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Abstract 
 
The potential for portfolio diversification is driven broadly by two characteristics: the degree 
to which systematic risk factors are correlated with each other and the degree of dependence 
individual firms have to the different types of risk factors. Using a global vector 
autoregressive macroeconometric model accounting for about 80% of world output, we 
propose a model for exploring credit risk diversification across industry sectors and across 
different countries or regions. We find that full firm-level parameter heterogeneity along with 
credit rating information matters a great deal for capturing differences in simulated credit loss 
distributions. Imposing homogeneity results in overly skewed and fat-tailed loss distributions. 
These differences become more pronounced in the presence of systematic risk factor shocks: 
increased parameter heterogeneity reduces shock sensitivity. Allowing for regional parameter 
heterogeneity seems to better approximate the loss distributions generated by the fully 
heterogeneous model than allowing just for industry heterogeneity. The regional model also 
exhibits less shock sensitivity. 
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1 Introduction

In theory the potential for credit risk diversification for banks can be considerable. Insofar as dif-

ferent industries or sectors are more or less pro-cyclical, banks can alter their lending policy and

capital allocation across those sectors. Similarly, internationally active banks are able to apply

analogous changes across countries. In addition to such passive credit portfolio management, fi-

nancial engineering, using instruments such as credit derivatives, enables banks (and other financial

institutions) to engage in active credit portfolio management by buying and selling credit risk (or

credit protection) across sectors and countries. Credit exposure to the U.S. chemical industry, say,

can be traded for credit exposure to the Korean steel sector. One may, therefore, think of a global

market for credit exposures where credit risk can be exported and imported.

Within such a global context, default probabilities are driven primarily by how firms are tied

to fundamental risk factors, both domestic and foreign, and how those factors are linked across

countries. In order to implement such a global approach in the analysis of credit risk, we have

developed in Pesaran, Schuermann and Weiner (2004), hereafter PSW, a global vector autoregres-

sive macroeconometric model (GVAR) for a set of 25 countries accounting for about 80% of world

output. Importantly, the foreign variables in the GVAR are tailored to match the international

trade pattern of the country under consideration.

Pesaran, Schuermann, Treutler and Weiner (2005), hereafter PSTW, relate asset returns for

a portfolio of 119 firms to the global macroeconometric model, thus isolating macro effects from

idiosyncratic shocks as they relate to default (and hence loss). The GVAR effectively serves as the

macroeconomic engine capturing the economic environment faced by an internationally active global

bank. Domestic and foreign macroeconomic variables are allowed to impact each firm differently.

In this way we are able to account for firm-specific heterogeneity in an explicitly interdependent

global context. Developing such a conditional modeling framework is particularly important for

the analysis of the effects of different types of shock scenarios on credit risk, an important feature

we exploit here.

In this paper we extend the analysis of PSTW along four dimensions. First, we provide some

analytical results on the limits of credit risk diversification. Second, we illustrate the impact of two

different identification restrictions regarding the default condition on the resulting loss distributions.

Third, we use this framework to understand the degree of diversification with five models which

differ in their degree of parameter heterogeneity, from fully homogeneous to allowing for industry

and regional heterogeneity but homogeneous factor sensitivities. Fourth, we have more than doubled

the number of firms in the portfolio from 119 to 243 firms providing for more robust results and

allowing us to explore the importance of exposure granularity. We go on to explore the impact

of shocks to real equity prices, interest rates and real output on the resulting loss distribution as

implied by the different model specifications.
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Such conditional analysis using shock scenarios from observable risk factors is not possible

in the most commonly used model in the credit risk literature, namely the Vasicek (1987, 1991,

2002) adaptation of the Merton (1974) default model. In addition to being driven by a single and

unobserved risk factor, this model also assumes that risk factor sensitivities, analogous to CAPM-

style betas, are the same across all firms in all regions and industries, yielding a fully homogeneous

model. This single factor model also underlies the risk-based capital standards in the New Basel

Accord (BCBS 2004), as shown in Gordy (2003).

We find that full firm-level parameter heterogeneity and information about credit ratings

matters a great deal for capturing differences in simulated credit loss distributions. Confirming

theoretical and empirical results in Hanson, Pesaran and Schuermann (2005) we show

that neglected heterogeneity results in underestimation of expected losses, and once

those are controlled for, overestimation of unexpected losses. Imposing homogeneity

results in extremely skewed and fat-tailed loss distributions. Knowledge of the credit rating

which affects, among other things, the default threshold, has a significant influence on

the shape of that distribution. These differences become more pronounced in the presence of

systematic risk factor shocks: increased parameter heterogeneity greatly reduces shock sensitivity.

For example, an adverse 2.33σ shock to U.S. equity prices increases loss volatility by about 31% for

the fully heterogeneous model, but by 73% for the homogeneous pooled model. These differences

become even more pronounced as shocks become more extreme: for an adverse 5σ shock to U.S.

equity prices, loss volatility increases by about 85% for the heterogeneous model, but by more than

240% for the restricted model.

We further find that symmetric shocks result in asymmetric and nonproportional loss outcomes

due to the nonlinearity of the default model. Loss increases arising from adverse shocks are larger

than corresponding loss decreases from benign (but equiprobable) shocks. Here too there are

important differences across model heterogeneity. While all models exhibit this asymmetry for

expected losses and loss volatility, only the fully heterogeneous model maintains this particular

asymmetric response in the tail of the loss distribution. For the restricted models the opposite

is true: the reduction in tail risk arising from the benign shock is larger than the

corresponding increase due to the adverse shock. By imposing homogeneity, not only are

the relative loss responses exaggerated (most of the percentage increases and all of the decreases

are larger for the restricted than for the unrestricted model), but perceived reduction of risk in the

tail of the loss distribution tends to be overly optimistic. Failing to properly account for parameter

heterogeneity could therefore result in too much implied risk capital.

Both the baseline and shock-conditional loss distributions seem to change noticeably with the

addition of heterogeneous factor loadings. Allowing for regional heterogeneity appears to be more

important than allowing for industry or sector heterogeneity. However, the biggest marginal change

arises when allowing for full heterogeneity.
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The apparently innocuous choice of identifying restriction — same default threshold versus same

unconditional probability of default (or distance to default), by credit rating — appears to make

a material difference. Under the same threshold (by rating) restriction, conditioning on risk factor

forecasts changes firm default probabilities only somewhat: unconditional and conditional probabil-

ities of default are highly correlated (96%). By contrast, such conditioning has a significant impact

under the same distance to default (by rating) restriction. The conditional default probabilities

disperse resulting in a lower correlation with unconditional default probabilities (79%).

We find that the loss distribution is relatively insensitive to business cycle shocks

arising from interest rates or output growth. The latter is may have have particular

policy relevance given the intense debate surrounding the possible procyclicality of the

New Basel Accord (Carpenter, Whitesell and Zakrajšek 2001, Altman, Bharath, and

Saunders 2002, Carey 2002, Allen and Saunders 2004). However, the result is robust

to the choice of the firm-specific return regressions and arises from the heterogeneity

in both size and sign of the firm factor loadings.

Finally, we are able to assess the impact of granularity or portfolio size on the risk of the

portfolio for a simplified version of the model where analytic solutions for unexpected loss (UL)

are available. The lower the average correlation across firm returns, the greater is the potential for

diversification. But to achieve the theoretical (asymptotic) lower bound to the UL, a relatively large

N is required when return correlations are low. A common rule of thumb for return diversification

of a portfolio of equities is around 50. Default correlations are, of course, much lower than return

correlations, and we show that to come within 3% of the asymptotic UL values, more than 5,000

firms are needed. Thus credit portfolios or credit derivatives such as CDOs which contain rather

fewer numbers of firms most likely would still retain a significant degree of idiosyncratic risk. In

the case, for instance, of our more modestly sized portfolio of 243 firms, the UL is some 44% above

its asymptotic value.

The plan for the remainder of the paper is as follows: Section 2 provides a model of firm value and

default. Section 3 covers some useful analytical results for the loss distribution of a credit portfolio.

Section 4 presents the framework for conditional credit risk modeling including a brief overview of

the global macroeconometric model. In Section 5 we introduce the credit portfolio and present the

results from the multi-factor return regressions that link firm returns to the observable systematic

risk factors from the macroeconomic engine. We present results for five models ranging from the

homogeneous pooled model to one allowing for full heterogeneity, with intermediate specifications

that allow for industry and geography effects. In Section 6 we consider how those models impact

the resulting loss distributions under a variety of macroeconomic shock scenarios. In this section we

also consider the impact of portfolio size and granularity on the resulting loss distribution. Some

concluding remarks are provided in Section 7.
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2 Firm Value and Default1

Most credit default models have two basic components: (i) a model of the firm value, and (ii)

conditions under which default occurs. In this section we set out such a model by adapting the

option theoretic default model due to Merton (1974) to our global macroeconometric specification

of the systematic factors. Merton recognized that a lender is effectively writing a put option on the

assets of the borrowing firm; owners and owner-managers (i.e. shareholders) hold the call option.

If the value of the firm falls below a certain threshold, the owners will put the firm to the debt-

holders. Thus a firm is expected to default when the value of its assets falls below a threshold value

determined by its liabilities. In this way default risk is expected to vary across firms due

to differences in leverage or volatility. While the latter is typically estimated using

market data, the former is often measured using balance sheet data which is noisy and

prone to manipulation.

The problem of modeling firm default inherits all the asymmetric information and agency prob-

lems between borrower and lender well known in the banking literature. The argument is roughly as

follows. A firm, particularly if it is young and privately held, knows more about its health, quality

and prospects than outsiders, e.g. lenders. Banks are particularly well suited to help overcome these

informational asymmetries through relationship lending; learning by lending. Moreover, managers

and owners of firms have an incentive to substitute higher risk for lower risk investments as they

are able to receive upside gains (they hold a call option on the firm’s assets) while lenders are not

(they hold a put option). See the survey by James and Smith (2000) for a more extensive discus-

sion, as well as Garbade (2001). If the firm is public, we have other sources of information such as

quarterly and annual reports which, though accounting based, are then digested and interpreted

by the market. Stock and bond prices serve as summary statistics of that information.

The scope for credit risk diversification thus can manifest itself through two channels: how firm

value reacts to changes in the systematic risk factors and through differentiated default thresholds.

Both channels need to be modeled. Since we shall be concerned with possibilities of diversification

along the dimensions of geography and industry (or sector), we will consider firms j, j = 1, ..., N,

in country or region i, i = 1, ...,M, and sector s, s = 1, ..., S, and denote the firm’s asset value at

the end of period t by Vjis,t, and its outstanding stock of debt by Djis,t. According to Merton’s

model, default occurs at the maturity date of the debt, t + H, when the firm’s assets, Vjis,t+H ,

are less than the face value of the debt at that time, Djis,t+H . This is in contrast with the first-

passage model where default would occur the first time that Vjis,t falls below a default boundary (or

threshold) over the period t to t+H.2 Under both models the default probabilities are computed

1This section follows the approach introduced in PSTW.
2See Black and Cox (1976). More recent modeling approaches include direct strategic default considerations

(e.g. Mella-Barral and Perraudin (1997)). Leland and Toft (1996) develop a model where default is determined

endogenously, rather than by the imposition of a positive net worth condition. For a review of these models, see, for
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with respect to the probability distribution of asset values at the terminal date, t+H in the case

of the original Merton model, and over the period from t to t +H in the case of the first-passage

models. Although our approach can be adapted to the first-passage model, for simplicity we follow

the Merton approach here.

We follow the approach developed in detail in PSTW where default is said to occur if the value

of equity, Ejis,t+H , falls below a possibly small but positive threshold value, Cjis,t+H ,

Ejis,t+H < Cjis,t+H . (1)

This is reasonable since technical default definitions used by banks and bondholders are typically

weaker than outright bankruptcy. Moreover, because bankruptcies are costly and violations to the

absolute priority rule in bankruptcy proceedings are so common, in practice the debtholders have an

incentive to put the firm into receivership even before the equity value of the firm hits the zero value.

The default point could vary over time and with firm’s particular characteristics (region and sector

being two of them, of course). It is, however, difficult to measure, since observable accounting-based

factors are at best noisy and at worst reported with bias, highlighting the information asymmetry

between managers (agents) and shareholders and debtholders (principals).3

To overcome these measurement difficulties and information asymmetries, we make use of a

firm’s credit rating R ∈ R = {AAA,AA, ...}.4 This will help us specifically in nailing down the

default threshold, details of which are given below in Section 2.1. Naturally rating agencies have

access to, and presumably make use of, private information about the firm to arrive at their firm-

specific credit rating, in addition to incorporating public information such as, for instance, financial

statements and equity returns.

