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Abstract 
 
Emissions trading mechanisms have been proposed, and in some cases implemented, as a tool 
to reduce pollution. We explore the similarities between emission-trading mechanisms and 
monetary mechanisms. Both attempt to implement desirable allocations under various 
frictions, including risk and private information. In addition, implementation relies on the 
issue and trading of objects whose value is at least partially determined by expectations, 
namely money and permits, respectively. We use insights from dynamic mechanism design in 
monetary economics to derive properties of dynamic emissions trading mechanisms. At the 
optimum, the price of permits must increase over time. Efficient tax policies are state-
contingent, and there is an equivalence between state-contingent taxes and emissions trading. 
Restrictions resulting from the money-like feature of permits can break this equivalence when 
there is endogenous progress in clean technologies. These restrictions must be taken into 
consideration in actual policy implementation. 
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1 Introduction

Under an emissions trading system (also known as cap-and-trade), producers must acquire permits
equal to the amount of their emissions in a given period. These permits are then remitted to the
issuing institution.1 So far, the results from actual implementations of emissions trading have
been mixed, and some policy-makers have argued that taxes would be more e¤ective in reducing
emissions. Similar criticisms have also appeared in related academic investigations. In a highly
publicized recent study, Clï¿� and Vendramin (2012) criticized certain features of the ETS that
have led to low prices for permits. They point out shortcomings, speci�cally in regard to the
ability of emissions trading to induce investment in new technologies. They instead advocate a
tax as a more e¤ective non-distortionary instrument leading to price stability and increased clean
investments.
Our work takes a di¤erent path from the existing literature. It is motivated by the observation

that emission-trading mechanisms resemble monetary mechanisms in at least two ways. First,
both attempt to implement desirable allocations under various frictions, including risk and private
information. Second, in both cases implementation relies on the issue and trading of objects whose
value is at least partially determined by expectations, namely (�at) money and permits, respect-
ively.2 Our model is built around the assumption that individual �rms have some private inform-
ation about their need to engage in high emission-intensity activities. As �rms are heterogenous
regarding their emission-intensity needs, they must be provided with the appropriate incentives in
order to e¢ ciently adjust their production levels. We use insights from dynamic mechanism design
in monetary economics to derive properties of optimal dynamic emissions trading mechanisms.3

We �nd that a state-contingent tax system can do at least as well as a cap-and-trade system in
most cases, and it can dominate it when there is endogenous clean technology adoption. More
generally, we argue that policy-makers should think about permit-issue in a manner similar to that
used by central bankers. We discuss the determination of the optimal permit-issue policy and �nd
that, at the optimum, the price of permits must increase over time. In the absence of aggregate
risk, there is no role for �banking;�i.e., the optimum can be supported even if the permits expire
at the end of the speci�ed period of time. When �rms can choose the level of technological progress
in clean technologies, emissions trading might not be able to implement the e¢ cient allocation.
This is because, if there is a high fraction of �dirty �rms�in the economy, emissions trading either
makes technology adoption by these �rms too slow, or it must distort production levels relative to
the �rst best. Interestingly, we demonstrate that �scal policies do not su¤er from this drawback.4

In an in�uential paper, Weitzman (1974) studied price versus quantity-targeting policies in the
presence of uncertainty and concluded that their e¤ectiveness depends on the relative elasticities of

1One of the �rst such systems was established in the US in 1990 trough the Clean Air Act in order to reduce
sulfur dioxide emissions. As a follow-up to the Kyoto protocol, EU countries adopted the so called EU Emission
Trading System (ETS) in 2005 in connection to a reduction in carbon emissions.

2Of course, a �central permit issuer,� an authority similar to a central bank, is not yet in existence. One
implication of our analysis is to point out the need for such an authority to be established.

3For related applications of dynamic mechanism design to optimal taxation and to monetary theory see, for
example, Golosov, Kocherlakota, and Tsyvinski (2003) and Wallace (2012).

4La¤ont and Tirole (1996) derive a similar result where markets fail to deliver the e¢ cient outcome in a two-
period model where pollution innovation is endogenous.

2



supply and demand. However, Weitzman did not consider state-contingent policies. In our model,
state-contingent taxes are an important tool towards implementing e¢ cient levels of output and
emissions. Requate (2005) surveys the large existing literature on instrument choice and innovation
in abatement technologies. The similarity between emissions permits and money is mentioned in
Lackner, Wilson, and Ziock (2001). However, to the best of our knowledge, ours is the �rst
paper that explores the implications of formalizing this insight. Blyth, Bradley, Bunn, Clarke,
Wilson, and Yang (2007) investigate how environmental policy uncertainty a¤ects investment in
low-emission technologies in the power-generation sector. In their model, �rms can choose from
di¤erent irreversible investments. They �nd that price uncertainty decreases clean investments. Li
and Shi (2010) use a static general equilibrium model to compare regulatory emission standards
and emission taxes as alternative tools for controlling emissions in a monopolistically competitive
industry with heterogenous �rms. They �nd that an emissions standard results in higher welfare
than taxes if and only if productivity dispersion among �rms is small and dirty �rms enjoy a high
degree of monopoly power. Brunner, Flachsland, and Marschinski (2011) discuss dynamic aspects
of emissions trading, including issues related to credibility. Chen and Tseng (2011) �nd that
investment can be used to hedge against price risk, and it increases with uncertainty. In all these
models the price of permits is treated as exogenous. Colla, Germain, and Van Steenberghe (2012)
endogenize the price of the permits and study optimal policy in the presence of speculators. The
connection between environmental policy and business cycles is discussed in Heutel (2012). Finally,
in a recent working paper, Albrizio and Silva (2012) introduce uncertainty over the exogenous policy
rule, as well as the possibility of reversible and irreversible investments by �rms.
The paper is organized as follows. Section 2 describes the baseline model, while Section 3

studies taxation and emissions trading in a model with technological change. A brief conclusion
follows. Technical material and an extension to include a futures market can be found in the
Appendix.

2 The Model

Time is denoted by t = 0; 1; 2; :::. The economy is populated by a [0; 1]-continuum of �rms and
a [0; 1]-continuum of workers. Firms and workers discount the future at a rate � 2 (0; 1). There
are two goods: labor and a (numeraire) consumption good. Each �rm produces the numeraire
good using labor. Workers supply labor to the �rms and consume the numeraire good. Using
q units of labor, each �rm can produce f (q) units of the numeraire good. We assume that
f is a smooth, strictly increasing, and strictly concave function. Production is costly for the
society, as each operating �rm creates harmful emissions. When the level of overall emissions is
E, the utility of workers from consuming c units of the numeraire good and working q hours is
U (c; q; E) = u (c)� q � E.5 For simplicity, we assume that there is no storage across periods.
We think of the emission-intensity of a �rm�s operations as being subject to random shocks. For

example, these shocks may represent the need to use energy for transportation, or for cooling or

