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1 Introduction

It is widely recognized among economists that a price on carbon emissions,

henceforth called a carbon tax1, is the most important policy instrument to

reduce such emissions. Standard economic reasoning also implies that in the

absence of other market failures, an appropriately set carbon price is the only

instrument needed to achieve an e¢ cient climate policy. However, it is widely

believed that in the real world there are many market failures associated with

energy markets and other climate related markets, suggesting that there is a

role for policy instruments in addition to a correct price on carbon emissions.

Market failures associated with knowledge creation are certainly important

in this respect, as it is di¢ cult to imagine a signi�cant reduction in carbon

emissions during the coming decades without major technological changes.

Even ignoring market failures other than those directly associated with

carbon emissions, one may question the conventional wisdom that an carbon

tax will give an e¢ cient mitigation of carbon emissions. The conventional

wisdom is based on the ability of governments to commit to a future tax

path. In reality, this is not possible. Without commitment, market agents

who make investment decisions must base their decisions on what they ex-

pect about future climate policies. In a hypothetical world without any un-

certainty related to technology, preferences, etc. in the future, future carbon

taxes could be correctly predicted even in the absence of commitment. In

the real world these conditions obviously do not hold. As discussed in more

detail in section 6, non-commitment can therefore lead to uncertain and/or

wrong predictions about the future carbon tax.

In policy debates, it is often argued that lack of commitment may lead to

ine¢ ciently low emission reducing investments, and that emissions therefore

will be higher than they would be with commitment. For instance, Stern

(2007, p. 399) argues that "lack of certainty over the future pricing of the

1The price on carbon emissions could also be the price of carbon quotas; none of the
results in the paper depend on whether taxes or quotas are used as the policy instrument.
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carbon externality will reduce the incentive to innovate". This reasoning

implicitly argues that the carbon price uncertainty due to lack of commitment

has a similar e¤ect on investments and emissions as the future carbon tax

being "too low"; a point that is explicitly made by Ulph and Ulph (2009).

Much of the discussion on the importance of expected future carbon taxes

on investments and hence on emissions ignores the fact that most CO2 emis-

sions are due to combustion of fossil fuels, which are scarce exhaustible re-

sources. For such resources, Sinclair (1992) pointed out that "the key decision

of those lucky enough to own oil-wells is not so much how much to produce

as when to extract it." More recently, this issue has received considerable

attention, often with reference to the so-called "green paradox"2. This term

stems from Sinn (2008a,b), who argues that some designs of climate pol-

icy, intended to mitigate carbon emissions, might actually increase carbon

emissions, at least in the short run. The reason for this possibility is closely

related to the insights given by Sinclair. Sinn�s point is that if e.g. a carbon

tax rises su¢ ciently rapidly, pro�t maximizing resource owners will bring

forward the extraction of their resources. Hence, in the absence of carbon

capture and storage (CCS), near-term carbon emissions increase.

If lack of commitment has similar consequences as the future expected car-

bon tax being lower than under commitment, owners of the non-renewable

carbon resources will postpone extraction compared with the extraction path

they would have chosen had the policy makers been able to commit to the op-

timal price path. This argument suggests that it is not obvious whether near

term emissions will increase or decline as a consequence of lack of commit-

ment: If lack of commitment has similar consequences as the future carbon

tax being lower than a government would like to set if it could commit, there

2Contributions to this literature include Strand (2007), Grafton et al. (2010), Ger-
lagh (2010), Eichner and Pethig (2009), van der Ploeg and Withagen (2010), Hoel (2008,
2010). Earlier contributions making the link between climate policy and markets for non-
renewable resources include Ulph and Ulph (1994), Withagen (1994), Hoel and Kverndokk
(1996), Tahvonen (1997), Chakravorty et al. (2006, 2008).
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are two e¤ects working in opposite direction: Low investments in emission re-

ducing capital tends to increase emissions, while postponed extraction works

in the opposite direction. Notice also that these two e¤ects interact: Own-

ers of carbon resources are not only concerned about future carbon taxes,

but also about how large is the future demand for energy and the supply of

competing energy3. Similarly, �rms investing in energy saving technologies

or renewable energy care about what the future carbon tax will be, but also

about what the supply of fossil energy will be.

The present paper uses a simple two-period model of an aggregate econ-

omy to analyze how the expected future carbon tax may a¤ect both emissions

and investments in substitutes for the carbon resource. Carbon capture and

storage is ignored, implying that emissions are identical to carbon extrac-

tion.4 Period 1 in the model may be interpreted as the near future where

one has reasonable con�dence about the size of the carbon tax, with period

2 being the remaining future. In terms of the number of years, 5-15 years

might be a crude estimate of the length of period 1.

