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Abstract 
 
This paper estimates a bivariate VAR-GARCH(1,1) model to examine linkages between food 
and energy prices. The adopted framework is suitable to analyse both mean and volatility 
spillovers, and also allows for possible parameter shifts resulting from four recent events, 
namely: 1) the 2006 food crisis, 2) the Brent oil bubble, 3) the introduction of the Renewable 
Fuel Standard (RFS) policy, and 4) the 2008 global financial crisis. The empirical findings 
suggest that there are significant linkages between food and both oil and ethanol prices. Further, 
the four events considered had mixed effects, the 2006 food crisis and 2008 financial crisis 
leading to the most significant shifts in the (volatility) spillovers between the price series 
considered. 
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1 Introduction

The relationship between energy and food prices has been analysed extensively in the lit-

erature. Their behaviour in terms of trends and volatilities appears to be rather similar.

The recent crises in the period 2006-08 substantially affected these prices (e.g. wheat prices

increased from $3.8 to $8.8 per bushel, and corn prices from $2.6 to $7). This sharp increase

is a serious concern for the developing economies. According to the World Bank report (De

Hoyos and Medvedev, 2009), the impact of the recent crises on global welfare was to lead

between 75 and 160 million people into poverty. Furthermore, food-importing countries were

exposed to political instability and internal conflicts. The higher price volatility has also

generated additional uncertainty and had adverse effects on investment.

The links between energy and agricultural commodity prices were first analysed by Barnard

(1983). The three-fold increase in the demand for bio-fuel in recent years has led to the in-

troduction in the US in 2005 of the so-called the Renewable Fuel Standard (RFS) policy.

This requires vehicles to use Methyl Tertiary Butyl Ether (MTBE) as an oxygenate added

to gasoline to improve combustion and reduce harmful vehicle emissions. The MTBE ban is

in effect in New York and Connecticut, states that had previously accounted for a total of

42 percent of national MTBE consumption. The RFS policy was approved in 2005 but was

not enforced until June 2006. This new standard required motor fuels to contain a minimum

amount of fuel coming from renewable sources, such as biomass (e.g., ethanol), solar power

or wind energy. Since then, ethanol has been the only practical way to comply with the

new standard. Therefore, in mid-2006, ethanol became the only available gasoline additive

(Avalos, 2014). Abbott et al. (2009) described the link between food and fuel and argued

that these two markets were historically independent until 2006, when ethanol usage became

large enough to influence world energy prices. They calculated that bio-fuels and bio-fuel

policy each accounted for a quarter of the total price increase in 2008, and RFS policies for

a small percentage only. In addition, inflation and exchange rates also played an important

role.

The higher demand for ethanol oil as a bio-fuel alternative to natural oil has led to more

land being used for its production. The ‘food versus fuel claim’ posits that an increased

demand for bio-fuel production may result in less land allocated to food production, which

can lead to higher food prices. Bio-fuel production increased three-fold in the period 2006-

2012. De Gorter et al. (2013) argued that food prices increased owing to RFS policies in rich

countries only.

Most studies rely on standard supply and demand (e.g., Babcock, 2008) or equilibrium

frameworks to model both fuel and food prices (e.g., Zhang et al„ 2014; and Serra et al.,

2011b). These models have been criticised for not being sufficiently validated against his-

torical data and are plagued by poor performance (Hertel and Beckman, 2011; Serra and

Zilberman, 2013); in addition, equilibrium models mainly employ annual data, which is a

clear limitation. For instance, Timilsina et al. (2011) developed a multi-country, multi-sector

general equilibrium model and used recursive techniques to simulate various future oil price

scenarios and assess the corresponding impact on bio-fuels production, agricultural output,

land-use change and global food supply. One of the scenarios considered higher oil prices

leading to an increase in bio-fuel price and a decrease in food supply. The effects of exchange

rates have also been examined by other authors, such as Durvell et al. (2014), who estimated
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an error correction model for cereal, food and non-food consumer prices using monthly data

and found that agriculture and food have a dominant role in Ethiopia’s economy. Baquedano

et al. (2014) also used a (single equation) error correction model to test for market coin-

tegration and price transmission from macroeconomic factors to consumer prices for wheat,

rice, maize, and sorghum in the major urban centres of a selected number of countries in

Asia, Latin America, the Caribbean, and Sub-Saharan Africa. Their results confirm that

open economies are more vulnerable to international shocks. Hochman (2014) adopted a

multi-region framework dividing the world into regions, where demand for corn, rapeseed,

rice, soybean, and wheat is shown to consist of demand food/feed, inventory, and (where

applicable) bio-fuels. His results indicate that up to 25% of the price of corn can be affected

by bio-fuel prices and up to 7% of the price of soybean by energy prices. He also examined

the impact of shocks during periods when there are large inventories of food.

Very few papers examine the volatilities of energy and agricultural prices. For instance,

Serra (2013) estimated volatilities to investigate the impact of bio-fuels on food and fuel prices

up to 2013. Mcphail and Babcock (2012) showed that ethanol, RFS and the blend wall lead

to more inelastic demand for both corn and gasoline, which makes both the corn and gasoline

markets more susceptible to supply shocks and leads to greater price volatility. They also

estimated supply and demand elasticities for the US corn, ethanol, and gasoline markets using

a three-stage least squares approach to provide empirical evidence for their theoretical set-up.