5Assuming that the negative externality is generated by the �ow of emissions makes our analysis readily applicable
in the context of conventional pollutants such as SOx , NOx , Mercury, or particulates. As is well known, the stock
of accumulated emissions is the relevant variable when one considers externalities related to CO2 .
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heating due to weather conditions, which are inherently random. More precisely, we assume that
in each period, each �rm receives a shock, �, which determines the degree of emissions generated
by its production activity. At time t, the amount of emissions generated by a �rm that received
shock � and that uses q units of labor is given by �f(q). For simplicity, we assume that the ��s
are iid across time and across �rms. We denote the cumulative distribution of � by G (�), and
we assume that its support is the interval

�
0; ��
�
.6 In order to capture the fact that �rms have

more information than the regulating authority about their need to use high emission-intensity,
we assume that these shocks are private information. This is a relevant and novel feature of our
analysis, as it implies that e¢ cient policies need to �elicit information�about the realization of
these shocks.
Throughout the paper, we study conditions under which the full-information �rst-best alloca-

tion, hence forth called the �e¢ cient allocation,�is supportable. Thus, we will follow the following
steps. First, we will characterize the full-information �rst-best arrangement under certain assump-
tions on the underlying economic environment. Then we investigate under what conditions various
policies, such as taxation or trading in permits, can support the �rst-best. Of course, in order to
be consistent with the private information friction, the policies themselves are not permitted to
depend on the true value of the ��s.7

While all producing �rms create pollution, they can also reduce their emissions at some cost.
More precisely, given �, we assume that each �rm can reduce its e¤ective emissions to an amount
y by incurring the cost h (�q � y), where h (�) is the same convex function for all �rms, with
h (0) = 0 and h0 (0) = 0. We �rst study the economy in the absence of any policy. In this case,
�rms maximize their pro�ts without being concerned about their emissions. Since �rms only di¤er
in their degree of emissions, in this case they behave homogeneously and maximize their period-
by-period pro�ts. Thus, �rms in each period t hire q units of labor at market wage w in order to
solve

� = max
q
f (q)� wq (1)

The optimal production satis�es
f 0 (q) = w (2)

and overall emissions, E, are given by E = q
R
�dG (�). Taking E as given, consumers maximize

their utility subject to their budget constraint. Since the numeraire good is not storable and
consumers are homogeneous, there is no scope for savings. Consumers solve:

max
c;q

u (c)� q � E

s:t: c � wq + � (3)

where � is the �rm�s pro�t and E is the level of total emissions. The �rst order conditions imply

wu0 (c) = 1 (4)
6Wemake these simplifying assumptions for tractability. Assuming that emissions are proportional to the amount

of input employed by the �rm simpli�es the algebra, but the results would not change if emissions were assumed to
be proportional to output. Introducing correlated shocks could allow us to investigate business cycle considerations
as in Heutel (2012). However, as is well known, dynamic models with private information and serially correlated
shocks are not analytically tractable. This is an important avenue for future research.

7When there is no aggregate risk, policies can depend on the aggregate �.
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Finally, market clearing gives
c = f (q) (5)

Combining (2) with (4) and (5) we obtain

f 0 (q)u0 (f (q)) = 1 (6)

We denote by �q the scale of operation that solves (6). Welfare, W , in this economy is then given
by

(1� �)W = u (f (�q))� �q
�
1 +

Z
�dG (�)

�
(7)

Contrary to private �rms, a social planner must take emissions into account when solving for the
e¢ cient outcome. It is easy to see that, since �rms vary in their degree of emissions, the �rst-
best would induce di¤erent production levels across di¤erent �rms. The social planner solves the
following problem.

max
q(�);0�y(�)��q(�)

u (c)�
Z
q (�) + y (�) dG (�)

s:t: c =

Z
f (q (�))� h (�q � y (�)) dG (�) (8)

We denote the e¢ cient production scale by q� (�) and the e¢ cient level of emissions by y� (�). The
schedule (q�; y�) satis�es the following �rst order conditions for all �:

[f 0 (q� (�))� �h0 (�q� (�)� y� (�))]u0 (c�) + ��� = 1 (9)

h0 (�q� (�)� y� (�))u0 (c�)� �� + �0 = 1 (10)

where �� is the Lagrange multiplier on y � �q (�), and �0 is the multiplier on y � 0. In that case,
consumption c� is given by (8).
Clearly, as h0 (0) = 0, it is e¢ cient for all �rms to reduce emissions by a small amount and all

active �rms must reduce their emissions at the optimum. Our assumptions also imply that, below
a threshold factor, e¢ ciency requires that �rms reduce their emissions to zero; i.e., there exists a
~� > 0 such that y (�) = 0, for all � < ~�. Above this threshold the optimal ex-post emissions are
positive and proportional to the ex-ante emissions. The reason is simple. Our speci�cation implies
that the marginal bene�t from reducing emissions is the same regardless of whether the reduction
comes from a high-pollution or a low-polluting �rm. On the other hand, the cost of emissions
reduction (in terms of consumption loss) is small if �rms are already relatively clean. This is true
even if a �rm eliminates its emissions entirely, as h0 (�q� (�)) converges to zero when � is small. The
optimal total emissions level is given by E� =

R
y� (�) dG (�). Interestingly, the e¢ cient allocation

dictates that some �rms reduce their emissions, by both reducing their production scale and by
cleaning their act. Of course, in the absence of taxes or other emission control policies, all �rms
operate at the same scale and none becomes cleaner.
For later reference, it is instructive to consider the following thought experiment. Consider two

economies which are identical except that one is subject to a �-distribution G0, while the other is
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subject to distribution G1, where
R
�dG1 (�) <

R
�dG0 (�). In words, �rms are on average cleaner

in the economy under G1. The e¢ cient allocations in the two economies are such that ~�1 > ~�0
and, for all � > ~�1, we have q�1 (�) < q

�
0 (�) and y

�
1 (�) < y

�
0 (�).

Typically, e¢ ciency will require a reduction in emissions from their laissez-faire levels. One
possible tool towards accomplishing this involves a tax. Another possibility involves imposing
controls over emissions, together with operating a market for emissions permits, so that �rms
which pollute most internalize the cost. We �rst consider an economy where �rms participate in
a market for permits.
This market operates as follows. If a �rm produces q, and if its emission shock is �, it will

need to accumulate �q emission permits. Alternatively, a �rm might invest in order to reduce its
pollution to ex-post emission level y (�) � �q and then accumulate y (�) units of permits. The
permits are remitted once production takes place. Permits can be traded. The (equilibrium) price
of permits in terms of the numeraire is denoted by �. The sequence of events for the producing
�rms is as follows:

1. Receive shock � and plan to produce q.

2. Reduce emissions to y (�) � �q.

3. Produce and earn pro�t f (q)� wq � h (�q � y (�)).

4. Adjust permits in the market and remit y (�) permits.

5. Pro�ts, if any, are redistributed to shareholders.

6. Next period begins.

We assume that the total stock of emission permits in this economy is M , while a �rm�s indi-
vidual permit holdings are denoted by m. We proceed by de�ning the �rm�s problem recursively.
We denote the value function of a �rm entering the market withm permits and shock � by V (m; �).
This is de�ned by

