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Abstract

This paper proposes a novel regularisation method for the estimation of large covariance
matrices, which makes use of insights from the multiple testing literature. The method tests
the statistical significance of individual pair-wise correlations and sets to zero those elements
that are not statistically significant, taking account of the multiple testing nature of the
problem. The procedure is straightforward to implement, and does not require cross
validation. By using the inverse of the normal distribution at a predetermined significance
level, it circumvents the challenge of evaluating the theoretical constant arising in the rate of
convergence of existing thresholding estimators. We compare the performance of our multiple
testing (MT) estimator to a number of thresholding and shrinkage estimators in the literature
in a detailed Monte Carlo simulation study. Results show that our MT estimator performs well
in a number of different settings and tends to outperform other estimators, particularly when
the cross-sectional dimension, N, is larger than the time series dimension, T: If the inverse
covariance matrix is of interest then we recommend a shrinkage version of the MT estimator
that ensures positive definiteness.
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1 Introduction

Robust estimation of large covariance matrices is a problem that features prominently in a number
of areas of multivariate statistical analysis (Anderson (2003)). In finance it arises in portfolio selec-
tion and optimisation (Ledoit and Wolf (2003)), risk management (Fan et al. (2008)) and testing
of capital asset pricing models (Sentana (2009); Pesaran and Yamagata (2012)) when the number
of assets is large. In global macro-econometric modelling with many domestic and foreign channels
of interaction, large error covariance matrices must be estimated for impulse response analysis and
bootstrapping (Pesaran et al. (2004); Dees et al. (2007)). In the area of bio-informatics, high-
dimensional covariance matrices are required when inferring large-scale gene association networks
(Carroll (2003); Schifer and Strimmer (2005)). Large covariance matrices are further encoun-
tered in fields including meteorology, climate research, spectroscopy, signal processing and pattern
recognition.

Assuming that the N x N dimensional population covariance matrix, X, is invertible, one way
of obtaining a suitable estimator is to appropriately restrict the off-diagonal elements of its sample
equivalence denoted by 3. Numerous methods have been developed to address this challenge,
predominantly in the statistics literature. Some approaches are regression-based and make use of
suitable decompositions of 3 such as the Cholesky decomposition (see Pourahmadi (1999, 2000),
Rothman et al. (2010), Abadir et al. (2014), among others). Others include banding or tapering
methods as proposed for example by Bickel and Levina (2004, 2008a) and Wu and Pourahmadi
(2009), which rely on a natural ordering among variables and are thus better suited to the analysis
of certain types of data. Two popular approaches in the literature that do not make use of any
ordering assumptions include those of shrinkage and thresholding. See also Pourahmadi (2011) for
an extensive review of general linear models (GLS) and regularisation based methods for estimation
of the covariance matrix.

The idea of shrinkage dates back to the seminal work of Stein (1956) who proposed the shrinkage
approach in the context of regression models so as to minimize the mean square error of the
regression coefficients. The method intentionally introduces a bias in the estimates with the aim of
reducing the variance. In the context of covariance matrix estimation the estimated covariances are
shrunk towards zero element-wise. More formally, the shrinkage estimator is defined as a weighted
average of the sample covariance matrix and an invertible covariance matrix estimator known as
the shrinkage target. A number of shrinkage targets have been considered in the literature that
take advantage of a priori knowledge of the data characteristics under investigation. For example,
Ledoit and Wolf (2003) in a study of stock market returns consider Sharpe (1963) and Fama
and French (1997) market based covariance matrix specifications as targets.! Ledoit and Wolf
(2004, LW) suggest a modified shrinkage estimator that involves a convex linear combination of
the unrestricted sample covariance matrix with the identity matrix. This is recommended by the
authors for more general situations where no natural shrinking target exists. Numerous other
estimators based on the same concept but using different shrinkage targets are proposed in the
literature such as by Haff (1980, 1991), Lin and Perlam (1985), Dey and Srinivasan (1985), and
Donoho et al. (1995). On the whole, shrinkage estimators are considered to be stable, robust and
produce positive definite covariance matrices by construction.

Thresholding is an alternative regularisation technique that involves setting off-diagonal el-
ements of the sample covariance matrix that are in absolute terms below a certain ‘threshold’
value(s), to zero. This approach includes ‘universal’ thresholding put forward by El Karoui (2008)
and Bickel and Levina (2008b), and ‘adaptive’ thresholding proposed by Cai and Liu (2011). Uni-
versal thresholding applies the same thresholding parameter to all off-diagonal elements of the
unconstrained sample covariance matrix, while adaptive thresholding allows the threshold value to

! Other shrinkage targets include the ‘diagonal common variance’, the ‘common covariance’, the ‘diagonal unequal
variance’, the ‘perfect positive correlation’ and the ‘constant correlation’ target. Examples of structured covariance
matrix targets can be found in Daniels and Kass (1999, 2001), Fan et al. (2008) and Hoff (2009), among others.



vary across the different off-diagonal elements of the matrix. Furthermore, the selected non-zero
elements of 3 can either be set at their sample estimates or can be somewhat adjusted down-
ward. This relates to the concepts of ‘hard’ and ‘soft’ thresholding, respectively. The thresholding
approach traditionally assumes that the underlying (true) covariance matrix is sparse, where sparse-
ness is loosely defined as the presence of a sufficient number of zeros on each row of X such that
it is absolute summable row (column)-wise. However, Fan, Liao and Mincheva (2011, 2013) show
that such regularization techniques can be applied to 3 even if the underlying population covari-
ance matrix is not sparse, so long as the non-sparseness is characterised by an approximate factor
structure.? The thresholding method retains symmetry of the sample covariance matrix but does
not necessarily deliver a positive definite estimate of ¥ if N is large relative to 1. The main diffi-
culty in applying this approach lies in the estimation of the thresholding parameter. The method
of cross-validation is primarily used for this purpose which is rather convoluted, computationally
intensive and not appropriate for all applications. Indeed, cross-validation assumes stability of
the underlying covariance matrix over time which may not be the case in many applications in
economics and finance.?