In period 1 the government �rst sets the carbon tax in period 1 and

announces its intended carbon tax for period 2. Once the tax is set, car-

bon resource owners and investors in mitigation capital simultaneously make

their choices of period 1 extraction and investment, respectively. Given the

outcome of period 1, the government sets the carbon tax for period 2, after

which the carbon resource owners decide how much to extract in this period.

There is no further investment in mitigation capital in period 2.

The rest of the paper is organized as follows. Sections 2-5 describe the

market equilibrium for exogenous carbon taxes in the two periods, and derives

the consequences of a change in the period 2 carbon tax rate. The formal

3This is studied in detail by Strand (2007), Gerlagh (2010), and van der Ploegh and
Withagen (2010)

4Discussions of climate policy when there is a possibility of CCS and when the carbon
resource scarcity is taken into considereation have been given by Amigues et al. (2010),
Le Kama et al. (2010) and Hoel and Jensen (2010).
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analysis in these sections is valid independently of whether the period 2

carbon tax rate is an actual tax rate that the government has committed to

or it is the tax rate that market agents expect will be implemented in period

2.

The results in section 5 depend on how sensitive extraction costs are

to total carbon extraction. If there is no physical scarcity of the resource

and extraction costs only rise weakly with accumulated extraction, a higher

future carbon tax implies lower near-term emissions and higher investments

in the non-carbon substitute. On the other hand, near-term emissions will

be higher the higher is the future carbon tax rate if extraction costs rise

rapidly with accumulated extraction. Whether investments in the substitute

are increasing or declining in the future carbon tax rate will in this case

depend on the time pro�le of the returns to the investment. If most of the

returns to the investments come in the near future, investments are declining

in the expected future carbon tax, while the opposite is true if most of the

returns to the investments come in the more distant future.

Section 6 introduces the government�s preferences related to climate change,

and derives the optimal tax rates for the two periods for the case of commit-

ments. This section also gives a discussion of why lack of commitment will

make the future tax rate be uncertain, with an expected value that might

di¤er from the optimal tax rate under commitment.

The actual carbon tax rate for period 2 is set in period 2. This tax rate

will depend on decisions made in period 1, which in turn depends on what

tax rate market agents expected for period 2 when they made their decisions

in period 1. Climate costs are assumed to depend on resource extraction

in both periods, and in section 7 it is shown that equilibrium climate costs

will depend on the expectations about the period 2 tax rate that market

agents had in period 1. Climate costs may be increasing or declining in this

expected tax rate, depending of key parameters in the model.

As mentioned above, it is often argued that lack of commitment may give
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lower investments in energy e¢ cient technologies or renewable energy than

one would get with commitment. This may be an argument for an investment

subsidy, as suggested by Ulph and Ulph (2009). With this motivation, section

8 studies the consequences of an investment subsidy. It is shown that an

investment subsidy always increases investments, while the e¤ect on near-

term emissions is ambiguous. Equilibrium climate costs will decline as a

response to the subsidy, unless most of the returns to the investments come

in period 1 and early emissions are considerable more harmful to the climate

than later emissions.

Section 9 concludes.

2 The market for the general purpose good

Carbon is used as an input in production of a general purpose good in both

periods. The output is increasing in the carbon input and also in a capital

good that is a substitute for carbon energy. An obvious interpretation is

that there is a substitute that has high capital costs and low operating costs

(such as hydro, wind, and solar energy). Once the investment in capacity of

such a substitute is made, it will be operated at full capacity. Alternatively,

one could think of the substitute as knowledge capital, i.e. an improved

technology that is available at a low cost once it has been developed.

Output in the two periods is ~f(x; I) and ~F (X; I), where x is carbon

extracted and used in period 1 and X is carbon extracted and used in period

2. The variable I is the investment in the carbon substitute, which takes

place only in period 1. This investment is assumed to a¤ect output in both

periods, with either ~fI or ~FI being zero as special cases. The functions ~f

and ~F are assumed to be concave and increasing in both arguments, and it

is also assumed that the cross derivatives ~fxI and ~FXI are negative, so that

the marginal productivity of using the carbon resource is lower the higher is

the capital good I.
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The price of the general purpose good is normalized to 1, while the price

of the carbon resource that the producers of the general purpose good must

pay in the two periods is p+ q and P +Q, respectively. Here p and P are the

prices that the producers of the carbon resource receive in the two periods,

while q and Q are the carbon taxes in the two periods. Investment in the

carbon substitute uses the general purpose good, and the cost of one unit of

I is c(I).5 Finally, the exogenous discount factor is � (equal to (1 + r)�1;

where r is the exogenous discount rate).