V (m; �) = max
q;y;m+

f (q)� wq � h (�q � y) + � (m� y �m+) + �E�V (m+ + T ; �)

s:t: 0 � y � �q (11)

where T is a transfer of permits by the issuing authority.8 As we mentioned before, T cannot
depend on the individual ��s, as they are assumed to be private information. When a �rm enters
the market for permits, the value of its portfolio is �m. The �rm then has to remit y permits (with
value �y) and decides how many permits to carry over to the next period, m+. As a consequence,
the �rm�s pro�t changes by the amount � (m� y �m+). GivenM , the market clearing conditions
for permits and goods are Z

y (�) +m+ (�) dG (�) = M (12)Z
f (q (�))� h (�q (�)� y) dG (�) = c (13)

8Note that T is not restricted in sign.
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The law of motion for the stock of permits is

M+ =M �
Z
y (�) dG (�) + T (14)

Given a policy fTtg, an equilibrium is a list of prices, f�tg, a list of quantities and emissions,
fct; qt (�) ; yt (�)g, and trading decisions, fmt (�)g, such that, given prices, the decision variables
solve the �rms� and the consumers� problems and markets clear. An equilibrium is station-
ary whenever the list of quantities and emissions is time independent; i.e., fct; qt (�) ; yt (�)g =
fc; q (�) ; y (�)g, for all t. We �rst solve the �rm�s problem. The �rst order conditions give

f 0 (q)� �h0 (�q � y) = w � ���� (�) (15)

h0 (�q � y)� �� ��� (�) + ��0 (�) = 0 (16)

�E�Vm (m+ + T ; �) � � = if m+ > 0 (17)

where ��� (�), ��0 (�) are the multipliers on the �rm�s constraints. Notice that, as there is no
persistence, all �rms will exit the market for permits with the same amount of permits for the next
period. The envelope condition gives

Vm (m; �) = � (18)

Using this expression in (17) we obtain that �E��+ � �, with equality if �rms carry permits from
one period to the next. As �+ does not depend on �, this gives us

��+ � � ( = if m+ > 0) (19)

In words, �rms are willing to �bank�permits, provided that their appropriately discounted future
price equals today�s spot price. If today�s spot price is higher, then �rms prefer to buy their
permits tomorrow, and no permits are held across periods. This will be the case if the issuing
authority is supplying enough permits in the market tomorrow. However, there is no equilibrium
if today�s spot price is lower, as �rms will try to purchase an in�nite amount of permits today to
resell in tomorrow�s market.
Like before, the worker�s decision is given by (4) and, using market clearing, we obtain the

following expression for the equilibrium wage.

wu0
�Z

f (q (�))� h (�q (�)� y (�)) dG (�)
�
= 1: (20)

To solve for y (�), �rst notice that all �rms will reduce their ex-post emissions whenever permits
are costly to acquire. In addition, the more costly permits, the more �rms choose not to pollute
ex-post. The choice of production levels depends only on the realized marginal cost of emissions.
It can be shown that q (�; w) is decreasing in � and in w, and that ��0 (�) > 0.
It is worth mentioning one e¤ect of general equilibrium analysis. The market solution for q (�)

does not necessarily coincide with the e¢ cient level, q� (�). Indeed, notice that if a positive measure
of �rms do not follow the social planner�s production plan, the wage, given by (20), is distorted
and so is the decision of �rms with y (�) = 0.
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For relatively �dirty��rms, we obtain the following characterization. Dirtier �rms reduce emis-
sions by the same amount; i.e., the di¤erence between ex-ante and ex-post emissions is the same.
Dirtier �rms have higher ex-post emissions, but ex-post emissions decline as permits become more
expensive to acquire. The production of dirtier �rms declines in the wage, their degree of dirtiness,
�, and in the price of permits. Interestingly, the higher the price of permits, the lower the wage.
If permits are more costly to acquire, more �rms decide to spend resources to reduce their ex-ante
emissions. Those �rms who still emit ex-post also reduce their production scale. Therefore, they
do not employ as much labor as when the price of permits is low. As a result, the wage has to fall.
The equilibrium price level is, of course, a function of the policy on permit issue, T . As

expected, if there is a high volume of permits in circulation, they will have no market value. Firms
receive a transfer of permits, T , in each period, and they are not forced to carry permits from one
period to the next. One way to achieve the e¢ cient level of production, q� (�), is to set M and T
such that M = T =

R
y� (�) dG (�) = E�, so that the stock of permits is just su¢ cient to cover the

e¢ cient amount of emissions, E�. In this case, the unique equilibrium price, �; is � = 1=u0 (c�),
and m+ = 0, as ��+ < �. Thus, there is no banking of permits. In a stationary economy, where
the distribution of emissions is the same in each period, this implies that the stock of permits
should be set at E�. This discussion is summarized in the following.

Proposition 1 (a) Suppose T � �q
R
�dG (�). Then � = 0 and q (�) = �q, for all �. (b) The

equilibrium with permits is e¢ cient if M = T = E� for all t. The banking of permits is not
necessary for e¢ ciency.

Proof. (a) Since T � �q
R
�dG (�), we have thatM � �q

R
�dG (�) in all periods. We �rst guess that

m+ = 0 and show that this is the only outcome consistent with equilibrium. Denote by y (�; �),
the choice of emissions by a �rm with shock �, given that the price of permits is �. Using m+ = 0
in the market clearing condition for permits, we obtain thatM =

R
y (�; �) dG (�). We have shown

that y (�; �) is a decreasing function of �, for all �. Thus, y (�; �) � y (�; 0) = ��q. But since
M � �q

R
�dG (�), the equality M =

R
y (�; �) dG (�) cannot hold. Hence, the only equilibrium is

when � = 0 and q (�) = �q. (19) then implies that �+ = 0, thus, m+ = 0.
(b) Using the fact that �� (�) = 0, for all �, the �rm�s �rst order condition can be re-arranged

as

[f 0 (q)� �h0 (�q � y)]u0 (c) = 1 (21)

h0 (�q � y) = � [1� �0 (�)] (22)

Setting M = E�, equilibrium implies that y = y� (�), q = q� (�), and � satis�es �u0 (c�) = 1.
Indeed, given this �, we can de�ne �0 (�) = �0, where �0 is the multiplier in (10). Then the �rm�s
FOC and the planner�s FOC coincide. Therefore, M = E� implements the e¢ cient allocation.9

Next, we investigate the implications of taxing emissions. Here we assume that, while the
government does not observe �, ex post emissions, y (�), are veri�able, so the government can

9In the Appendix we show that the structure of the equilibrium does not change if the issuing authority sells
permits instead of simply distributing them as transfers. These two methods are essentially the same for our
purposes.
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impose a tax, � , on emissions once production takes place. For simplicity, we assume the tax
schedule is history-independent, so that � t (yjht) = � t+1 (yjht+1), where ht is the history of emissions
up to and including date t�1. The tax proceeds are then distributed to consumers as a lump-sum
transfer. At the start of a period, a �rm which received shock � solves the following:

max
q;y

f (q)� wq � h (�q � y)� � (y)

s:t: 0 � y � �q (23)

The �rst order conditions are

f 0 (q)� w � �h0 (�q � y) = 0

h0 (�q � y)� � 0 (y) + ~�0 � ~�� = 0 (24)