To simplify the exposition here we adopt the standard practice and assume that asset values

follow a Gaussian geometric random walk with a fixed drift.

ln (Ejis,t+1/Ejist) = rjis,t+1 = µjis + σjisεjis,t+1,

where εjis,t+1 v N(0, 1), distributed independently across t (but not necessarily across firms, σjis

is the return innovation volatility and µjis the drift of the one-period holding return, rjis,t+1. This

specification is “unconditional” in the sense that it does not allow for the effects of business cycle

and monetary policy variables on returns (and hence defaults). We shall return to conditional asset

return specifications that allow for such effects in Section 2.2. The distribution of the H-period

example, Lando (2004, Chapter 3).
3Duffie and Lando (2001), with this in mind, allow for imperfect information about the firm’s assets and default

threshold in the context of a first-passage model.
4For an overview of the rating industry, see Cantor and Packer (1995). For no reason other than convenience, we

shall be using the ratings nomenclature used by Standard & Poor’s and Fitch.
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ahead holding period return associated with the above specification is then given by

rjis(t, t+H) =
HX
τ=1

rjis,t+τ v N(Hµjis,
√
Hσjis), (2)

where the notation (t, t+H) is used throughout to mean over the period “from t+ 1 to t+H.”

Default then occurs at the end of H periods if the H-period change in firm value (or return)

falls below the log threshold-equity ratio, or return default threshold, as in

ln

µ
Ejis,t+H

Ejis,t

¶
< ln

µ
Cjis,t+H

Ejis,t

¶
,

or

rjis(t, t+H) < λjis(t, t+H).

Therefore, using (2), the firm’s probability of default (PD) at the terminal date t+H is given by

πjis(t, t+H) = Φ

Ã
λjis(t, t+H)−Hµjis

σjis
√
H

!
, (3)

where Φ(·) is the distribution function of the standard normal variate. The argument of Φ(·) in
(3) is sometimes called the distance to default (DD). We may rewrite the H-period forward return

default threshold as

λjis(t, t+H) = Hµjis +Φ
−1 (πjis(t, t+H)) σjis

√
H.

where Φ−1 (πjis(t, t+H)) is the quantile associated with the default probability πjis(t, t+H). The

firm defaults if its H-period return, rjis(t, t +H), falls below its expected H-period return, less a

multiple of its H-period volatility.5

2.1 Identification of the Default Threshold

In this section we provide a brief discussion of the problem of identifying the default threshold for

each firm. Details can be found in Hanson, Pesaran and Schuermann (2005), hereafter HPS. In

what follows we shall be suppressing the country and sector subscript for simplicity. Suppose now

that at time t we have a portfolio of size Nt of firms, or credit exposures to those firms, and denote

the exposure share or weight for the jth firm as wjt ≥ 0 such that
PNt

j=1wjt = 1.6 At time t the

expected portfolio default rate at the end of H-periods from now (e.g. one year) is then given by

π(t, t+H) =
NtX
j=1

wjt Φ

Ã
λj(t, t+H)−Hµj

σj
√
H

!
. (4)

5Note that Φ−1 (πjis(t, t+H)) is negative for πjis(t, t + H) < 0.5, which covers the default probability values

typically considered in the literature.
6Note that we are disallowing short positions which is not very restrictive for credit assets.
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Relation (4) may be thought of as a moment estimator for the unknown thresholds λj(t, t +H),

since µj and σj and π(t, t+H) can be estimated from past observed returns and realized defaults.

With one moment condition and Nt unknown thresholds, one needs to impose Nt − 1 identifying
restrictions; for example, one could impose the same threshold for every firm in the portfolio. The

number of required identifying restrictions could be reduced if further information can be used.

One such type of information is provided by credit rating-specific default information.

Although firm-specific default probabilities, πj(t, t + H), are not observable, the default rate

by rating, πR(t, t +H), can be estimated by pooling historical observations of firms’ defaults in a

particular rating class, using a sample spanning t = 1, ..., T . In this case the number of identifying

restrictions can be reduced to NT − k, where k denotes the number of rating categories, and NT

the number firms in the portfolio at time T . There are two simple ways that identification can be

achieved. One could, for example, impose the same distance to default on all firms in the same

rating category, namely

λ̂j(T, T +H)−Hµ̄j

σ̄j
√
H

= DDR(T, T +H) ∀j ∈ R, (5)

where λ̂j(T, T +H) is default threshold estimated on the basis of information available at time T ,

and µ̄j and σ̄j are sample estimates of (unconditional) mean and standard deviations of one-period

holding returns obtained over the period t = 1, 2, ..., T . Then with estimates of default frequencies

by rating in hand, namely π̂R(T, T + H), we are able to obtain an estimate of DDR(T, T + H)

given by7 dDDR(T, T +H) = Φ−1 (π̂R(T, T +H)) , (6)

and hence the firm-specific default thresholds

λ̂j(T, T +H) = σ̄j
√
H Φ−1 (π̂R(T, T +H)) +Hµ̄j . (7)

Note that imposing the same DD by rating as in (5) imposes the same unconditional PD for each

R-rated firm, as in (6), but allows for variation in the estimated default thresholds λ̂j(T, T +H)

across firms within a rating because of different unconditional means and standard deviations of

returns, as in (7). Note also that each element on the right-hand-side of (7) is horizon dependent,

making the default threshold horizon dependent.

Alternatively, one could impose the restriction that the default threshold λ̂j(T, T +H) is the

same across firms in the same rating category:

λ̃j(T, T +H) = λ̂R(T, T +H) ∀j ∈ R, (8)

7Condition (5) implies that all firms with rating R have the same unconditional distance to default and hence the

same unconditional default probability, as in (6).
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which, when substituted into (4), now yields

π̂R(T, T +H) =
X
j∈R

wj,T Φ

Ã
λ̂R(T, T +H)−Hµ̄j

σ̄j
√
H

!
. (9)

This is a non-linear equation that needs to be solved numerically for λ̂R(T, T + H). Condition

(9) implies that DD, and hence unconditional PDs, will vary across firms within a rating, since

λ̂R(T, T+H) is chosen such that on average the PD by firm with rating R is equal to π̂R(T, T+H).

2.2 Firm-Specific Conditional Defaults

For the credit risk analysis of different shock scenarios it is important to distinguish between

conditional and unconditional default probabilities. For the conditional analysis we assume that

conditional on the information available at time t, Ωt, and as before the return of firm j in region i

and sector s over the period t to t+H, rjis(t, t+H) = ln (Ejis,t+H/Ejis,t) , can be decomposed as

rjis(t, t+H) = µjis(t, t+H) + ξjis(t, t+H), (10)

where µjis(t, t + H) is the (forecastable) conditional mean (H-step ahead), and ξjis(t, t + H) is

the (non-forecastable) component of the return process over the period t to t+H. It may contain

firm-specific idiosyncratic as well as systematic risk factor innovations. We shall assume that

ξjis(t, t+H) ∼ N
£
0, σ2jis(t, t+H)

¤
. (11)

We can now characterize the separation between a default and a non-default state with an indicator

variable zjis(t, t+H),

zjis(t, t+H) = I [rjis(t, t+H) < λjis(t, t+H)] , (12)

such that,

zjis(t, t+H) = 1 if rjis(t, t+H) < λjis(t, t+H) =⇒ Default, (13)

zjis(t, t+H) = 0 if rjis(t, t+H) ≥ λjis(t, t+H) =⇒ No Default.

Using the same approach as above, the H-period ahead conditional default probability for firm j

is given by

πjis(t, t+H) = Φ

µ
λjis(t, t+H)− µjis(t, t+H)

σjis(t, t+H)

¶
. (14)

µjis(t, t + H) and σjis(t, t + H) can be estimated using the firm-specific multi-factor regressions

using a sample ending in period T . In what follows we denote these estimates by µ̂jis(T, T+H) and

σ̂jis(T, T +H), respectively. The default thresholds, λjis(T, T +H), can be estimated, following the

discussion in Section 2.1, by imposing either the same distance to default by rating, DDR(T, T+H),
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as in (5), or the same default threshold by rating, as in (8). Specifically, under the same DD by

rating, the firm-specific conditional PD will be given by

π̂jis(T, T +H) = Φ

Ã
σ̄jis
√
H Φ−1 [π̂R(T, T +H)] +Hµ̄jis − µ̂jis(T, T +H)

σ̂jis(T, T +H)

!
. (15)

Under the same default threshold by rating we have

π̂jis(T, T +H) = Φ

Ã
λ̂R(T, T +H)− µ̂jis(T, T +H)

σ̂ξjis(T, T +H)

!
, (16)

where λ̂R(T, T +H) is determined by (9).

Similarly, in the case of the same DD by rating the empirical default condition for firm j with

credit rating R can now be written as

I
h
rjis(T, T +H) < λ̂jis(T, T +H)

i
= 1 if rjis(T, T +H) < σ̄jis

√
H Φ−1 [π̂R(T, T +H)] +Hµ̄jis,

(17)

and in the case of the same default threshold by rating the default condition will be

I
h
rjis(T, T +H) < λ̂R(T, T +H)

i
= 1 if rjis(T, T +H) < λ̂R(T, T +H), (18)

where as before λ̂R(T, T +H) is given as the solution to (9). Note that in the case of (18) there

are only as many default thresholds as there are credit ratings, whereas in the case of (17), each

default threshold is firm specific (through µ̄jis and σ̄jis).

Mappings from credit ratings to default probabilities are typically obtained using corporate

bond rating histories over many years, often 20 years or more, and thus represent averages across

business cycles. The reason for such long samples is simple: default events for investment grade

firms are quite rare; for example, the annual default probability even for an ‘A’ rated firm is

approximately one basis point for both Moody’s and S&P rated firms (see, for example, Jafry and

Schuermann (2004)). Accordingly, we will make the further identifying assumption that credit

ratings are "cycle-neutral", in the sense that ratings are assigned only on the basis of firm-specific

information and not on systematic or macroeconomic information. On this interpretation of credit

ratings also see Saunders and Allen (2002) and Amato and Furfine (2004).

Given sufficient data for a particular region or country i (the U.S. comes to mind) or sector

s, one could in principle consider default probabilities that vary over those dimensions as well.

However, since a particular firm j’s default is only observable once, multiple (serial) bankruptcies

notwithstanding, it makes less sense to allow π to vary across j.8 Empirically, then, we abstract
8To be sure, one is not strictly prevented from obtaining firm-specific default probabilities estimates at a given

point in time. The bankruptcy models of Altman (1968), Lennox (1999) and Shumway (2001) are such examples, as

is the industry model by KMV (Kealhofer and Kurbat (2002)). However, all of these studies focus on just one country

at a time (the U.S. and U.K in this list) and do not address the formidable challenges of point in time bankruptcy

forecasting with a multi-country portfolio.
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from possible variation in default rates across regions and sectors, so that probabilities of default

vary only across credit ratings and over time.

Finally, another important source of heterogeneity that could be of particular concern for our

multi-country analysis is the differences that prevail in bankruptcy laws and regulations across

countries. However, by using rating agency default data, which broadly speaking are based on

homogeneous definition of default, we expect our analysis to be reasonably robust to such hetero-

geneities.

3 Credit Loss Distribution9

The complicated relationship between return correlations and defaults manifests itself at the port-

folio level. Consider a credit portfolio composed of N different credit assets such as loans at date

t, and for simplicity assume that loss given default (LGD) is 100%, meaning that no recovery is

made in the event of default. Then we may define loss as a fraction of total exposure by

cN,t+1 =
NX
j=1

wjzj,t+1, (19)

where wj is the exposure share, where wj ≥ 0 and
PN

j=1wj = 1, and zj,t+1 = I(rj,t+1 < λjt), with

λjt assumed as given.10 Under the Vasicek model

V ar (cN,t+1) = π(1− π)

 NX
j=1

w2j

+ π(1− π)ρ∗

 NX
j 6=j0

wjwj0

 ,

where π = E (zj,t+1), which is the same for all firms, and ρ∗ is the default correlation,

ρ∗ (π, ρ) =
E

½h
Φ
³
Φ−1(π)√
1−ρ −

q
ρ
1−ρft+1

´i2¾− π2

π(1− π)
, (20)

where expectations are taken with respect to the distribution of ft+1, assumed here to be N(0, 1).11

For example, for π = 0.01, and ρ = 0.30, we have ρ∗ = 0.05. Since,
PN

j=1wj = 1, it is easily seen

that
NX
j=1

w2j +
NX

j 6=j0
wjwj0 = 1,

and hence

V ar (cN,t+1) = π(1− π)

ρ∗ + (1− ρ∗)
NX
j=1

w2j

 . (21)

9This section presents a synopsis of results developed in detail in Hanson, Pesaran and Schuermann (2005).
10To simplify the notations and without loss of generality, in this section we assume N and the exposure weights

are time invariant.
11For a derivation of (20), see Hanson, Pesaran and Schuermann (2005).
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Under
NX
j=1

w2j → 0, as N →∞, (22)

which is often referred to as the granularity condition, the second term in brackets in (21) becomes

negligible as N becomes very large, and V ar (cN,t+1) converges to the first term which will be

non-zero for ρ∗ 6= 0. Hence, in the limit the unexpected loss is bounded by
p
π(1− π)ρ∗. For a

finite value of N , the unexpected loss is minimized by adopting an equal weighted portfolio, with

wj = 1/N . Full diversification is possible only in the extreme case where ρ∗ = 0 (which is implied

by ρ = 0), and assuming that the above granularity condition is satisfied.