In this paper, we propose an alternative thresholding procedure using a multiple testing (MT)
estimator which is simple and practical to implement. As suggested by its name, it makes use
of insights from the multiple testing literature to test the statistical significance of all pair-wise
covariances or correlations, and is invariant to the ordering of the underlying variables. It sets
the elements associated with the statistically insignificant correlations to zero, and retains the
s1gn1ﬁcant ones. We apply the multiple testing procedure to the sample correlation matrix denoted
by R rather than E so as to preserve the variance components of 3. Further, we counteract the
problem of size distortions due to the nature of multiple testing by use of Bonferroni (1935, 1936)
and Holm (1979) corrections. We compare the absolute values of the non-diagonal entries of R
with a parameter determined by the inverse of the normal distribution at a prespecified significance
level, p. The MT estimator is shown to be reasonably robust to the typical choices of p used
in the literature (10% or 5%), and converges to the population correlation matrix R at a rate of

@) m:JXN) under the Frobenius norm, where my is bounded in N, and could represent the

number of non-zero off-diagonal elements in each row of R.

In many applications, an estimate of the inverse covariance matrix X! is required. Since
traditional thresholding, including our multiple testing approach, does not necessarily lead to a
positive definite matrix, we recommend supplementary shrinkage applied to our regularised MT
correlation matrix when required. To this end, we propose a LW type shrinkage approach where
the associated shrinkage parameter is derived from the minimisation of the squared Frobenius norm
of the difference between two inverse matrices: an estimate of the inverse matrix of interest (our
MT estimator), and the inverse of a suitable reference matrix. We denote this shrinkage version
of the MT estimator by S-MT. We also consider a LW type shrinkage estimator applied directly
to the sample correlation matrix R, when the inverse covariance matrix 3! is of interest. This
shrinkage estimator is denoted by Ry .

We compare the small sample performance of the MT, S-MT and Ry estimators with a
number of extant regularised estimators in the literature for large-dimensional covariance matrices
in an extended Monte Carlo simulation study. We consider two approzimately sparse and two ezxactly
sparse covariance structures. The simulation results show that the proposed multiple testing and
shrinkage based estimators are robust to the different covariance matrix specifications employed,
and perform favourably when compared with the widely used regularisation methods considered in

?Barlier work by Fan, Fan and Lv (2008) use a strict factor model to impose sparseness on the covariance matrix.
Friedman, Hastie and Tibshirani (2008) apply the lasso penalty to loadings in principal component analysis to achieve
a sparse representation.

#Other contributions to the thresholding literature include the work of Huang et al. (2006), Rothman et al. (2009),
Cai and Zou (2011, 2012), and Wang and Zou (2010), among others.



our study, especially when N is large relative to 7.

The rest of the paper is organised as follows: Section 2 outlines some preliminaries and de-
finitions. Section 3 introduces our multiple testing (MT') procedure and presents its theoretical
properties. Section 4 discusses issues of invertibility of the MT estimator in finite samples and
advances our recommended S-MT and RLW estimators. Section 5 provides an overview of a num-
ber of existing key regularisation techniques. The small sample properties of the M1 estimator,
its adjusted shrinkage version (S-MT) and Ry are investigated in Section 6. Finally Section 7
concludes.

The largest and the smallest eigenvalues of the N x N matrix A = (a;;) are denoted by Amax (A)

and Amin (A) respectively, tr (A) = Ef\il a; is its trace, ||A|l; = maxi<j<n {Zf\il \aij\} is its

. N .. .
maximum absolute column sum norm, [|A|_ = maxi<i<ny {E i1 |aij|} is its maximum absolute

row sum norm, | Al = \/tr (A’A) is its Frobrenius norm, and ||A|| = A2 (A’A) is its spectral

(or operator) norm. When A is a vector, both ||Al|» and ||A| are equal to the Euclidean norm.

2 Large covariance matrix estimation: Some preliminaries

Let {zj, i€ N, t € T}, N CN, T'C Z, be a double index process where z;; is defined on a suitable
probability space (€2, F, P). i can rise indefinitely (i — oo) and denotes units of an unordered
population. Conversely, the time dimension ¢ explicitly refers to an ordered set, and can too tend
to infinity (¢ — 00). We assume that for each t € T, x; is cross-sectionally weakly dependent
(CWD), as defined in Chudik et al. (2011). The covariance matrix of ; = (z14,...,zn¢) is given
by

Var (z¢) = E (@) = (0454) = 24, (1)

where, for simplicity of exposition and without loss of generality it is assumed that E(x;) = 0, ¥
is an N x N symmetric, positive definite real matrix with its (i, j )th element, 05, given by
oiiy = FElry—F(zy)) <K, (2)
o = El(@a— E(vi)) (x50 — E(x4t))],

fori,j=1,...N,t=1,..,T, 04+ > 0 and K is a finite generic constant independent of N. The
diagonal elements of 3; are represented by the N x N diagonal matrix Dy, such that

D, = diag(o114,022,¢, .., ONN ) (3)

Following the literature we now introduce the concepts of approzrimate and exvact sparseness of
a matrix.

Definition 1 The N x N matrizv A = (a;j) is approzimately sparse if, for some g € [0,1),

my = maxz laij|* < co(N), N — oc.
i<N
- J<N

FEzact sparseness is established when setting ¢ = 0. Then, my = max;<y Zj<NI(aij #0) is the
mazximum number of non-zero elements in each row and is bounded in N, where I (.) denotes the
indicator function.

Given the above definition and following Remark 2.2 and Proposition 2.1(a) of Chudik et al.
(2011), it follows that under the assumption that x;; is CWD, then each row/column of ¥; can only
have a finite number of non-zero elements, namely ||%;]|; = O (1). See also Bailey et al. (2013)
and Pesaran (2013).