The planner�s �rst order conditions are

[f 0 (q (�))� �h0 (�q � y)]u0 (c�) = 1 (25)

h0 (�q � y (�))u0 (c�) + �0 � �� = 1 (26)

It is then easy to see that the tax schedule � (e) = e
u0(c�) implements the e¢ cient allocation. Thus,

taxes can be an e¤ective way to implement the �rst-best.
So far we have assumed that there is no aggregate risk. As a result, the optimal levels of

production and emissions are known. However, our results generalize to the case where the function
G is random. In that case, c� will be a function of G, which is not observable. Yet, both cap and
trade and a state-contingent tax can support the e¢ cient levels of output and emissions in our
economy.
To illustrate, consider the case where emissions are drawn from a new distribution G1 instead

of the initial distribution G0, where
R
�dG1 (�) <

R
�dG0 (�). In words, �rms are on average

cleaner and, as a result, E� decreases, from E�0 to E
�
1 < E�0 . Clearly, a tax system which does

not depend on any aggregate variable will not achieve the �rst best. Let us, however, consider a
tax system that is measurable with respect to the wage level, w, which is observable at the time
of production. Then a �rm emitting y has to pay tax � (e;w). Given Gi, let c�i be the planner�s
solution for consumption, and let wi be such that wiu0 (c�i ) = 1. De�ne a (state-dependent) tax
schedule, � (e;w), as follows:

� (e;wi) =
e

u0 (c�i )
= ewi (27)

The same analysis as before can be used to show that this tax schedule implements the �rst-best.
We now turn to cap-and-trade. Under the initial distribution G0, e¢ cient emissions are given

by E�0 , and, as we have shown, e¢ ciency results under permit supply M0 = E
�
0 and equilibrium

price �0. Now suppose the distribution changes to G1. If nothing else changes, the new resulting
permit price will decline, signaling to the authority that G has changed to G1, in which case the
e¢ cient emissions are given by E�1 . It can be shown that E

�
1 can be supported under permit supply

M1 = E
�
1 , with a resulting equilibrium price �1, where �1 < �0.

In summary, both taxes and emission trading can support the e¢ cient allocation under ag-
gregate risk. This conclusion relies on considering state-contingent taxes. In the case of cap and
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trade, the market price for permits acts as a signalling device. It declines when �rms are on average
cleaner. However, without a change in the supply of permits, total emissions will diverge from their
e¢ cient level. This calls for an authority that can adjust the stock of permits in order to support
the new e¢ cient level of emissions. Our analysis suggests that the supply of permits should be
a policy variable for this authority, much like the supply in the money market is controlled by a
central bank.

3 Endogenous Technological Change

Our analysis so far has abstracted from issues related to technological change. These issues are of
�rst-order importance, and our main focus is the study of the relative merits of taxes versus cap
and trade if the possibility of endogenous technological change is introduced.10 In this section we
extend our basic model to account for this possibility.
Like before, we identify �rms by their type, �, indicating their tendency to pollute. Here we

assume that types, which remain private information, are distributed at t = 0 according to a
cumulative distribution G with support [0; ��]. As in the previous section, a �-�rm emits �q units of
pollution whenever it uses q units of labor. In this section, we assume that �rms can hire labor in
order to invent/adopt new, cleaner technologies. To capture the fact that returns to R&D involve
an element of randomness, we assume that a �-�rm can devote  units of labor in order to enter
a �lottery.� In that case, in the next period, it will receive the new emission factor ~� = 0 with
probability s while, with probability 1� s, its emission factor remains the same as before (~� = �).
In words, with probability s a �rm becomes clean forever and with probability 1� s it remains as
dirty as before. Other than this feature, the model remains the same as in the previous section.11

We will consider the simplest case, where G (�) has a two-point support, f0; ��g, with G (0) = �
denoting the mass of clean �rms.12 The distribution of �rms in every period is summarized by
the mass of clean �rms, which greatly simpli�es the analysis. As in the previous section, our
e¢ ciency benchmark will be the full-information �rst-best. This involves choosing non-negative
consumption, c, production, q (�), and a choice of R&D investment, i (�) 2 [0; 1], for each �rm.
Clearly, the e¢ cient allocation would involve no investment in a new technology for clean �rms,
so we let i

�
��
�
2 [0; 1] be the mass of dirty �rms entering the lottery. Given that a �rms needs to

use  units of labor to enter the lottery, the consumers�utility is reduced by the amount of labor
devoted to research and development (1� �) i.13 We denote by V the social planner�s objective
function, given the initial distribution of clean �rms, �. To reduce notation, in what follows we
use i = i

�
��
�
, q = q (0), �q = q

�
��
�
, while �+ = �+(1� �) si

�
��
�
denotes the measure of clean �rms

10See Acemoglu, Aghion, Bursztyn, and Hemous (2012) for a discussion of these issues in connection to the
environment and growth.
11Note that if a �rm becomes clean, it remains clean forever. This speci�cation will result in a non-stationary

equilibrium fraction of clean �rms.
12Normalizing the lowest state to � = 0 is only for simplicity and the results generalize to any �nite support.

Analyzing the case of a continuous support poses technical di¢ culties and is beyond the scope of this paper.
13We assume that R&D itself is not a polluting activity.
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in the next period. The e¢ cient allocation is the solution to the following problem.

V (�) = Max
c;q;�q;i

u (c)� �q � (1� �)
�
1 + ��

�
�q � (1� �) i+ �V (�+ (1� �) si)

s:t: c = �f (q) + (1� �) f (�q)
0 � i � 1 (28)

Given the linearity of the objective in i, we can obtain an explicit form for V (�). Notice �rst that
the solution for c, q, and �q does not depend on i. Replacing the market clearing condition in the
planner�s objective and taking the �rst order conditions with respect to q and �q, we obtain

u0 (�f (q) + (1� �) f (�q)) f 0 (q) = 1 (29)

u0 (�f (q) + (1� �) f (�q)) f 0 (�q) = 1 + �� (30)

Given �, de�ne the solution by q� (�) and �q� (�). Plugging these values in the market clearing
condition determines c� (�). Thus, the planner�s problem becomes

V (�) = max
i

F (�)� (1� �) i+ �V (�+ (1� �) si)

s:t: 0 � i � 1 (31)

where F (�) � u (c� (�)) � �q� (�) � (1� �)
�
1 + ��

�
�q� (�). As the solution to (29) and (30) is

unique, there is a single value of � such that F (�) = v, for each value of the instantaneous surplus
v. Also, F is di¤erentiable with

F 0(�) = u0�(�))[f(q�(�))� f(�q�(�))]� q�(�) + (1 + �)�q�(�) (32)

and F 00(�) = u00�(�))[f(q�(�))�f(�q�(�))]c0(�) < 0. Our assumptions on preferences and technology
guarantee that F 0�1 exists. Let � � F 0�1

�
1��
�


s

�
. We now guess that the value function takes the

form

V (�) = F (�) +


s
(�� �) + �

1� �F (�) (33)

To verify, using (33) the planner�s problem becomes

max
i

F (�)� (1� �) i+ �
�
F (�+ (1� �) si) + 

s
(�+ (1� �) si)� 

s
� +

�

1� �F (�)
�

s:t: 0 � i � 1 (34)