The loss distribution associated with this homogeneous model is derived in Vasicek (1991,

2002) and Gordy (2000). Not surprisingly, Vasicek’s limiting (as N →∞) distribution is also fully
determined in terms of π and ρ. The former parameter sets the expected loss of the portfolio, while

the latter controls the shape of the loss distribution. In effect one parameter, ρ, controls all aspects

of the loss distribution: its volatility, skewness and kurtosis. It would not be possible to calibrate

two Vasicek loss distributions with the same expected and unexpected losses, but with different

degrees of fat-tailedness, for example.12

Further, Vasicek’s distribution does not depend on the portfolio weights so long as (22) is

satisfied. Therefore, for sufficiently large portfolios that satisfy the granularity condition, (22), there

is no further scope for credit risk diversification if attention is confined to the homogeneous return

model that underlies Vasicek’s loss distribution. Also, Vasicek’s set up does not allow conditional

risk modeling where the effects of macroeconomic shocks on credit loss distribution might be of

interest. With these considerations in mind, we allow for systematic factors and heterogeneity

along several dimensions. These are: 1) multiple and observable factors, 2) firm fixed effects, 3)

differentiated default thresholds, and 4) differentiated factor sensitivities (analogous to firm “betas”)

by region, sector or even firm-specific. If the Vasicek model lies at the fully homogeneous end of

the spectrum, the model laid out in Section 2 above describes the fully heterogeneous end. How

much does accounting for heterogeneity matter for credit risk? The outcomes we are interested in

exploring are different measures of credit risk, be it means or volatilities of credit losses (expected

and unexpected losses in the argot of risk management), as well as quantiles in the tails or value-

at-risk (VaR). Before we are able to answer some of these questions we first need to introduce the

macroeconomic or systematic risk model that we plan to utilize in our empirical analysis.

12The literature on modeling correlated defaults has been growing enormously. For a recent survey, see Lando

(2004, ch. 9).
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4 Conditional Credit Risk Modeling

4.1 The Macroeconomic Engine: GVAR

The conditional loss distribution of a given credit portfolio can be derived by linking up the return

processes of individual firms, initially presented in equation (10), explicitly to the macro and global

variables in the GVAR model. The macroeconomic engine driving the credit risk model is described

in detail in PSW. We only provide a very brief, non-technical overview here. The GVAR is a

global quarterly model estimated over the period 1979Q1-1999Q1 comprising a total of 25 countries

which are grouped into 11 regions, (shown in bold in Table 1 from PSTW, reproduced here for

convenience). The advantage of the GVAR is that it allows for a true multi-country setting;

however, it can become computationally demanding very quickly. For that reason we model the

seven key economies of the U.S., Japan, China, Germany, U.K., France and Italy as regions of their

own while grouping the other 18 countries into four regions.13 The output from these countries

comprises around 80% of world GDP (in 1999).

[Insert Table 1 about here]

In contrast to existing modeling approaches, in the GVAR the use of cointegration is not confined

to a single country or region. By estimating a cointegrating model for each country/region sepa-

rately, the model also allows for endowment and institutional heterogeneities that exist across the

different countries. Accordingly, specific vector error-correcting models (VECM) are estimated for

individual countries (or regions) by relating domestic macroeconomic variables such as GDP, infla-

tion, equity prices, money supply, exchange rates and interest rates to corresponding, and therefore

country-specific, foreign variables constructed exclusively to match the international trade pattern

of the country/region under consideration. By making use of specific exogeneity assumptions re-

garding the ‘rest of the world’ with respect to a given domestic or regional economy, the GVAR

makes efficient use of limited amounts of data and presents a consistently-estimated global model

for use in portfolio applications and beyond.14

The GVAR allows for interactions to take place between factors and economies through three

distinct but interrelated channels:

• Contemporaneous dependence of domestic on foreign variables and their lagged values;

• Dependence of country specific variables on observed common global effects such as oil prices;

• Weak cross-sectional dependence of the idiosyncratic shocks.
13See PSW, Section 8, for details on cross-country aggregation into regions.
14For a more updated version of the GVAR model which covers a longer period and a larger number of countries

see Dees, di Mauro, Pesaran and Smith (2005). This version also provides a theoretical framework where the GVAR

is derived as an approximation to a global unobserved common factor model.
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The individual models are estimated allowing for unit roots and cointegration assuming that

region-specific foreign variables are weakly exogenous, with the exception of the model for the U.S.

economy which is treated as a closed economy model. The U.S. model is linked to the outside world

through exchange rates, which in turn are themselves determined by the rest of the region-specific

models. PSW show that the careful construction of the global variables as weighted averages of the

other regional variables leads to a simultaneous system of regional equations that may be solved

to form a global system. They also provide theoretical arguments as well as empirical evidence in

support of the weak exogeneity assumption that allows the region-specific models to be estimated

consistently.

The conditional loss distribution of a given credit portfolio can now be derived by linking up

the return processes of individual firms, initially presented in equation (10), explicitly to the macro

and global variables in the GVAR model. We provide a synopsis of the model developed in full

detail in PSTW.

4.2 Firm Returns Based on Observed Common Factors Linked to GVAR

Here we extend the firm return model by incorporating the full dynamic structure of the systematic

risk factors captured by the GVAR. We present a notationally simplified version of the model

outlined in detail in PSTW. Accordingly, a firm’s return is assumed to be a function of changes in

the underlying macroeconomic factors (domestic and foreign), the exogenous global variables (in

our application oil prices) and the firm-specific idiosyncratic shocks ηjis,t+τ :

rjis,t+τ = αjis + γ0jisft+τ + σjisηjis,t+τ , t = 1, 2, ..., T, (23)

where ηjis,t+τ v i.i.d.N(0, 1), τ = 1, 2, ...,H, rjis,t+τ is the equity return of firm j (j = 1, ..., nci) in

region i and sector s, αjis is a regression constant (or firm “alpha”), γjis are the factor loadings (firm

“betas”), and ft+τ collects all the observed macroeconomic variables plus oil prices in the global

model (totaling 64 in PSW). To be sure, these return regressions are not prediction equations per

se as they depend on contemporaneous variables.

The GVAR model provides forecasts of all the global variables that directly or indirectly affect

the returns. As a result default correlation enters through the shared set of common factors,

ft+τ , and the factor loadings, γjis. If the model captures all systematic risk, the idiosyncratic risk

components of any two companies in the model would be uncorrelated, namely the idiosyncratic

risks ought to be cross-sectionally uncorrelated. In practice, of course, it will be hard to absorb all

of the cross-section correlation with the systematic risk factors modeled by the GVAR.

Note that we started by decomposing firm returns into forecastable and non-forcastable com-

ponents in (10), namely rjis(t, t + H) = µjis(t, t + H) + ξjis(t, t + H). In the case of the above
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specification we have

rjis(t, t+H) = Hαjis + γ0jis
HX
τ=1

ft+τ + σjis

HX
τ=1

ηjis,t+τ ,

and as an illustration assuming a first-order vector autoregression for the common factors:

ft+τ = Λf t+τ−1 + vt+τ , (24)

we have15

µjis(t, t+H) = Hαjis + γ0jis

Ã
HX
τ=1

Λτ

!
ft, (25)

and

ξjis(t, t+H) = γ0jis

Ã
HX
τ=1

ΨH−τvt+τ

!
+ σjis

HX
τ=1

ηjis,t+τ , (26)

where

ΨH−τ = I+Λ+ ...+ΛH−τ .

The composite innovation ξjis(t, t+H) contains the idiosyncratic innovation ηjis,t+τ , and common

macro innovations from the GVAR, here represented by vt+τ , for τ = 1, 2, ...,H. The predictable

component is likely to be weak and will depend on the size of the factor loadings, γjis, and the ex-

tent to which the underlying global variables are cointegrating. In the absence of any cointegrating

relations in the global model, none of the asset returns are predictable. As it happens the econo-

metric evidence presented in PSW strongly supports the existence of 36 cointegrating relations in

the 63-equation global model and is, therefore, compatible with some degree of predictability in

asset returns, at least at the quarterly horizon modeled here. The extent to which asset returns

are predicted could reflect time-varying risk premia and does not necessarily imply market ineffi-

ciencies. Our modelling approach provides an operational procedure for relating excess returns of

individual firms to all the observable macro factors in the global economy.

4.3 Expected Loss Due to Default

Given the value change process for firm j, defined by (23), with µjis(T, T +H) and ξjis(T, T +H)

by (25) and (26), and the return default threshold, λ̂R(T, T +H), obtainable from an initial credit

rating (see Section 2), we are now in a position to compute (conditional) expected loss. Suppose

we have data for firms and systematic factors in the GVAR for a sample period t = 1, ..., T. We

need to define the expected loss to firm j at time T +H given information available to the lender

(e.g. a bank) at time T, which we assume is given by ΩT . Default occurs when the firm’s return

falls below the return default threshold λ̂jis(T, T + H) or λ̃jis(T, T + H) defined by (7) and (8),

15Note that for a pure random walk, Λ = 0, and conditional and unconditional returns processes are identical.
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depending on the scheme used to identify the thresholds. Expected loss at time T (and realized at

T +H), ET (Ljis,T+H) = E (Ljis,T+H | ΩT ) , is given by (using λ̃jis(T, T +H) = λ̂R(T, T +H), for

j ∈ R, for example) and

ET (Ljis,T+H) = Pr
h
ξjis(T, T +H) < λ̃jis(T, T +H)− µjis(T, T +H) | ΩT

i
×Ajis,T×ET (ϕjis,T+H),

(27)

where Ajis,T is the exposure assuming no recoveries (typically the face value of the loan) and is

known at time T, and ϕjis,T+H is the percentage of exposure which cannot be recovered in the

event of default or loss given default (LGD). Typically ϕjis,T+H is not known at time of default

and is therefore treated as a random variable over the unit interval. In what follows we make the

simplifying assumption that LGD is 100%.

Substituting (23) into (27) we obtain:

ET (Ljis,T+H) = πjis(T, T +H)×Ajis,T , (28)

where

πjis(T, T +H) = Pr
h
ξjis(T, T +H) < λ̃jis(T, T +H)− µjis(T, T +H) | ΩT

i
.

is the conditional default probability over the period T to T +H, formed at time T . Under the

assumption that the macro and the idiosyncratic shocks are normally distributed and that the

parameter estimates are given, we have the following expression for the probability of default over

T to T +H formed at T 16

πjis(T, T +H) = Φ

Ã
λ̃jis(T, T +H)− µjis(T, T +H)

σξjis(T, T +H)

!
, (29)

where σξjis(T, T + H) =
q
V ar

£
ξjis(T, T +H) | ΩT

¤
. Exact expressions for µjis(t, t + H) and

σξjis(t, t+H) will depend on the nature of the global model used to identify the macro innovations.

In the case of the illustrative example given above, we have

V ar
£
ξjis(T, T +H) | ΩT

¤
= γ0jis

Ã
HX
τ=1

ΨH−τΩvΨ
0
H−τ

!
γjis +Hσ2jis,

whereΩv is the covariance matrix of the common shocks, vt. The relevant expressions for µjis(T, T+

H) and σξjis(T, T +H) in the case of the GVAR model are provided in the Supplement to PSTW.

The expected loss due to default of a loan (credit) portfolio can now be computed by aggregating

the expected losses across the different loans. Denoting the loss of a loan portfolio over the period

16Joint normality is sufficient but not necessary for ξjis(T, T +H) to be approximately normally distributed. This

is because ξjis(T, T + H) is a linear function of a large number of weakly correlated shocks (63 in our particular

application).
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T to T +H by LT+H we have

ET (LT+H) =
NX
i=0

nciX
j=1

πjis(T, T +H)×Ajis,T , (30)

where nci is the number of obligors (which could be zero) in the bank’s loan portfolio resident in

country/region i.

Finally note that, µjis,T is the explained or expected component of firm j’s return, obtained from

the multi-period GVAR forecasts which in general could depend on macroeconomic shocks world-

wide. Thus, although individual firms operate in a particular country/region i, their probability of

default can be affected by global macro economic conditions.