Further, they developed a stochastic partial equilibrium model that explicitly accounts for

important sources of volatility in the corn-ethanol-gasoline links, including stochastic corn

yields and crude oil prices. Babcock and Jacinto (2011) argued that only 8% of the increase in

corn prices during the 2006-2009 period was the result of ethanol subsidies. They attributed

the remainder to market forces and other factors, such as droughts, floods, a severe US

recession, and two general commodity price surges. Ethanol policies, such as RFS, mandates

and blend wall regulations, can affect the price variability of both corn and gasoline. Qiu et al.

(2012) used a structural vector auto-regression (SVAR) model to show how supply/demand

structural shocks affect food and fuel markets. Their results support the hypothesis that

increased bio-fuel production may cause short-run food price increases but not long-run price

shifts. However, agricultural products, such as corn, are affected by their own trade shocks.

Their findings also suggest complementarity between ethanol and gasoline and the idea that

demand and supply market forces are the main drivers of food price volatility.

The study of volatility can benefit from high frequency data both because high frequency

volatility is easier to predict and because it has proven useful to forecast over longer horizons

(Andersen et al., 2003). The most popular view is that the grain price boom from 2006

was the result of many factors, with bio-fuels being just one of them, and that bio-fuel

policies account for only a fraction of the effects of bio-fuels (de Gorter et al., 2014). The

food crisis caused the price of wheat, corn and soybeans to double between 2006 and mid-

2008. Volatility issues and macro policies aimed at achieving more stable food and oil prices

have become increasingly important (Wright and Parkash, 2011). Reviews of the literature

investigating the economic impacts of bio-fuels have paid particular attention to structural

models (Kretschmer and Peterson, 2010). Zhang et al. (2009), using weekly data, examined

price volatility interactions between the US energy and food markets in the period 1989-2007

by estimating the BEKK model of Engle and Kroner (1995). Their results suggest that there
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is no relationship between fuel (ethanol, oil and gasoline) prices and agricultural commodity

(corn and soybean) prices. However, they did not control for the 2006 food crisis and the

2005 MTBE policy.

Headey (2011) and Serra (2013) argued that previous research has generally relied on a

specification of the variance-covariance matrix that does not allow for asymmetric impacts

of price increases and decreases on volatility. They found that the high volatility persistence

of commodity prices may be due to failing to account for structural breaks. Serra et al.

(2011a) also used a standard BEKK model to analyze volatility interactions between crude

oil, ethanol and sugarcane prices in Brazil using weekly prices during the 2000-2008 period. In

a related study on the same topic Serra (2011) used semi-parametric MGARCH models. Both

papers suggest that there is a relationship between sugar and energy prices. Wu et al. (2011)

estimated a restricted asymmetric MGARCH model using US corn and oil prices from 1992 to

2009 to investigate volatility spillovers between oil and corn prices. They concluded that corn

markets have become much more connected to crude oil markets after the implementation of

the Energy Policy Act of 2005. Du et al. (2011) used futures market prices for crude oil, corn

and wheat from 1998 to early 2009 to estimate stochastic volatility in these markets. The

correlation coefficient between the crude oil and corn markets is found to increase from 0.07 to

0.34 after October 2009, while that between the crude oil and wheat markets increased from

0.09 to 0.27, indicating a much tighter linkage between crude oil and agriculture commodity

markets in the second period. Trujillo-Barrera et al. (2012) estimated a similar model using

futures prices for crude oil, ethanol and corn from 2006 to 2011, and identified volatility

spillovers from the crude oil futures market to the ethanol and corn futures markets.

Nazlioglua et al. (2013) employed a univariate GARCH model and impulse responses

to examine volatility transmission between world oil and selected world agricultural com-

modity prices (wheat, corn, soybeans, and sugar). They considered two sub-periods, before

and after the food crisis, 01011986 − 31122005 and 01012006 − 21032011. Their
causality-in-variance tests suggest that there is no transmission between oil and the agricul-

tural commodity markets in the pre-crisis period, and no oil market volatility spillovers to

the agricultural markets (with the exception of sugar during the post-crisis period).

Gardebroek and Hernandez (2013) examined oil, ethanol and corn prices in the US be-

tween 1997 and 2011 and used a multivariate GARCH approach to estimated interdependence

and volatility spillovers across these markets. Their results indicate higher interaction be-

tween ethanol and corn markets in recent years and particularly after 2006, when ethanol

became the sole alternative oxygenate for gasoline. However, they observed significant volatil-

ity spillovers only from corn to ethanol prices but not the reverse. They also did not find

major cross-volatility effects from the oil to the corn markets. In another study using the

univariate GARCH (1, 1) and EGARCH models, Wang and Zhang (2014) examined price

volatility interactions between China’s energy and bulk commodity markets between 2001 and

2010. They split the sample before and after 2007 and found that there is greater volatility

clustering between the food and oil markets after the 2007 oil shock.