The �rst order condition gives

i =
�� �
(1� �) s (35)

Using this policy function in the objective function, we obtain

V (�) = F (�)� (1� �)  �� �
(1� �) s + �

�
F (�) +



s
�� 

s
� +

�

1� �F (�)
�

= F (�)� 
s
(�� �) + �

�
F (�) +

�

1� �F (�)
�

= F (�) +


s
(�� �) + �

1� �F (�) (36)

11



which veri�es our guess. Notice that � is a constant in [0; 1]. From (35), @i
@�
= �(1��)s+(���)s

[(1��)s]2 < 0.
Hence, as the measure of clean �rms increases, the planner reduces investment in clean technology
R&D. Clearly, there is a �� such that for all � � ��, the planner chooses i (��) = 0. The threshold
level, ��, is de�ned by

� = ��, or

F 0 (��) =
1� �
�



s
(37)

If there is no emissions control, �rms maximize their pro�ts without concern about emissions, and
their production decision follows (2). No �rm invests in emissions reduction, as the investment in
R&D is costly. Since �rms�production decision is independent of their shock, overall emissions
(the emissions from dirty �rms) are given by �E = (1 � �)���q, where �q is the equilibrium level of
production. Taking E as given, consumers maximize their utility subject to their budget constraint
and their behavior is again summarized by the �rst order condition (4). Market clearing is given
by (5) and the equilibrium level of production �q satis�es (6); i.e., f 0 (q)u0 (f (q)) = 1. Welfare in
this economy is given by

(1� �)W = u (f (�q))� �q
�
1 + (1� �)��

�
(38)

We discuss two forms of policy next.

3.1 Emissions Trading

We �rst consider a cap and trade system. A dirty �rm producing q and receiving emission factor ��,
will need to accumulate ��q permits in that period. The permits are then remitted once production
takes place. As before, �rms can also invest in order to reduce their emissions. There is a market
where �rms can trade permits. We assume that ex post emissions, y = �q, are observable, while �
and i(�) are private information.14 The price of permits in terms of the numeraire is again denoted
by �. The sequence of events is as follows:

1. Firms of type � 2 f0; ��g plan to produce q(�) and invest i(�) in R&D. Firms are able to
randomize, so i(�) 2 [0; 1] denotes the probability of investing.

2. Firms produce and earn pro�t f (q)�w (q + I), where I 2 f0; 1g is the result of the lottery
i(�).

3. Firms adjust their permits in the market and remit �q permits.

4. Pro�ts, if any, are redistributed to shareholders.

5. Firms learn the result of their R&D investment and move to the next period.

14Assuming that ex post emissions are observable might seem strong. However, this strengthens our conclusion
as we will demonstrate that a tax scheme will be more e¤ective even if emissions trading can condition on such
expanded information.
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As before, we denote the total stock of permits in this economy byM , while a �rm�s individual
permit holdings are denoted by m. We denote the value of a dirty �rm entering the market with
m permits and shock �� by V�� (m), and the value of a corresponding clean �rm by V0(m). Hence,
V�(m) for � 2 f0; ��g is de�ned by15

V� (m) = max
q;i;m0

+;m
�
+

f (q)� w (q + i) + �m� ��q

+is
�
��m0

+ + �V0
�
m0
+ + T

0
+

��
+ [i(1� s) + (1� i)]

�
��m�

+ + �V�(m
�
+ + T

y
+)
�

s:t: 0 � i � 1 (39)

where T y+ is the (ex-post emissions-dependent) transfer of permits by the issuing authority. When
a �rm enters the market for permits, the value of its portfolio is �m. The �rm then has to remit
�q permits (of value ��q) and decides how many permits to carry over to the next period, m+.
The �rst order conditions for an interior condition i(�) 2 (0; 1) are

f 0 � w � �� = 0 (40)

�w + s
�
��m0

+ + �V0
�
m0
+ + T

0
��
� s

�
��m�

+ + �V�(m
�
+ + T

y
+)
�
� 0 (41)

(= if i > 0, > 0, if i = 1)

��+ �V 00(m0
+ + T

0
+) � 0(= if m0

+ > 0) (42)

��+ �V 0� (m�
+ + T

y
+) � 0(= if m�

+ > 0) (43)

and the envelope condition gives V 0� (m) = �, for � 2 f0; ��g. The �rst order condition for i(0)
clearly implies that i(0) = 0, as clean �rms remain clean. The last two conditions imply that, in
an equilibrium with banking, the price of permits must satisfy

� = ��+ (44)

The consumer�s �rst order conditions give

wu0(c) = 1 (45)

Finally, market clearing implies

�f
�
q0
�
+ (1� �)f

�
q
��
�
= c (46)

�m0
+ + (1� �)m1

+ = M + T

and the law of motion for clean �rms is �+ = � + si(��)(1 � �). Next, we determine whether the
e¢ cient allocation is implementable. We divide the analysis into three cases. First we discuss the
policies which implement the e¢ cient allocation when � � �� and when � < ��, but close to ��.
Finally, we consider the case where � is far below ��.

(i) Case when � � ��
15To economize on notation, we suppress the dependence on � in what follows.
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First, note that the equilibrium outcome in an economy with banking but without transfers
is ine¢ cient for all � � ��. Indeed, in this case the e¢ cient allocation is such that q(��) satis�es
wf 0(�q) = 1 + ��, where w = u0(c)�1. But this can only be the case if � = w. Therefore, � >
��+ = ��, which contradicts e¢ ciency. The only other way to reach the e¢ cient allocation
when � � � is through the use of a transfer policy T yt � 0. With � � ��, a transfer policy is
optimal only if (29) and (30) are satis�ed. Now, (40) together with (45) and (46) imply that

� = w(�) = u0
�
�f (q0) + (1� �)f

�
q
��
��

�1, for all t: Hence, T yt must satisfy

V 0� (T
y
t ) = � = w(�) (47)

Thus, T yt = T
y, a constant, and market clearing requires T y = ��q. Hence, dirty �rms should not

conduct R&D whenever � � ��, and the transfer should implement i(��) = 0. That is,

V0 (0)� V�(T y) <
w

�s
(48)

where

V0(0)� V�(T y) =
f (q0)� wq0
1� � �

f
�
q
��
�
� wq�� � w��q�� + wT y

1� � (49)

Using the market clearing condition in the market for permits, we obtain that i(��) = 0 if

f
�
q0
�
� wq0 �

h
f
�
q
��
�
� wq��

i
< (1� �)w

�s
(50)

Since � � �� and F 00 < 0, this condition is satis�ed since f (q0)� wq0 �
h
f
�
q
��
�
� wq��

i
< wF 0(��)

which is equal to (1� �)w
�s
by (37).