4.4 Simulation of the Loss Distribution

The expected loss as well as the entire loss distribution can be computed once the GVAR model

parameters, the return process parameters in (23) and the thresholds using either (7) or (8), have

been estimated for a sample of observations t = 1, 2, ..., T . We do this by stochastic simulation

using draws from the joint distribution of the shocks, ξjis(T, T +H), which is assumed to have a

conditional normal distribution with variance σ2ξjis(T, T +H).

Denote the bth draw of this vector by ξ
(b)
jis(T, T +H), and compute the H-period firm-specific

return, r(b)ijs(T, T +H), noting that

r
(b)
ijs(T, T +H) = µjis(T, T +H) + ξ

(b)
jis(T, T +H), (31)

where µjis(T, T +H) is derived from the GVAR forecasts (along the lines of (25)), and

ξ
(b)
jis(T, T +H) = ψjis,H Z

(b)
0 + σjis

√
HZ

(b)
jis (32)

is the composite innovation, where Z(b)0 and Z
(b)
jis are independent draws from N(0, 1). The loading

coefficients ψjis,H and σjis
√
H are determined by the parameters of the GVAR and the coefficients

of the asset return regressions, (23). In the case of the GVAR model the relevant expressions for

the simulation of the multi-period returns are provided in Section B of the Supplement to PSTW.

Note that Z(b)0 is shared by all firms for a given draw b. Details on the derivation of ψjis,H for

the GVAR model can be found in PSTW. The idiosyncratic portion of the innovation is comprised

of the firm specific volatility, σjis, estimated using a sample ending in periods T , and a firm specific

standard normal draw, Z(b)jis. One may then simulate the loss at the end of period T + H using

(known) loan face values, Ajis,T , as exposures:

L
(b)
T+H =

NX
i=0

nciX
j=1

I
h
r
(b)
ijs(T, T +H) < λ̃jis(T, T +H)

i
Ajis,T . (33)
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The simulated expected loss due to default is given by (using B replications)

L̄B,T+H =
1

B

BX
b=1

L
(b)
T+H

p→ ET (LT+H) , as B →∞. (34)

The simulated loss distribution is given by ordered values of L(b)T+H , for b = 1, 2, ..., B. For a desired

percentile, for example the 99%, and a given number of replications, say B = 100, 000, credit value

at risk is given as the 1000th highest loss.

5 An Empirical Application

5.1 The Credit Portfolio

To analyze the effects of different model specifications, parameter homogeneity versus heterogeneity,

we construct a fictitious large-corporate loan portfolio. This portfolio is an extended version of that

used in PSTW and is summarized in Table 2a. It contains a total of 243 companies, resident in 21

countries across 10 of the 11 regions in the GVAR model. In order for a firm to enter our sample,

several criteria had to be met. We restricted ourselves to major, publicly traded firms with a credit

rating from either Moody’s or S&P. Thus, for example, Chinese companies were not included for

lack of a credit rating. The firms should be represented within the major equity index for that

country. We favored firms for which equity return data was available for the entire sample period,

i.e. going back to 1979. Typically this would exclude large firms such as telephone operators which

in many instances have been privatized only recently, even though they may represent a significant

share in their country’s dominant equity index today. The data source is Datastream, and we took

their Total Return Index variable which is a cum dividend return measure.

The third column in Table 2a indicates the inception of the equity series available for the multi-

factor regressions. We allocated exposure roughly by share of output of the region (in our “world”

of 25 countries). Within a region, loan exposure is randomly assigned. Loss given default is assumed

to be 100% for simplicity. Table 2b provides summary information of the number of firms in the

portfolio by industry.

[Insert Tables 2a & 2b about here]

In order to obtain estimates for the rating-specific default frequencies (π̂R,T+H|T ), we make use

of the rating histories from Standard & Poor’s spanning 1981-1999, roughly the same sample period

as is covered by our GVARmodel. The results are presented in Table 3 below for the range of ratings

that are represented in our portfolio of firms, namely AAA to B. Empirical default probabilities,
π̂R,T+τ , for τ = 1, 2, ...,H are obtained using default intensity-based estimates detailed in Lando

and Skødeberg (2002) and computed for different horizons under the assumption that the credit
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migrations are governed by a Markov process (in our application H = 4 quarters). This assumption

is reasonable for moderate horizons, up to about two years; see Bangia et al. (2002). Since S&P

rates only a subset of firms (in 1981 S&P rated 1,378 firms of which about 98% were U.S. domiciled;

by early 1999 this had risen to 4,910, about 68% U.S.), it is reasonable to assign a non-zero (albeit

very small) probability of default, even if the empirical estimate is zero. This is particularly relevant

if we wish to infer default behavior for a much broader set of firms than is covered by the rating

agencies. With this in mind, we impose a lower bound on the quarterly default frequency of 0.025

basis points per quarter or 0.1 basis points per annum. As can be seen in Table 3, this constraint is

binding only for the AAA rating. In this table we also show in parentheses the exposure share by

rating and the resulting EL. Based on the exposures in our portfolio, the (unconditional) expected

default (or loss under the maintained assumption of no recovery) over one year is 0.294% or 29.4bp

(basis points), bolded in the table.

[Insert Table 3 about here]

5.2 Multi-factor Return Regressions: Specification, Estimation and Selection

With the GVAR framework serving as the global economic engine, multi-factor return regressions

are specified in terms of the observed macro factors in the GVAR model. A general form of these

return regressions is given by (23). Given the diverse nature of the firms in our portfolio, one

is tempted to include all the domestic, foreign and global factors (i.e. oil price changes) in the

multi-factor regressions. Such a general specification may be particularly important in the case

where a multinational is resident in one country, but the bulk of its operations takes place in the

global arena. However, because there is likely to be a high degree of correlation between some of the

domestic and foreign variables (in particular the domestic and foreign real equity prices), it is by no

means obvious that a general-to-specific model selection process would be appropriate, particularly

considering the short time series data available relative to the number of different factors in the

GVAR.

An alternative model selection strategy, which we adopted in PSTW and follow in this paper,

is to view the 243 multi-factor regressions as forming a panel data model with heterogeneous

coefficients. Such panels have been studied by Pesaran and Smith (1995) and Pesaran, Smith and

Im (1996) where it is shown that instead of considering firm-specific estimates one could base the

analysis on the means of the estimated coefficients, referred to as the mean group estimates (MGE).

This approach assumes that the variations of factor loadings across firms in different regions are

approximately randomly distributed around fixed means. This is the standard random coefficient

model introduced into the panel literature by Swamy (1970) and used extensively in the empirical

literature.17 The choice of the factors in the multi-factor regressions can now be based on the

17A recent review of the random coefficient models is provided by Hsiao and Pesaran (2004).
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statistical significance of the (population) mean coefficients by using the MGE to select a slimmed-

down regressor set.18

The above factor selection procedure applied to the panel of 243 firms led to the following set

of factors: changes in domestic or foreign real equity prices, which we denote by ∆q̃i,t+1, domestic

interest rate (∆ρi,t+1) and oil price changes (∆p
o
t+1). We ran two sets of multi-factor regressions

(including the interest rate and oil price variables); one with ∆qi,t+1 (the domestic aggregate

equity return variable) and another with ∆q∗it (the foreign country-specific equity return variable),

and selected the regression with the higher R̄2. For three-quarters of the portfolio (183 firms) the

domestic equity market return was chosen. This fully heterogeneous return equation (to be denoted

as model M0) is given by

rjis,t+1 = αjis + β1,jis∆q̃i,t+1 + β2,jis∆ρi,t+1 + β3,jis∆p
o
t+1 + εjis,t+1, (35)

where the idiosyncratic errors, εjis,t+1, are assumed to be i.i.d.N(0, σ2jis). As credit rating informa-

tion is used, default thresholds are computed using (7) and (8), depending on whether we fix DD

or λ by rating.

The summary of the final set of multi-factor regressions of (35) and the associated MG estimates

are given in Table 4. In this specification changes in equity prices, interest rates and oil prices remain

the key driving factors in the multi-factor regressions.

[Insert Table 4 about here]

As is to be expected, the portfolio equity “beta” is highly significant, but somewhat below unity

at 0.918. An increase in the rate of interest results in a decline in firm returns while the overall effect

of the oil price changes is positive. This seems a reasonable outcome for energy and petrochemical

companies and for some of the banks, although one would not expect this result to be universal. In

fact we do observe considerable variations in the individual estimates of the coefficients of oil prices

changes across different firms in our portfolio. In the final regressions, of the 243 firm regressions,

the coefficient on oil price changes was positive for 144 firms (about 59% of the total), and negative

for the remaining firms. The MGE for each subset was also significant. A pooled estimate would,

of course, impose the same factor loadings, in this case positive, on all firms.19

The lack of other observable systematic risk factors entering the return model confirms that

most information relevant for firm returns is contained in the contemporaneous market return.

Only interest rates and oil prices changes provided marginal explanatory power. To be sure, when

forecasting the macroeconomic variables, and when conducting scenario analyses, the dynamics

of all the variables modeled in the GVAR (all 63 of them, plus oil prices) can still affect returns

through their possible impacts on equity returns and interest rates. A direct presence in the firm
18The appropriate test statistics for this purpose are given in PSTW, Section 6.
19Similarly for ∆ρi,t+1, 38% of firms actually have a positive coefficient.
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return equation is not necessary for real output, for example, to influence returns. Output shocks

influence returns and credit losses to the extent that real output, interest rates and stock market

returns are contemporaneously correlated.

In addition to the above fully heterogeneous specification, we also consider a number of spec-

ifications with differing degrees of slope and error variance heterogeneity, but based on the same

three systematic factors (∆q̃i,t+1,∆ρi,t+1,∆p
o
t+1). We consider the following additional models:

M1(Fully Homogeneous Model): Pooled return equations with the same “alpha” and “beta”

across all 243 firms in the portfolio:

rjis,t+1 = α+ β1∆q̃i,t+1 + β2∆ρi,t+1 + β3∆p
o
t+1 + εjis,t+1, (36)

where the error variances are assumed to be the same for all firms, i.e. σ2jis = σ2ε ∀ jis.20
M2 (Firm Fixed Effects): This is the standard fixed effects specification:

rjis,t+1 = αjis + β1∆q̃i,t+1 + β2∆ρi,t+1 + β3∆p
o
t+1 + εjis,t+1, (37)

where the error variances are assumed to be the same for all firms, as in the model M1.

M3: (Industry/Sector Fixed and Marginal Effects): This model imposes the same in-

tercept (“alphas”) and slopes (“betas”) within an industry/sector but allows those parameters to

vary across industries:

rjis,t+1 =
SX
s=1

αsSDs +
SX
s=1

β1sSDs∆q̃i,t+1 +
SX
s=1

β2sSDs∆ρi,t+1 (38)

+
SX
s=1

β3sSDs∆p
o
t+1 + εjis,t+1,

where SDs is a sector dummy variable which takes the value of 1 for sector s and 0 otherwise, for

all t, i and j. All firms within a given sector have the same error variance, but those variances are

allowed to vary across industries.

M4: (Region Fixed and Marginal Effects): In this model we impose the same intercept

(“alpha”) and slope (“beta”) within a region but allow those parameters to vary across regions.

rjis,t+1 =
MX
i=1

αiRDi +
MX
i=1

β1iRDi∆q̃i,t+1 +
MX
i=1

β2iRDi∆ρi,t+1 (39)

+
MX
i=1

β3iRDi∆p
o
t+1 + ξjis,t+1,

where RDi is dummy variable which takes the value of 1 for region i and 0 otherwise, for all t, s

and j. All firms within a given region have the same error variance, but those variances are allowed

to vary across regions.
20The parameters α and β0i are estimated by pooled OLS.
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Model M2 is arguably the simplest complication beyond a fully homogeneous model in that

it allows firm fixed effects (firm “alphas”) but still imposes the same error variance on all firms.

Models M3 and M4 explore the impact of parameter (mean and variance) heterogeneity by industry

and region respectively.

Table 5 summarizes the regression results for the remaining models, M1 to M4. The equity

factor loading is highly statistically significant (1% or better) across all models, and for the pooled

models, with or without a firm fixed effect, M2 (0.869) and M1 (0.865) respectively, the coefficient is

close to the MG estimate for the heterogeneous model, M0 (0.918). There is, however, considerable

variation across industries (M3) and regions (M4). For the industry model, the equity “beta”

is lowest for Communication, Electric & Gas and Non-durable Manufacturing, both 0.752, and

highest for FIRE (Finance, Insurance and Real Estate), 0.909. The sector equity “beta” closest to

the pooled model is Agriculture, Mining & Construction, 0.889.

