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Abstract 
 
We construct an empirical model for daily highs and daily lows of US stock indexes based on 
the intuition that highs and lows do not drift apart over time. Our empirical results show that 
daily highs and lows of three main US stock price indexes are cointegrated. Data on openings, 
closings, and trading volume are found to offer incremental explanatory power for variations 
in highs and lows within the VECM framework. With all these variables, the augmented 
VECM models explain 40% to 50% of variations in daily highs and lows. The generalized 
impulse response analysis shows that the responses of daily highs and daily lows to the 
shocks depend on whether data on openings, closings, and trading volume are included in the 
analysis. 
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1. Introduction 

Stock price behavior is quite intensively examined. While price data on open, high, low, 

and close are available, studies on stock returns and volatility usually employed only close-to-

close return data. Indeed, the studies based on close-to-close return data outnumber those based 

on the other three price variables by a wide margin. Do the data on closings contain more 

information about price dynamics than the other three variables? Seemingly, the answer is not a 

definite yes. The high and the low, for instance, correspond to the prices at which the excess 

demand is changing its direction – the information that is not reflected by data on closing prices. 

Also, the price range, given by the difference of the high and the low, contains useful 

information on return volatility. In the seminal study Parkinson (1980) shows that the price range 

is a more efficient volatility estimator than, for example, the variance estimator based on close-

to-close return data under certain assumptions.1 Thus, there is no apparent reason to ignore 

information on the other three price variables in studying stock price behavior. 

Recently, there is a revived interest in studying the price range variable. In addition to 

examining its stochastic properties, some recent studies use the price range to model 

intertemporal volatility behavior and, thus, incorporate it in various GARCH and stochastic 

volatility models to construct conditional or local variance estimators.2 Mok et al. (2000), on the 

other hand, directly use data on highs and lows to test whether the S&P 500 and Hang Seng 

indexes follow a random walk specification. Overall, there is still a relatively small number of 

studies on the high and the low. 3 

The current exercise offers an exploratory analysis of the empirical properties of highs 

and lows. There are several reasons for analyzing the high and the low. First, it is conceivable 

that data on highs and lows contain information that is not included in, say, the closings. For 

instance, the high and the low are the turning points of the underlying price series, while the 

close is (usually) not. Further the high and the low can be used to construct other variables of 

                                                 
1  Modifications and variations of the Parkinson result are provided by, for example, Beckers (1983), Garman 
and Klass (1980), Kunitomo (1992), Rogers and Satchell (1991), and Yang and Zhang, (2000). 
2  See, for example, Alizadeh et. al. (2002), Brandt and Diebold (2003), Brunetti and Lildholdt (2005), Chou, 
(2005), Engle and Gallo (2003), Fernandes et al. (2005), and Gallant et al. (1999). 
3  In a related literature, the range is used to determine the persistence (strength of memory) of data. See, for 
example, Hurst (1951), Lo (1991) and Cheung (1993).  
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interest such as the price range. In our exercise, it is shown that modeling the range using only its 

own history may be inferior to a model that jointly describes the behavior of highs and lows.  

Second, the pricing of some derivatives requires information on the high and the low. For 

example, exotic options such as the knock-out (knock-in) options and lookback options are 

constructed based on the highest price (or the lowest price) during an agreed upon period.4  

Third, the high and the low are key components of some technical trading techniques.5 

For example, the price channel strategy initiates a buy (sell) when the price closes above (below) 

the upper (lower) channel constructed from daily highs and lows. Support and resistance levels 

are price levels at which there is a possible reverse of the trend. A breakthrough of these levels is 

considered as an important trading signal. In addition, highs and lows are used in forming trading 

techniques such as candlestick charts and stochastic oscillators. 

 The motivation of the empirical model of highs and lows used in the current study is 

quite intuitive. For equity markets in developed countries such as the US, stock prices exhibit 

stochastic trends and are typically characterized by I(1) processes. Daily highs and lows, 

however, do not appear to drift apart from each other too far over time. If one assumes there is a 

stochastic trend underlying the stock price data generating process, both the high and low are 

likely to be driven by the same stochastic trend. If this is the case, then the high and the low can 

individually drift around without an anchor but their differences should not diverge over time. 

Thus, highs and lows may follow a cointegration relationship. 

To explore the idea, we consider three main US stock indexes: the Dow Jones Industrial 

index, the NASDAQ index, and the S&P 500 index and formally test whether their highs and 

lows are cointegrated. To anticipate the results, the test corroborates the notion of cointegration 

between daily highs and daily lows. The vector error correction model derived from the 

cointegration relationship is extended to include other explanatory variables including opening 

prices, closing prices, and trading volumes. The responses of the high and the low to shocks are 

analyzed in the presence of different groups of explanatory variables. 

                                                 
4  For example, a knock-out option will expire and become worthless when the price reaches a pre-specified 
level. A lookback option, on the other hand, offers the retrospective right to exercise the contract at the lowest price 
(for a call, or the highest price for a put) during the period stipulated in the contract before its expiration.  
5  See, for example, Edwards and Magee (1997) for some popular technical trading techniques. The 
popularity of trading rules in financial markets is documented in, for example, Cheung and Wong (2000), Cheung 
and Chinn (2001), and Taylor and Allen (1992). Lo et al. (2000) provides an extensive analysis of technical trading.  
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2. Preliminary Analyses 

In this study we consider three main US stock indexes – the Dow Jones Industrial index 

(DJ), the NASDAQ index (NQ), and the S&P 500 index (SP). Daily data on opens, highs, lows, 

closes, and trading volume from January 2, 1990 to December 31, 2004 were downloaded from 

the Yahoo! Finance and Bloomberg L.P. websites. As a preliminary analysis, a modified Dickey-

Fuller test known as the ADF-GLS test (Elliott, Rothenberg, Stock, 1996) is used to test for 

stationarity. The ADF-GLS test is shown to be approximately uniformly most powerful 

invariant. Let tY  be a generic notation of a stock index’s daily open ( tO ), daily high ( tH ), daily 

low ( tL ), daily close ( tC ), and daily trading volume ( tV ) series, in logarithms. The price range 

tR  defined by tH  - tL  is also considered. The ADF-GLS test that allows for a linear time trend 

is based on the following regression: 

0 1 1
(1 ) (1 )p

t t k t k tk
L Y Y L Yτ τ τα α ε− −=

− = + − +∑      (1) 

where L is the lag operator, tY τ is the locally detrended process under the local alternative of α  

and is given by t t tY Y zτ γ ′= −  with zt = (1, t)’. γ~  is the least squares regression coefficient of 

tY on z t
~ , where ( , .. ), 1 2 T , . YY Y  = (  (1 )   (1 ) )1 2 T,  -  L   , ..., -  L  Y Y Yα α , )~~~( z......z  ,z T21  =  