(ii) Case when � < �� but close to ��
In this case, the e¢ cient allocation has some dirty �rms investing in R&D. Therefore, it must

be that (41) holds with equality, or,�
��m0

+ + �V0
�
m0
+ + T

0
+

��
�
�
��m�

+ + �V�(m
�
+ + T

y
+)
�
=
w

s
(51)

We can then write V�(m) as

V� (m) = max
q;i;m0

+;m
�
+

f (q)� w (q + i) + �m� ��q

+is
w

s
� �m0

+ + �V0
�
m0
+ + T

0
+

�
� w

s
s:t: 0 � i � 1 (52)

or, using the solution for q0 for clean �rms,

V� (m) = max
q;i;m0

+;m
�
+

f (q)� wq + �m� ��q

�f(q0)� �m0 + wq0 + V0(m
0)� w

s
(53)
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We need to check whether we can obtain (51) using this formulation. Let q� be the solution to the
dirty �rm�s problem given wage w. Then

V�(m)� V0(m0) = f(q�)� f(q0)� wq� � ��q� + wq0 + �(m�m0)� w
s

(54)

Using this expression into (51), we obtain that i(��) 2 (0; 1) i¤

w

s
= (�w+�w)

�
m0
+ �m�

+

�
+�

h
f(q0+)� f(q�+)� w+q0+ + w+ (1 + �) q�+ + w+(T 0+ � T

y
+) +

w+

s

i
(55)

where we have used that �+ = w+, as this is a necessary condition for e¢ ciency. Using F
0(�+),

we can rewrite the above equation as�
� � w

w+

�
s
�
m0
+ �m�

+

�
+ �

�
sF 0(�+) + s(T

0
+ � T

y
+) + 

�
=
w

w+
 (56)

Comparing this equation with (35) the e¢ cient outcome with i = i� is implemented i¤�
� � w

w+

�
s
�
m0
+ �m�

+

�
+ �s(T 0+ � T

y
+) + � �

w

w+
 = � + � (57)

or

�s(T 0+ � T
y
+) =

�
w

w+
� 1
�
 +

�
w

w+
� �

�
s
�
m0
+ �m�

+

�
(58)

Since �+ = w+, the consumers��rst order condition gives u
0(c) = w(�)�1. Thus,

��+
�

= �
u0(c(�))

u0(c(�+))
< 1 (59)

where the last inequality follows from the assumption that � is close to ��. In this case, the e¢ cient
allocation implies that investment in R&D decreases (so that � can be close to �+) in order to
satisfy the above inequality. In that case, m0

+ = m
�
+ = 0, so that (58) gives

T y(�+) =

�
1� u

0(c(�+))

u0(c(�))

�


�s
+ T 0(�+) (60)

Market clearing requires that

(1� �)T y(�) + �T 0(�) = (1� �)�q� (61)

Therefore,

T 0(�+) = (1� �+)�q�+ � (1� �+)
�
1� u

0(c(�+))

u0(c(�))

�


�s
(62)

T y(�+) = (1� �+)�q�+ + �+
�
1� u

0(c(�+))

u0(c(�))

�


�s
(63)
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Notice that if �+ is close enough to � (which will be the case when i(�) is su¢ ciently close to zero),
then T 0(�) > 0, so that the optimal policy is to grant some permits to clean �rms. As T y(�) is
not su¢ cient for dirty �rms to pledge the required permits, they will have to purchase the missing
permits from clean �rms, thus, e¤ectively subsidizing them. This subsidy makes being �clean�
more attractive and incentivizes investment in R&D. Note that this is in addition to having to
give up revenue from permits. This additional incentive is necessary since e¢ ciency requires that
w = �.

(iii) Case when � is far lower than ��
Finally, we consider the case where � is far lower than ��, so that u0�(c(�+))=u

0�(c(�)) < �.
Emissions trading cannot implement the e¢ cient allocation in this case. Indeed, optimality requires
that w(�) = �(�) and w(�)u0 (c(�)) = 1. But this would imply that �(�) < ��(�+). This is not
consistent with an equilibrium, as it implies an excess demand of permits by �rms who will want
to resell them in the next period. It is useful to provide some intuition for this result. E¢ ciency
requires that aggregate i increases fast. To induce this increase, the future price of permits must
be su¢ ciently high. However, this creates an incentive for �rms to purchase permits now, in order
to sell them in the future, when the price will be higher. This is inconsistent with equilibrium, as
it creates an excess demand for permits.
In summary, when the measure of dirty �rms is greater than a critical threshold, the e¢ cient

allocation is not implementable via the use of an emissions trading system. Equilibrium under
emissions trading either makes technology adoption by dirty �rms too slow, or it distorts production
by dirty �rms relative to the �rst best. Below we show that �scal policies do not su¤er from
this drawback. As in the case without endogenous technology change, a tax scheme can always
implement the �rst best.

3.2 Taxes

We denote the value of a dirty �rm by V��, and the value for a clean �rm by V0. Hence, for
� 2 f0; ��g, V� is de�ned by

V�(�) = max
q;i
f (q)� w (q + i)� � (�qj�)

+is�V0(�+) + [i(1� s) + (1� i)] �V�(�+)
s:t: 0 � i � 1 (64)

The �rst order conditions are

f
0 � w � �� 0(�qj�) = 0 (65)

�w + s�V0
�
�+
�
� s�V�(�+) � 0(= 0, if i > 0, > 0, if i = 1) (66)

Clearly, optimality requires that
� 0(�qj�) = w(�) (67)

so that the optimal tax is linear in the quantity of emissions; i.e., �(�qj�) = w(�)�q + x�(�), for
some x�(�). To induce investment, the tax must be such that (66) holds with equality whenever
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i� > 0. Using this and q0 (the optimal choice of clean �rms), we can rewrite V��(�) as

V��(�) = max
q
f (q)� wq � � (�qj�)�

�
f(q0)� wq0 � �(0j�)

�
+ V0(�)� w=s

Therefore,

V��(�+)�V0(�+) = f
�
q�+
�
�w(�+)q�+��

�
�q�+j�+

�
�
�
f(q0+)� w(�+)q0+ � �(0j�+)

�
�w(�+)=s (68)

Using this expression back in (66), we obtain that i� 2 (0; 1) i¤

V0
�
�+
�
� V�(�+) =

w(�)

s��
f(q0+)� w(�+)q0+ � x0(�+)

�
�
�
f
�
q�+
�
� w(�+)q�+ � w(�+)�q�+ � x�(�+)

�
+
w(�+)

s
=
w(�)

s�

s�F 0(�+) + � � s�
x0(�+)� x�(�+)

w(�+)
=
w(�)

w(�+)
(69)

Comparing this last expression with (35), we obtain that the tax policy can implement i� i¤

s�
x0(�+)� x�(�+)

w(�+)
=

�
1� w(�)

w(�+)

�
 (70)

or, using the consumers��rst order condition, i¤

x0(�+)� x�(�+) =
1

u0(c(�+))

�
1� u

0(c(�+))

u0(c(�))

�


s�
(71)

In particular, if x0 = 0, then x�(�) < 0 and dirty �rms should receive a corresponding lump-sum
subsidy. We summarize our main �nding in the following.

Proposition 2 A tax scheme is less constrained in achieving the optimum than emissions trading.
Equilibrium under emissions trading imposes the additional condition that � = w, which reduces
the range of feasible policies. As a result, emissions trading fails to attain the �rst best when the
measure of dirty �rms is greater than a critical threshold.