[Insert Table 5 about here]

There is even more variation in the equity “beta” across regions, ranging from a low of 0.622 for

Latin America to a high of 1.926 for the Middle East, represented in our portfolio simply by four

Turkish firms and so should not be taken as typical.21 The second lowest “beta” was estimated

for Italy, 0.663, and the second highest for neighboring Germany, 1.165. Evidently geographic

proximity does not translate to similarity in equity betas, at least not for our portfolio. South East

Asia is closest to the pooled “beta” at 0.842.

Turning now to interest rate sensitivity, recall that the MGE of the interest rate variable for the

heterogeneous model is -2.990, meaning an increase in interest rates has an adverse effect on firm

returns. This coefficient is not significant for either of the pooled models, M1 and M2, and it has the

wrong sign. Allowing for variation across sectors, M3, results in significant and negative coefficients

for FIRE, -5.590, and Wholesale & Retail Trade, -3.711. Just one of the positive coefficients is

significant: 3.402 for Non-durable Manufacturing. Similar results are obtained in the case of Model

M4, where the interest rate variable is statistically significant with a correct sign only in case of

US firms (-5.974), the Turkish firms in the Mid East region (-6.676), and South East Asia (-5.454).

Only one of the positive estimates is statistically significant, although it is small, and that is for

Latin America, 0.111.

The coefficient on oil price changes is significant and positive for both pooled models, M1 (0.063)

and M2 (0.064), echoing the MGE for the heterogeneous model M0 (0.145). Recall, however, that

the MGE of the sub-groups with positive and negative coefficients were also significant, suggesting

that firm-level heterogeneity for this factor loading may be particularly important. When group-

ing by industry or region, however, only the positive coefficients are significant. Indeed, in the
21The Middle East region did not include a domestic equity variable, so all return equations for the Turkish firms

include the foreign equity return variable, ∆q∗i,t+1, for i = Turkey.
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indeustry/sector model, the coefficient of the oil price variable is significant only for Communica-

tion, Electric & Gas, at 0.113. In the regional model it is significant for several regions, including

the U.S. (0.076), Germany (0.230), Mid East (2.341), which is not surprising, and Latin America

(1.035), although the oil exporter Venezuela is not part of our Latin American region.

From a model fit perspective, as measured by R̄2, regional heterogeneity is more important

than industry heterogeneity: R̄2 = 0.171 for the former and 0.151 for the latter. Both are preferred

to just adding firm fixed effects to the pooled model: the R̄2 for M2 is 0.148. By comparison, the

average R̄2 for the heterogeneous model M0 is 0.201; see Table 4.

Finally, we computed the average pair-wise cross-sectional return correlation across all firms

in our portfolio as well as of the residuals for each of the return specifications, M0 through M4.

The average pair-wise cross-sectional return correlation turns out to be about 11.2%. While this

may seem low for equity returns, note first that returns are measured at relatively low frequency

— quarterly, and second that our portfolio is quite well diversified, with firms from 21 countries

grouped into 10 regions, and across all major industry groups. The three factors used in the five

model specifications are able to absorb a significant amount of the cross-firm dependence: the

average residual correlation ranges from 3.7% to 4% across the models.

Another consideration in our comparative analysis is the extent to which the five alternative

parametric specifications affect cross section correlations of the simulated returns. Since all the five

models are based on the same set of observed factors, cross section correlations of the simulated

returns will be affected significantly by parameter heterogeneity only if the differences of parameters

across firms are systematic. In the case of pure random differences across slopes, it is easily seen

that all specifications would imply similar degrees of error cross correlations, and this is in fact true

in the present application.

6 Simulated Credit Loss Distributions

6.1 Unconditional and Conditional Loss

With the estimated GVAR model serving as the macroeconomic scenario generator and the fitted

multi-factor regressions as the linkage between firms and the global economy, we simulated loss

distributions one year ahead. We do this by first forecasting, out-of-sample, the evolution of

the 64 GVAR risk factors, using those forecasts and the risk factor loadings or return regression

coefficients to compute firm return forecasts, and then seeing if that return forecast falls below the

default threshold. A one year horizon is typical for credit risk management and thus of particular

interest. We carried out 200,000 replications for each scenario, baseline as well as shock scenarios,

using Gaussian innovations.

The estimation period ends in 1999Q1, and we generate the loss distribution out of sample over
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one year to the end of 2000Q1. The year over which the loss distribution is simulated turned out

to have been relatively benign for the firms in our portfolio when compared to the sample period

which we use to compute unconditional parameters such as expected returns and return volatilities.

The unconditional one-year portfolio return (i.e. the exposure weighted average return of all firms

in the portfolio) is 14.67%, whilst using the specification for the fully heterogeneous model M0,

the conditional portfolio return projected for the forecast year is 37.78%. This is reflected in the

difference between conditional and unconditional portfolio default (the same as expected loss, EL,

under the maintained assumption of no loss recovery). Recall from Table 3 that unconditional EL

is 0.294%, but conditional EL under the default threshold (λ) identifying assumption (8) is 0.096%,

and under the same distance to default (DD) assumption (5) is 0.089%.22 When we compare

the analytical to the simulated conditional portfolio default or expected loss, they are very close:

0.096% for same λ and 0.087% for same DD.

Fixing DD to be the same across firms by rating also fixes the unconditional default probability;

the two are isomorphic. Conditioning on return forecasts updates those probabilities. Fixing

the default threshold λ by rating, however, allows for heterogeneity in the unconditional default

probabilities; they just need to be the same on average (see the discussion in Section 2.2). Those,

in turn, may be updated over time as conditioning information is incorporated. This firm-level

heterogeneity in unconditional probabilities of default (PD) can make a big difference empirically,

as is seen in Figure 1 which displays a scatter plot of unconditional (horizontal axis) and conditional

(vertical axis) one-year PDs for the 243 firms in the portfolio. The top panel is for the same default

threshold (λ) by credit rating for all firms, while the bottom panel is for the same distance to default

(DD) by credit rating for all firms. The axes on both charts are scaled to be directly comparable.

We see immediately in the top panel that conditional and unconditional PDs are not only widely

dispersed, reflective of the underlying firm level heterogeneity, but also highly correlated (ρ = 0.961).

By contrast the sameDD by rating chart (bottom panel) has both the unconditional and conditional

PDs tightly clustered in a narrow range. As there are six credit ratings represented in this study,

so we see six vertical lines, where the vertical scatter represents the variation in conditional PD by

rating (all having the same unconditional PD, of course) resulting in a lower correlation between

unconditional and conditional PDs (ρ = 0.790). In contrast to same λ, the PDs implied by same

DD change dramatically through conditioning (or updating). These differences will become more

explicit and pronounced in the loss distributions across the model specifications, an issue we address

next.

[Insert Figure 1 about here]

22The differences between the latter two estimates are due to rounding error arising from the inverse normal

transform on very small probabilities.
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6.2 Model Heterogeneity and Baseline Losses

In moving from the most homogeneous model M1 to M2, we add heterogeneity in the conditional

mean by allowing for firm fixed effects, as well as heterogeneity in the unconditional probability of

default, namely by introducing credit rating information. To isolate the effects of these relaxations

of the homogeneity restrictions, we add an intermediate model which augment model M1 with credit

rating information. Consequently we denote M1a to be the homogeneous model without the use of

rating information, and M1b the homogeneous model that allows for credit ratings in determination

of the default thresholds.

HPS provide theoretical results and empirical support showing that neglecting

parameter heterogeneity can lead to underestimation of expected losses (EL). But once

EL is controlled for, neglecting parameter heterogeneity can lead to overestimation of

unexpected losses or risk. Their results are not sensitive to the choice of identification

restriction.

Table 6 gives summary statistics for the baseline (i.e. no risk factor shocks) loss distribution

for all models, with the top panel imposing the same threshold, λ, identifying restriction, and the

bottom panel the same distance to default, DD, restriction. We show the first four moments as

well as three tail quantiles or values-at-risk (VaR): 99.0%, 99.5% and 99.9%, corresponding to levels

commonly used by risk managers, and in the last case, the risk tolerance level of the New Basel

Capital Accord (BCBS (2004)).

[Insert Table 6 about here]

Looking first at the top panel, EL and UL vary significantly across the different specifications,

both increasing as we increase model heterogeneity. However, as shown in HPS, it is important that

the differences in EL’s across the different portfolios are taken into account, before implications of

heterogeneity for unexpected losses can be evaluated. There is no obvious way that this can be

done. Here we normalize risk, whether measured by unexpected loss (UL) or VaR, by EL. We shall

refer to these as EL multiples.

The results in Table 6 show that it takes about 21 EL multiples to obtain one standard deviation

of losses for the most homogeneous model M1a, just 11 for the industry model M3, and only 2.5

for the fully heterogeneous model M0. The third and fourth moments, skewness and kurtosis

respectively, also decline when more heterogeneity is allowed for. Imposing homogeneity results in

overly skewed and fat-tailed loss distributions. This point becomes quite clear when looking at the

99.9% VaR: model M1a and M1b have EL multiples in excess of 300, while the regional model M4

has a multiple of only 54 and the fully heterogeneous model M0 only 21, less than one-tenth of the

most homogeneous model.

An important source of heterogeneity turns out to be the credit rating which influ-

ences, among other things, the default threshold. Adding credit ratings to the homogeneous

25



specification, model M1b, results in a noticeable drop in EL multiples: UL/EL drops from 20.8 to

17.1, and 99.9% VaR from 382 to 305. Adding firm fixed effects, model M2, does not help; in fact

risk seems to increase slightly, although this could be due to noise. We need to allow for

variation in factor loadings, either by industry, model M3, or region, model M4, before EL multi-

ples decline further. These findings confirm results reported in HPS: the feature which

changes the shape of the loss density the most is knowledge of a credit rating. A similar

pattern holds when looking at value at risk. In this regard regional heterogeneity seems to play

a more important role than industry heterogeneity, perhaps not surprising given the international

nature of this portfolio.23

Turning to the bottom panel, where the loss distributions are simulated under the same DD

identifying restriction, differences across model specifications are much more muted. The results

for the heterogeneous model M0 are broadly in line with its same λ counterpart in the top panel

(EL and UL, and VaR are similar). However, EL decreases as we increase the degree of parameter

heterogeneity. Moreover, there is little difference in EL multiples, whether looking at loss volatility

(UL) or VaR. In fact, the results would suggest that increased heterogeneity actually increases risk:

UL/EL for M1a is 1.4 and for M0 is 3.0. Further, 99.9% VaR, normalized by EL, is 11 for M1a and

28 for M0.

These results differ both from those under the first identification restriction and

from those reported in HPS. Under the same DD assumption, the actual default

threshold used in the simulation is specific to every firm, of course, and is computed

using estimates for unconditional expected returns and standard deviations. Since

the sample period is short for several firms, we may have a rather poor estimate of

those unconditional moments. The same λ assumption implies varying DDs (and hence

unconditional PDs) across firms within a rating, although importantly they average out

to match the rating-specific unconditional PD. In the absence of reliable estimates of

unconditional means and volatilities of firm returns, the resulting firm-specific default

thresholds will likely be very noisy. In light of these results, and the previous discussion of

unconditional and conditional PDs, in the remaining analysis we focus on the same threshold (λ)

identifying restriction.

Before proceeding to the shock scenarios, it may be of interest to compare the simulated UL

to that implied by the Vasicek model as discussed in Section 3. This asymptotic expression, given

in (21), is driven by the average default rate across the portfolio, π, and the default correlation,

ρ∗, itself a function of π and the average return correlation of the firms in the portfolio, ρ, which

is 11.2% for our portfolio; see (20) in Section 3. Thus using the unconditional portfolio default

rate from Table 3, π = 0.294%, this yields a default correlation of ρ∗ = 0.470% and an asymptotic

23We tried a different industry specification using 10 instead of 6 groups to match the number of parameters in the

regional model (there are 10 regions). This did not change our conclusions.
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UL =
p
π(1− π)ρ∗ = 0.371%, which is above the simulated UL of all models. However, those

simulated ULs are conditional, not unconditional, and if we substitute the simulated (conditional)

EL (which, under the maintained assumption of no loss recovery, is identical to π), all asymptotic

UL values are below their simulated counterparts, as they should be, assuming that the average

return correlation ρ remains unchanged. For example, in the case of model M0, π = 0.094%, so

that ρ∗ = 0.208% . In that case asymptotic UL = 0.140% which is below the simulated UL of

0.239%. The difference is clearly due to granularity, an issue we pick up in Section 6.5 below.

[Insert Figure 2 about here]

In Figure 2 we compare the simulated loss distributions across model specifications. The top

panel displays the 20% tail (80th percentile and beyond) and the bottom panel focuses on the 5% tail.