Producers of the general purpose good take the resource price in period

1 and 2 as given ( p+ q and P +Q, respectively) and maximize

~f(x; I)� (p+ q)x� cI + �
h
~F (X; I)� (P +Q)X

i
The maximization gives

~fx(x; I)� (p+ q) = 0 (1)

~FX(X; I)� (P +Q) = 0 (2)

~fI(x; I) + � ~FI(X; I)� c0(I) = 0 (3)

3 The market for the carbon resource

To extract the carbon resource one needs to use the all purpose good as an

input. The input needed per ton of the resource extracted is assumed to be in-

dependent of the extraction rate, but increases with accumulated extraction.

A special case of this is the case of a constant unit cost of extraction combined

with an absolute upper limit �A on accumulated extraction x+X. The general

speci�cation is frequently used in the resource literature, see e.g. Heal (1976)

and Hanson (1980). Formally, let each unit of the resource be indexed by a

continuos variable z, and let g(z) be the cost of of extracting unit z, with

5With the interpretation of I as investment in the capacity to produce a substitute,
c(I) includes the present value of the operating costs of the substitute at full capacity.

7



g0 � 0. In the two-period model x is extraction in period 1, and X is extrac-

tion in period 2. The cost of extracting x is thus given by G(x) =
R x
0
g(z)dz,

and the cost of extracting X is
R x+X
x

g(z)dz =
R x+X
0

g(z)dz �
R x
0
g(z)dz =

G(x + X) � G(x). Notice that these relationships imply that G0(x) = g(x)
and G0(x + X) = g(x + X). The limiting case of a constant unit cost g

of extraction up to an exogenous limit �A would imply that G(x) = gx and

G(x+X)�G(x) = gX (withX having an upper limit of �A�x). In the subse-
quent analysis it is assumed that g0(z) = 0 for z � ~z and g0(z) > 0 for z > ~z,
and that x < ~z < x+X for all relevant values of x and X.6 This implies that

g0(x) = 0, while G0(x+X) = g(x+X) > g(x) andG00(x+X) = g0(x+X) > 0;

g0(x+X) is henceforth denoted g0.

Producers of the carbon resource maximize

px�G(x) + � [PX � (G(x+X)�G(x))]

This gives (using G0(x) = g(x) and G0(x+X) = g(x+X))

p� g(x) = � [P � g(x)] (4)

and

P = g(x+X) (5)

Using � = (1 + r)�1, this equation implies that

P � p = r(p� g(x))

This is simply the Hotelling rule, which formulated this way also holds for

the extraction cost assumption we are using.

6This simplifying assumption is not important for the results.
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4 The market equilibrium

Equations (1)-(5) are 5 equations determining the 5 variables p; P; x;X; I as

functions of the exogenous tax rates q and Q. Eliminating p and P , the

market equilibrium (1)-(5) may be rewritten as

~fx � (1� �)g(x)� �g(x+X)� q = 0 (6)

~FX � g(x+X)�Q = 0 (7)

~fI + � ~FI � c0 = 0 (8)

These equations are of course also the �rst order conditions to the problem

of maximizing the total private sector pro�ts given by

�(x;X; I; q;Q) =
h
~f(x; I)�G(x)� c(I)� qx

i
(9)

+�
h
~F (X; I)� (G(x+X)�G(x))�QX

i
which is concave in (x;X; I) since ~f , ~F , �G(x +X) and �(1 � �)G(x) are
concave.

If the government could commit to a tax rate Q in the future, both tax

rates q and Q would be known when decisions are made for the �rst period.

In the �rst period the variables x and I are decided upon, while X has

the status of a planned variable for the resource owners, and an expected

variable for the other agents. However, as long as the future tax rate Q and

other exogenous variables are not changed when period 2 arrives, the planned

extraction in period 2 will be the extraction that actually will occur.

Without commitment about the future tax rate, Q is the tax rate that

agents expect in period 2. When period 2 arrives, x, I and p are all histor-

ically determined, while P and X will be determined by (2) and (5). If Q
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turns out to be di¤erent from what agents expected in period 1, P will also

be di¤erent from what agents expected, and X will be di¤erent from what

agents planned.

The next section discusses how the equilibrium depends on the tax rate

Q. The formal analysis is valid independently of whether Q is set already

in period 1 or Q is what agents expect the future tax rate to be. However,

in section 6 it is argued that governments in practise cannot commit to tax

rates far into the future, implying that Q should be interpreted as the tax

rate that agents expect in period 2. In section 6 it is also argued that there

may be good reasons for private agents to expect a future tax rate that di¤ers

from the tax rate that the present government plans to set.