Our overall message is as follows. In monetary models, certain conditions need to be satis�ed
in order for money to have value in equilibrium. Modeling explicitly the money-like feature of
permits in an intertemporal model implies that a set of related requirements must be satis�ed in
order for permits to have value. We showed that these requirements are likely to be binding in
the case where there is endogenous progress in clean technologies and when the initial fraction
of �dirty��rms is large. On the other hand, tax policies do not need to satisfy these additional
requirements.
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4 Conclusion

Our work is motivated by the observation that emission-trading resembles monetary trade. We used
insights from dynamic mechanism design in monetary economics to derive properties of optimal
dynamic emissions trading mechanisms. More generally, we argued that policy-makers should
think about permit-issue in a manner similar to that used by central bankers, and we discussed
optimal permit-issue policy. At the optimum, the price of permits increases over time. Our main
�nding is that when there is endogenous technological progress in clean technologies, and if the
measure of dirty �rms is large, the e¢ cient allocation is not implementable via the use of an
emissions trading system. Equilibrium under emissions trading either makes technology adoption
by dirty �rms too slow, or it distorts production of dirty �rms relative to the �rst best. We showed
that �scal policies do not su¤er from this drawback.
Our model can be extended in several directions. First, while we studied conditions under which

the �rst-best is implementable, we have not characterized the constrained-e¢ cient allocations in
the cases when the �rst-best cannot be supported. As we mentioned already, it would also be in-
teresting to extend the analysis to accommodate serially correlated shocks. Finally, we could study
generalizations of the assumed functional forms. As we argued earlier, we made these assumptions
mainly for tractability, and we believe our results to be robust under various generalizations of the
model.
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5 Technical Appendix

Lemma 3 (a) y (�) < �q� (�), for all � such that q� (�) > 0; (b) Assume �f 00 (q) q=f 0 (q) � 1, for
all q. Then @y� (�) =@� > 0 and there is a ~� > 0 such that y (�) = 0 for all � < ~�. In addition,
�q� (�)� y� (�) is constant for all � � ~�.

Proof: (a) Suppose that �� > 0, for some �. Then y (�) = �q (�). As a consequence, �0 = 0, and
(10) implies 1 = ��� < 0, which is a contradiction.

(b) Since �� (�) = 0, the �rst order conditions are

[f 0 (q� (�))� �h0 (�q� (�)� y� (�))]u0 (c�) = 1 (72)

h0 (�q� (�)� y� (�))u0 (c�) + �0 = 1 (73)

First, consider the set of ��s for which �0 = 0. Then, y (�) 2 (0; �q), and the �rst order conditions
are

f 0 (q� (�))u0 (c�) = 1 + � (74)

h0 (�q� (�)� y� (�))u0 (c�) = 1 (75)

Given c�, (74) implies that q� (�) is decreasing with �. Also (75) implies that

dy

d�
= q + �

dq

d�
= q

�
1 +

�

1 + �

f 0

f 00q

�
(76)

so that y (�) is increasing in � if �f 00q
f 0 � 1.

16 Therefore, there is ~� such that given c�, �0 = 0 and

y(~�) = 0. Given ~�, q(~�) solves

f 0
�
q�(~�)

�
u0 (c�) = 1 + ~� (77)

h0
�
~�q�(~�)

�
u0 (c�) = 1 (78)

In turn, ~� solves

h0

 
~��

 
1 + ~�

u0 (c�)

!!
u0 (c�) = 1 (79)

where � (x) = f 0�1 (x). For all � > ~�, the solution is given by (74) and (75). Also, if � < ~�, it
cannot be the case that �0 = 0. Thus, y (�) = 0, for all � < ~�. Notice that �q� (�) � y� (�) is
constant in � whenever y� (�) > 0; i.e., the reduction in emissions is the same for all �rms. Finally,
it remains to show that ~� > 0. By contradiction suppose that ~� = 0. Notice that for any q� (�) and
y� (�) satisfying (74) and (75), it must be the case that q� (�) < q� (0) and �q� (�)! 0, as � ! 0.
Therefore, h0 (�q� (�)� y� (�))! 0, as � ! 0. Thus, for any c� and " > 0, there is � > 0 such that
h0 (�q� (�)� y� (�)) = " and "u0 (c�) < 1. This contradicts that y (�) > 0, implying that ~� > 0.�

16This is the case, for example, if f (x) = lnx, or if f (x) = A (1� e��x), with � � 1.
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Lemma 4 The e¢ cient allocation is such that ~�1 > ~�0. For all � > ~�1, q�1 (�) < q�0 (�) and
y�1 (�) < y

�
0 (�).

Proof: From (74) and (75), given a level of aggregate consumption, c�, the value of q� (�), is
decreasing in � whenever y (�) > 0. Since there is a larger fraction of clean �rms in the eco-
nomy under G1 (while the mass of �rms is the same), we infer that c�1 > c�0. In this case,
(74) implies that f 0 (q�1)u

0 (c�1) = f 0 (q�0)u
0 (c�0) whenever y

�
1; y

�
0 > 0. Therefore, q�1 (�) < q�0 (�);

i.e., �rms with the same � produce relatively less in the cleaner economy. Finally, from (75),
h0 (�q�1 (�)� y�1 (�))u0 (c�1) = h0 (�q�0 (�)� y�0 (�))u0 (c�0), so that �q�1 (�) � y�1 (�) > �q�0 (�) � y�0 (�).
Thus, �rms with the same � reduce their emissions by a larger factor in the cleaner economy. Next,
we demonstrate that ~�1 > ~�0. First, notice that, for any c, �q (�) is increasing in � if �f 00q � f 0.
This implies that, given c, ��( 1+�

u0(c)) is increasing in �, where � (x) = f 0�1 (x). Second, since

�0 (x) < 0 and u0 (c�1) < u0 (c�0), we must have that ��(
1+�

u0(c�1)
) < ��( 1+�

u0(c�0)
), for any �. However,

(79) implies that ~�1�( 1+
~�1

u0(c�1)
) > ~�0�(

1+~�0
u0(c�0)

). Since ��( 1+�
u0(c)) is increasing in �, this implies that

~�1 > ~�0. Thus, more �rms are ex-post clean in the economy under G1.�

Lemma 5 (a) y (�) < �q, for all �, whenever � > 0. (b) Suppose � > 0. Then there is �� (�) > 0
such that for all � � �� (�), we have that y (�) = 0. The quantity produced, q (�; w), is decreasing
in � and in w. In addition, ��0 (�) > 0.

Proof: (a) y (�) < �q, for all �, implies that �� (�) = 0. Indeed, suppose there is a � such that
�� (�) > 0 and y (�) = �q. Then �0 (�) = 0 and, since h0 (0) = 0, (16) gives

��� ��� (�) = 0 (80)

which is impossible when � > 0.