The estimation of X; gives rise to three main challenges: the sample covariance matrix s,
becomes firstly ill-conditioned and secondly non-invertible as IV increases relative to T', and thirdly
3 is likely to become unstable for 1" sufficiently large. The statistics literature thus far has
predominantly focused on tackling the first two problems while largely neglecting the third. On
the other hand, in the finance literature time variations in X; are allowed when using conditionally
heteroskedastic models such as the Dynamic Conditional Correlation (DCC) model of Engle (2002)
or its generalization in Pesaran and Pesaran (2010). However, the DCC approach still requires
T > N and it is not applicable when N is large relative to T'. This is because the sample correlation
matrix is used as the estimator of the unconditional correlation matrix which is assumed to be time
invariant.

One can adopt a non-parametric approach to time variations in variances (volatilities) and
covariances and base the sample estimate of the covariance matrix on high frequency observations.
As measures of volatility (often referred to as realized volatility) intra-day log price changes are
used in the finance literature. See, for example, Andersen et al. (2003), and Barndorff-Nielsen
and Shephard (2002, 2004). The idea of realized volatility can be adapted easily for use in macro-
econometric models by summing squares of daily returns within a given quarter to construct a
quarterly measure of market volatility. Also, a similar approach can be used to compute realized
measures of correlations, thus yielding a realized correlation matrix. However, such measures are
based on a relatively small number of time periods. For example, under the best case scenario
where intra-daily observations are available, weekly estimates of realized variance and covariances
are based typically on 48 intra-daily price changes and 5 trading days, namely T" = 240, which is
less than the number of securities often considered in practice in portfolio optimisation problems.
T can be increased by using rolling windows of observations over a number of weeks or months,
but there is a trade off between maintaining stability of the covariance matrix and the size of the
time series observations. As 7' is increased, by considering longer time spans, the probability of the
covariance matrix remaining stable over that time span is accordingly reduced.

In this paper we assume that T is sufficiently small so that X; remains constant over the selected
time horizon and we concentrate on addressing the remaining two challenges in the estimation of
3:. We suppress subscript ¢ in 3; and D; and evaluate the sample covariance matrix estimator of
32, denoted by 3, with elements

N

0ij :T_lz(l‘it—fi) (azjt—:ij), fori,j=1,..,.N (4)
t=1
where Z; = T—1 ZZZI xit. The diagonal elements of 3 are collected in D = diag(64,1=1,2,...,N).

3 Regularising the sample correlation matrix: A multiple testing
(MT) approach

We propose a regularisation method that follows the thresholding literature, where typically, as
mentioned in the introduction, non-diagonal elements of the sample covariance matrix that fall
below a certain level or ‘threshold’ in absolute terms are set to zero. Our method tests the statistical
significance of all distinct pair-wise covariances or correlations of the sample covariance matrix 3,
N (N —1) /2 in total. As such, this family of tests is prone to size distortions arising from possible
dependence across the individual pair-wise tests. We take into account these ‘multiple testing’
problems in estimation, in an effort to improve support recovery of the true covariance matrix. Our
multiple testing (MT') approach is applied to the sample correlation matrix which is arguably more
appropriate than the sample covariance matrix, is invariant to the ordering of the variables under
consideration, and it is computationally simple to implement.

Suppose that z;, i = 1,..., N, t = 1,...,T, are cross-sectionally weakly correlated with a sparse
covariance matrix X defined in (1), and with diagonal elements collected in (3), where subscript ¢



has been suppressed. Consider the N x N correlation matrix corresponding to 3 given by
R=D'*2D % = (p;;), where D = diag (%),

with

where 0, is given in (2). We base our thresholding procedure on the correlation matrix. The
reasons for opting to work with the correlation matrix rather than its covariance counterpart are
twofold. First, the transformation from R to X leaves the diagonal elements of 3 unaffected which
is a desirable property in many financial applications. Second, given that all entries in R are
bounded from above and below (—1 < pi; < 1,4,5=1,.., N), potentially one can use a so called
‘universal’ parameter to identify the non-zero elements in R rather than making entry-dependent
adjustments which in turn need to be estimated. This feature is in line with the method of Bickel
and Levina (2008b) but shares the properties of the adaptive thresholding estimator developed by
Cai and Lui (2011). Both of these approaches are outlined below in Section 5.

The sample correlation matrix, R = (Pij), is given by

pZ]:pj’L: 5 i,jzl,...,N

R=D"?’sp7"?,

with elements

A~ T — _
Gij _ _ > (@i — Ti) (0 — ) 19 N t=19 T

m ! (Zthl (w3t — fz)2> 1/2 (Zthl (w5t — ij)Q) e

Now for a sufficiently large 7T, the correlation coefficients p;; are approximately normally distributed

Pij = Pji =

as*
fbij ~ N (Mz‘jaw?j) ) (5)
where (using Fisher’s (1915) bias correction - see also Soper (1913)) we have
pi(1 = p})) (1-p5)?
Kij = Pij — U27T” and W?j = %

Joint tests of p;; =0 fori=1,2,..,N—1, j=1i+1,..., N can now be carried out, allowing for the
cross dependence of the individual tests using a suitable multiple testing (MT) procedure. This
yields the following MT estimator of R,

Rur = (pi)) = [pijl(\/ﬂpij\ > bN)} i=1,2,..N—1, j=i+1,..,N. (6)

where

=07 (1 57655)- @

The indicator function I(.) used in (6), is in line with the concept of ‘hard’ thresholding whereby
all elements of 3 or R that drop below a certain level in absolute terms are set to zero. The
remaining ones are equated to their original sample covariance or correlation coefficients. Multiple
testing (MT) does not consider functions used in the ‘soft’ thresholding literature (see for example
Antoniadis and Fan (2001), Rothman et al. (2009), and Cai and Liu (2011)).