Olsen et al. (2014) used a univariate GARCH model for food prices only. They found

evidence of different structural breaks for energy and food commodities (such as grains)

respectively. The latter are more volatile than other commodities studied (metals) and display

bidirectional (linear and non-linear) feedback effects vis-à-vis stock price indices. These
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findings suggest not only that shocks to commodity demand and supply may have an impact

on aggregate price indices, but also that non-commodity shocks, as embodied in aggregate

price indices, may affect commodity prices linearly and nonlinearly. Chen et al. (2014)

identified in the crude oil market a structural break dated July 2004. Gorter et al. (2014)

showed that grain prices have increased significantly since 2006 owing to several factors.

Jebabli et al. (2014) focused on the recent financial crisis and its effects on volatility spillovers

between food and energy prices. Fan and Xu (2011) stressed that the recent bubble in oil

prices (2004-2008) and the resulting structural break should also be considered.

None of the papers mentioned above properly tested for and determined the dates of

possible structural breaks in the energy-food prices volatility spillovers. The present study

aims to fill this gap by examining the impact of well-known recent events on spillovers between

food and energy prices in both the first (mean) and second (volatility) moments in the context

of a VAR-GARCH model with a BEKK representation. Specifically, we consider the following

four events: i) the food crisis, dated January 2006, analysed by Nazilogue et al. (2013); ii) the

Brent oil bubble discussed by Fan and Xu (2011); iii) the June 2006 implementation of the

RFS Policy discussed by Abott (2009), Avalos (2014) and de Gorter et al. (2013); and finally

iv) the effect of the 2008 financial crisis (see Jebabli et al., 2014). The sample period goes

from 1997 to 2014, and the series analysed are ethanol and Brent oil as energy prices, and

corn, soybeans, sugar and wheat as food prices. The layout of the paper is as follows. Section

2 outlines the econometric model. Section 3 describes the data and presents the empirical

findings. Section 4 summarises the main findings and offers some concluding remarks.

2 The Econometric Model

We model the joint process governing energy prices (oil and ethanol) and food prices (corn,

soybeans, sugar and wheat) using a bi-variate VAR-GARCH(1,1) framework1. The model

has the following specification:

x = α+ βx−1 + γ−1 + u (1)

where x = ( ). The residual vector u = (1 2) is bi-variate and nor-

mally distributed, u | −1 ∼ (0), with its corresponding conditional variance covariance

matrix given by:

 =

"
11 12

12 22

#
(2)

The parameter vectors of the mean equation (1) are the constant α = (1 2) and the au-

toregressive term β = (11 12 + ∗12 + ∗∗12 + ∗∗∗12 + ∗∗∗∗12 | 21 + ∗21 + ∗∗21 + ∗∗∗21 + ∗∗∗∗21  22) 

We control for global stock market spillovers including the S&P 100 Index () in the mean

equation (this effect is measured by the parameters γ =(1 | 2))). The parameter matrices
for the variance Equation (2) are defined as 0, which is restricted to be upper triangular,

and two unrestricted matrices 11 and 11

To account for the possible effects of the recent crises, we include four dummy variables:

the first (denoted by ∗) captures the 2006 food crisis (Nazlioglu et al., 2013); the second
1The model is based on the GARCH(1,1)-BEKK representation proposed by Engle and Kroner (1995).
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(denoted by ∗∗), following Fan and Zu (2000), captures the oil crisis during the March
19, 2004 - June 6, 2008 period; the third (denoted by ∗∗∗) controls for the RFS policy
implementation, June 2006, as suggested by Avalos (2014); and finally the fourth (denoted

by ∗∗∗∗) corresponds to the 2008 global financial crisis (originating on 15 September 2008,
i.e. on the day of the collapse of Lehman Brothers) as suggested by Jebabli et al. (2014).

Therefore, the second moment will take the following form2:

 = 
0
00 +011

"
21−1 2−11−1
1−12−1 22−1

#
11 +011−111 (3)

where

11 =

"
11 12 + ∗12 + ∗∗12 + ∗∗∗∗12 + ∗∗∗∗12

21 + ∗21 + ∗∗21 + ∗∗∗21 + ∗∗∗∗21 22

#
;

11 =

"
11 12 + ∗12 + ∗∗12 + ∗∗∗∗12 + ∗∗∗∗12

21 + ∗21 + ∗∗21 + ∗∗∗21 + ∗∗∗∗21 22

#

Equation (3) models the dynamic process of  as a linear function of its own past

values, −1, and past values of the squared innovations
¡
21−1 

2
2−1

¢
. The BEKK model

guarantees by its construction that the covariance matrix in the system is positive definite.

Given a sample of  observations, a vector of unknown parameters  and a 2 × 1 vector of
variables x, the conditional density function for model (1) is:

 (x|−1; ) = (2)−1 ||−12 exp
Ã
−u

0


¡
−1


¢
u

2

!
(4)

The log-likelihood function is:

 =

X
=1

log  (x|−1; ) (5)

where  is the vector of unknown parameters. The standard errors are calculated using

the quasi-maximum likelihood methods of Bollerslev and Wooldridge (1992), which is robust

to the distribution of the underlying residuals.

3 Empirical Analysis

3.1 Data

We use daily data (from Datastream and US Commodity Research Bureau for ethanol) for

two energy price series (crude oil and ethanol) and four food price series (corn, soya bean,

sugar and wheat) over the period 15/9/1997-25/7/2014, for a total of 4246 observations.