(b) Consider the case of a �rm with y (�) = 0, for some �. In this case, �0 (�) > �� (�) = 0 and the
�rm�s solution is

f 0 (q)� �h0 (�q) = w (81)

h0 (�q) � � (82)

The expression f 0 (q)� �h0 (�q) is strictly decreasing in q, so that (81) de�nes a function q (�) that
is uniquely de�ned for each �. It is easy to check that q0 (�) < 0. In addition, q (�) is decreasing
in w, for all � such that y (�) = 0. Finally, notice that h0 (�q) is increasing in �. Taking the total
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derivative, and using the expression for q0 (�) from (81), we obtain17

dh0 (�q)

d�
= q

�
1� �2h00

�2h00 � f 00

�
h00 > 0 (83)

where the inequality follows from the concavity of the production function. Thus, there is a �� such
that y (�) = 0, for all � < ��. The threshold �� is de�ned by

h0
�
��q
�
��
��
= � (84)

Whenever �� (�) = 0, the emissions constraint is not binding, and, from (81), q (�) is not an explicit
function of �. Therefore, when � increases, �� must also increase by (83). Thus, more �rms choose
to reduce their emissions to a full extent when the price of permits increases.�

Lemma 6 (a) Suppose � > 0. Then, for all � > �� (�), we have that y (�; �) and q (�; �; w) are
such that 0 < y < �q, �q � y is a constant function of �. (b) w0 (�) < 0.

Proof: (a) Let us consider the case when 0 < y (�) < �q. Setting �� (�) = �0 (�) = 0, the solution
of the �rm�s problem becomes,

f 0 (q)� �h0 (�q � y) = w (85)

h0 (�q � y) = � (86)

Replacing the expression for h0 in the �rst equation, we obtain

f 0 (q (�)) = w + �� (87)

h0 (�q (�)� y (�)) = � (88)

For �rms with � > ��, the solution is a pair (q (�) ; y (�)) that solves these equations. Notice that
q0 (�) < 0 whenever � > 0. Also, y0 (�) > 0, if �f 00 (q) q=f 0 (q) � 1. Finally, if � increases then
q (�) declines, in which case y (�) is also decreasing in �.

(b) Given �rms�optimal behavior, w is given by

wu0

 Z ��

0

f (q (�))� h (�q (�)) dG (�) +
Z 1

��

f (q (�))� h (�q (�)� y (�)) dG (�)
!
= 1 (89)

17From (81), we have �
f 00 � �2h00

�
q0 (�) = �qh00:

Therefore,

dh0

d�
= �h00q0 (�) + qh00 = h00 (�q0 (�) + q) = h00

�
�

�qh00

f 00 � �2h00
+ q

�
= qh00

�
1� �2h00

�2h00 � f 00

�
:
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Since q (�) does not depend on � when � < ��, we obtain

u0
@w

@�
+ wu00

�Z 1

��

w
@q

@�
+ p

@y

@�
dG (�)

�
= 0 (90)

Since @q
@�
< 0 and @y

@�
< 0, we have @w

@�
< 0. When studying the general equilibrium e¤ect of a rise

in �, it is important to notice that the e¤ect on q (�) is somewhat tempered by the decline in w.
Still, q (�) and y (�) remain decreasing as functions of �.�

6 An Extension: Futures Market

In the emissions trading system studied in the body of the paper we assumed that the issuing
authority assigns permits to �rms at the start of a new remittance period. In this section, we
show how our model can be extended to the case where the government sells permits rather than
transferring them lump-sum and free of charge.18

Assume that �rms receive signal s = � + " on the realization of their shock, �, at the start
of the market. The random term " is drawn from a distribution F and E ("i) = 0, for all i.
Given this structure, the �rm�s signal is also a �rm�s best guess for the true value of �. Once s is
observed, a �rm can access a futures market to acquire or sell permits at a price p, for delivery at
the remittance date. At this stage, the government sells an amount T of permits (buys if T < 0).
Then the true shock is realized and �rms decide on their production and emission levels. At

the remittance date, a spot market for permits opens, where �rms can trade their permits at a
price �. Finally, each �rm presents an amount of permits equal to the amount of emissions, y.
We denote the value of entering the futures market withm permits and shock s by V (m; s) and

the value of entering the spot market for permits with m permits and shock value s by W (m; �).
Then, V (m; s) is de�ned by

V (m; s) = max
x
E�jsW (m� x; x; �) (91)

s:t: x � m

while W (m) solves

W (m;x; �) = max
x;q;y;m+

f (q)� wq � h (�q � y) + � (m� y) + px+ � � �m+ + �EsV (m+; s)(92)

s:t: 0 � y � �q (93)

where � is a lump-sum transfer. Using (92) to replace W in (91), we obtain

V (m; s) = max
x�m

px+

Z
�js

�
max
q;y

f (q)� wq � h (�q � y) + � (m� x� y)
�

+max
m+

�EsV (m+; s)� �m+

s:t: 0 � y � �q
18More generally, we could investigate competing mechanisms for allocating permits in environments that include

frictions, as in Eeckhout and Kircher (2010). This, however, is beyond the scope of the present paper.
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Given M , the market clearing conditions areZ
x (s) dH (s) + T = 0 (94)Z

y (�; s) dH (s) dG (�) +m+ = M + T (95)Z
f (q (�))� h (�q (�)� y) dG (�) = c (96)

The stock of permits follows the law of motion

M+ =M �
Z
y (�) dG (�) + T

Given a policy fTtg, an equilibrium is a list of quantities and emissions fct; qt (�) ; yt (�)g, permit-
trading decisions fxt (�) ;mt (�)g, and prices fpt; �tg, such that, given prices, the list of decision
variables solves the �rms�and consumers�problems and markets clear. An equilibrium is stationary
whenever the list of quantities and emissions is time independent; i.e., when fct; qt (�) ; yt (�)g =
fc; q (�) ; y (�)g, for all t.
We demonstrate that for any stationary policy T , there is a unique stationary equilibrium. We

�rst solve the �rm�s problem. The �rst order conditions give

f 0 (q)� �h0 (�q � y) = w � ���� (�) (97)

h0 (�q � y)� �� ��� (�) + ��0 (�) = 0 (98)

p� �� (s)� � = 0 (99)

�EsVm+ (m+; s) � � = if m0 > 0 (100)

where �� (s) is the Lagrange multiplier on the �rm�s constraint in the futures market, and ��� (�),
��0 (�) are the multipliers on the constraints related to emissions reduction. Notice from (100)
that all �rms will exit the market holding the same amount of permits for the next period. The
envelope condition gives

Vm (m; s) = � (1 + � (s)) (101)

The workers�decision is still given by (4) and, using market clearing, we obtain an expression for
the wage

wu0
�Z

f (q (�))� h (�q (�)� y (�)) dG (�)
�
= 1 (102)

From (99), it is clear that either � (s) > 0, for all s, and p > �, or � (s) = 0, for all s, and p = �.
If p > �, then all �rms sell their permits, so that T = �M < 0. In addition, (95) implies thatR
y (�; s) + m+ = 0. Since y (�; s) � 0 and m+ � 0, this implies that y (�; s) = 0, for all s, �.

Clearly this is not e¢ cient. The only candidate e¢ cient equilibrium is one where � (s) = 0, for all
s, so that p = �. This is equivalent to an equilibrium where the issuing authority would buy or
sell permits in the spot market during the remittance period. Given p = �, the equilibrium is as in
the text, and we can set x (s) = �T and y (�; s) = y (�; s0), for all (s; s0), since �rms are indi¤erent
between holding permits across the two markets.
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