Parameter by is of special importance. It is determined by the inverse of the cumulative
distribution function of the standard normal variate, ® ! (.), using a prespecified overall test size,

*Other functions of Pij» such as the Fisher’s transformation can also be used. But our simulation exercises
suggested that there is little to choose between p,; or its Fisher transform.



p, selected for the joint testing problem. The size of the test is normalised by f (/V), which controls
for the multiple testing nature of the testing problem in (6). As mentioned above, testing the
null hypothesis that p,; =0 for i =1,2,.., N — 1, j =i+ 1,..., N can result in spurious outcomes,
especially when N is larger than T', due to the multiple tests being conducted across the N(N —1)/2
distinct elements of R.

Suppose that we are interested in a family of null hypotheses, Ho1, Hoo, ..., Hor, and we are
provided with corresponding test statistics, Zi7,Z27, ...., Zy7, With separate rejection rules given
by (using a two sided alternative)

Pr (‘ZiT‘ > CVZT |H()z) < DiT,

where C'V;r is some suitably chosen critical value of the test, and p;r is the observed p-value for
Hy;. Consider now the family-wise error rate (FWER) defined by

FWERp =Pr [U;’le (|ZiT| > CVir |H()i )] ,

and suppose that we wish to control FW E Ry to lie below a pre-determined value, p. Bonferroni
(1935, 1936) provides a general solution, which holds for all possible degrees of dependence across
the separate tests. By Boole’s inequality we have

Pr(Ui_y (|Zir| > CVir |Hoi)] <) Pr(|Zir| > CVir |Hoi)

i=1
T
< ZP:‘T-
i=1

Hence to achieve FW ERyp < p, it is sufficient to set p;r < p/r.

However, as is known Bonferroni’s procedure can be quite conservative and a number of alter-
native multiple testing procedures have been proposed in the literature. One prominent example is
the step-down procedure proposed by Holm (1979) which is less conservative than the Bonferroni
procedure, and does not impose any further restrictions on the degree to which the underlying tests
depend on each other. If we abstract from the T subscript and order the p-values of the tests so
that

Pa) SP@E) S o S D)

are associated with the null hypotheses, H q1), Hgg), ---» H (o), respectively, Holm’s procedure rejects
Hoyy if pay < p/r, rejects Hgyy and H gy if poy < p/(r — 1), rejects H(gy), Hoz) and Hgg) if
p(3) < p/(r—2), and so on. Returning to (6) we observe that under the null i and j are unconnected,
and p;; is approximately distributed as N ((), T_l). Therefore, the p-values of the individual tests

are (approximately) given by p;; = 2 [1 - (\/T}i)”‘ﬂ fori=1,2,..N—-1,7=17+1,...,N,
with the total number of tests being carried out given by r = N(/N — 1)/2. To apply the Holm
procedure we need to order these p-values in an ascending manner, which is equivalent to ordering
| bij} in a descending manner. Denote the largest value of | bij| over all ¢ # j, by ‘ﬁ(l)’, the second

largest value by ‘ﬁ@) , and so on, to obtain the ordered sequence ‘ﬁ(s)‘, for s =1,2,...,r. Then the

N(N—1)/2—s+1
disconnected, for s = 1,2, ..., N(N —1)/2, where p is the pre-specified overall size of the test. Note
that if the Bonferroni approach is implemented no such ordering is required and to see if the (i, j)

pair is connected it suffices to assess whether } i)z-j‘ >T-129-1 (1 — %)

There is also the issue of whether to apply the multiple testing procedure to all distinct N (N —
1)/2 non-diagonal elements of R = (p;;) simultaneously, or to apply the procedure row-wise, by
considering IV separate families of N —1 tests defined by p;0; = 0, for a given i% and j =1,2,.., N,

i,7) pair associated with |p,| are connected if [p/y| > T—1/2¢~1 (1 — p/2 , otherwise
(s) (s) (

6



j # i°. The theoretical results derived in (3.1) show that using f (N) = N(N — 1)/2 in (7) rather
than f (N) = (N — 1) provides a faster rate of convergence towards R under the Frobenius norm.
However, simulation results of Section 6 indicate that in finite samples f (N) = N — 1 can provide
Ryr estimates that perform equally well and even better than when f(N) = N(N — 1)/2 is
considered, depending on the setting. Note that multiple testing using the Holm approach can
lead to contradictions if applied row-wise. To see this consider the simple case where N = 3 and p
values for the three rows of R are given by

— P1 P2
P11 — P3
p2 p3 —

Suppose that p; < p2 < p3. Then p;3 = 0 is rejected if po < p when Holm’s procedure is applied
to the first row, and rejects p;3 = 0 if p2 < p/2 when the procedure is applied to the third row. To
circumvent this problem in practice, if one of the p;3 hypotheses is rejected but the other is accepted
then we set both relevant elements in IN%MT to P13 using this example. The row-wise application of
Bonferroni’s procedure is not subject to this problem since it applies the same p-value of p/(N —1)
to all elements of R.

After applying multiple testing to the unconditional sample correlation matrix, we recover the
corresponding covariance matrix 3y, by pre- and post-multiplying RMT by the square root of the
diagonal elements of 32, so that

= ~1/2~ ~1/2
Syur=D"*RyrD"*. (8)

It is evident that since by is given and does not need to be estimated, the multiple testing
procedure in (6) is also computationally simple to implement. This contrasts with traditional
thresholding approaches which face the challenge of evaluating the theoretical constant, C', arising
in the rate of convergence of their estimators. The computationally intensive cross validation
procedure is typically employed for the estimation of C, which is further discussed in Section 5.