1 2( ( )  ( ) )Tz  , 1 -  L  z  , ..., 1-  L zα α , and tε  is the error term. The local alternative α  is defined by α  

=1 + c / T for which c  is set to -13.5. The Bayesian information criterion is used to determine p, 

the lag parameter. If the estimated residuals do not pass the diagnostic test, then the lag 

parameter is increased until they do pass. The unit root hypothesis is rejected when the 

ADF-GLS test statistic, which is given by the usual t-statistic for a0 = 0 against the alternative of 

a0 < 0, is significant.6  

The test results are given in Table 1. The unit-root null hypothesis is not rejected by the 

four price series ( tO , tH , tL , and tC ) but is rejected by the range and trading volume data. To 

compare these results with those commonly reported in the literature, Table 1 also presents the 

results obtained from the augmented Dickey-Fuller test results, which is based on the regression 

                                                 
6  See Elliott, Rothenberg, Stock (1996) and Cheung and Lai (1995) for a detailed description of the testing 
procedure and the related finite sample critical values. 
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Table 1. Unit Root Tests 
 
 ADF-GLS ADF 
 STAT LAG Q5 Q10 STAT LAG Q5 Q10 
     
A. The Dow Jones Industrial index     

O -1.352 8 0.007 1.422 -1.249 8 0.007 1.383 
H -1.332 3 5.663 7.909 -1.225 3 5.657 7.910 
L -1.513 6 0.069 5.640 -1.432 6 0.070 5.648 
C -1.53 1 6.455 14.612 -1.447 1 6.483 14.642 
V -7.106* 11 0.899 12.937 -9.588* 10 0.646 11.395 
R -5.043* 10 0.324 6.950 -6.253* 10 0.170 3.858 

        
B. The NASDAQ index     

O -1.235 6 0.043 11.818 -1.210 6 0.044 11.857 
H -1.235 5 0.733 3.359 -1.202 5 0.749 3.425 
L -1.245 7 0.024 5.698 -1.223 7 0.024 5.672 
C -1.264 3 2.572 7.610 -1.232 3 2.572 7.633 
V -4.556* 13 1.257 11.019 -5.281* 10 1.916 15.072 
R -6.413* 10 1.127 12.329 -7.122* 10 0.847 9.226 

        
C. The S&P 500 index     

O -1.071 8 0.025 1.149 -0.977 8 0.025 1.13 
H -1.184 2 2.611 9.948 -1.099 2 2.657 10.035 
L -1.156 10 0.006 0.229 -1.065 10 0.005 0.235 
C -1.085 8 0.014 0.660 -0.98 8 0.014 0.631 
V -5.081* 10 1.368 13.592 -5.548* 10 1.168 11.301 
R -4.993* 11 0.716 13.543 -8.109* 10 0.382 8.664 

 
Note: The table reports results of applying the ADF-GLS and ADF tests to daily open (O ), daily 
high ( H ), daily low ( L ), daily close (C ), daily trading volume (V ), and daily price range ( R ) 
series. Panels A, B, and C give results for the Dow Jones Industrial index, the NASDAQ index, 
and the S&P 500 index, respectively. “ADF-GLS” and “ADF” gives the ADF-GLS and ADF test 
results. “STAT” gives the test statistics, “LAG” gives the lag parameters used in the test 
procedures, “*” indicates the rejection of the unit root null hypothesis at the 5% level and “Q5” 
and “Q10” gives the Box-Ljung Q-statistics calculated from the first 5 and 10 estimated residual 
autocorrelations. None of the Q-statistics is significant. 
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1 1
p

t t j j t j tY t Y Yδ β γ β ε− = −∆ = + + + Σ ∆ + . Both sets of test results suggest that tO , tH , tL , and tC  

are I(1) variables and tV  and tR  are I(0) variables. As indicated by the Q-statistics, the lag 

structures used to conduct these tests adequately capture the intertemporal dynamics. 

 
Table 2. Sample Correlations 
 
A. The Dow Jones Industrial index   

 ∆ O  ∆ H  ∆ L  ∆ C  V  
∆ H 0.573     
∆ L 0.597 0.800    
∆ C 0.076 0.667 0.639   

V 0.013 0.065 -0.034 0.016  
R -0.134 -0.015 -0.217 -0.038 0.542 

     
B. The NASDAQ index   

 ∆ O  ∆ H  ∆ L  ∆ C  V  
∆ H 0.762     
∆ L 0.761 0.782    
∆ C 0.260 0.646 0.640   

V 0.002 0.030 -0.019 0.017  
R -0.232 -0.105 -0.337 -0.121 0.474 

     
C. The S&P 500 index   

 ∆ O  ∆ H  ∆ L  ∆ C  V  
∆ H 0.634 1.000    
∆ L 0.651 0.641 1.000   
∆ C 0.075 0.585 0.570 1.000  

V -0.063 -0.024 -0.094 -0.026  
R -0.200 0.034 -0.366 -0.062 0.498 

 
Note: The sample correlations between the stationary variables ∆ tO , ∆ tH , ∆ tL , ∆ tC , and tV  
of  the Dow Jones Industrial index, the NASDAQ index, and the S&P 500 index are reported. 
 

We have to address the stationarity issue of trading volume before we proceed to the next 

stage of analysis. The detrending method used to achieve stationarity depends on data 

characteristics. While the trading volume does not contain a stochastic trend given by an I(1) 

process, it has a significant deterministic trend component. Thus, we removed the estimated 

trend from trading volume data. Henceforth, tV  refers to the detrended volume data. The degrees 
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of association between the stationary variables ∆ tO , ∆ tH , ∆ tL , ∆ tC , tV , and tR  are 

presented in Table 2. The changes in opens, highs, and lows have a high correlation coefficient 

that ranges from 0.57 to 0.80 across the three stock indexes. ∆ tC  tends to have a low correlation 

with ∆ tO  but a high correlation with ∆ tH  and ∆ tL . For the three index series, the trading 

volume has a small correlation coefficient with the changes in prices but a relatively large one 

with the range. The large correlation between trading volume and range may be driven by their 

association with volatility. Among the four price variables, the range has the largest correlation 

coefficient with changes in the low followed by changes in the opening. In the subsequent 

sections, a dynamic and multivariate setting is used to investigate the intertemporal properties of 

changes in highs and lows. 

 

3. An Empirical Model 

 As previously stated, an empirical model for highs and lows is built based on the intuition 

that these two variables are interlinked and driven by some common dynamic factors. Results in 

the previous section show that the high and the low are I(1) variables. Thus, the cointegration 

technique is used to investigate their dynamic interactions.  