The tail of that loss distribution rises earlier and more gradually for the most heterogeneous model

M0, and late and suddenly for the more homogeneous models. We see that the fully heterogeneous

model in particular accumulates losses much earlier in the distribution, already by about the 82nd

percentile, than the other models. Significant losses are not seen until about the 95th percentile

for the regional model M4, not until after the 97th percentile for the industry model M3, and well

beyond the 99th percentile for all other models.

6.3 Model Heterogeneity and Risk Factor Shocks

One of the main advantages of our conditional modeling approach is that it allows us to consider

the impact of different macroeconomic or risk factor shock scenarios. The ability to conduct shock

scenario analysis with observable risk factors is clearly important for policy analysis, be it business

or public policy.

Recall that the risk factors in the firm return models are equity returns, interest rates and

oil prices. In addition we shall explore the impact of business cycle heterogeneity across different

countries by considering shocks to real output, which (as noted earlier) can influence the loss

distributions indirectly through their contemporaneous correlations with equity returns and interest

rates. Accordingly we examined the following equiprobable scenarios, though others are possible,

of course:24

• a ±2.33σ shock to real U.S. equity, corresponding to a quarterly change of ±14.28% from the

baseline forecast,25

242.33σ corresponds, in the Gaussian case, to the 99% Value-at-Risk (VaR), a typical benchmark in risk manage-

ment.
25Relative to historic averages, this shock corresponds to a rise (drop) of 17.95% (11.35%), computed as

exp (2.23%± 14.28%)− 1.
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• a +2.33σ shock to the German short term interest rate, corresponding to a quarterly rise of

0.33%,

• a −2.33σ shock to real U.S. output, corresponding to a quarterly drop of 1.85%.

In order to learn more about the tail properties of the various loss distributions, we also consider

an extreme stress scenario for the U.S. equity market as reported in PSTW, namely an adverse

shock of 8.02σ. This corresponds to a quarterly drop of 49% which is the largest quarterly drop in

the S&P 500 index since 1928, and that occurred over the three months to May of 1932. Finally,

we include an intermediate negative equity shock of −5σ which corresponds to a quarterly decline
of 30.64%. Details of how the macroeconomic shocks are generated and how they feed through firm

returns to the loss distribution can be found in PSTW.

[Insert Table 7 about here]

We start the discussion with a ±2.33σ shock to real U.S. equity under the same threshold,
λ, restriction, summarized in Table 7. For each model we repeat the baseline results for ease of

comparison and display the percentage increase (decrease) from that baseline of EL, UL and 99.9%

VaR. For each model, the percentage increase in EL and UL arising from the adverse shock is

always larger than the corresponding decline in losses due to a benign shock. Consider model M1a:

EL (UL) increases by 172% (73%) under the adverse shock and decreases by 67% (48%) under the

benign shock. The size of those impacts declines as we allow for more heterogeneity. The regional

model M4, for instance, shows an increase in EL (UL) of 88% (42%) from the adverse shock against

a decline of 46% (29%) from the benign shock. The smallest impact can be seen from the most

heterogeneous model, M0: the adverse shock increases EL (UL) by 51% (31%) and the benign shock

decreases EL (UL) by 31% (21%).

This asymmetric and non-proportional response of credit losses to symmetric shocks is due to

the nonlinearity of the credit risk model. When going to the tails of the loss distribution, however,

only the fully heterogeneous model M0 maintains this particular asymmetric response, namely

that risk reductions are proportionately less than risk increaes due to an adverse and

benign shock respectively. For all other model specifications the opposite is true: the

reduction in 99.9% VaR arising from the benign shock is larger than the corresponding increase in

99.9% VaR due to the adverse shock. Thus, by imposing homogeneity, not only are the relative

loss responses exaggerated (all the percentage increases and decreases are larger for the restricted

than for the unrestricted model), but perceived reduction in risk in the tail of the loss distribution

tends to be overly optimistic.

To be sure, the differences to the baseline in the tails, e.g. at the 99.9% quantile,

is more similar across models for the adverse than the benign shock. So in relative

terms, the least (M0) and most (M1a) homogeneous models both 99.9% VaR increases
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of about one-third, the two grouped models, industry (M3) and regional (M4) around

one-fifth, and the homogeneous with rating (M1b) and firm fixed effect (M2) around

two-fifths.

Finally, note that an adverse shock results in less skewed and fat-tailed loss distributions, relative

to their respective baselines, across all models, and conversely a benign shock renders them more

extreme. The adverse (benign) shock results in more (fewer) firms defaulting systematically due

to the displacement of expected (i.e. forecast) returns, before any additional idiosyncratic risk is

accounted for. As a result an adverse (benign) shock shifts probability mass of the loss distribution

closer to (farther from) the mean. The effects of the shocks on the shape of the loss distribution is

quite large for relatively homogeneous models, and much more modest for heterogeneous ones. For

instance, the skewness (kurtosis) for M1a decreases to 19.4 (537) under the adverse shock compared

to the baseline, 29.4 (1200), but increases to 38.0 (1652) under the benign shock. By contrast, the

skewness and kurtosis decreases to 5.1 and 37, respectively, for the regional model, M4, under the

adverse shock scenario as compared to the baseline values of 6.5 and 56, but increases to 8.4 and

86 under the benign shock scenario, respectively. The relative impact is, of course, even smaller for

the fully heterogeneous model, M0.

The evidence thus far suggests that heterogeneity is important in controlling risk both under

a baseline forecast and under shock scenarios. Allowing for regional heterogeneity appears to be

more important than allowing for industry or sector heterogeneity. Both the baseline and shock-

conditional loss distributions seem to change noticeably with the addition of heterogeneous factor

loadings, i.e. starting with model M3. However, the biggest marginal change arises when allowing

for full heterogeneity with model M0.

Next we consider an adverse shock to German interest rates. Naturally we could have shocked

interest rates of other countries, e.g. the U.S., but since we already have other U.S.-based shock

scenarios, we wanted to broaden the discussion by considering shocks to other countries’ macroeco-

nomic factors. Interest rate shocks are of particular interest in our modeling context because the

corresponding factor loading is positive, but insignificant, for the pooled models M1 and M2, on

average negative and significant for the heterogeneous model M0, and rather mixed for the industry

and regional models, M3 and M4.

[Insert Table 8 about here]

The loss simulation results are summarized in Table 8. Compared with adverse U.S. equity

shocks, the impact on credit losses due to an equiprobable adverse shock to German interest rates

is more modest. EL increases on average by only about 24%, UL by only 12%, and 99.9% VaR by

around 5%. Here too we see a similar model ranking as before, with the most homogeneous model

M1a being the most shock sensitive, at least when measured by EL and UL impact, and the most
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heterogeneous model M0 the least shock sensitive. The impact on 99.9% VaR is modest, and given

parameter uncertainty, broadly similar across the different model specifications.

Even though the factor loading on interest rates is positive, albeit small and not significant,

for the pooled models M1a, M1b and M2, losses still increase in reaction to an adverse interest rate

shock. Because of the complicated inter-dependencies that exist in the GVAR model, shocking

one of the factors will potentially impact all the other 62 factors. As a result the overall effect of

the shock on the loss distribution need not have the same sign as the coefficient of the factor in

the return equation. Consequently an adverse interest rate shock may have the counter-intuitive

benign direct effect on firm returns in the pooled return regressions, but the intuitive adverse

indirect effects through the equity return factor.

With this in mind we consider the effects of an adverse shock to real U.S. output. Recall that

output does not enter the firm return regressions; however, shocks in output may enter indirectly

through the other variables such as interest rates and equity prices. We summarize those results

in Table 9 and notice immediately that the changes from the baseline are of the "wrong" sign but

quite small and are unlikely to be statistically significant. One year after the shock, credit losses

are projected to actually decline somewhat. Average decline in EL across models is about 5%, the

decline in UL is about 3%, and the decline in 99.9% VaR about 2% relative to the baseline loss

distribution. In Section 6.4 below we explore whether including output directly in the firm-specific

return regressions makes any difference.

[Insert Table 9 about here]

Finally, we consider the effect of extreme risk factor shocks on the resulting distribution of

credit losses under different model specifications. Table 10 presents results from two different U.S.

real equity shock scenarios: −5.00σ in Panel A and −8.02σ in Panel B, the latter matching the
largest quarterly drop in the S&P 500 index since 1928. To be sure, a shock as extreme as −8.02σ
is, of course, outside the bounds of the estimated model. It would be unreasonable to believe that

such a large shock would not result in changes to the underlying parameters. However, it is still

instructive to examine the impact of an extreme shock, one way one might stress a credit risk

model. Moreover, 5σ events are more common at higher frequencies than the quarterly data we

have available to us, and in this way our results will likely underestimate the true loss outcomes.

[Insert Table 10 about here]

Under the −5σ shock scenario, shown in Panel A, increases in expected losses across models
range from eleven-fold (1035%) (M2) to nine-fold (794%) (M1a) to just 154% (M0). UL increases

for the same models are about three and a half-fold for M1a (244%) and M2 (266%) and not quite

double for M0 (85%). Differences in the tail impact at the 99.9% level are not as extreme: 150%
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for M1a, 107% for M2 and 83% for M0. As the shock becomes more extreme to −8.02σ,
see Panel B in Table 10, the different shock sensitivities of the models, as measured

for instance by 99.9% VaR, become even more apparent. VaR increases relative to

baseline losses are less than 200% for models M0 and M4, and nearly 400% for model

M1a. The broad pattern observed so far holds: the more restrictive (homogeneous) the model, the

more sensitively it reacts to shock scenarios.

[Insert Figure 3 about here]

As the shock becomes more extreme to −8.02σ, the resulting loss distribution for all models
becomes less skewed and fat-tailed, as measured by kurtosis. To see this graphically we generated

density plots for model M0, presented in Figure 3, where we display the simulated loss densities for

the baseline, the symmetric ±2.33σ shocks and the two severe adverse shocks to U.S. real equity
prices. The ordering of the shocks is clearly seen in the plot around the 1% portfolio

loss point: from benign and lowest density to most adverse and highest density.

6.4 Business Cycle Shocks: An Alternative Model Specification

The return regressions used in the above simulation exercises do not select the growth rate of real

output as a risk factor. As noted earlier this might not be that surprising as the effects of business

cycle fluctuations on firm returns could have already been incorporated indirectly through market

returns. It is, however, possible that the factor selection and the subsequent model estimation

could have been biased due to the use of country-specific asset return variables, particularly in the

case of countries with relatively small asset markets.26

With this in mind, and following the work of Kapetanios and Pesaran (2004), we proceeded

to estimate an alternative version of the fully heterogeneous model which includes a global equity

return, ∆q̄t+1, defined as the cross-sectional average of all equity indices in the GVAR model

instead of the country-specific market returns, ∆q̃i,t+1 used in (35). We then run this version of

the return regression augmented with real output growth for region i, denoted by ∆yi,t+1, and the

other variables, namely changes in interest rates (∆ρi,t+1) and oil prices (∆p
o
t+1):

27

rjis,t+1 = αjis + β1,jis∆q̄t+1 + β2,jis∆ρi,t+1 + β3,jis∆p
o
t+1 + β4,jis∆yi,t+1 + ξjis,t+1. (40)

26Recall that the estimates of the output effects are obtained by regression of firm-specific returns on the market

returns, output growth and other variables such as changes in the interest rates and oil prices. Since market returns

are in effect weighted averages of the firm-specific returns, the return regressions could yield biased estimates if the

market return happens to be based on a relatively few firms.
27This cross-sectional average may be either equal weighted or PPP-weighted. We experimented with both. In the

latter case we used PPP weights from 1996, the same weights used in the GVAR to construct regions from countries.

There were little differences in the result, and in what follows we focus on the estimates based on the PPP-weighted

global real equity index.
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The MGE results for the alternative specification (40) using PPP weights are given in Table 11.

These new estimates attribute a smaller effect to market returns with the average market ”beta”

falling from 0.918 to 0.780 and the interest rate effects rising (in absolute value) from −2.99 to
−4.236. The average effect of real output growth on firm returns is also statistically significant and
has the correct sign, which contrasts with the earlier results based on country-specific equity market

returns. The average effects of oil price changes, although still positive, are no longer statistically

significant. The change in the estimates as a result of using ∆q̄t+1 instead of ∆q̃i,t+1 are in line

with a priori expectations and could be explained by a positive correlation between the country-

specific market returns and the errors in the firm-specific return regressions. This is also reflected

in the estimates of the in-sample fit of the return regressions where the avg. R̄2 declines from 0.201

to 0.103 as we move from ∆q̃i,t+1 to ∆q̄t+1. The decline in the fit is quite substantial and could

be an important consideration in the choice between the alternative specifications, although any

simultaneity arising from inclusion of ∆q̃i,t+1 could in itself result in an upward bias in the avg. R̄2.