Finally, in the presence of factors in the data set x; (as in the setting used in Fan, Liao and
Mincheva (2011, 2013 - FLM)), we proceed as shown in FLM by estimating the covariance matrix of
the residuals @; = (ult, . ﬁNt)/ obtained from defactoring the data, 2»&, and applying the multiple
testing approach to 3. 6 In this case, (6) is modified to correct for the degrees of freedom, m,
associated with the defactoring regression:

Paij = Pail(VT —m|pai| > bn), i=1,2,.,N—1, j=i+1,..,N (9)
where
. Zt 1 (uzt Ui ) (ujt—u])
Paij = Pagi = P 2y . R
T (=) [0 (e~ )

An example of multiple testing applied to regression residuals is considered in our simulation
study of Section 6. See also Bailey et al. (2013).

g 1= 12, N, t =12 T,
’]

?Other multiple testing procedures can also be considered (see Efron (2010) for a recent review). But most of
these methods tend to place undue prior restrictions on the dependence of the underlying test statistics while the
Bonferroni and Holm methods are not subject to this problem.

% Assume a factor model:

Yit = vgft +ui, 1=1,2,....,N; t=2,...,T,
where, £, is an m x 1 vector of factors estimated through principal components (Bai (2003)) or cross-sectional averages
(Pesaran (2006)), and 7, = (V,1, Y42, -+ Vse) i the associated vector of factor loadings. Then, the defactoring analysis
entails running the above regressions and extracting the residuals:

it = yir — Vb, i =1,2,..,N; t=2,...,T.



3.1 Theoretical properties of the MT estimator

In this subsection we investigate the asymptotic properties of the M7 estimator defined in (6). We
establish its rate of convergence under the Frobenius norm as well as the conditions for consistent
support recovery via the true positive rate (TPR) and the false positive rate (FPR), to be defined
below. We begin by stating a couple of assumptions that will be used in our proofs.

Assumption 1 Let R= (ﬁ”) be the sample correlation matriz, and suppose that (for sufficiently
large T')

ﬁij ~N (:U’z'jawzzj) ) (10)
where ( 2) (os)
Hij = E(pij) = Pij — . oT -+ T;J ’ (11)
) (1-p)*  K(py)
W?j = Va?“(ﬂz’j) = T” + T;] ) (12)

and G(p;;) and K(p;;) are bounded in p;; and T, for alliand j =1,2,...,N.

The analytical expressions for the mean and variance of p;; in (11) and (12) of Assumption 1 can
be found in Soper et al. (1917).

Assumption 2 The population correlation matriz, R = (pij), 18 sparse according to Definition 1
such that only my of its non-diagonal elements in each row are non-zero satisfying the condition

0< Pmin < ‘ng| < Pmax < 17
with mpy being bounded in N. The remaining N(N —my — 1) non-diagonal elements of R are zero.
Assumption 2 implies exact sparseness under Definition 1.

Theorem 1 (Rate of convergence) Denote the sample correlation coefficient of x; and xj; over
t=1,2,...,T by p;; and the population correlation matriz by R = (pij), which obey Assumptions 1
and 2 respectively. Also let f(N) be an increasing function of N, such that

ln[fT(N)] =o0(1), as N and T — oo.
Then ~ e o o -
E|Rur - R| = X SRy ~ o) =0 ( v ) , (13)

where Ryyp = (Pij)

- N A by . ~1 p
=T > —=, th by = @ 1-— >0,
p’Lj 101] < p’L]| \/T) wi N < 2f(N)
and p is a given overall Type I error.
Proof. See Appendiz A. m

Result (13) implies that N ! HﬁMT - RH?7 = O, () which is in line with the existing results in
the thresholding literature that use the Frobenius norm. See, for example, Theorem 2 with ¢ =0
in Bickel and Levina (2008b). The same rate of O, (my/T) is achieved in the shrinkage literature
if the assumption of sparseness is imposed. Here my can also be assumed to rise with N in which
case the rate of convergence becomes slower. This compares with a rate of O, (N/T') for the sample
covariance (correlation) matrix - see Theorem 3.1 in Ledoit and Wolf (2004). Note that LW use an
unconventional definition for the Frobenius norm (see their Definition 1). Similar results can also
be obtained for the spectral norm.



Theorem 2 (Support Recovery) Consider the true positive rate (TPR) and the false positive
rate (FPR) statistics computed using the multiple testing estimator Pij = Pijl (‘i)ij‘ > %) , glven
by

ZﬁZI(ﬁzj # 0, and p;; # 0)
i7j

TPR = Zg: T £0) (14)
1#]
Z#Zl(bij # 0, and p;; = 0)
_ i
FPR = Z.} TGs =0) : (15)
1#]

respectively, where by is defined as in Theorem 1, and p;; and p;; obey Assumptions 1 and 2,

respectively. Then with probability tending to 1, FRP =0 and TPR =1, if ppin = min(pij) > b\/—NT
1#]

as N, T — oo in any order.
Proof. See Appendiz A. m

4 Positive definiteness of the covariance matrix estimator

As in the case of thresholding approaches, multiple testing preserves the symmetry of R and is
invariant to the ordering of the variables. However, it does not ensure positive definiteness of
the estimated covariance matrix. Bickel and Levina (2008b) provide an asymptotic condition that
ensures positive definiteness, which is not met unless T is sufficiently large relative to V. See
Section 5 for the exact specification of this condition. Guillot and Rajaratnam (2012) demonstrate
theoretically that retaining positive definiteness upon thresholding is governed by complex algebraic
conditions. In particular, they show that the pattern of elements to be set to zero has to correspond
to a graph which is a union of complete components.