 

3.1 Cointegration Test 

The Johansen procedure is used to formally test for cointegration. Let Xt be a 2x1 vector 

containing the daily high and daily low series of a stock index (that is, Xt  ≡ ( tH , tL )’) and has a 

(p+1)-th order autoregressive representation: 
1

1
p

t i i t i tµ γ ε+
= −= +Σ +X X ,       (2) 

where µ is the intercept term, iγ ’s are coefficient matrices, and εt is the innovation vector. To 

test whether the elements in tX  are cointegrated, the Johansen procedure tests for significant 

canonical correlations between t∆X  and 1t p− −X  after adjusting for all intervening lags. Johansen 

(1991) and Johansen and Juselius (1990), for example, give a detailed description of the test.  

The cointegration test results are reported in Table 3. Again, the Bayesian information 

criterion is used to select the lag parameter p and diagnostic tests are conducted to ensure the 

selected lag structure adequately describes data dynamics. According to both maximum  
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Table 3. Cointegration Test Results 
 
  EIGENV TRACE H  L  LAG 
       
A. The Dow Jones Industrial index     
 r=1 1.218 1.218    
 r=0 75.968* 77.186*    
      7 
 Q5   0.089 0.182  
 Q10   2.599 6.519  
       
 C. Vector   1.000 -1.007  
       
B. The NASDAQ index     
 r=1 1.652 1.652    
 r=0 112.184* 113.836*    
      8 
 Q5   0.149 0.364  
 Q10   1.910 5.719  
       
 C. Vector   1.000 -1.010  
       
C. The S&P 500 index     
 r=1 1.223 1.223    
 r=0 102.923* 104.145*    
      8 
 Q5   0.173 0.151  
 Q10   2.497 3.673  
       
 C. Vector   1.000 -1.005  
 
Note: The results of testing for cointegration between highs and lows of the Dow Jones Industrial 
index, the NASDAQ index, and the S&P 500 index are reported in Panels A, B, and C. 
Eigenvalue and trace statistics are given under the columns “EIGENV” and “TRACE.” “r=0” 
corresponds to the null hypothesis of no cointegration and “r=1” corresponds to the hypothesis of 
one cointegration vector. The no-cointegration null is rejected and the hypothesis of one-
cointegration vector is not rejected.  “ H ” and “ L ” identify the Q-statistics associated with the 
daily high and daily low equations. All the Q-statistics are insignificant. The rows labeled “C. 
Vector” give cointegrating vectors with the coefficient of the high normalized to one.  “LAG” 
gives the lag parameters used to conduct the test. 
 

eigenvalue and trace statistics, the null hypothesis of no cointegration is rejected. Further, there 

is no evidence that there exists more than one cointegrating vector. These results suggest that, for 
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a given stock index, its daily high and daily low series are cointegrated. That is, the high and low 

series are driven by the same stochastic trend and individually wander randomly over time. 

However, an appropriate linear combination of highs and lows can eliminate the effects of the 

stochastic trend and form a stationary mean reverting series. 

The estimated cointegrating vectors with the coefficient of the daily high series tH  

normalized to one are also reported in Table 3. According to the estimated cointegrating vectors, 

there is approximately a one-to-one correspondence between movements in daily high and daily 

low over time. Recall that the range is defined by tR  = tH  - tL . The stationarity result of the 

range tR  reported in Table is supportive of the (1, -1) specification of the cointegrating vector. 

Thus, in the subsequent analyses, we impose the (1, -1) cointegrating restriction in estimating the 

vector error correction model.7 The diagnostic Q-statistics are all insignificant; indicating the 

selected lag structures are appropriate. 

 

3.2  Vector Error Correction Model 

Given that the daily high and daily low series are cointegrated, a vector error correction 

model (VECM) is used to examine their long-run and short-run interactions. Imposing the (1, -1) 

cointegrating vector restriction, the VECM can be written as: 

1 1
p

t i i t i t t tR Dµ α ξ ε= − −∆ = +Σ Γ ∆ + + +X X .     (3) 

The variable tD  ≡  (d2t, d3t, d4t, d5t)’ containing dummies for Tuesday, Wednesday, Thursday, 

and Friday are included to allow for the possible day-of-the-week effect. The VECM results are 

presented in Table 4. The Q-statistics affirm that the selected VECM models adequately capture 

the data dynamics and the resulting disturbance terms display no statistically significant serial 

correlation. 

 Since we do not have a theoretical model underpinning the VECM (3), we do not want to 

over-interpret the estimation results. Nonetheless, there are a few interesting observations. First, 

in all three cases, the range variable has a negative coefficient in the daily high equation and a 

positive coefficient in the daily low equation. An increase in the daily range tends to bring down  

                                                 
7  The results pertaining to models without the (1, -1) restriction are very similar to those reported in the text. 
These results are available upon request. 
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Table 4. Estimates of the Basic Vector Error Correction Models 
 
A. The Dow Jones Industrial index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.201 -6.492 0.550 15.691 
∆ H (-2) -0.256 -6.951 0.279 6.701 
∆ H (-3) -0.151 -3.877 0.259 5.863 
∆ H (-4) -0.099 -2.507 0.219 4.902 
∆ H (-5) -0.046 -1.202 0.215 4.950 
∆ H (-6) 0.028 0.804 0.216 5.553 
∆ L (-1) 0.388 14.254 -0.232 -7.509 
∆ L (-2) 0.143 4.449 -0.354 -9.707 
∆ L (-3) 0.156 4.549 -0.236 -6.045 
∆ L (-4) 0.126 3.605 -0.183 -4.625 
∆ L (-5) 0.013 0.376 -0.251 -6.501 
∆ L (-6) -0.024 -0.789 -0.206 -5.908 
µ 0.001 1.896 -0.001 -1.226 
R(.) -0.011 -0.605 0.070 3.474 
d2t 0.000 0.243 0.000 -0.612 
d3t 0.000 -1.083 -0.001 -2.421 
d4t -0.001 -1.539 -0.001 -1.772 
d5t -0.001 -2.063 -0.001 -1.506 
     
Adjusted R2 0.082  0.096  
     
Q5 0.062  0.278  
Q10 2.564  7.367  
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B. The NASDAQ index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.274 -8.790 0.564 15.019 
∆ H (-2) -0.297 -7.775 0.341 7.437 
∆ H (-3) -0.213 -5.186 0.351 7.112 
∆ H (-4) -0.091 -2.153 0.370 7.238 
∆ H (-5) -0.077 -1.829 0.253 4.975 
∆ H (-6) 0.002 0.045 0.229 4.719 
∆ H (-7) -0.006 -0.170 0.196 4.594 
∆ L (-1) 0.428 16.530 -0.282 -9.044 
∆ L (-2) 0.209 6.437 -0.407 -10.438 
∆ L (-3) 0.215 6.057 -0.302 -7.075 
∆ L (-4) 0.117 3.155 -0.319 -7.159 
∆ L (-5) 0.075 2.002 -0.290 -6.470 
∆ L (-6) 0.003 0.095 -0.269 -6.261 
∆ L (-7) 0.033 1.021 -0.175 -4.515 
µ 0.001 1.637 -0.001 -1.138 
R(.) -0.053 -2.514 0.047 1.851 
d2t 0.001 0.928 0.000 0.156 
d3t 0.000 0.078 0.000 -0.504 
d4t 0.001 1.541 0.001 1.713 
d5t 0.000 -0.690 0.001 0.925 
     