Furthermore, as already mentioned, we control for stock market globalisation using a proxy

2Parameters (21) in Equation (3) measure the causality effect of variable 2 on variable 1, whereas

(21 + ∗21), (21 + ∗∗21)  (21 + ∗∗∗21 ) and (21 + ∗∗∗∗21 ) measure the possible effect of the 2006 food crises,

the 2004- 2008 oil bubble accumalation period, the mid 2006 RFS policy change, and the 2008 financial crisis,

respectively.
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for the global stock market index (US stock market index). We define daily returns as

logarithmic differences of energy and food price indices.

Please Insert Tables 1-2 and Figure 1 about here

Figure 1 shows energy and food price changes. The recent literature has suggested several

possible structural breaks affecting the spillovers between food and energy markets. Here we

consider the four breaks mentioned above. The descriptive statistics presented in Table 1

concern the two sub-periods before and after the 2006 food crisis. Post-crisis volatilities are

significantly higher for all commodity prices (but oil), and so are the standard deviations

(especially in the case of ethanol: it increases to 019 from 009). All food prices (but sugar)

reach a peak in the post-crisis sample. The mean values are rather similar. The increased

volatility and larger extreme events (measured by maximum and minimum values) observed

in the second sample affect, as one would expect, the Jarque-Bera statistics which indicate a

larger departure from normality in the post- compared to the pre-crisis sample.3

The sample correlations, reported in Table 2, are positive for all energy and food prices

in both subsamples, with the exception of that between ethanol and wheat (-0.003), which

is very close to zero. Further, there is a positive correlation between US stock prices and all

food and energy prices but oil and sugar in the pre-crisis sample and soybeans prices in the

post-crisis sample.

3.2 Hypotheses Tested

We test for mean and volatility spillovers, by placing restrictions on the relevant parameters;

specifically, we consider the following four sets of null hypotheses:

1. Tests of no spillovers from food to energy prices

01a: Food → energy: 12 = 0

01b: Food → energy after the first breakpoint: ∗12 = 0
01c: Food → energy after the second breakpoint: ∗∗12 = 0
01d: Food → energy after the third breakpoint: ∗∗∗12
01e: Food → energy after the fourth breakpoint: ∗∗∗∗12 = 0

2. Tests of no volatility spillovers from food to energy prices

02a: Food → energy: 21 = 21 = 0

02b: Food → energy after the first breakpoint: ∗21 = ∗21 = 0
02c: Food → energy after the second breakpoint: ∗∗21 = ∗∗21 = 0
02d: Food → energy after the third breakpoint: ∗∗∗21 = ∗∗∗21 = 0

02e: Food → energy after the fourth breakpoint: ∗∗∗∗21 = ∗∗∗∗21 = 0

3. Tests of no spillovers from energy to food prices

03a: Energy → food: 21 = 0

03b: Energy → food after the first breakpoint: ∗21 = 0
03c: Energy → food after the second breakpoint: ∗∗21 = 0
3Descriptive statistics for the remaining three breaks are available on request. They show a similar pattern

with higher energy and food price volatilities in the second subsample.
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03d: Energy → food after the third breakpoint: ∗∗∗21
03e: Energy → food after the fourth breakpoint: ∗∗∗∗21 = 0

4. Tests of no volatility spillovers from energy to food prices

04a: Energy → food: 12 = 12 = 0

04b: Energy → food after the first breakpoint: ∗12 = ∗12 = 0
04c: Energy → food after the second breakpoint: ∗∗12 = ∗∗12 = 0
04d: Energy → food after the third breakpoint: ∗∗∗12 = ∗∗∗12 = 0

04e: Energy → food after the fourth breakpoint: ∗∗∗∗12 = ∗∗∗∗12 = 0

3.3 Empirical Results

In order to test the adequacy of the models, Ljung—Box portmanteau tests were performed

on the standardised and squared residuals. Overall, the results indicate that the VAR-

GARCH(1,1) specification captures satisfactorily the persistence in returns and squared re-

turns of all the series considered. Cross-market dependence in the conditional mean and

variance vary in magnitude and sign across pairwise estimations. Note that the signs of

cross-market volatilities are not relevant. The estimated VAR-GARCH(1,1) model with as-

sociated robust standard errors and likelihood function values are presented in Tables 3 to

7.

Please Insert Tables 3-7 about here

We select the optimal lag length of the mean equation using the Schwarz Information

Criterion. The parameter estimates for the conditional means suggest statistically significant

spillovers-in-mean at the standard 5% significance level. In particular, spillovers from energy

prices, measured by 12, have a significant impact on all food prices, with the exception of

oil not affecting corn prices. Of the four breaks considered, the 2008 financial crisis, whose

effect is measured by ∗∗∗∗12 , has the most significant impact on the pairwise causality-in-mean

dynamics, with the exception of oil not affecting sugar and ethanol not affecting corn prices.

Concerning the conditional variance equations, the estimated “own-market” coefficients

are statistically significant and the estimates of 11 suggest a high degree of persistence.