5 The e¤ects of a change in the expected fu-

ture carbon tax

This section describes how changes in Q a¤ect x and I. Derivations using

the general functions ~f(x; I) and ~F (X; I) give ambiguous results that are

not easy to interpret. In particular, the results will depend on how close

a substitute I is for x and X, i.e. on the size of ~fIx and ~FIX , which are

assumed negative. One limiting case is ~fxI = ~FXI = 0. In this case the

market for I (described by (8)) is completely independent of the market for

the resource (described by (6) and (7)). For this case all results are trivial,

and not considered any more in the present paper.

A second limiting case, which the proceeding formal analysis focuses on, is

the case in which the capital good I is a perfect substitute for the resource. If

I is a perfect substitute for x andX, x and I must enter linearly in ~f , so that
~f(x; I) = f(x+aI), and similarly for X and I, so that ~F (X; I) = F (X+bI).

By a suitable choice in the units I is measured in, we can set a + b = 1, so

the functions become
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~f(x; I) = f(x+ aI)

~F (X; I) = F (X + (1� a)I)

The parameter a tells us what share of the total returns to investment are

obtained already during period 1. It is perhaps easiest to interpret a by

considering the limiting cases of a = 0 and a = 1. If a = 0 the investment

gives no payo¤ in period 1. This could be interpreted as the time lag from

the investment decision till the investment is completed and contributes to

production being at least as long as the time period for which commitment

to a speci�c carbon tax rate is assumed. The opposite limiting case of a = 1

could be interpreted as the case of an investment in a capital good that

depreciates rapidly, so that it only contributes to production for the time

period for which commitment to a speci�c carbon tax rate is assumed. The

more general cases of a 2 (0; 1) are intermediate between the two limiting
cases. Notice that the size of a will not only depend on properties of the

capital good: The longer one assumes the period is for which the government

can commit to a speci�c tax rate, the larger will a be.

The assumption that a is an exogenous parameter that does not depend

on carbon taxes and other economic variables re�ects a limitation of the

present analysis I will return to in section 9: The analysis is limited to how

total investment in a substitute may depend on carbon taxes and carbon tax

expectations, and not on how the composition of such investments may be

a¤ected.

With the speci�cation above the market equilibrium (1)-(5) may be rewrit-
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ten as

f 0(x+ aI)� (1� �)g(x)� �g(x+X)� q = 0 (10)

F 0(Xe + (1� a)I)� g(x+X)�Q = 0 (11)

af 0(x+ aI) + �(1� a)F 0(X + (1� a)I)� c0 = 0 (12)

This gives three equations to determine the three variables x, X and I as

functions of q and Q. Just as in the general case, these equations are also the

�rst order conditions to the problem of maximizing the total private sector

pro�ts given by

�(x;X; I; q;Q) = [f(x+ aI)�G(x)� I � qx] (13)

+� [F (X + (1� a)I)� (G(x+X)�G(x))�QX]

which is concave in (x;X; I) since f , F , �G(x +X) and �(1 � �)G(x) are
concave.

Di¤erentiating the three equations (10), (11) and (12) with respect to Q

gives the following three linear equations (using g0(x) = 0 and g0(x+X) = g0):

M �

0B@
@x
@Q
@X
@Q
@I
@Q

1CA =

0B@01
0

1CA
where

M =

0B@f
00 � �g0 ��g0 af 00

�g0 F 00 � g0 (1� a)F 00

af 00 �(1� a)F 00 a2f 00 + �(1� a)2F 00 � c00

1CA (14)
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Solving the equation system above gives (after some tedious calculations)

@x

@Q
=
�

H

�
�a(1� a)f 00F 00 �

�
a2f 00 + �(1� a)2F 00 � c00

�
g0
	
� �

H
Kx (15)

@I

@Q
=
�

H
f(1� a)f 00F 00 + [af 00 � (1� a)�F 00] g0g � �

H
KI (16)

where H = � jMj > 0 due to the concavity of the function � de�ned by

(13).

It is easily veri�ed that both these derivatives have ambiguous signs. In

particular, the signs depend on the sizes of a and g0; in the Appendix the

following result is shown:

Proposition 1 The e¤ects of a change in the future carbon tax rate on
present decisions about resource extraction and investments in a substitute

depend on a and g0 in a way described by Figure 1, where a� = �F 00

f 00+�F 00
and

the three regions A, B and C have the following properties:

Region @x
@Q

@I
@Q

A ("small g0 ") � +

B ("intermediate g0 or small a") + +

C ("large g0 and large a") + �

Figure 1 about here

To interpret this result, it is useful �rst to consider regions B and C.