A number of methods have been developed in the literature that produce sparse inverse co-
variance matrix estimates. A popular approach applies the penalised likelihood with a LASSO
penalty to the off-diagonal terms of X~!. See, for example, D’Aspremont et al. (2008), Rothman
et al. (2008), Yuan and Lin (2007), and Peng et al. (2009). More recent contributions propose
a sparse positive definite covariance estimator obtained via convex optimisation, where sparseness
is achieved by use of a suitable penalty. For example, Rothman (2012) uses a logarithmic barrier
term, Xue et al. (2012) impose a positive definiteness constraint, while Liu et al. (2013) and Fan
et al. (2013) enforce an eigenvalue condition.” Most of these approaches are rather complex and
computationally extensive. Instead, if inversion of R or 3 is of interest we recommend the use
of a Ledoit-Wolf (LW) type shrinkage estimator, either applied to the MT estimated correlation
matrix, R M, or to the sample correlation, R, itself. The latter estimator is motivated by the work
of Schiifer and Strimmer (2005) who draw on the theoretical results of LW. However, they do not
account for the bias of the empirical correlation coefficients, which we do in our specification of
Riw.

Following Ledoit and Wolf (2004) (see Section 5 for a summary of their approach), we set
as benchmark target the N x N identity matrix Iy. Our shrinkage on multiple testing (S-MT)
estimator is then defined by B B

Ro =My + (1 — )\)RMT, (16)

where the shrinkage parameter A € (A, 1], and A is the minimum value of A that produces a non-
singular Rg_p7(Ao) matrix. First note that shrinkage is again deliberately implemented on the

"Other related work includes that of Lam and Fan (2009), Rothman et al. (2009), Bien and Tibshirani (2011),
Cai et al. (2011), and Yuan and Wang (2013).



correlation matrix ﬁMT rather than on X M- In this way we ensure that no shrinkage is applied
to the volatility measures. Second, shrinkage is applied to the non-zero elements of ﬁMT, and as a
result the shrinkage estimator, .ﬁ',g_ MT, has the same optimal non-zero/zero patterns obtained for
Ryr. This is in contrast to thresholding approaches that impose eigenvalue restrictions to achieve
positive definiteness.

The shrinkage parameter used in (16) is derived from a grid search optimisation procedure
described below that involves the inverse of two matrices. Specifically, we consider a reference
correlation matrix, R, which is selected to be well-conditioned, robust and positive definite. Next,
over a grid of A bounded from below and above by Ag and 1 respectively, ﬁg_ mr () is evaluated.
Since both Ry and ﬁg_ mt (A) are positive definite, the difference of their inverses is compared over
A € (Ao, 1] using the Frobenius norm. The shrinkage parameter, \*, is given by

Rg. H2 , (17)

A" =arg min HREI—RS_MT()\)

Ao+e<A<L1 F

~-1
where € is a small positive constant. Let A = Ry and B (\) = Rg j;7()\). Note that since Ry
and Rg_j/r are symmetric

|Re"Rir | = tr (4%) — 26r[AB ()] + (B2 ()] (18)

The first order condition for the above optimisation problem is given by

o[ Ry~ Rshr )| o <AaB()\)> o <B o) 7B (/\)> |

where
OB (A -1 27 ) Ry,
8>(\ ) —Rg yr(A) (IN B RMT) Rs.ar()

= —-B() (IN - RMT> B()\).
Hence, A\* is obtained as the solution of
FO) = —tr [(A—B (V) B (\) <IN - RMT) B (/\)] —0,

where f()) is an analytic differentiable function of A for values of A close to unity, such that B ())
exists. The resulting Rg prr (\*) is guaranteed to be positive definite since

Aumin (RS_MT) = A % Amin (In) + (1 = A) X Amin (ﬁMT) >0,

C*Amin(R,MT)
1-Amin (Rr7)”
and the grid search optimisation procedure see Appendix A.

Having obtained the shrinkage estimator Rg_p;r, using A* in (16), we construct the correspond-
ing covariance matrix as

for any A € [Ao, 1], where A9 = max ( 0). For more details of the above derivations

= ~1/2 ~ ~1/2
Ysmr =D / Rs yrD 2, (19)

Implementation of the above procedure requires the use of a suitable reference matrix Rgy. To this
end, we propose using a LW type shrinkage estimator, RLW, applied to the sample correlation
matrix itself. This appears to work better in practice over the more natural choice of the identity
matrix or even the generalised inverse of the sample correlation, which we experimented with. The
same is true when compared to the correlation matrix derived from shrinking 3 using the Ledoit
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and Wolf (2004) method. In the simulations that follow, we use Rpy as the reference matrix for
f)g_ mT. However, RLW, can also be used independently of the 1~{5_ M7 estimator. Thus, we also
evaluate its performance when implemented on its own in obtaining the inverse of the covariance
matrix, and make relevant recommendations.

Consider the following shrinkage estimator of R,

Riw =¢In+ (1-6R,

with shrinkage parameter ¢ € [0,1], where R= (Pi;)- The squared Frobenius norm of the error of
estimating R by Ry (&) is given by

[Ruwie R, = Sxl0-0p-p)

= Z Z [ﬁij — Pij — gi)ij]2
i#j

The main theoretical results for the shrinkage estimator based on the sample correlation matrix
are summarised in the theorem below.

Theorem 3 (Rate of convergence and optimal shrinkage parameter) Denote the sample
correlation coefficient of i+ and zj: overt =1,2,...,T by p;; and the population correlation matrix
by R = (pij). Suppose also that Assumptions 1 and 2 are satisfied. Then

E HRLW@*) - RHQF = Z;#;E [Dij — pij — f*ﬁ?z’j]2 =0 (m;N) ; (20)

where £ is the optimal value of the shrinkage parameter £, which is given by

. 1 2,
Z sz] [ij pj(pj):|

—1-

2
SOIPICE AL +zz[ p(le}

i#]
Proof. See Appendix A. m

Corollary 1 Denote the sample correlation coefficient of xix and xj; over t =1,2,...,T by p;; and
the population correlation matriz by R = (p;;). Then

2
A 2 Z;ézE [9ij (Pij — pij)}]
B[R -R|, = £TEGys ) - 55 (#7)
i#j
< 22 E (piy = Piy)”

Proof. See Appendix A. m
From Corollary 1, assuming that 7" is sufficiently large so that p;; can be reasonably accurately
estimated by p;;, we would expect the shrinkage estimator to have smaller mean squared error than

R. Recovery of the corresponding covariance matrix 37 (€*) is performed as in (19).
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5 An overview of key regularisation techniques

In this section we provide an overview of three main covariance estimators proposed in the literature
which we use in our Monte Carlo experiments for comparative analysis. Specifically, we consider
the thresholding methods of Bickel and Levina (2008b), and Cai and Liu (2011), and the shrinkage
approach of Ledoit and Wolf (2004).