The results reported in Tables 1 to 3 suggest the following. First, there are significant

volatility spillovers from oil to food prices .The coefficient (in absolute value) is largest in

the case of wheat (being equal to -0.371). The spillover effects increase after the oil price

turbulence (21 + ∗∗21), in particular for corn (0359). The effects of the 2008 financial crisis
(21 + ∗∗∗∗21 ) are less clear, the coefficients increasing (in absolute value) in the cases of corn

and ethanol, and decreasing in the case of soybeans, sugar and wheat, to −0037 0059 and
−0189, respectively. Instead there is no evidence of volatility spillovers from ethanol to food

prices. The effects of the introduction of the 2006 RFS policy (21+∗∗∗21 ) are mixed, leading
to an increase in the coefficient in the cases of soybeans (0013) and a decrease for sugar

(−0239). Overall, we find that spillovers running from the oil prices are bigger than those

originating from ethanol for all food prices considered.

As for volatility linkages, there is evidence of spillovers from food to oil and ethanol prices.

Also, they increase after the 2006 food crisis, whose effect is measured by ∗∗12, from sugar

and wheat to oil prices. On the contrary, the effects of the 2008 financial crisis (12 + ∗∗∗∗12 )
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on causality-in-variance from food to energy prices is statistically significant in all cases but

soybeans to oil and wheat to ethanol prices. Also, the exogenous variable is statistically

significant in all estimated models, indicating a positive 1 (US stock returns) effect, as one

would expect.

Overall, our results are in line with those from previous studies and suggest strong linkages

between food and energy markets. Despite being relatively mixed, they clearly show that

the four breaks considered all had an effect on both mean and variance spillovers, with the

2006 food crisis and the 2008 financial crisis affecting in particular spillovers from oil to food

prices, and the 2006 RFS policy having an impact mainly on the spillovers from ethanol to

food prices.

4 Conclusions

This paper has investigated mean and volatility spillovers between energy (ethanol and oil)

and four selected food (corn, soybeans, sugar and wheat) prices by estimating a VAR-GARCH

model with a BEKK representation. Moreover, it has examined the possible effects of four

recent events that might have resulted in shifts in the model parameters by including dummy

variables in both the conditional mean and variance equations. The four breaks considered

correspond to the following events: 1) the 2006 food crisis, 2) the Brent oil bubble, 3) the 2006

RFS policy implementation, and 4) the 2008 global financial crisis. The extensive dataset

analysed, the focus on both first- and second- moment linkages and the incorporation of

structural breaks into the multivariate GARCH specification all represent original contribu-

tions to the existing literature. To sum up, our findings confirm that food and energy prices

are tightly interconnected, and also provide evidence that the recent turbulence in the world

economy has affected their linkages, although no clear pattern emerges. Consequently, gen-

eral policies aimed at stabilising key food prices cannot be formulated: the specific linkages

between different markets need to be taken into account in order to devise appropriate policy

measures.
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Table 1: Descriptive Statistics

Corn Ethanol Oil Soybeans Stock Sugar Wheat

Whole Sample 15/9/1997-25/7/2014

Mean 0000 0000 0000 0000 0000 0000 0000

Median 0000 0000 0001 0001 0001 0000 0000

Maximum 0248 0253 0135 0073 0110 0142 0225

Minimum −0261 −0192 −0136 −0167 −0095 −0193 −0202
Std. Dev. 0022 0015 0022 0017 0013 0023 0021

Skewness −0235 −0176 −0064 −0716 −0215 −0302 0084

Kurtosis 19117 0949 6091 9125 1049 6717 13251

Jarque-Bera 41636 51380 16342 69583 99054 24942 18571

Observations 4221 4221 4221 4221 4221 4221 4221

Pre-Food Crisis 15/9/1997-31/12/2005

Mean 0000 0000 0000 0000 0000 0000 0000

Median 0000 0000 0001 0000 0000 0000 0000

Maximum 0091 0115 0130 0065 0056 0142 0084

Minimum −0102 −0045 −0136 −0167 −0071 −0193 −0023
Std. Dev. 0018 0009 0024 0016 0012 0021 0015

Skewness −0148 1443 −0139 −0910 −0063 −0250 −0023
Kurtosis 6562 21646 5172 12452 5911 6694 6874

Jarque-Bera 11219 32401 4278 31869 76567 12325 13391

Observations 2165 2165 2165 2165 2165 2165 2165

Post-Food Crisis 1/1/2006-25/7/2014

Mean 0000 0000 0000 0000 0000 0000 0000

Median 0000 0000 0001 0000 0000 0000 0000

Maximum 0249 0253 0135 0073 0110 0106 0226

Minimum −0261 −0192 −0111 −0127 −0095 −0130 −0202
Std. Dev. 0025 0019 0020 0017 0014 0023 0026

Skewness −0249 0776 0081 −0564 −0322 −0381 0107

Kurtosis 1965 3794 7457 6561 12662 6486 1101

Jarque-Bera 23492 4212 17419 11554 80894 19701 55489

Observations 2068 2068 2068 2068 2068 2068 2068

Note: Descriptive statistics for the whole sample 15/9/1997-25/7/2014, pre-food crisis 15/9/1997-31/12/2005,

and post-food crisis sample 1/1/2006-25/7/2014. Numbers are rounded to the third decimal.
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Table 2: Correlations

Corn Ethanol Oil Soybeans Stock Sugar Wheat

Whole Sample 15/9/1997-25/7/2014

Corn 1000 0021 0127 0158 0060 0041 0357

Ethanol 0021 1000 0032 0026 0007 0007 −0001
Oil 0126 0033 1000 0046 0067 0050 0111