In both of these cases we �nd the "standard" green paradox result that a

higher future carbon tax shifts extraction from the future to the present.

Investments where most of the returns come in period 1 (large a) therefore

get a lower payo¤ due to increased extraction of the resource, implying lower

investment (region C). On the other hand, investments where most of the re-

turns come in period 2 (small a) get a higher payo¤due to reduced extraction

of the resource in period 2, implying higher investment (region B).
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Region A is characterized by g0 being small. This means that there is

no strong relationship between extraction in the two periods. In particular,

g0 = 0 would imply that extraction decisions in period 1 were completely

independent of extraction plans for period 2. As before, a higher carbon tax

in the future tends to reduce future extraction. However, when g0 is small

the direct e¤ect of this on period 1 extraction is small. Investments, on the

other hand, become more pro�table due to the reduced future extraction, as

long as some of the returns to the investment accrue in period 2 (a < 1). But

if these increased investments also reduce demand for the resource in period

1 ( a > 0), this tends to reduce extraction in period 1.

6 The social optimum and the role of com-

mitment

All of the analysis to now has considered arbitrarily given tax rates, and the

e¤ects of changing the (expected) future tax rate. In this section I discuss

how the social optimum may be achieved by using appropriate carbon taxes

in the two periods, and what role the possibility of commitment may have

for achieving the social optimum. The analysis of the present section starts

with a discussion of how the emissions in the two periods a¤ect total climate

costs.

Due to the time lag of the climate system, the e¤ect of emissions in period

1 on the climate in period 1 is assumed to be negligible; this is certainly true

if the length of period 1 is no longer than about 5-15 years. Climate costs are

therefore assumed to depend on the temperature increase in period 2 (from

some base level). The temperature increase will depend on emissions in both

periods. According to Allen et al. (2009), the peak temperature increase due

to greenhouse gas emissions is approximately independent of the timing of

emissions. In the framework of the present model, peak temperature increase

thus depends only on x+X. However, we would expect this peak temperature
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increase to occur earlier the more of the emissions occur at an early stage. It

also seems reasonable to expect climate costs to be higher the more rapidly

the temperature increases, for a given peak temperature increase. Hence,

it seems reasonable to assume that climate costs are increasing in the two

variables x andX, with x having a stronger marginal impact on climate costs

than X. A simple way of capturing this it to assume that climate costs are

given by a function D(
x+X), where D0 > 0 and 
 > 1.7

Given this climate cost function, the social optimum is found by maxi-

mizing

W = ~f(x; I)�G(x)�c(I)+�
h
~F (X; I)� (G(x+X)�G(x))

i
��D(
x+X)

(17)

The optimum conditions for the three variables x;X; I are

~fx � (1� �)g(x)� �g(x+X)� �
D0 = 0 (18)

~FX � g(x+X)�D0 = 0 (19)

~fI + � ~FI � c0 = 0 (20)

Comparing these equations with (6)-(8) it immediately follows that the

market outcome coincides with the social optimum if

q = �
D0(
x+X) (21)

Q = D0(
x+X) (22)

Notice that this implies that

Q

q
=
1

�


7A slightly more general function ~D(x; x + X), increasing in both arguments, would
make derivations slightly more complex without adding anything of substance.
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Since 
 > 1; the optimal carbon tax thus rises at a rate lower than the rate

of interest (= 1 + r = ��1).

If taxes for both periods were set already in period 1 according to (21) and

(22), with the equilibrium values of x and X inserted from (6)-(8), the social

optimum would be achieved. Moreover, if the government reoptimized in the

beginning of period 2, i.e. maximizedW taking x and I as given, there would

be no change in the optimal tax in period 2. Whether or not it is possible to

commit to a future tax rate is thus irrelevant in the present model as long

as all kinds of uncertainties are ignored. Before turning to possible sources

of uncertainties, it is useful brie�y to see how relatively small changes in the

present model would make the issue of commitment more important.

In the present model all market participants are price takers. If instead

the �rms investing in the substitute were so large that they realized that

their investment decisions could in�uence the future tax rate in the case of

no commitment, there would be a di¤erence between the case of commitment

and no commitment, see e.g. Ulph and Ulph (2009) for a further discussion.8

Any market failure (in addition to the climate externality) preventing the

�rst-best social optimum from being achievable might also make the issue

of commitment more important. Consider e.g. a market failure implying

that investment in the substitute is lower than in the social optimum, even

if carbon taxes are given by (21) and (22). In the case of commitment, the

government might want to partly correct this market failure through choosing

tax rates that deviate from (21) and (22). However, without commitment it

would be optimal to set the second period tax according to (22) once period 2

arrived. If this were foreseen by market participants in period 1, there would

thus be a di¤erence in the outcome under commitment and no commitment.