[Insert Table 11 about here]

Bearing in mind the uncertainty associated with these alternative specifications, the loss simu-

lations based on the new return regressions for the baseline scenario as well as for the 2.33σ shock

scenarios are summarized in Table 12. These simulations can be viewed as providing a check on the

robustness of the loss simulation results obtained so far. Baseline loss behavior is only somewhat

different from M0 (see last row of Table 6, top panel), but importantly it is closer than any of the

other restricted models, even though their in-sample goodness of fit was higher. When we examine

the impact of shocks, even though real output now directly enters the firm return regressions, the

impact of an adverse shock to real U.S. output growth is very similar to the previous specification:

it is both small and of the wrong sign. Meanwhile the impact of the other shocks are similar in this

as in the original specification.

[Insert Table 12 about here]

Although the average loading on output is positive, statistically significant and large at 0.7, it

turns out that about half (45%) of the firms actually have a negative coefficient (loading) on output.

Indeed when we look at the MGE of the positive and negative subsets, they are both significant.

Hence it is not surprising that for our portfolio, the net impact of an adverse shock to output is

about zero. Of course, if the portfolio were comprised only of firms with a positive loading, credit

losses would likely increase in the event of an adverse output shock.

As far as loss distributions are concerned, our overall conclusions seem to be robust to the choice

of the firm-specific return regressions.
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6.5 Idiosyncratic Risk and Granularity

Portfolio-level results of credit risk models such as those discussed in Vasicek (1987, 2002) assume

that the portfolio is sufficiently large that all idiosyncratic risk has been diversified away. More

generally we consider a credit portfolio composed ofN different credit assets such as loans, each with

exposures or weights wi, for i = 1, 2, .., N , such that the granularity condition (22) holds. Recall

that a sufficient condition for (22) to hold is given by wi = O
¡
N−1¢.28 The lower the average firm

return correlation, the greater the potential for diversification, but a larger N is required to attain

that limit if correlations are lower. A common rule of thumb for return diversification of a portfolio

of equities is N ≈ 50. But as seen in Section 6.2, default correlations are much lower than return
correlations, meaning that more firms are needed to reach the diversification limits of credit risk.

Thus it seems reasonable to ask if a portfolio of N = 243 is large enough to diversify away the

idiosyncratic risk. To answer this question we used an empirical version of the one-factor Vasicek

model described in Section 3 and analyzed the impact of increasing N on simulated compared to

analytic (asymptotic) unexpected loss (UL). For simulation purposes, Vasicek’s model takes the

following form:

rj,t+1 = r̄ + σf ft+1 + σεεj,t+1, (41)

where r̄ =
PT

t=1

PN
j=1 rjt/NT , Ã

εj,t+1

ft+1

!
∼ i.i.d.N (0, I2) ,

I2 is a 2-dimensional identity matrix, ρ = σ2f/
³
σ2f + σ2ε

´
, and σ2f is the variance of the “market”

return. These parameters can be estimated as

σ̂2f =

PT
t=1(r̄t − r̄)2

T − 1 , r̄t =
NX
j=1

rjt/N, (42)

and

σ̂2ε =

PT
t=1

PN
j=1 (rjt − r̄t)

2

NT − 2 . (43)

Loss is given by (19) with the return default threshold given by

λ = r̄ +
q
σ2f + σ2ε Φ

−1 (π) . (44)

For our portfolio, for the one-year horizon we have the following parameter values: r̄ = 13.356%,

σ̂f = 11.230%, σ̂ε = 34.856%, π̂ = 0.294%, so that the implied average return correlation ρ =

28Conditions (22) on the portfolio weights was in fact embodied in the initial proposal of the New Basel Accord

in the form of the Granularity Adjustments which was designed to mitigate the effects of significant single-borrower

concentrations on the credit loss distribution. See Basel Committee (2001, Ch.8).
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9.404%, with an associated default correlation of ρ∗ = 0.369%.29 Substituting these values in (44)

obtains a one-year return default threshold of −87.51%, meaning that any firm that experiences a

one-year return worse than −87.51% would default.

Calibrating Vasicek’s model to these parameters we simulated losses assuming different portfolio

granularity, ranging from 119 to 10,000 firms. To be sure, all firms share the same draw of the

systematic factor f and the same default threshold lambda, while each firm carries idiosyncratic risk

(reflected by firm-specific draws from εj,t+1 v N(0, 1)). Idiosyncratic risk should diversify away,

with the simulated UL approaching the analytic UL as the number of firms increases.

The results are summarized in Table 13. The result for N = 119 relates to the number of firms

in the PSTW portfolio. By more than doubling N we cut idiosyncratic risk nearly in half. But to

come within 3% of the asymptotic UL of the portfolio, more than 5,000 firms are needed! Thus

credit portfolios or credit derivatives such as CDOs which contains rather fewer number of firms

will likely still retain a significant degree of idiosyncratic risk, an observation also made by Amato

and Remolona (2004).

[Insert Table 13 about here]

7 Concluding Remarks

In this paper we have made use of a conditional credit risk model with observable risk factors,

developed in Pesaran, Schuermann, Treutler and Weiner (2004), to explore several dimensions of

credit risk diversification: across industries (sectors) and across different countries or regions, either

in a relatively restrictive fixed effects return specification, or by allowing for full firm-level hetero-

geneity. Specifically, we fix the number of risk factors — there are three: market equity returns and

changes in domestic interest rates and oil prices — and only vary the degree of parameter hetero-

geneity across models. We find that full firm-level parameter heterogeneity matters a great deal for

capturing differences in simulated credit loss distributions. Expected loss (EL) increases as more

heterogeneity is allowed for. However, unexpected losses, normalized by EL, decline dramatically.

Moreover, imposing homogeneity results in overly skewed and fat-tailed loss distributions.

These differences become more pronounced in the presence of shocks to systematic risk factors.

The most restricted model which imposes the same factor sensitivities across all firms is overly

sensitive to such shocks, and thus failing to properly account for parameter heterogeneity could

result in too much implied risk capital. Allowing for regional parameter heterogeneity seems to

better approximate the loss distributions generated by the fully heterogeneous model than allowing

just for industry heterogeneity.

29The relationship between ρ and ρ∗ is given by (20).
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Our findings have a number of implications for both public and private (or busi-

ness) policy. For example, in the case of a bank’s risk management practices, neglected

heterogeneity resulting in underestimation of expected losses would cause a bank to

underprovision for (expected) losses. Furthermore, the resulting overestimation of

unexpected losses would cause a bank to hold too much capital. Another example

is the structuring and pricing of collateralized debt obligations (CDOs). These in-

creasingly popular and widespread credit instruments are structured, and priced, by

segmenting the loss distribution into risk tranches. We have shown that the shape

of that distribution is affected significantly under neglected heterogeneity, in which

case the resulting pricing and risk assessment would in turn be significantly affected.

Related, our analysis on the size of the portfolio needed to eliminate most of the idio-

syncratic risk, and thus fully exploit the diversification potential which exists in credit

portfolios, may be in the thousands. This is sobering considering that most CDOs

rarely contain more than 100 names. Finally, the relative insensitivity to business

cycle shocks under alternative model specifications should calm fears of pro-cyclicality

surrounding the current debate about the New Basel Accord.

The results raise a number of questions and issues that merit further exploration. Our portfolio,

by virtue of being allocated across 21 countries in 10 regions, is already quite diversified as evidenced

by an average cross-sectional pair-wise return correlation of 11.2%. Concentrating all of the nominal

exposure into just one region or one industry would undoubtedly have significant impact on the

resulting loss distribution, in addition to yielding differences across models. A difficulty one would

quickly encounter in exploring this problem are the rating or default probability differences across

those dimensions. The average rating in the U.K., for instance, is much higher than for the

Latin American obligors, especially if one follows the rule that an obligor rating cannot exceed

the sovereign rating.30

It is also worth exploring the impact of fat-tailed innovations on the resulting loss distributions.

The current application is limited to the double-Gaussian assumption (both idiosyncratic and

systematic innovations are normal), but it seems reasonable to relax this assumption by considering,

say, draws from Student-t distributions with low degrees of freedom.

30This rule seems quite reasonable when one considers debt denominated in, say, USD (or euros), but perhaps less

so if the debt is exclusively in the local currency.
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Table 1  

Countries/Regions in the GVAR Model 
 

U.K. Germany Italy France 

Western Europe 

 Belgium 

 Netherlands 

 Spain 

 Switzerland 

South East Asia 

 Indonesia 

 Korea 

 Malaysia 

 Philippines 

 Singapore 

 Thailand 

Latin America 

 Argentina 

 Brazil 

 Chile 

 Mexico 

 Peru 

 

Middle East 

 Kuwait 

 Saudi Arabia 

 Turkey 

 

U.S.A. Japan China  
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Table 2a  

The Composition of the Sample Portfolio by Regions 

Region # of 
Obligors 

Equity Series1 
Quarterly 

Credit Rating2 
Range 

Portfolio 
Exposure (%) 

U.S.A. 63 79Q1 – 99Q1 AAA to BBB- 20 

U.K. 24 79Q1 – 99Q1 AA to BBB+ 8 

Germany 21 79Q1 – 99Q1 AAA to BBB- 10 

France 15 79Q1 – 99Q1 AA to BBB 8 

Italy 10 79Q1 – 99Q1 A to BBB- 8 

W. Europe 24 79Q1 – 99Q1 AAA to BBB+ 11 

Middle East 4 90Q3 – 99Q1 B- 2 

S.E. Asia 34 89Q3 – 99Q1 A to B 14 

Japan 35 79Q1 – 99Q1 AAA to B+ 14 

L. America 14 89Q3 – 99Q1 A to B- 5 

Total 243 – – 100 

 
1. Equity prices of companies in emerging markets are not available over the full sample period used for the estimation 
horizon of the GVAR. We have a complete series for all firms only for the U.S., U.K., Germany and Japan. For France, 
Italy and W. Europe, although some of the series go back through 1979Q1, data are available for all firms from 1987Q4 
(France), 1987Q4 (Italy), 1989Q3 (W. Europe). For these regions the estimation of the multi-factor regressions are based 
on the available samples. For Latin America we have observations for all firms from 1990Q2. 

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating nomenclature is used for convenience. 
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Table 2b  

Portfolio Breakdown by Industry 
 

 #  (%) of Firms 

Agriculture, Mining & Construction 

Communication, Electric & Gas 

Durable Manufacturing 

Finance, Insurance & Real Estate 

Non-Durable Manufacturing 

Service 

Wholesale & Retail Trade 

24 (9.9%) 

45 (18.4%) 

30 (12.3%) 

71 (29.2%) 

27 (11.1%) 

6 (2.5%) 

40 (16.4%) 

Total 243 (100%) 
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Table 3  

Unconditional Default Probabilities by Rating 
 

S&P Rating Exposure 
Share 

( ), 4ˆ T Tπ +R  

AAA 4.8% 0.100  (0.005) 

AA 17.6% 0.372  (0.066) 

A 32.5% 0.721 (0.234) 

BBB 27.7% 10.69  (2.97) 

BB 11.6% 49.54  (5.72) 

B 5.8% 353.61  (20.42) 

Portfolio 100% 29.42 

 
Exposure share and one year ahead probability of default (in basis points), exposure weighted in parentheses, 
by credit rating. Based on ratings histories from S&P, 1981Q1 - 1999Q1 
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Table 4 

Mean Group Estimates of Factor Loadings, Heterogeneous Model (M0) 
 

Factors MGE 
β̂  

S.E. of MGE 

( )ˆ. .s e β
 

t-ratios 

constant 

, 1i tq +∆  

, 1i tρ +∆  

1
o
tp +∆  

0.022 

0.918 

-2.990 

0.145 

0.002 

0.026 

0.528 

0.042 

10.495 

34.862 

-5.663 

3.456 

avg. 2R  

avg. 2R  

# of firm quarters 

0.238 

0.201 

17,114 

  

 

, 1i tq +∆  is equal to , 1i tq +∆  (domestic equity return) or 
, 1

*
i t
q

+
∆  (foreign equity return), 

depending on which yields a better in-sample fit. , 1i tρ +∆  is the change in the 

domestic interest rate, and 1

o

tp +∆  is the change in oil prices. 
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Table 5: Return Regression Results for Models M1 - M4 
 

 M3: Industry Fixed & Marginal Effects 

 

 M4: Region Fixed & Marginal Effects 

 

 M1: 

Pooled 

M2: 

Pooled + 

Firm FE 

C
om

m
un
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n,

 

El
ec

tri
c 

&
 G

as
 

A
gr

ic
., 

M
in

in
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&
 C
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n 

D
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FI
R
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N
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M
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ac

tu
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g 
Se

rv
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e 

W
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le
sa

le
 &

 

R
et

ai
l T

ra
de

 

U
.S

. 