Soya 0158 0026 0046 1000 0011 0038 0146

Stock 0060 0007 0067 0011 1000 0077 0016

Sugar 0041 0007 0050 0038 0077 1000 0007

Wheat 0357 −0001 0111 0146 0016 0008 1000

Pre Food Crises 15/9/1997-31/12/2005

Corn 1000 0023 0029 0304 0028 0056 0226

Ethanol 0023 1000 0057 0028 0015 0018 0009

Oil 0029 0057 1000 0041 −0018 0061 0033

Soya 0304 0028 0041 1000 0035 0032 0313

Stock 0028 0015 −0018 0035 1000 −0018 0000

Sugar 0056 0018 0061 0032 −0018 1000 0016

Wheat 0226 0009 0033 0313 0000 0016 1000

Post Food Crises 1/1/2006-25/7/2014

Corn 1000 0022 0226 0062 0080 0031 0415

Ethanol 0022 1000 0025 0027 0004 0002 −0003
Oil 0226 0025 1000 0054 0166 0035 0184

Soya 0062 0027 0054 1000 −0009 0045 0058

Stock 0080 0004 0166 −0009 1000 0177 0025

Sugar 0031 0002 0035 0045 0177 1000 0002

Wheat 0415 −0003 0184 0058 0025 0002 1000
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TABLE 3: Estimated VAR-GARCH(1,1) model, Oil-Corn and Ethanol-Corn

Oil = Corn Eth. = Corn Corn = Oil Corn = Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

1 0.001 (0171) 0.000 (0710) 2 0.000 (0596) 0.000 (0994)

11 -0.019 (0229) 0.225 (0000) 22 -0.013 (0510) -0.022 (0200)

12 0.003 (0606) 0.053 (0000) 21 -0.168 (0000) 0.013 (0294)

∗12 0.089 (0093) 0.046 (0475) ∗21 -0.089 (0077) 0.049 (0390)

∗∗12 -0.001 (0889) -0.062 (0000) ∗∗21 0.001 (0774) 0.021 (0095)

∗∗∗12 0.054 (0012) 0.065 (0025) ∗∗∗21 -0.054 (0062) -0.006 (0889)

∗∗∗∗12 0.027 (0000) -0.005 (0292) ∗∗∗∗21 0.178 (0000) -0.051 (0000)

1 0.025 (0231) 0.018 (0303) 2 0.023 (0356) 0.045 (0063)

Conditional Variance

11 0.003 (0000) 0.003 (0000) 22 0.008 (0000) 0.013 (0000)

12 -0.001 (0000) -0.002 (0001)

11 0.232 (0000) 0.371 (0000) 22 0.280 (0000) 0.278 (0000)

21 0.177 (0000) -0.006 (0868) 12 -0.023 (0207) -0.313 (0000)

∗21 -0.038 (0002) -0.040 (0293) ∗12 -0.017 (0700) 0.954 (0000)

∗∗21 -0.189 (0019) -0.030 (0680) ∗∗12 -0.097 (0020) -0.665 (0000)

∗∗∗21 0.182 (0000) -0.003 (0915) ∗∗∗12 0.078 (0086) -0.009 (0854)

∗∗∗∗21 0.093 (0000) -0.064 (0000) ∗∗∗∗12 -0.424 (0000) -0.541 (0000)

11 0.964 (0000) -0.754 (0000) 22 0.823 (0000) 0.619 (0000)

21 -0.116 (0000) 0.169 (0000) 12 -0.116 (0000) 0.247 (0000)

∗21 -0.038 (0002) -0.040 (0293) ∗12 0.025 (0000) 0.303 (0000)

∗∗21 -0.189 (0019) -0.030 (0680) ∗∗12 0.053 (0219) -0.261 (0002)

∗∗∗21 0.182 (0000) -0.003 (0915) ∗∗∗12 0.078 (0086) 0.170 (0000)

∗∗∗∗21 -0.275 (0000) 0.129 (0055) ∗∗∗∗12 0.093 (0000) -0.061 (0000)

Log-lik 21004985 23145820

(10) 10821

2
(10)

8251

(10) 5031

2
(10)

3137

(10) 5981 3356

2
(10)

5799 2117

Note: Standard errors (S.E.) are calculated using the quasi-maximum likelihood method of Bollerslev and

Wooldridge (1992), which is robust to the distribution of the underlying residuals. Parameters not statistically

significant at the 5% level are not reported. Q(10) and Q
2
(10)

are, respectively, the Ljung-Box test (1978) of

significance of autocorrelations of ten lags in the standardized and standardized squared residuals. Parameters

21 and 12 measure the causality effect of oil (ethanol) on food commodities,. and the causality in variance

effect, respectively The effects of the 1/1/2006, 20/3/2004, 6/6/2008 and 15/8/2004 crises are measured
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by (12 + ∗12)  (12 + ∗∗12)  (12 + ∗∗∗12 ) and (12 + ∗∗∗∗12 )  respectively. The same applies to the

effects on food volatilities. The covariance stationary condition is satisfied by all the estimated models, all the

eigenvalues of 11⊗11+11⊗11 being less than one in modulus. Note that in the conditional variance
equation, the sign of the parameters is not relevant. Numbers are rounded to the third decimal.
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TABLE 4: Estimated VAR-GARCH(1,1) model, Oil-Soybean and Ethanol-Soybean