This issue is discussed in more detail by Golombek et al. (2010) for the case

of investment in period 1 being R&D.

8A similar point is made by Requate (2005) for R&D investments by an innovator that
is so large than it may in�uence future tax rates.
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Finally, a regulatory failure in period 1 implying that the tax in period

1 cannot be set as high as its optimal value would generally imply that if it

were possible to commit, the optimal tax in period 2 would di¤er from the

rate implied by (22). As in the reasoning above, reoptimization in period 2

would generally give a tax di¤ering from the original tax rate. If this were

foreseen by market participants in period 1, there would also in this case be

a di¤erence in the outcome under commitment and no commitment.

While all of the issues above are important in the real world, they are

ignored in the present analysis. Instead, the focus is on various types of

uncertainties, implying that market participants cannot predict future tax

rates with certainty, given that the government cannot commit to a speci�c

future tax rate. There are several sources of such uncertainties in the real

world. Three sources that immediately come to mind in the context of the

climate issue are uncertainties related to technological development, uncer-

tainties related to the preferences of future governments, and uncertainties

related to the development of international climate cooperation. Clearly, op-

timal future carbon taxes are going to depend on the development of all these

factors.

Consider in particular the case of uncertain future political preferences,

given by the climate cost function.9 Let D(
x+X) be the preferences of the

period 1 government, while the preferences of the period 2 government are

given by �D(
x + X), where � is uncertain in period 1.10 A full treatment

of the market equilibrium treating � as a random variable is beyond the

scope of the present analysis. What is important is that the expectations

market participants have about � will be an important factor determining

what the agents believe about the future carbon tax, assumed to be given

by an equation corresponding to (22), i.e. Q = �D0(
x + X). Notice in

9Even if preferences regarding climate change were known with certainty, the function
D decribing the relationship between emissions and climate costs could be uncertain due
to uncertainty related to the climate e¤ects of emissions.
10A similar speci�cation is used by Ulph and Ulph (2009).
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particular that even if agents have a subjective probability distribution over

� satisfying E� = 1, the expected future tax will, due to non-linearities,

generally di¤er from what the expected price would have been with � = 1 for

certain. Moreover, there is no reason why E� = 1. If the present government

is considered to give climate issues high priority compared with potential

other governments, E� < 1 would be more plausible. This may give an

expected value of Q that is lower than what the present government considers

as optimal.

The next section considers the situation from the perspective of the period

1 government with preferences D(
x +X). Given these preferences, it is of

interest to see what the consequences are of Q di¤ering from the optimal

value given by (22), given that the present government will be in power also

in period 2, and thus set the actual carbon tax according to (22).

7 Climate costs and carbon tax expectations

Assume that the carbon policy is set optimally in period 2, no matter how x

and I are determined in period 1. Letting as before Q denote the carbon tax

in period 2 that was expected in period 1, the actual value of X follows from

maximizing W (given by (17)) taking x(Q) and I(Q) as given. This gives

F 0(X + (1� a)I(Q)) = g(x(Q) +X) +D0(
x(Q) +X)

implying that

dX

dQ
= J�1

�
�(g0 + 
D00)

@x

@Q
+ (1� a)F 00 @I

@Q

�
(23)

where J = D00 + g0�F 00 > 0. Total climate costs depends on 
x+X, and it
follows from (15), (16) and (23) that

dD(
x+X)

dQ
=
�D0

HJ
f[(
 � 1)g0 � 
F 00)]Kx + (1� a)F 00KIg (24)
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where Kx and KI are given by (15) and (16), respectively.

The term in front of Kx is positive (since 
 > 1), while the term in

front of KI is negative. If Kx and KI have opposite signs, dD@Q is therefore

unambiguously signed. From Proposition 1 the following therefore follows:

Proposition 2 The e¤ects of a change in the expected future carbon tax rate
on climate costs, given that the actual future carbon tax rate is set optimally,

depend on a and g0 in the way described by Figure 1, where a� = �F 00

f 00+�F 00
and

the three regions A, B and C have the following properties:

Region @x
@Q

@I
@Q

dD
dQ

A ("small g0 ") � + �
B ("intermediate g0 or small a") + + ?

C ("large g0 and large a") + � +

Going back to equation (24), we see that both the numerator and the

denominator contain terms with (g0)2. For g0 su¢ ciently high, these terms

in the numerator will dominate other terms. The part of the numerator con-

taining (g0)2 is �(
 � 1) [a2f 00 + �(1� a)2F 00 � c00] (g0)2. The term in square

brackets is negative no matter what value a has, implying that the whole ex-

pression is positive since 
 > 1. We therefore have the following proposition:

Proposition 3 If the actual future carbon tax rate is set optimally, climate

costs are increasing in the expected carbon tax for g0 su¢ ciently large, no

matter what value a has.