Adjusted R2 0.094  0.079  
     
Q5 0.174  0.537  
Q10 1.857  9.257  
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C. The S&P 500 index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.302 -11.980 0.730 24.937 
∆ H (-2) -0.414 -12.471 0.374 9.687 
∆ H (-3) -0.254 -6.906 0.403 9.429 
∆ H (-4) -0.208 -5.433 0.365 8.218 
∆ H (-5) -0.122 -3.198 0.334 7.519 
∆ H (-6) -0.074 -2.013 0.324 7.562 
∆ H (-7) -0.067 -2.063 0.211 5.584 
∆ L (-1) 0.533 24.699 -0.294 -11.706 
∆ L (-2) 0.230 8.141 -0.503 -15.311 
∆ L (-3) 0.283 8.912 -0.336 -9.108 
∆ L (-4) 0.180 5.371 -0.363 -9.322 
∆ L (-5) 0.120 3.543 -0.342 -8.664 
∆ L (-6) 0.050 1.535 -0.330 -8.663 
∆ L (-7) 0.056 1.924 -0.238 -6.985 
µ 0.001 2.621 -0.001 -1.834 
R(.) -0.034 -1.520 0.120 4.589 
d2t 0.000 -0.245 0.000 -0.543 
d3t -0.001 -1.322 -0.001 -1.262 
d4t 0.000 -0.863 0.000 -0.873 
d5t -0.001 -1.434 -0.001 -1.789 
     
Adjusted R2 0.165  0.176  
     
Q5 0.165  0.207  
Q10 2.410  4.229  
 
Note: The estimates of the vector error correction model (3) are reported. Panels A, B, and C 
give the results for the Dow Jones Industrial index, the NASDAQ index, and the S&P 500 index. 
Results pertaining to the high and the low equations are reported under the headings “∆ H ” and 
“∆ L .” t-statistics are given in parentheses next to the parameter estimates. “µ” is the constant 
term. R(.) is the lagged range; which is the error correction term with the (1, -1) coefficient 
restriction. d2t, d3t, d4t, are d5t are the Tuesday, Wednesday, Thursday, and Friday dummy 
variables capturing the day-of-the-week effects. The adjusted R-squared statistics are reported in 
the row labeled “Adjusted R2.”  Q5 and Q10 give the Q-statistics calculated from the first 5 and 
10 sample autocorrelations, respectively. All the Q-statistics are insignificant. 
 

the next daily high and boost the next daily low and, hence, reduces the next daily range. Thus, 

the estimated dynamics implies the range variable is regressive and is in accordance with its 
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stationary property. The result is consistent with the cointegration result and indicates the range 

variable is not an unreasonable proxy for the error correction term. While the range variable is 

statistically significant in all three daily low equations, it is significant in only one daily high 

equation – the NASDAQ daily high equation. We do not have a good reason to explain the range 

is mostly significant in daily low but not daily high equations. 

Second, for all the three stock indexes, the significant coefficient estimates of lagged 

dependent variables are all negative and those of the other lagged variables are positive. For 

instance, consider the Dow Jones Industrial index daily high equation in Panel A, the coefficient 

estimates of the lagged daily high differences are negative whereas those of the lagged daily low 

differences are positive. The negative coefficients suggest regressive behavior. Higher daily 

highs tend to drift down to a lower level, and lower daily highs tend to move up to a higher level. 

On the other hand, the positive coefficients of the lagged daily low differences are indicative of 

spillover effects. Higher (lower) daily lows lead to higher (lower) daily highs. 

 Third, the explanatory power of these error correction equations is quite decent for stock 

price changes. The two S&P 500 equations presented in Panel C have the highest adjusted R-

squared statistics of 16.5% and 17.6%. For the other two stock indexes, the adjusted R-squared is 

between 7.9% to 9.6%. 

The estimation results indicate day-of-the-week effects in daily high and daily low data 

are quite weak. Most of the day-of-the-week dummy variables are not statistically significant. 

For the few that are significant, the (absolute) size of the estimates is quite small. When the 

variable tD  is omitted from (3), the other estimates are essentially the same (in terms of both 

magnitude and statistical significance) and the adjusted R-adjusted is reduced by less than 0.1% 

in most cases. Indeed, for all the three cases, the Bayesian information criterion selects the 

specification without the day-of-the-week dummy variables, which passes diagnostic tests with 

essentially the same Q-statistics. Thus, for brevity, the day-of-the-week effect is not considered 

in the subsequent analyses. 

A remark on modeling the range is in order. The VECM (3) implies that the use of the 

historical range data to model the range dynamics may not be most efficient. Multiply both sides 

of (3) by the vector (1, -1)’, we have  

1 1( )p
t i i t i i t i t tR c a H b L wR u= − − −∆ = +Σ ∆ − ∆ + + ,    (4) 



 13

where ,  ,  ,    i i tc a b w and u  are functions of the coefficients in (3). Only when the difference of 

the rows in each iΓ  is a constant vector, we have  i ia b=  and t iR −∆  under the summation sign 

on the right-hand-side of (4). Thus, under the VECM specification, a proper specification of the 

range tR  requires information on the high and the low, and beyond the history of tR  itself. 

 

4. Augmented Models 

4.1 Additional Price Variables 

Equation (3) uses only histories of highs and lows as explanatory variables. Since the 

open and close are realizations from the same price series, they contain useful information about 

the evolution of the high and the low. Consider, say, changes in the daily closing price and the 

daily high, ∆ 1tC −  and ∆ tH . Because the close and the high are recorded at different times of 

the day, the information arrived between 1tH −  and 1tC −  is contained in ∆ 1tC −  but not available 

in ∆ 1tH − .  ∆ 1tC −  does not contain extra information when 1tH −  = 1tC − . Thus, adding data on 

opens and closes would enhance the performance of (3).  The role of other price variables in 

explaining ∆ tH  and ∆ tL  is examined using the augmented model: 

1 1 1 1
p q r

t i i t i t i i t i i i t i tR Y COµ α θ ε= − − = − = −∆ = +Σ Γ ∆ + +Σ Λ ∆ +Σ +X X ,  (5) 

where t iY −∆  is a vector containing ∆ t iO −  and ∆ t iC − , t iCO −  is given by t iC − – t iO − , and iΛ  and 

iθ  are the corresponding coefficient matrix and vector. The results of fitting (5) to the data are 

presented in Table 5. The lag parameters q and r are chosen based on the significance of iΛ  and 

iθ . The significant coefficients of t iY −∆  and t iCO −  in these equations are all positive; indicating 

that increases in inter-day movements in opens and closes and in intraday open-to-close spreads 

imply gains in the high and the low. The local price momentum (information) captured by these 

additional price variables helps explain variations in both highs and lows. 