Oil = Soybeans Eth. = Soybeans Soybeans = Oil Soybeans = Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

1 0.001 (0976) 0.190 (0000) 2 0.000 (0418) -0.002 (0006)

11 0.001 (0976) 0.190 (0000) 22 -0.114 (0181) 0.114 (0000)

12 0.068 (0001) 0.112 (0001) 21 -0.111 (0000) 0.045 (0456)

∗12 0.090 (0380) 0.099 (0042) ∗21 -0.082 (0068) -0.029 (0911)

∗∗12 -0.036 (0198) 0.043 (0000) ∗∗21 0.012 (0282) -0.057 (0341)

∗∗∗12 -0.085 (0287) 0.039 (0000) ∗∗∗21 -0.115 (0230) -0.511 (0001)

∗∗∗∗12 0.082 (0003) 0.042 (0000) ∗∗∗∗21 0.126 (0000) 0.190 (0002)

1 0.009 (0699) -0.010 (0620) 2 0.053 (0300) -0.118 (0250)

Conditional Variance

11 0.017 (0000) 0.007 (0000) 22 0.060 (0000) 0.057 (0000)

12 -0.002 (0754) -0.002 (0170)

11 0.261 (0032) 0.668 (0000) 22 -0.010 (0597) 0.272 (0000)

21 0.046 (0000) 0.017 (0225) 12 0.207 (0000) 0.230 000

∗21 0.037 (0000) 0.004 (0377) ∗12 0.036 (0794) -0.656 (0000)

∗∗21 -0.001 (0986) -0.169 (0000) ∗∗12 -0.003 (0983) -0.014 (0896)

∗∗∗21 -0.078 (0000) 0.013 (0000) ∗∗∗12 0.027 (0525) 0.295 (0000)

∗∗∗∗21 -0.009 (0000) -0.030 (0000) ∗∗∗∗12 -0.139 (0369) -0.309 (0000)

11 0.023 (0803) -0.036 (0239) 22 0.207 (0000) 0.130 (0000)

21 -0.248 (0000) 0.023 (0000) 12 -0.010 (0597) 0.272 (0000)

∗21 0.206 (0000) 0.130 (0000) ∗12 0.883 (0012) 1.067 (0000)

∗∗21 0.031 (0397) 0.000 (0959) ∗∗12 -1.309 (0000) -2.289 (0896)

∗∗∗21 0.027 (0263) 0.104 (0000) ∗∗∗12 0.934 (0008) 0.900 (0000)

∗∗∗∗21 0.118 (0000) -0.109 (0000) ∗∗∗∗12 1.032 (0008) 2.084 (0000)

Log-lik 221615 1908761

(10) 5520

2
(10)

8052

(10) 4453

2
(10)

2137

(10) 9456 8184

2
(10)

10859 7120

Note: See notes Table 3.
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TABLE 5: Estimated VAR-GARCH(1,1) model, Oil-Sugar and Ethanol-Sugar

Oil = Sugar Eth. = Sugar Sugar = Oil Sugar = Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

1 0.001 (0184) 0.000 (0693) 2 0.001 (0785) 0.000 (0793)

11 -0.013 (0427) 0.226 (0000) 22 -0.082 (0000) -0.081 (0000)

12 0.025 (0013) -0.059 (0000) 21 0.057 (0001) -0.030 (0374)

∗12 0.146 (0002) 0.011 (0819) ∗21 -0.148 (0001) -0.122 (0001)

∗∗12 -0.001 (0953) 0.030 (0000) ∗∗21 0.060 (0001) 0.097 (0001)

∗∗∗12 -0.010 (0788) 0.020 (0382) ∗∗∗21 -0.010 (0099) -0.193 (0001)

∗∗∗∗12 -0.007 (0451) 0.041 (0000) ∗∗∗∗21 -0.059 (0000) 0.081 (0001)

1 0.031 (0025) 0.006 (0769) 2 0.015 (0569) 0.043 (0072)

Conditional Variance

11 0.000 (0628) 0.002 (0007) 22 0.015 (0000) 0.019 (0000)

12 -0.009 (0000) -0.005 (0001)

11 0.187 (0000) 0.338 (0000) 22 0.381 (0000) 0.378 (0000)

21 0.097 (0019) -0.009 (0669) 12 -0.122 (0049) 0.072 (0606)

∗21 0.011 (0862) 0.035 (0208) ∗12 0.154 (0000) 0.213 (0009)

∗∗21 -0.045 (0642) 0.056 (0210) ∗∗12 0.064 (0650) 0.765 (0000)

∗∗∗21 -0.088 (0001) -0.239 (0002) ∗∗∗12 0.249 (0000) -0.911 (0000)

∗∗∗∗21 -0.038 (0773) 0.371 (0000) ∗∗∗∗12 -0.367 (0000) 0.700 (0000)

11 0.981 (0000) -0.843 (0000) 22 0.499 (0000) 0.218 (0026)

21 -0.223 (0079) -0.094 (0000) 12 0.156 (0008) -0.208 (0000)

∗21 -0.086 (0370) 0.482 (0000) ∗12 0.073 (0420) -0.006 (0866)

∗∗21 0.187 (0000) 0.003 (0973) ∗∗12 -0.117 (0279) 0.001 (0994)

