.2) of model (2.1), both of them are consistent,

but under null hypothesis (4.1), (3.1) is more effi cient than (3.2). Let

q̂ = β̂P − β̂FE , (4.2)

then the Hausman test examines whether the PLS and FE estimators are significantly different.

Then under the null, we have

V ar (q̂) = V ar
(
β̂FE

)
− V ar

(
β̂P

)
, (4.3)

which can be estimated as

V̂ ar (q̂) = V̂ ar
(
β̂FE

)
− V̂ ar

(
β̂P

)
, (4.4)

where V̂ ar
(
β̂FE

)
and V̂ ar

(
β̂P

)
are the estimated covariance of β̂FE and β̂P obtained under

the assumption that errors, uit, are serially uncorrelated and homoscedastic. Under this setting,

the Hausman test statistics is given by

H = q̂′
[
V̂ ar (q̂)

]−1
q̂, (4.5)

which is distributed as χ2k for N suffi ciently large, where k is the number of regressors in model

(2.1).

If the Hausman test statistics (4.5) can’t reject the null hypothesis H0 in (4.1), then by using

the result in Proposition (3.3), it is more effi cient to pool the data and use the PLS estimator.

However, it should be noted that the above test does not apply if the errors uit are serially

correlated or cross-sectionally heteroskedastic. In this case, we can still show that both β̂P and

β̂FE are consistent, but neither is effi cient. Therefore, the Hausman formula for variance of the

difference doesn’t apply, namely V ar
(
β̂P − β̂FE

)
6= V ar

(
β̂FE

)
− V ar

(
β̂P

)
. But we notice

q̂ =
(
β̂P − β

)
−
(
β̂FE − β

)
, (4.6)

and

E
(
β̂P − β̂FE |X

)
= 0, (4.7)

by using the results in the previous section.

For the term (4.6), in order to control the effects of δ and sample sizes (N,T ), suppose now

T = O
(
Nd
)
, for some d > 0. In case T is fixed, then d is close to zero. For (4.2), we have

√
NT q̂ =

√
NT

(
β̂P − β

)
−
√
NT

(
β̂FE − β

)
,

14



and using the results in (3.17) and (3.22) we have

√
NT q̂ =

1√
TN

N∑
i=1

T∑
t=1

[
Q−1P,N (wit − w̄)−Q−1FE,N (wit − w̄i)

]
uit +Op

(
N δ+ d

2
−1/2

)
, (4.8)

where the first term will contribute to the limiting distribution, and the second will vanish if

δ +
d

2
− 1/2 < 0 or δ <

1

2
(1− d) . (4.9)

This is the same as the poolability condition discussed in Remark 3.4

Remark 4.1 It would be very interesting to point out that both δ and d have significant impact

on the validity of the test. From (4.8), the second term on the RHS will disappear if and only if

δ < 1
2 (1− d) . By definition of d, we have d = lnT/ lnN, thus we require δ < 1

2 (1− lnT/ lnN) .

It should be noted that lnT/ lnN will not be a small number even if T is fixed and N is large.

For instance, d = 0.1590 if N = 1000 and T = 3, and d = 0.2330 if N = 1000 and T = 5. As

a result, the magnitude of lnT/ lnN matters for the size of the Hausman type tests, a feature

which is apparent from the Monte Carlo simulations reported below.

For the implementation of the Hausman by direct derivations we have

V ar
(√

NT q̂
)

= NT × V ar
(
β̂P − β̂FE

)
= NTV ar

(
β̂P

)
+NTV ar

(
β̂FE

)
−NTCov

(
β̂FE , β̂P

)
−NTCov

(
β̂P , β̂FE

)
.(4.10)

and it can be shown that

NT × V ar
(
β̂P − β̂FE

)
= Q−1P

1

NT

N∑
i=1

T∑
t=1

σ2uE
[
(wit − w̄)2

]
Q−1P

+Q−1FE
σ2u
NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄i) (wit − w̄i)

′]Q−1FE
−Q−1FE

σ2u
NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄i) (wit − w̄)′

]
Q−1P

−Q−1P
σ2u
NT

N∑
i=1

T∑
t=1

E
[
(wit − w̄) (wit − w̄i)

′]Q−1FE +O
(
N δ−1

)
,(4.11)

which in turn gives[√
NTV ar

(
β̂P − β̂FE

)]−1/2√
NT

(
β̂P − β̂FE

)
→d N (0, Ik) ,
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and (
β̂P − β̂FE

)′ [
V ar

(
β̂P − β̂FE

)]−1 (
β̂P − β̂FE

)
→d χ

2
k,

i.e., the Hausman type test statistics (4.5).