5.1 Bickel-Levina (BL) thresholding

The method developed by Bickel and Levina (2008b, BL) employs ‘universal’ thresholding of the
sample covariance matrix 3 = (6;5), 4,j = 1, ..., N. Under this approach X is required to be sparse
according to Definition 1. The BL thresholding estimator is given by

log N
T

Sprc = <&ijf lﬁiﬂ >C

),i:1,2,...,N—1,j:H—l,...,N (21)

where I (.) is an indicator function and C' is a positive constant which is unknown. The choice of
thresholding function - I (.) - implies that (21) implements ‘hard’ thresholding. The consistency

rate of the BL estimator is \/@ under the spectral norm of the error matrix (f] BL,C — 2).

The main challenge in the implementation of this approach is the estimation of the thresholding
parameter, C, which is usually calibrated by cross validation.® Details of the BL cross validation
procedure can be found in Appendix B.

As argued by BL, thresholding maintains the symmetry of 3 but does not ensure positive
definiteness of ¥ BL.C BL show that their threshold estimator is positive definite if

HiBch — iBL’OH < e and Apin (2) > €, (22)

where ||.|| is the spectral or operator norm and € is a small positive constant. This condition is not
met unless 7' is sufficiently large relative to N. Furthermore, it is generally acknowledged that the
cross validation technique used for estimating C' is computationally expensive. More importantly,
cross validation performs well only when ¥ is assumed to be stable over time. If a structural break
occurs on either side of the cross validation split chosen over the 1" dimension then the estimate
of C could be biased. Finally, ‘universal’ thresholding on 3 performs best when the units z;,
i=1,..,N,t=1,..,T are assumed homoscedastic (i.e. 011 = 022 = ... = onn). Departure from
such a setting can have a negative impact on the properties of the thresholding parameter.

5.2 Cai and Liu (CL) thresholding

Cai and Liu (2011, CL) proposed an improved version of the BL approach by incorporating the
unit specific variances in their ‘adaptive’ thresholding procedure. In this way, unlike ‘universal’
thresholding on f], their estimator is robust to heteroscedasticity. More specifically, the thresholding
estimator ¥¢p, ¢ is defined as

Yorc = (6ijsey 6] > 745]), i=1,2,.,N =1, j=i+ 1. N (23)

where 7;; > 0 is an entry-dependent adaptive threshold such that 7;; = él‘ij,With 9@- =

71 ZiT:l(%tht — 6ij)2 and wyp = Cy/log N/T, for some constant C' > 0. CL implement their
approach using the general thresholding function s, (.) rather than I (.), but point out that all
their theoretical results continue to hold for the hard thresholding estimator. The consistency rate

8Fang, Wang and Feng (2013) provide useful guidelines regarding the specification of various parameters used in
cross-validation through an extensive simulation study.
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of the CL estimator is \/log N/T under the spectral norm of the error matrix (i](;L,C — Z). The

parameter C' can be fixed to a constant implied by theory (C = 2 in CL) or chosen via cross
validation. Details of the CL cross validation procedure are provided in Appendix B. B

As with the BL estimator, thresholding in itself does not ensure positive definiteness of X, L
In light of condition (22), Fan, Liao and Mincheva (FLM) (2011, 2013) extend the CL approach
and propose setting a lower bound on the cross validation grid when searching for C' such that

the minimum eigenvalue of their thresholded estimator is positive, Amin (f] FLM é) > 0. Further

details of this procedure can be found in Appendix B. We apply this extension to both BL and
CL procedures. The problem of > BLC and ECL & not being invertible in finite samples is then
resolved. However, depending on the apphcatlon the selected C might not be necessarily optimal
(see Appendix B for the relevant expressions). In other words, the properties of the constrained
Yo and X~ can deviate noticeably from their respective unconditional versions.

5.3 Ledoit and Wolf (LW) shrinkage

Ledoit and Wolf (2004, LW) considered a shrinkage estimator for regularisation which is based on
a convex linear combination of the sample covariance matrix, X, and an identity matrix I, and
provide formulae for the appropriate weights. The LW shrinkage is expressed as

Siw = Iy + poE, (24)
with the estimated weights given by
pr=mrbp/dy, py = ap/di
where
mr = N ltr (% ( ) d2 = N~ tr (22> — mZT,
ap = di — by, b = min(by, d7),

and

T T

_ 1 &2 1 L

b = 572 2 Hi't”'”i =3\ = g 2t [(@ed) (#0h)] - NT2 Zt’" (#15) + NT (%),
t=1 t=1

and noting that Y7 tr (mgiwt> =T tr (f) ST :l:t:l:;) =T tr (22>, we have

br = NT2 Z (Z ”)2 %tr (22)

with @; = (i’lt, ---,i'Nt), and T, = (1'1'16 — .’Z‘i).g

Also, 2y is positive definite by construction. Thus, the inverse EZ;V exists and is well
conditioned.