The inclusion of these additional price variables has some systematic impacts on the 

original VECM coefficient estimates. The coefficient estimates of the lagged dependent variables 

become more negative, and those of the other variables shrink and turn negative in some cases. 
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Table 5. Estimates of the Vector Error Correction Models with Additional Price Variables 
 
A. The Dow Jones Industrial index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.786 -24.727 -0.168 -4.743 
∆ H (-2) -0.560 -14.247 -0.143 -3.256 
∆ H (-3) -0.415 -9.996 -0.070 -1.510 
∆ H (-4) -0.212 -5.318 0.091 2.053 
∆ H (-5) -0.089 -2.706 0.167 4.526 
∆ H (-6) 0.000 -0.015 0.179 5.671 
∆ L (-1) -0.022 -0.786 -0.742 -24.214 
∆ L (-2) -0.008 -0.226 -0.582 -15.628 
∆ L (-3) 0.023 0.647 -0.406 -10.441 
∆ L (-4) 0.070 2.111 -0.244 -6.588 
∆ L (-5) 0.048 1.702 -0.205 -6.450 
∆ L (-6) 0.003 0.136 -0.172 -6.075 
µ 0.001 2.157 -0.001 -2.782 
∆ O (-1) 0.397 4.400 0.363 3.605 
∆ O (-2) 0.114 1.539 0.165 2.000 
∆ O (-3) 0.107 1.923 0.133 2.147 
∆ O (-4) 0.078 2.793 0.080 2.563 
∆ C (-1) 0.396 3.867 0.619 5.408 
∆ C (-2) 0.219 2.447 0.457 4.584 
∆ C (-3) 0.318 4.442 0.406 5.091 
∆ C (-4) 0.141 2.790 0.165 2.913 
CO (-1) -0.457 -4.464 -0.406 -3.553 
R(.) -0.021 -1.442 0.057 3.489 
     
Adjusted R2 0.376  0.404  
     
Q5 1.736  3.205  
Q10 5.385  5.356  
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B. The NASDAQ index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.764 -22.075 -0.066 -1.637 
∆ H (-2) -0.487 -11.280 0.056 1.106 
∆ H (-3) -0.367 -8.873 0.136 2.803 
∆ H (-4) -0.149 -4.477 0.291 7.450 
∆ H (-5) -0.042 -1.299 0.291 7.600 
∆ H (-6) -0.009 -0.283 0.212 5.776 
∆ H (-7) -0.017 -0.610 0.183 5.662 
∆ L (-1) 0.065 2.262 -0.751 -22.285 
∆ L (-2) 0.152 4.318 -0.519 -12.550 
∆ L (-3) 0.156 4.532 -0.402 -9.987 
∆ L (-4) 0.152 5.285 -0.279 -8.249 
∆ L (-5) 0.063 2.173 -0.298 -8.817 
∆ L (-6) 0.031 1.135 -0.229 -7.081 
∆ L (-7) 0.018 0.711 -0.194 -6.658 
µ 0.001 3.916 0.000 -1.224 
∆ O (-1) 0.308 5.935 0.437 7.201 
∆ O (-2) 0.142 3.129 0.242 4.542 
∆ O (-3) 0.098 3.107 0.159 4.280 
∆ C (-1) 0.292 5.456 0.309 4.926 
∆ C (-2) 0.148 3.214 0.210 3.886 
∆ C (-3) 0.101 3.093 0.127 3.344 
CO (-1) -0.594 -11.072 -0.816 -12.970 
R(.) -0.037 -2.258 0.069 3.628 
     
Adjusted R2 0.457  0.477  
     
Q5 1.994  0.918  
Q10 9.216  4.089  
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C. The S&P 500 index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.880 -31.033 0.035 1.049 
∆ H (-2) -0.666 -18.452 0.031 0.740 
∆ H (-3) -0.500 -13.582 0.119 2.781 
∆ H (-4) -0.259 -8.328 0.321 8.874 
∆ H (-5) -0.135 -4.471 0.321 9.154 
∆ H (-6) -0.121 -4.167 0.273 8.076 
∆ H (-7) -0.087 -3.390 0.187 6.291 
∆ L (-1) 0.079 3.314 -0.842 -30.423 
∆ L (-2) 0.102 3.439 -0.689 -20.020 
∆ L (-3) 0.135 4.415 -0.507 -14.317 
∆ L (-4) 0.192 7.166 -0.342 -10.990 
∆ L (-5) 0.144 5.363 -0.320 -10.251 
∆ L (-6) 0.098 3.801 -0.276 -9.204 
∆ L (-7) 0.088 3.786 -0.204 -7.597 
µ 0.001 3.412 -0.001 -4.130 
∆ O (-1) 0.369 4.953 0.257 2.967 
∆ O (-2) 0.305 5.347 0.276 4.161 
∆ O (-3) 0.220 7.612 0.224 6.680 
∆ C (-1) 0.355 4.128 0.597 5.984 
∆ C (-2) 0.232 3.303 0.508 6.243 
∆ C (-3) 0.107 2.187 0.247 4.356 
CO (-1) -0.501 -5.759 -0.415 -4.106 
R(.) -0.048 -2.729 0.104 5.033 
     
Adjusted R2 0.481  0.489  
     
Q5 3.416 [.636] 5.123 [.401] 
Q10 5.723 [.838] 9.025 [.530] 
 
Note: The estimates of the augmented vector error correction model (5) for the high and the low 
equations are reported. Panels A, B, and C give the results for the Dow Jones Industrial index, 
the NASDAQ index, and the S&P 500 index. ∆ O (.), ∆ C (.), and CO (.) are the extra price 
variables added to the basic VECM (3). See also the Note to Table 4. 
 

For instance, in the case of the Dow Jones Industrial daily low equation presented in Panel A, the 

coefficient estimates of the first few lagged changes in lows display a larger negative impact than 

those in Table 4. The effect of the lagged changes in highs is smaller; the coefficient estimates of 

the first two lags are, in fact, significantly negative. 
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However, the effects of these additional price variables on the range variable’s coefficient 

estimates are not similar across the three US stock indexes. For instance, compared with Table 4, 

the estimated range effect in Table 5 is smaller for the Dow Jones Industrial and the S&P 500 

daily low equations but is larger in the case of the NASDAQ daily low equation. For daily high 

equations, the range effect is mitigated in the case of the NASDAQ index but is stronger and 

becomes significant for the S&P 500 index. 