For this variance term (4.11), it is infeasible since it depends on unobservable component

wit. In order to have a feasible estimator for this variance, we notice that under assumptions

A1, A3-A5,

V ar
(
β̂P

)
=

1

NT
Q−1P VPQ−1P + o (1) , (4.12)

where

VP = lim
N→∞

VP,N = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

γi(t, t
′) (wit − w̄) (wit − w̄)′ , (4.13)

with γi(t, t
′) = E

(
uitujt′ |X

)
= γi(t, t

′), if i = j and t 6= t′. And

V ar
(
β̂FE

)
=

1

NT
Q−1FEVFEQ−1FE,N + o (1) , (4.14)

where

VFE = lim
N→∞

VFE,N = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

γi(t, t
′) (wit − w̄i) (wit − w̄i)

′ . (4.15)

Furthermore, we can obtain

Cov
(
β̂FE , β̂P

)
=

1

NT
Q−1FEVFEPQ−1P + o (1) , (4.16)

where

VFEP = lim
N→∞

VFEP,N = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

γi(t, t
′) (wit − w̄i) (wit′ − w̄)′ , (4.17)

and

Cov
(
β̂P , β̂FE

)
=

1

NT
Q−1P VPFEQ−1FE + o (1) , (4.18)

with

VPFE = lim
N→∞

VPFE,N = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

γi(t, t
′) (wit′ − w̄) (wit − w̄i)

′ . (4.19)

Hence combining (4.12)-(4.18) yields

V ar
(
β̂P − β̂FE

)
=

1

NT

[
Q−1FEVFEQ−1FE + Q−1P VPQ−1P

−Q−1FEVFEPQ−1P −Q−1P VPFEQ−1FE

]
, (4.20)
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which reduces to the standard formula if it is assumed that the errors are serially uncorrelated

and homoskedastic. To see this note that in the case of serially uncorrelated errors, γi(t, t
′) = 0

if t 6= t′, and γi(t, t) = σ2u, we have

VFEP = lim
N→∞

1

NT

N∑
i=1

T∑
t=1

σ2u (wit − w̄i) (wit − w̄)′

= lim
N→∞

1

NT

N∑
i=1

T∑
t=1

σ2u (wit − w̄i) [(wit − w̄i) + (w̄i − w̄)]′

= σ2uΩFE + lim
N→∞

1

NT

N∑
i=1

T∑
t=1

σ2u (wit − w̄i) (w̄i − w̄)′

= σ2uΩFE .

Similarly, VPFE = σ2uΩFE . Therefore, in this case

V ar
(
β̂P − β̂FE |X

)
=

1

NT
σ2u

[
Ω−1FEΩFEΩ−1FE + Ω−1P ΩPΩ−1P
−Ω−1FEΩFEΩ−1P −Ω−1P ΩFEΩ−1FE

]

=
1

NT
σ2u
(
Ω−1FE −Ω−1P

)
= V ar

(
β̂FE

)
− V ar

(
β̂P

)
,

which accords with the Hausman’s variance formula in (4.3).

Given the consistent estimator of (4.20), a general Hausman test statistics of (4.1) has the

form

H̃ = q̂′
[

̂
V ar

(
β̂P − β̂FE

)]−1
q̂, (4.21)

which is distributed as χ2k for N suffi ciently large. In the general case where the errors are

serially correlated or cross-sectionally heteroskedastic, using (4.20), under the null hypothesis,

V ar
(
β̂P − β̂FE

)
can be consistently estimated by4

̂
V ar

(
β̂P − β̂FE

)
=

1

NT

[
Q−1FE,NV̂FE,NQ−1FE,N + Q−1P,NV̂P,NTQ−1P,N

−Q−1FE,NV̂FEP,NQ−1P,N −Q−1P,NV̂PFE,NQ−1FE,N

]
, (4.22)

where (see (3.14) and (3.20))

QFE,N =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (xit − x̄i)
′ ; QP,N =

1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (xit − x̄)′

4See Pesaran (2015, pp 653-655).
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and

V̂FE,N =
1

NT

N∑
i=1

X′iMT û∗i û
∗′
i MTXi, V̂P,NT =

1

NT

N∑
i=1

X̃′iûi,OLSû′i,OLSX̃i,

V̂FEP,N =
1

NT

N∑
i=1

X′iMT ûi,OLSû′i,OLSX̃i, V̂PFE,N = V̂′FEP,N ,

where X′i = (xi1,xi2, . . . ,xiT ) , û∗i = MT

(
yi −Xiβ̂FE

)
, X̃′i = (xi1 − x̄,xi2 − x̄, . . . ,xiT − x̄) ,

ûi,OLS = (ûi1,OLS , ûi2,OLS , ..., ûiT,OLS)′ with ûit,OLS = yit − ȳ − (xit − x̄)′ β̂P for t = 1, . . . , T ,

and MT = IT − τT (τ ′TτT )−1τ ′T with τT being a vector of ones of length T.