∗∗∗21 0.055 (0164) 0.051 (0004) ∗∗∗12 -0.084 (0567) 0.081 (0172)

∗∗∗∗21 0.275 (0000) -0.049 (0000) ∗∗∗∗12 -0.119 (0432) 0.231 (0037)

Log-lik 20722895 22793120

(10) 9178

2
(10)

8123

(10) 3241

2
(10)

3255

(10) 5740 8837

2
(10)

6588 2312

Note: See notes Table 3.
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TABLE 6: Estimated VAR-GARCH(1,1) model, Oil-Wheat and Ethanol-Wheat

Oil = Wheat Eth. = Wheat Wheat = Oil Wheat = Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

1 0.001 (0004) 0.000 (0379) 2 0.000 (0619) 0.000 (0745)

11 -0.024 (0107) 0.271 (0000) 22 -0.049 (0001) -0.031 (0648)

12 0.037 (0000) 0.069 (0000) 21 0.033 (0000) -0.130 (0000)

∗12 -0.045 (0450) -0.037 (0381) ∗21 -0.091 (0291) -0.135 (0014)

∗∗12 -0.008 (0227) -0.110 (0000) ∗∗21 0.047 (0000) 0.099 (0000)

∗∗∗12 -0.060 (0000) 0.015 (0460) ∗∗∗21 -0.126 (0000) -0.186 (0000)

∗∗∗∗12 0.058 (0000) 0.054 (0000) ∗∗∗∗21 -0.080 (0000) 0.106 (0000)

1 0.028 (0122) 0.002 (0842) 2 0.008 (0705) -0.002 (0918)

Conditional Variance

11 0.006 (0000) 0.007 (0001) 22 0.008 (0000) 0.013 (0000)

12 -0.004 (0000) 0.000 (0807)

11 0.298 (0000) 0.314 (0000) 22 0.403 (0000) 0.393 (0000)

21 -0.371 (0000) -0.013 (0653) 12 -0.057 (0019) 0.016 (0000)

∗21 0.146 (0000) -0.386 (0000) ∗12 -0.078 (0040) 0.244 (0000)

∗∗21 0.134 (0035) 0.386 (0000) ∗∗12 0.084 (0123) -0.178 (0227)

∗∗∗21 0.058 (0000) 0.022 (0547) ∗∗∗12 -0.174 (0001) -0.361 (0000)

∗∗∗∗21 0.182 (0000) -0.206 (0021) ∗∗∗∗12 -0.252 (0001) -0.052 (0161)

11 0.867 (0001) 0.388 (0001) 22 0.403 (0000) 0.393 (0000)

21 0.794 (0001) 0.027 (0793) 12 -0.057 (0019) 0.106 (0000)

∗21 -0.381 (0000) 0.609 (0000) ∗12 -0.078 (0040) 0.244 (0000)

∗∗21 -0.113 (0030) -0.013 (0574) ∗∗12 0.084 (0123) -0.178 (0227)

∗∗∗21 0.176 (0001) 0.037 (0002) ∗∗∗12 -0.174 (0001) -0.361 (0000)

∗∗∗∗21 -0.112 (0005) -0.043 (0000) ∗∗∗∗12 -0.252 (0001) -0.052 (0161)

Log-lik 21140949 23212603

(10) 10364

2
(10)

6475

(10) 9446

2
(10)

4076

(10) 2804 7179

2
(10)

7757 4719

Note: See notes Table 3.
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TABLE 7: Estimated VAR-GARCH(1,1) model, Ethanol-Oil

Oil = Ethanol Ethanol = Oil

Conditional Mean

Coef. p-value Coef. p-value

1 0.001 (0025) 2 0.000 (0948)

11 0.011 (0518) 22 0.261 (0000)

12 0.120 (0000) 21 -0.072 (0000)

∗12 -0.047 (0510) ∗21 0.085 (0089)

∗∗12 0.082 (0000) ∗∗21 0.012 (0000)

∗∗∗12 -0.008 (0825) ∗∗∗21 0.002 (0946)

∗∗∗∗12 -0.162 (0000) ∗∗∗∗21 0.052 (0000)

1 0.021 (0401) 2 0.007 (0670)

Conditional Variance

11 0.014 (0000) 22 0.005 (0000)

12 -0.003 (0000)

11 0.309 (0000) 22 0.362 (0000)

21 0.082 (0226) 12 -0.039 (0102)

∗21 -0.854 (0000) ∗12 0.077 (0276)

∗∗21 0.238 (0540) ∗∗12 0.032 (0598)

∗∗∗21 0.751 (0024) ∗∗∗12 -0.137 (0029)

∗∗∗∗21 0.053 (0856) ∗∗∗∗12 -0.020 (0844)

11 -0.171 (0134) 22 0.450 (0000)

21 2.418 (0000) 12 0.046 (0000)

∗21 -1.256 (0074) ∗12 0.393 (0000)

∗∗21 -0.353 (0008) ∗∗12 0.112 (0002)

∗∗∗21 -0.286 (0734) ∗∗∗12 0.199 (0000)

∗∗∗∗21 -0.419 (0001) ∗∗∗∗12 0.369 (0004)

Log-lik 22781373

(10) 4745

2
(10)

8644

(10) 4258

2
(10)

7046

Note: See notes Table 3.
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Figure 1: Energy and Food Price Changes
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