The most noticeable change is the adjusted R-squared statistic. The NASDAQ daily low 

equation experiences the largest improvement. The adjusted R-squared statistic of the augmented 

equation (47.67%) is six times of the original error correction equation (7.87%). The smallest 

increase is given by the S&P 500 daily low equation; the adjusted R-squared improves from 

17.59% to 48.91%. The additional price variables do not qualitatively deteriorate the diagnostic 

Q-statistics, which still indicate the estimated residuals are well behaved. Thus, the explanatory 

power is enhanced without scarifying the modeling quality.  

 

4.2 Trading Volume 

 Trading volume is an exogenous variable quite commonly considered by studies of 

financial price dynamics. Intuitively, trading volume is a relevant variable since prices are 

determined by the interplay of demand and supply. Indeed, there is a rich literature that covers 

the theory and empirics of interactions between returns and trading volume.8 We investigate the 

effect trading volume has on highs and lows using the regression: 

1 1 0
p s

t i i t i t i i t i tR Vµ α δ ε= − − = −∆ = +Σ Γ ∆ + +Σ +X X .    (6) 

Following a common practice in extant literature, we include the contemporaneous trading 

volume and set the lag parameter s to 1. The estimation results are given in Table 6.  

The contemporaneous trading volume is positively correlated with the change in the daily 

high. The lagged trading volume, on the other hand, has a negative impact. The results are quite 

different for the daily low equation. The contemporaneous trading volume is found to be 

negatively correlated with changes in daily lows. The lagged trading volume, on the other hand,  

                                                 
8  See Karpoff (1987) for a detailed review of early studies on the topic. A recent and extensive study is 
provided by Lo and Wang (2001) 
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Table 6. Estimates of the Vector Error Correction Models with Trading Volume 
 
 
A. The Dow Jones Industrial index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.185 -5.670 0.584 15.718 
∆ H (-2) -0.252 -6.501 0.329 7.456 
∆ H (-3) -0.145 -3.540 0.315 6.789 
∆ H (-4) -0.098 -2.393 0.284 6.107 
∆ H (-5) -0.057 -1.428 0.283 6.244 
∆ H (-6) 0.011 0.295 0.283 6.851 
∆ L (-1) 0.377 13.101 -0.263 -8.055 
∆ L (-2) 0.143 4.217 -0.403 -10.421 
∆ L (-3) 0.150 4.138 -0.290 -7.011 
∆ L (-4) 0.128 3.490 -0.246 -5.908 
∆ L (-5) 0.026 0.736 -0.318 -7.788 
∆ L (-6) -0.010 -0.310 -0.272 -7.250 
µ 0.001 1.904 -0.003 -4.829 
V  0.005 7.415 -0.004 -5.685 
V (-1) -0.004 -4.861 0.000 -0.159 
R(.) -0.027 -1.280 0.131 5.525 
     
Adjusted R2 0.095  0.104  
     
Q5 0.230  0.196  
Q10 2.890  7.351  
 
 
 



 19

B. The NASDAQ index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.264 -8.233 0.581 14.986 
∆ H (-2) -0.281 -7.072 0.369 7.679 
∆ H (-3) -0.200 -4.685 0.382 7.376 
∆ H (-4) -0.091 -2.058 0.402 7.516 
∆ H (-5) -0.088 -2.001 0.289 5.438 
∆ H (-6) -0.020 -0.461 0.276 5.391 
∆ H (-7) -0.025 -0.667 0.246 5.374 
∆ L (-1) 0.422 15.901 -0.298 -9.273 
∆ L (-2) 0.196 5.813 -0.431 -10.549 
∆ L (-3) 0.202 5.421 -0.329 -7.317 
∆ L (-4) 0.115 2.980 -0.348 -7.438 
∆ L (-5) 0.083 2.145 -0.322 -6.843 
∆ L (-6) 0.019 0.505 -0.311 -6.833 
∆ L (-7) 0.050 1.443 -0.220 -5.287 
µ 0.001 3.420 -0.001 -2.091 
V  0.009 7.923 -0.006 -4.035 
V (-1) -0.007 -6.049 0.002 1.592 
R(.) -0.071 -2.957 0.089 3.048 
     
Adjusted R2 0.108  0.083  
     
Q5 0.198  0.467  
Q10 2.670  6.804  
 
 
 



 20

C. The S&P 500 index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.299 -10.163 0.731 21.456 
∆ H (-2) -0.403 -10.258 0.386 8.476 
∆ H (-3) -0.244 -5.608 0.429 8.520 
∆ H (-4) -0.195 -4.342 0.420 8.069 
∆ H (-5) -0.117 -2.606 0.398 7.630 
∆ H (-6) -0.067 -1.538 0.405 8.032 
∆ H (-7) -0.054 -1.383 0.288 6.408 
∆ L (-1) 0.517 20.461 -0.311 -10.610 
∆ L (-2) 0.220 6.589 -0.526 -13.597 
∆ L (-3) 0.270 7.182 -0.360 -8.256 
∆ L (-4) 0.162 4.101 -0.426 -9.332 
∆ L (-5) 0.108 2.696 -0.415 -8.909 
∆ L (-6) 0.039 0.999 -0.410 -9.056 
∆ L (-7) 0.052 1.468 -0.307 -7.464 
µ 0.001 1.314 -0.003 -5.470 
V  0.002 3.327 -0.008 -9.947 
V (-1) -0.003 -3.883 0.004 4.191 
R(.) -0.014 -0.497 0.212 6.467 
     
Adjusted R2 0.167  0.199  
     
Q5 0.264  0.280  
Q10 3.037  3.837  
 
Note: The estimates of the augmented vector error correction model (6) for the high and the low 
equations are reported. Panels A, B, and C give the results for the Dow Jones Industrial index, 
the NASDAQ index, and the S&P 500 index. V  and V (-1) are the contemporaneous and lagged 
trading volume variables added to the basic VECM (3). See also the Note to Table 4. 
 

has a significant positive effect for the NASDAQ and S&P 500 indexes and an insignificant 

effect for the Dow Jones Industrial index. 

When we combine the effects on the daily high and low equations, a high level of 

contemporaneous trading volume implies a large range value (because of an increase in the high 

and a reduction in the low). Since the range is a proxy of volatility, the result is in accordance 

with the assertion that a high level of trading volume is associated with a high level of volatility. 