Notice that this result follows immediately from 
 > 1 for the limiting

case of x+X being exogenous, since @x
@Q
> 0 in this case.

Intuitively, one might think that expectations about a high future carbon

tax are good for the climate. This may be true, and Proposition 2 shows that

it is certainly true for values of a and g0 in Region A of Figure 1. However, if

g0 is su¢ ciently high we get the opposite result: Expectations about a high

future carbon tax are bad for the climate.
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8 The e¤ects of subsidizing investments in

the carbon substitute

In several countries, in particular in the EU, there are substantial subsidies

o¤ered to investments in renewable energy and energy saving capital. One

reason that is often given for such subsidies is the assumed lack of con�-

dence among private agents in a high future carbon tax (or quota price).

An obvious question is whether a subsidy to the carbon substitute actually

reduces climate costs. To investigate this, let private investment costs now

be c(I) � sI, where s is an investment subsidy. Di¤erentiating the three
equations (10), (11) and (12) with respect to this subsidy gives

M �

0B@
@x
@s
@Ae

@s
@I
@s

1CA =

0B@ 0

0

�1

1CA
where M as before is given by (14). Solving these equations we �nd that

@x

@s
=
1

H
f�af 00F 00 + [af 00 � �(1� a)F 00] g0g � 1

H
Lx (25)

and
@x

@s
=
1

H
ff 00F 00 � [f 00 + �F 00] g0g � 1

H
LI > 0 (26)

While I for sure increases as a response to a subsidy, the e¤ect of an invest-

ment subsidy on x is ambiguous. In particular, the sign of @x
@s
depend on the

sizes of a and g0; in the Appendix the following result is shown:

Proposition 4 An investment subsidy increases investment, while the e¤ect
on resource extraction in period 1 depends on a and g0 in the way described by

Figure 2, where a� = �F 00

f 00+�F 00
and the two regions D and E have the following

properties:
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Region @x
@s

@I
@s

D ("large a") � +

E ("small a") + +

Figure 2 about here

The e¤ect of an investment subsidy on climate costs, assuming the climate

policy in period 2 is optimally designed, is given by a similar expression as

(24):

dD(
x+X)

ds
=
D0

HJ
f[(
 � 1)g0 � 
F 00)]Lx + (1� a)F 00LIg (27)

where Lx and LI are given by (25) and (26), respectively.

The term in front of Lx is positive (since 
 > 1), while the sign in front

of LI is negative. If Lx and LI have opposite signs, dD@s is therefore unam-

biguously signed. From Proposition 4 the following therefore follows that
dD
ds
< 0 in Region D of Figure 2. As for region E, the following is shown in

the Appendix:

Proposition 5 Given that the actual future carbon tax rate is set optimally,
the e¤ect of an investment subsidy on climate costs depend on a, g0 and 
 in

a way described by Figure 2, where a� = �F 00

f 00+�F 00
and the two regions D and

E have the following properties:

Region @x
@s

@I
@s

dD
ds

D ("large a ") � + �
E ("small a ") and small 
 + + �
E ("small a ") and large 
 + + +

An investment subsidy is thus good for the climate if a is large or 
 is

small. However, it is bad for the environment if a is small and 
 is large.

The interpretation of this is that if a is small, encouraging investment will
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reduce demand for the resource in the future considerably more than in the

present. Resource owners therefore speed up extraction. If climate costs

are su¢ ciently strongly a¤ected by shifting emissions from the future to the

preset, climate costs therefore increase.

9 Concluding remarks

An obvious problem with implementing an optimal climate policy is that

policy makers cannot commit to a high future carbon tax. In the policy

debate on climate policies it is often argued that long-run investments in

greenhouse gas mitigation may be smaller than desirable since investors fear

that future carbon prices will be lower than currently announced by policy

makers. The present paper shows that it is not obvious how expectations

about future carbon taxes a¤ect important variable such as investments in

non-carbon energy and near-term emissions. .

The e¤ects of expectations about future carbon taxes on near-term emis-

sions and investments in substitutes for carbon energy depend signi�cantly

on how rapidly extraction costs increase with increasing total extraction. In

addition, the time pro�le of the returns to the investment in the non-carbon

substitute is important for the e¤ects of expectations about future carbon

taxes.