5 Monte Carlo simulations

To compare the performance of the FE and pooled least square estimators when T is fixed as

well as
∑N

i=1 |ηi| = O(N δ), we conduct several Monte Carlo simulations. The data generating

process (DGP) is given by

yit = 1 + ηi + x1,itβ1 + x2,itβ2 + uit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

with β1 = 1 and β2 = 2, N = 100, 500, 1000, 2000 and T = 3, 5, 10.We assume uit ∼ iidN(0, σ2i ),

with σ2i ∼ IIDχ2(2), ηi ∼ iidN(0, 2) for i = 1, 2, . . . , [N δ] and ηi = 0, for i = [N δ] + 1, [N δ] +

2, . . . , N. We let δ to take the following values 1, 0.95, 0.75, 0.5, 0.4, 0.25 and 0. The elements

of xit = (x1,it, x2,it)
′, are generated as

xj,it = 1 + αj,i + gj,tηi + wj,it, for j = 1, 2,

with αj,i ∼ iidN(0, 1), gj,t ∼ IIDU [0.1, 0.9] and wj,it generated by

wj,it = ρj,iwk,it−1 + εj,it, for j = 1, 2,

where wj,i0 = 0, ρj,i ∼ IIDU [0.05, 0.95], εj,i0 = 0, and εj,it ∼ iidN(0, σ2j,εi) with σ2j,εi ∼
IIDχ2(2) for j = 1, 2. For the DGP described above, the first 50 observations are discarded,

and the number of replications is set to 1000.

We compute the PLS and FE estimates and the associated bias, absolute bias and RMSE.

These estimation results are summarized in Table 1-6. As suggested by the theory the RMSE

of the PLS estimator is much smaller than those of the FE estimator for values of δ < 1/2.

However, the PLS estimator starts to show significant bias as δ is allowed to increase beyond

the 1/2 threshold, and the RMSE of PLS estimator is much larger than the FE estimator.
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The results of the poolability test using the Hausman type statistic are summarized in Table

7. We can observe that the empirical size is very close to the 5% nominal value when δ < 0.25,

which makes sense since for all our combinations of (N,T ) , the minimum d is 0.1445 and the

maximum d is 0.5. The proposed poolability test has good power for values of δ > (1 − d)/2,

as predicted by the theory.

6 Conclusion

This paper introduces a new approach to the analysis of the relative effi ciency of fixed effects

and pooled least square estimators for standard panel data models. We show that the potential

benefit from pooling is directly related to the degree with which the heterogeneity of individual

effects is pervasive across the individual units in the panel. We characterize this feature by an

exponent, δ, and show that pooled least square estimator is consistent for values of δ < 1. Our

specification allows for non-zero correlations between the individual effects and the regressors

which renders the pooled least squares and random effects inconsistent if δ = 1. We also derive

the asymptotic distributions of the pooled least squares, FE and RE estimators for different

values of δ and establish the relative effi ciency of the pooled least squares estimator over the FE

estimator when δ < (1−d)/2, where d is given by lnT/ lnN . We also propose a Hausman type

diagnostic test of poolability. The theoretical results are supported by small sample evidence

from Monte Carlo experiments.
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Table 7: Empirical rejection frequencies for the Hausman type test at 5% significance level
δ

N T 0 0.25 0.4 0.45 0.5 0.55 0.75 0.95 1

3 6.1% 7.4% 7.6% 7.3% 8.7% 8.8% 22.5% 74.2% 90.6%

100 5 7.6% 5.7% 8.2% 8.1% 10.2% 15.5% 56.7% 99.4% 100%

10 5.2% 6.7% 14.2% 12.2% 20.7% 3.85% 98.5% 100% 100%

3 5.6% 5.2% 7.5% 8.2% 8.5% 11.5% 59.8% 100% 100%

500 5 5.9% 7% 7.4% 14.4% 13.2% 26.8% 99.2% 100% 100%

10 4.6% 5.6% 11.3% 37.9% 36.9% 88.5% 100% 100% 100%

3 7% 6% 6% 7% 8.1% 9.2% 71.3% 100% 100%

1000 5 7.1% 5.9% 8.1% 13.4% 14.5% 26.8% 100% 100% 100%

10 5.2% 6.2% 21.9% 23% 53.9% 94.4% 100% 100% 100%

3 4.2% 5.4% 5.9% 8.3% 9.2% 10% 88.7% 100% 100%

2000 5 4.5% 6% 6.9% 15.4% 18.4% 31.5% 100% 100% 100%

10 5.2% 4.7% 20.2% 51.4% 71.7% 97% 100% 100% 100%
Note: The 5% significance level for χ2 (2) is 5.991.
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