The lagged trading volume, on the other hand, is negatively related to the range – a result that is 

comparable to its negative effect on volatility reported in the literature. Thus, the estimated 
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trading volume effect is broadly consistent with the notion of joint dependence of returns and 

volume on a common latent variable and with empirical findings on the interaction between 

returns and volatility. 

 The presence of trading volume does not materially change the estimates of the original 

VECM model. The coefficient estimates of the lagged changes in Table 6 have signs and 

magnitudes that are quite comparable to those in Table 4. Similar to the additional price variables 

considered in Table 5, the trading volume does not have a systematic effect on the range 

coefficient estimates. Specifically, the Dow Jones Industrial high and low equations exhibit 

range effects that are larger than those in Table 4, Panel A. On other hand, the presence of 

trading volume reduces the range effects for the S&P 500 equations and yields mixed impacts for 

the NASDAQ equations. The diagnostic Q-statistics reported in Table 6 are all insignificant. The 

incremental explanatory power of trading volume is small relative to the price variables 

considered in the previous subsection. The inclusion of trading volume, in general, strenghtens 

the value of the adjusted R-squared statistic by 1% to 2%. The additional price variables in the 

previous subsection, on the other hand, boost the statistic by over 30%.  

 

4.3 The Combined Model 

 The combined effects of the additional price variables and trading volume are examined 

using 

1 1 1 1 0
p q r s

t i i t i t i i t i i i t i i i t i tR Y CO Vµ α θ δ ε= − − = − = − = −∆ = +Σ Γ ∆ + +Σ Λ ∆ +Σ +Σ +X X . (7) 

The results are presented in Table 7. In a nutshell, the coefficient estimates of the price variables 

are quite similar to those in Table 5, the trading volume effects are comparable to those reported 

in Table 6, the adjusted R-squared statistics are marginally higher than those in Table 5, and the 

Q-statistics are good. 

The explanatory power of tV  relative to tY∆  and tCO  is in accordance with the notion 

that trading volume is secondary in importance while price is the most important piece of 

information. In technical analysis, trading volume patterns are usually used to confirm price 

patterns but not used as the primary indicator. Overall, (7) offers a promising specification of the 

high and low dynamics. It explains close to 50% of the variations in changes in highs and lows, 

as indicated by the adjusted R-squared statistics. 
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Table 7. Estimates of the Vector Error Correction Models with Additional Price Variables 
and Trading Volume 
 
A. The Dow Jones Industrial index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.780 -23.692 -0.137 -3.721 
∆ H (-2) -0.565 -13.936 -0.098 -2.152 
∆ H (-3) -0.418 -9.818 -0.027 -0.566 
∆ H (-4) -0.226 -5.554 0.138 3.026 
∆ H (-5) -0.116 -3.390 0.221 5.776 
∆ H (-6) -0.028 -0.944 0.236 7.039 
∆ L (-1) -0.031 -1.103 -0.763 -24.077 
∆ L (-2) -0.005 -0.154 -0.617 -16.055 
∆ L (-3) 0.024 0.670 -0.444 -11.018 
∆ L (-4) 0.084 2.446 -0.289 -7.529 
∆ L (-5) 0.074 2.463 -0.259 -7.720 
∆ L (-6) 0.029 1.050 -0.227 -7.449 
µ 0.001 3.228 -0.002 -4.908 
V  0.005 9.275 -0.004 -6.720 
V (-1) -0.003 -5.155 0.000 0.684 
∆ O (-1) 0.392 4.392 0.372 3.712 
∆ O (-2) 0.105 1.437 0.171 2.095 
∆ O (-3) 0.105 1.914 0.137 2.221 
∆ O (-4) 0.081 2.938 0.078 2.524 
∆ C (-1) 0.418 4.124 0.595 5.228 
∆ C (-2) 0.232 2.621 0.439 4.431 
∆ C (-3) 0.331 4.678 0.394 4.961 
∆ C (-4) 0.143 2.860 0.160 2.843 
CO (-1) -0.437 -4.321 -0.426 -3.751 
R(.) -0.045 -2.653 0.107 5.569 
     
Adjusted R2 0.390  0.412  
     
Q5 1.800  2.148  
Q10 4.402  5.065  
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B. The NASDAQ index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.776 -22.387 -0.054 -1.310 
∆ H (-2) -0.493 -11.283 0.070 1.345 
∆ H (-3) -0.364 -8.616 0.147 2.929 
∆ H (-4) -0.160 -4.647 0.307 7.496 
∆ H (-5) -0.069 -2.037 0.313 7.793 
∆ H (-6) -0.049 -1.495 0.239 6.174 
∆ H (-7) -0.054 -1.846 0.209 6.042 
∆ L (-1) 0.056 1.944 -0.753 -22.025 
∆ L (-2) 0.143 4.038 -0.523 -12.405 
∆ L (-3) 0.154 4.417 -0.410 -9.918 
∆ L (-4) 0.162 5.434 -0.293 -8.259 
∆ L (-5) 0.085 2.846 -0.317 -8.925 
∆ L (-6) 0.065 2.241 -0.253 -7.366 
∆ L (-7) 0.050 1.911 -0.218 -6.946 
µ 0.002 5.106 -0.001 -2.019 
V  0.011 11.731 -0.004 -3.886 
V (-1) -0.008 -8.067 0.002 2.007 
∆ O (-1) 0.325 6.367 0.426 7.004 
∆ O (-2) 0.149 3.336 0.236 4.423 
∆ O (-3) 0.094 3.008 0.159 4.285 
∆ C (-1) 0.296 5.601 0.313 4.978 
∆ C (-2) 0.155 3.416 0.210 3.887 
∆ C (-3) 0.101 3.163 0.128 3.366 
CO (-1) -0.605 -11.405 -0.805 -12.762 
R(.) -0.069 -3.727 0.092 4.181 
     
Adjusted R2 0.476  0.479  
     
Q5 1.676  0.805  
Q10 7.662  3.166  
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C. The S&P 500 index 
 
 ∆ H  ∆ L  
 COEFF T-STAT COEFF T-STAT 
∆ H (-1) -0.891 -27.577 0.033 0.895 
∆ H (-2) -0.686 -16.449 0.023 0.487 
∆ H (-3) -0.493 -11.546 0.147 2.971 
∆ H (-4) -0.258 -7.075 0.358 8.507 
∆ H (-5) -0.133 -3.739 0.383 9.332 
∆ H (-6) -0.120 -3.514 0.344 8.668 
∆ H (-7) -0.086 -2.803 0.251 7.086 
∆ L (-1) 0.063 2.315 -0.847 -26.885 
∆ L (-2) 0.081 2.379 -0.711 -18.040 
∆ L (-3) 0.121 3.426 -0.527 -12.959 
∆ L (-4) 0.187 5.969 -0.393 -10.843 
∆ L (-5) 0.139 4.390 -0.382 -10.418 
∆ L (-6) 0.096 3.112 -0.345 -9.714 
∆ L (-7) 0.088 3.147 -0.267 -8.260 
µ 0.001 2.499 -0.002 -6.120 
V  0.004 6.808 -0.007 -9.927 
V (-1) -0.004 -6.413 0.003 3.769 
∆ O (-1) 0.374 4.741 0.273 2.997 
∆ O (-2) 0.320 5.229 0.310 4.384 
∆ O (-3) 0.222 6.923 0.231 6.222 
∆ C (-1) 0.384 4.269 0.570 5.480 
∆ C (-2) 0.261 3.561 0.503 5.924 
∆ C (-3) 0.121 2.372 0.221 3.741 
CO (-1) -0.477 -5.220 -0.437 -4.141 
R(.) -0.041 -1.853 0.180 7.006 
     