The analysis is based on an extremely simple model. Only two periods

are considered, instead of a more general model with several periods or with

continuous time. The assumption about commitment therefore was quite

rigid: Market agents know the carbon tax with certainty in the �rst period,

while they must guess on the tax in period 2. In reality, the degree of un-

certainty about the carbon tax or any other price will typically be increasing

gradually over time. Similarly, policy makers ability to commit is not an

either or issue, but rather how strongly they can commit. It seems plausible

that commitment is weaker the further into the future we look.
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The model is highly aggregated. There is only one type of carbon resource

in the model. In reality, there are quite large di¤erences between coal, oil

and natural gas. In particular, the degree of physical scarcity of the resource,

captured by g0 in the formal model, probably di¤ers considerably between

di¤erent types of fossil fuels. Similarly, there is only one type of investment

in the model, with a given time pro�le of returns. In reality there are many

types of emission reducing investments, di¤ering along many dimensions,

including the time pro�le of returns. We would therefore expect a change in

the expectations about future tax rates to have di¤erent e¤ects on di¤erent

investment.

In spite of the shortcomings of the formal model, I believe the analysis

gives an important insight: An key message is that in any analysis of dynamic

e¤ects of carbon taxes, investment subsidies and other mitigation policies, it

is crucial to take the supply side of fossil fuel markets into consideration.

Appendix

Proof of Proposition 1

The signs of the derivatives (15) and (16) are equal to the signs of Kx and

KI , respectively.

Consider �rst Kx. This function is increasing in g0 and quadratic in a. It

is zero for g0 = a = 0 and for g0 = 1�a = 0. The �rst term in the expression
for Kx is negative (for 0 < a < 1), while the second term (including the

minus sign) is positive. The second term will dominate if g0 is su¢ ciently

large. However, for g0 su¢ ciently small there will be a range of a-values

giving Kx < 0. By setting Kx = 0 we can �nd the combinations of a and

g0 that separate the area for Kx < 0 and Kx > 0. These combinations are

given by the line ` in Figure 1: When Kx = 0 each value of a 2 (0; 1) will
give some positive value of g0, with a particular value of a giving the highest

possible value of g0consistent with Kx = 0. Since Kx is increasing in g0, it
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follows that Kx < 0 in region A in Figure 1, while Kx > 0 in region B.

Consider next KI . This function is declining in a. Moreover, for any

value of g0 there exists a value of a giving KI = 0. It is straightforward to

see that this value is

â(g0) =
f 00F 00 � �F 00g0

f 00F 00 + (�f 00 � �F 00)g0

which approaches a� as g0 ! 1. Since KI is declining in a, it follows that

KI > 0 for combinations of g0 and a satisfying a < â(g0), illustrated as region

B in Figure 1. Similarly, KI < 0 for combinations of g0 and a satisfying

a > â(g0), illustrated as region C in Figure 1. The borderline between these

two regions in denoted m in Figure 1.

In Figure 1, the curves ` andm don�t intersect for any positive value of g0.

The reason for this is thatKx > 0 to the right of the curvem, or, alternatively

stated,KI � 0 impliesKx > 0: ifKI = (1�a)f 00F 00+[af 00 � (1� a)�F 00] g0 �
0, it follows that �a(1 � a)f 00F 00 � a2f 00g0 + a(1 � a)�F 00g0 � 0. But Kx is

larger than the l.h.s. of the last inequality, implying that Kx > 0.

This concludes the proof of Proposition 1.

Proof of Proposition 4

The term Lx is declining in a. Moreover, for any value of g0 there exists a

value of a giving Lx = 0. It is straightforward to see that this value is

~�(g0) =
��F 00g0

f 00F 00 + (�f 00 � �F 00)g0

which is increasing in g0 and approaches a� as g0 !1. Since Lx is declining
in a, it follows that Lx < 0 for combinations of g0 and a satisfying a > ~�(g0),

illustrated as region D in Figure 2. Similarly, Lx > 0 for combinations of g0

and a satisfying a < ~�(g0), illustrated as region E in Figure 2. The borderline

between these two regions in denoted n in Figure 2.
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This concludes the proof of Proposition 4.

Proof of Proposition 5

The term Lx is positive in region E. The term [(
 � 1)g0 � 
F 00)]Lx will
therefore dominate the term (1 � a)F 00LI in (27) if 
 is su¢ ciently large.
Hence, the whole expression in (27) will be positive in this case.

For the limiting case of 
 = 0 it follows from (25), (26) and (27) that�
dD(
x+X)

ds

�

=0

=
D0f 00F 00

HJ
[F 00 � g0] < 0

By continuity, dD
ds
< 0 also for small but positive values of 
.

This concludes the proof of Proposition 5.
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