As explained in LW and in subsequent contributions to this literature, shrinkage can be seen as
a trade-off between bias and variance in estimation of 3, as captured by the choices of p; and p,.
Note however that LW do not require these parameters to add up to unity, and it is possible for
the shrinkage method to place little weight on the data (i.e. the correlation matrix). Of particular
importance is the effect that LW shrinkage has on the diagonal elements of 3 which renders it
inappropriate for use in impulse response analysis where the size of the shock is calibrated to the
standard deviation of the variables. Unlike the thresholding approaches considered in this paper,
the LW methodology does not require X to be sparse.

Note that LW scale the Frobenius norm by 1/N, and use ||A||% = tr(A’A)/N. See Definition 1 of Ledoit and
Wolf (2004, p. 376). Here we use the standard notation for this norm.

13



6 Small sample properties

Using Monte Carlo simulations we investigate the small sample properties of our proposed multiple
testing (MT) estimators as compared to the other thresholding and shrinkage type estimators
proposed in the literature and reviewed in Section 5. In what follows we present the MT results
using the Bonferroni procedure. We obtain very similar results when we use the Holm approach, and
to save space the MT results based on Holm procedure are provided in a supplementary appendix
which is available on request.

Given the importance of the type of covariance matrix being estimated, we consider four exper-
iments with four different types of covariance matrices.

(A) a first order autoregressive specification (AR);

(B) a first order spatial autoregressive model (SAR);

(C) a banded matrix with ordering used in CL (Model 1);

(D) a covariance structure that is based on a pre-specified number of non-zero off-diagonal
elements.

The first two experiments produce standard covariance matrices used in the literature and
comply to the approximately sparse covariance settings. The covariances in experiments C and D
are examples of exactly sparse covariance matrices. Results are reported for N = {30, 100, 200,400}
and T = {60, 100}.

As explained in Section 2, we are interested in our MT and shrinkage estimators producing
covariance matrix estimates that are not only well-conditioned (and, when needed, invertible) but
also relatively stable over time. For this purpose we conduct our simulation exercises using values
of T that are relatively small but still sufficient to produce reliable covariance/correlation coefficient
estimates. A robustness analysis is also conducted for these setups.

Experiment A In this experiment we set X to the covariance matrix of a first-order autore-
gressive process with coefficient, ¢,

1 (b ¢2 ¢N—1

1 ¢ !
B=lw =15 & ¢
: R
SN o g 1 NxN
For |¢| < 1, this matrix has a well-defined inverse given by
1 —¢ 0 0
~¢ 1+¢° :
271 = (O'ZJ) = 0 _¢ . .
: —¢ 1+¢* —¢
0 R 1

NxN

The corresponding correlation matrix is given by R = (1—q§2) 3, and it is easily seen that X7 =

Q' Q, where
Vi—-¢* 0 0 --- 0
s 1 :
Q = (gij) 0 —¢
—¢ 1 0
0 e =g 1

NXN
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The data generating process is then given by
Qz" =&l t=1,..T (25)

Here :Bgr): (xg?,mg?, .. x%i) (r) (agt),ag), ...,s%%)' and ag) ~ IIDN(0,1) are generated for each
replication r =1, ..., R.
Equivalently, (25) can be written as

r _ 1 (r)

i = ﬁeu,
ey = g2l +el}), fori=2,.,N.

(r)

We set ¢ = 0.7. The sample covariance matrix of x; ’ is computed as

T
2(7") _ T—l Z mET) igr)” (26)
t=1
for each replication r, where :fcﬁ” = (335;), $S\Tﬂz) ) HCE:) = (iL'E:) — i‘@) and :c(T) -1 Zt 1 xzt ,

~

for i = 1,..., N. The corresponding sample correlation matrix, R ") is expressed as

5(r) —1/2(r) & (r) ;5 —1/2(r)

R"” =D VD : (27)

where f)(r):diag( 51 = 1,2,..,N).

zz’

Experiment B Here we examine a standard first-order spatial autoregressive model (SAR).
The data generating process for replication r is now given by

wgr) = ﬁWmtr)—i-sy)
— Iy —9W) D 1 =1,..T, (28)

where m§ M- (x%),asgt),. ,mg\,i) ¥ is the spatial autoregressive parameter, 5(t) ~ IIDN(0,04), and

oy~ I1ID (5 + XT()) Therefore, F(o;;) = 1 and oy is bounded away from zero, for i = 1,..., N.

The weights matrix W is row-standardized with all units having two neighbours except for the first
and last units that have only one neighbour

0 1 0 0 0

1/2 0 1/2 0 0

0 1/2 0 0 0
W = . : :

0 0 0 - 1/2 0 1/2

0O 0 0 -~ 0 1 0

NXN

This ensures that the largest eigenvalue of W is unity and the intensity of cross-sectional dependence

of a:gr) is measured by 1. We set ¢ = 0.4. The population covariance matrix ¥ is given by

S=Iyx—9W) DIy —9IW) !,
where D = diag(o11,022, ....,0NN), its inverse by
Xl = Iy —9W)D Iy —9W),

and R = D~Y/2xD~1/2,
We generate the sample covariance and correlation matrices 3 and R as in experiment A using
(26) and (27).
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Experiment C Following Model 1 of Cai and Liu (2011), we consider the banded matrix
given by,
3 =diag(A; + As),

where Ay = (0ij)1<ij<ny/2, 0ij = (1 — |i1_0j‘)+ and Ay = 41 /5. X is a two block diagonal (non-

invertible) matrix, A is a banded and sparse covariance matrix, and As is a diagonal matrix with

4 along the diagonal. Here :I:Er) = (a:g?,xg;), ,x%i)' are generated as I D N-variate random vectors

from the normal distribution with mean 0 and covariance matrix X.

Experiment D Under this experiment we consider a covariance structure that explicitly
controls for the number of non-zero elements of the population correlation matrix. First we draw
N x 1 vectors b= (b1, ba, ...,bn)" as Uniform (0.7,0.9) for the first and last N, (< N) elements of
b, where N, = [N 5], and set the remaining middle elements of b to zero. The resulting population
correlation matrix R is defined by

R=1