Adjusted R2 0.485  0.507  
     
Q5 3.383  2.073  
Q10 5.484  8.160  
 
Note: The estimates of the augmented vector error correction model (7) for the high and the low 
are reported. Panels A, B, and C give the results for the Dow Jones Industrial index, the 
NASDAQ index, and the S&P 500 index. ∆ O (.), ∆ C (.), CO (.), and V (.) are the extra 
explanatory variables added to the basic VECM (3). See also the Note to Table 4. 
 

4.4 Impulse Responses 
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 In this subsection, we employ the generalized impulse response technique (Pesaran and 

Shin, 1998) to examine the effects of shocks to the daily high and daily low under different 

model specifications. Unlike the usual approach based on Cholesky decomposition and 

orthogonalized shocks, the Pesaran-Shin approach incorporates correlation between shocks and 

yields unique impulse response functions that are invariant to the ordering of variables.  Only in 

the limiting case of a diagonal variance matrix of the error vector do the traditional and the 

generalized approaches coincide. 

 Let the error vector tε  has a zero mean and a variance Σ  = ( ijσ ).  The generalized 

impulse response of t h+X  with respect to a unit shock to the j-th variable (j = 1 for a shock to the 

high and j = 2 for a shock to the low) at time t is given by 

/h j jjB e σΣ ,   h = 0, 1, 2, …       (8) 

where 1 1 2 2 1 1......h h h p h p p h pB B B B Bγ γ γ γ− − − + − −= + + + + , h = 1, 2, …, IB =0 , and 0hB =  for h < 0. 

Note that the matrices {Bh, t = 1, 2, ...} constitute the coefficient matrices of the (infinite order) 

moving-average representation of tX . The term ej is a selection vector with unity as its j-th 

element and zeros elsewhere. It is shown that (8) is valid for a system of cointegrated variables. 

See Pesaran and Shin (1998) for a more detailed discussion. 

 The generalized impulse responses of t∆X  to normalized unit shocks calculated from 

models (3), (5), (6), and (7) are summarized in Figure 1. The impulse response patterns are 

different across these models but these patterns are quite similar among the three stock indexes. 

In general the effects of the shocks on changes in highs and lows are short-lived; a typical result 

reported for financial price returns. For the basic VECM model (3) and one-day lagged 

responses, innovations in daily highs have a larger impact on daily lows than they do on daily 

highs.9 On the other hand, innovations in daily lows have a larger impact on daily highs than on 

daily lows. All the one-day lagged responses are positive, and the effect of the shock dies off 

pretty quickly after the first day.  

The responses to these shocks change quite substantially in the presence of data on 

openings and closings. In contrast to the basic VECM model, one-day lagged responses to  

                                                 
9  Number “2” on the horizontal axis corresponds to the one-day lagged response to the initial unit shock. 
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Figure 1. Generalized Impulse Responses 
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shocks are negative for all the three stock indexes under specification (5). The magnitude of the 

first day responses is larger than the one from the basic VECM model. While the impulse 

responses drop off quite fast, their absolute magnitudes are usually larger than the ones from (3). 

The trading volume does not appear to have a substantial impact on the impulse response 

patterns for the three stock indexes. The impulse responses computed from (6) are very similar to 

those from (3). The combined model (7), as expected, generates impulse responses comparable 

to those obtained from (5). To summarize, the general impulse response analysis corroborates the 

analyses conducted in the previous subsections – the open and the close have significant 

information about the dynamics of the high and the low and their information is richer than that 

contained in trading volume data. 

 

6. Concluding Remarks 

Motivated by the intuition that daily highs and lows of stock indexes in the US do not 

drift apart over time, we constructed an empirical model of these two variables based on the 

cointegration concept. Our empirical results show that daily highs and daily lows of three main 

US stock price indexes are cointegrated. The difference of the high and the low, which is the 

price range examined in the literature, is stationary and can be interpreted as the error correction 

term of the cointegration system comprising highs and lows. 

Data on openings, closings, and trading volume are found to offer incremental 

explanatory power for highs and lows in the VECM framework. The incremental explanatory 

power of openings and closings is considerably higher than that of trading volume. With all these 

variables, the augmented VECM models explain 40% to 50% of the variations in daily highs and 

lows. The generalized impulse response analysis reveals that the responses of daily highs and 

daily lows to their shocks depend on whether data on openings, closing, and trading volume are 

included in the analysis. 

The perspective of the current exercise is different from some recent studies that focus on 

price range dynamics and the ability of price ranges to capture volatility. The current exercise is 

on modeling the high and the low, which are the constituting elements of the price range. The 

cointegration result implies that using only the history of the range to model range dynamics 

does not constitute a complete strategy. A proper specification of the range should also include 

information on highs and lows. Also, while price ranges can be constructed from highs and lows, 
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it is rather difficult, if not impossible, to recover highs and lows from data on price ranges. Thus, 

a model of highs and lows is complementary to extant studies on modeling ranges. 

The exploratory analysis conducted here indicates that the proposed model has good 

explanatory power. While we are not claiming the superiority of the empirical high-low model, 

the results do bear some implications for studying stock price dynamics. For instance, in 

specifying a GARCH type specification of stock return behavior, the range variable derived from 

the empirical high-low model can be used to model conditional volatility. The use of range may 

improve the performance of GARCH type models. Further, range is an efficient estimator of 

volatility. The empirical model offers a reasonable alternative to generate volatility forecasts that 

are crucial inputs for options pricing and risk management.10 In general, the empirical high-low 

model should complement studies in which (conditional) volatility plays a significant role. 

Further research, which is beyond the scope of the current exercise, on the implications of the 

proposed model for pricing exotic options and for evaluating technical trading methods that 

involve high and low variables is warranted. 

                                                 
10  Indeed, in a companion study (Cheung et. al., 2005), it is showed that the range forecasts generated from 
the VECM specification are better than those from, say, ARMA specifications of the range variable. 
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