U
.K

. 

G
er

m
an

y 

Fr
an

ce
 

Ita
ly

 

W
es

te
rn

 E
ur

op
e 

M
id

 E
as

t 

(T
ur

ke
y 

on
ly

) 

So
ut

h 
Ea

st
 A

si
a 

Ja
pa

n 

La
tin

 A
m

er
ic

a 

Constant 0.020*** 

(0.001) 

 0.022*** 

(0.003) 

0.014*** 

(0.004) 

0.015***

(0.004) 

0.023*** 

(0.003) 

0.030***

(0.004)

0.028***

(0.008) 

0.015*** 

(0.003) 

0.015*** 

(0.003) 

0.032*** 

(0.004) 

0.006 

(0.004) 

0.020*** 

(0.005) 

0.027*** 

(0.006) 

0.026*** 

(0.004) 

0.156*** 

(0.014) 

0.012*** 

(0.004) 

0.008*** 

(0.003) 

0.076*** 

(0.007) 

Equity 0.869*** 

(0.016) 

0.865*** 

(0.016) 

0.752*** 

(0.081) 

0.889*** 

(0.051) 

0.834***

(0.044) 

0.909*** 

(0.028) 

0.752***

(0.055)

0.775***

(0.122) 

0.944*** 

(0.045) 

0.916*** 

(0.039) 

0.801*** 

(0.065) 

1.165*** 

(0.064) 

1.097*** 

(0.067) 

0.663*** 

(0.059) 

0.808*** 

(0.056) 

1.926*** 

(0.242) 

0.842*** 

(0.036) 

0.904*** 

(0.044) 

0.622*** 

(0.045) 

Interest 

rate 

0.018 

(0.050) 

0.031 

(0.050) 

-0.020 

(0.081) 

0.115 

(0.106) 

0.124 

(0.082) 

-5.590*** 

(0.573) 

3.402**

(1.515)

-2.717 

(3.480) 

-3.711*** 

(1.316) 

-5.974*** 

(0.907) 

0.669 

(1.366) 

0.699 

(3.061) 

-1.016 

(2.414) 

-0.576 

(2.961) 

-2.493 

(2.288) 

-6.676*** 

(0.840) 

-5.454*** 

(0.824) 

-0.885 

(2.072) 

0.111** 

(0.050) 

Oil price 0.063*** 

(0.021) 

0.064*** 

(0.020) 

0.113** 

(0.049) 

0.067 

(0.065) 

0.059 

(0.057) 

0.175*** 

(0.040) 

0.012 

(0.059)

0.058 

(0.124) 

-0.006 

(0.048) 

0.076** 

(0.038) 

0.058 

(0.061) 

0.230*** 

(0.067) 

0.023 

(0.085) 

-0.004 

(0.104) 

-0.117 

(0.067) 

2.341*** 

(0.241) 

0.047 

(0.066) 

0.009 

(0.053) 

1.035*** 

(0.125) 

R2 0.144 0.160 0.152 0.173 

2R  0.144 0.148 0.151 0.171 

# Firm 

Quarters 

17,114 17,114 2,989 1,689 2,178 4,546 2,099 474 3,139 4,977 1,896 1,622 1,030 674 1,634 156 1,799 2,765 561 

() indicates the standard error of the parameter estimate 

* indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level 

Firm return regressions using quarterly returns for 243 firms from 21 countries grouped into 10 regions.  More detail on the equity return data 
series by region is contained in Table 2a.  Systematic risk factors are market equity return, “Equity,” the change in the domestic (short) interest 
rate, “Interest rate,” and the change in the (global) price of oil, “Oil price.”  The factor selection process and details on the return specifications 
for models M1 to M4 are given in Section 5.2.  
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Table 6 

Baseline Scenario 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead 

Same λ      Value-at-Risk (VaR/EL) 

Model Specifications EL UL UL/EL Skewness Kurtosis 99.0% 99.5% 99.9% 

M1a Homogeneous - No Rating 0.001% 0.030% 20.8 29.4 1200 0%  (0) 0%  (0) 0.56%  (382) 

M1b Homogeneous - w/ Rating 0.002% 0.035% 17.1 22.1 633 0%  (0) 0%  (0) 0.62%  (305) 

M2 Firm fixed effects (σ2) 0.002% 0.030% 19.4 23.9 691 0%  (0) 0%  (0) 0.59%  (377) 

M3 Industry (σ2
s) 0.006% 0.062% 10.7 12.9 194 0.15%  (26) 0.53%  (92) 0.88%  (153) 

M4 Regional (σ2
i) 0.023% 0.120% 5.2 6.5 56 0.63%  (27) 0.85%  (37) 1.25%  (54) 

M0 Heterogeneous (σ2
jis) 0.094% 0.239% 2.5 3.6 24 1.06%  (11) 1.33%  (14) 1.93%  (21) 

Same DD      Value-at-Risk (VaR/EL) 

Model Specifications EL UL UL/EL Skewness Kurtosis 99.0% 99.5% 99.9% 

M1a Homogeneous - No Rating 0.644% 0.905% 1.4 2.9 19 4.16%  (6) 5.07%  (8) 7.31%  (11) 

M1b Homogeneous - w/ Rating 0.150% 0.363% 2.4 4.3 36 1.63%  (11) 2.08%  (14) 3.27%  (22) 

M2 Firm fixed effects (σ2) 0.131% 0.324% 2.5 4.3 36 1.47% (11) 1.84%  (14) 2.91%  (22) 

M3 Industry (σ2
s) 0.146% 0.358% 2.5 4.2 34 1.63% (11) 2.06%  (14) 3.16%  (22) 

M4 Regional (σ2
i) 0.152% 0.358% 2.4 3.8 27 1.62% (11) 2.01%  (13) 2.96%  (19) 

M0 Heterogeneous (σ2
jis) 0.086% 0.259% 3.0 5.4 58 1.18% (14) 1.52%  (18) 2.43%  (28) 

 

Simulated one year ahead loss distributions for all return model specifications using 200,000 simulations.  Details on the return specifications for 
models M0 to M4 are given in Section 5.2.  Table compares two alternative identification restrictions: top panel imposes the same return default 
threshold, λ, by rating when rating information is used (this is the case for all models except M1a), while bottom panel imposes the same distance to 
default, DD, by rating when rating information is used. 
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Table 7 

±2.33σ Shock to U.S. Real Equity Returns 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, Same λ 

         Value-at-Risk 

Model Specifications  EL 
% EL to 
Baseline UL 

% UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating - 2.33 σ 0.004% 172% 0.052% 73% 19.4 537 0% 0.38% 0.74%  (33%) 

   Baseline 0.001% 0.030%  29.4 1200 0% 0% 0.56% 

   + 2.33 σ 0.0005% -67% 0.016% -48% 38.0 1652 0% 0% 0.12%  (-78%) 

M1b Homogeneous – w/ Rating - 2.33 σ 0.007% 221% 0.066% 88% 13.9 279 0.25% 0.56% 0.88%  (41%) 

   Baseline 0.002% 0.035%  22.1 633 0% 0% 0.635% 

    + 2.33 σ 0.0007% -68% 0.019% -45% 36.7 1673 0% 0% 0.30%  (-52%) 

M2 Firm fixed effects (σ2) - 2.33 σ 0.005% 228% 0.056% 87% 14.3 259 0.15% 0.44% 0.83%  (41%) 

   Baseline 0.002% 0.030%  23.9 691 0% 0% 0.59% 

    + 2.33 σ 0.0005% -69% 0.016% -46% 39.0 1704 0% 0% 0.16%  (-73%) 

M3 Industry (σ2
s) - 2.33 σ 0.014% 151% 0.102% 65% 9.0 108 0.62% 0.83% 1.08%  (23%) 

   Baseline 0.006% 0.062%  12.9 194 0% 0.53% 0.88% 

    + 2.33 σ 0.002% -61% 0.037% -40% 19.0 400 0% 0% 0.67%  (-24%) 

M4 Regional (σ2
i) - 2.33 σ 0.043% 88% 0.171% 42% 5.1 37 0.85% 1.00% 1.50%  (20%) 

   Baseline 0.023% 0.120%  6.5 56 0.63% 0.85% 1.25% 

    + 2.33 σ 0.012% -46% 0.085% -29% 8.4 86 0.50% 0.59% 0.87%  (-30%) 

M0 Heterogeneous (σ2
jis) - 2.33 σ 0.142% 51% 0.314% 31% 3.4 21 1.41% 1.73% 2.55%  (32%) 

   Baseline 0.094% 0.239%  3.6 24 1.06% 1.33% 1.94% 

    + 2.33 σ 0.065% -31% 0.189% -21% 3.9 26 0.89% 1.00% 1.52%  (-21%) 
 
Simulated one year ahead loss distributions for all return model specifications imposing symmetric shocks to U.S. market equity returns. 200,000 
simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except M1a) is 
imposed. 
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Table 8 

+2.33σ Shock to German Interest Rates: Quarterly Increase of 0.33% 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ  

        Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.002% 39% 0.036% 20% 26.2 980 0% 0% 0.58%  (5%)
M1b Homogeneous - w/ Rating 0.003% 32% 0.041% 16% 19.7 511 0% 0.180% 0.65%  (4%)

M2 Firm fixed effects (σ2) 0.002% 28% 0.034% 13% 20.8 520 0% 0% 0.59%  (1%)

M3 Industry ( σ2
s) 0.007% 22% 0.068% 10% 11.7 164 0.33% 0.56% 0.88%  (<1%)

M4 Regional (σ2
i) 0.026% 15% 0.130% 8% 6.2 51 0.77% 0.85% 1.34%  (7%)

M0 Heterogeneous (σ2
jis) 0.10% 8% 0.25% 5% 3.6 23 1.11% 1.40% 2.04  (5%)

 

Simulated one year ahead loss distributions for all return model specifications imposing an adverse shock to the German short maturity interest rate. 
200,000 simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except 
M1a) is imposed. 
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Table 9 

-2.33σ Shock to U.S. Real Output: Quarterly Decline of 1.85% 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ 

 

        Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.001% -13% 0.028% -6% 31.8 1405 0% 0% 0.53%  (-4%)
M1b Homogeneous - w/ Rating 0.002% -2% 0.035% 0% 22.2 619 0% 0% 0.63% (<1%)
M2 Firm fixed effects (σ2) 0.001% -4% 0.030% -2% 24.3 703 0% 0% 0.59  (<1%)
M3 Industry (σ2

s) 0.006% -2% 0.062% 0% 12.9 192 0.15% 0.53% 0.88%  (<1%)
M4 Regional (σ2

i) 0.022% -6% 0.117% -3% 6.7 59 0.59% 0.85% 1.23%  (-2%)
M0 Heterogeneous (σ2

jis) 0.088% -7% 0.230% -4% 3.7 24 1.00% 1.28% 1.86%  (-4%)
 

Simulated one year ahead loss distributions for all return model specifications imposing an adverse shock to U.S. real output growth. 200,000 
simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all models except M1a) is 
imposed. 
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Table 10 

Extreme Shocks to Real U.S. Equity Returns 

Statistics of Simulated Losses for Models M0 - M4, One Year Ahead, same λ 

 

Panel A: -5σ, Quarterly Decline of 30.6%      Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.01% 794% 0.10% 244% 12.7 241 0.53% 0.64% 1.39%  (150%)

M1b Homogeneous - w/ Rating 0.02% 963% 0.13% 265% 8.8 116 0.64% 0.88% 1.47%  (135%)

M2 Firm fixed effects (σ2) 0.02% 1035% 0.11% 266% 8.8 113 0.62% 0.76% 1.22%  (107%)

M3 Industry (σ2
s) 0.04% 588% 0.18% 192% 6.3 59 0.88% 1.08% 1.77%  (101%

M4 Regional (σ2
i) 0.09% 275% 0.26% 113% 4.1 27 1.20% 1.43% 2.15% (72%)

M0 Heterogeneous (σ2
jis) 0.24% 154% 0.44% 85% 3.1 19 1.98% 2.42% 3.53%  (83%)

         

Panel B: -8.02σ, Quarterly Decline of 49%      Value-at-Risk 

Model Specifications EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

M1a Homogeneous - No Rating 0.05% 3363% 0.23% 674% 8.5 119 1.17% 1.54% 2.72%  (390%)

M1b Homogeneous - w/ Rating 0.08% 3914% 0.28% 689% 5.7 57 1.29% 1.67% 2.79%  (347%)

M2 Firm fixed effects (σ2) 0.07% 4203% 0.24% 687% 5.7 55 1.08% 1.44% 2.36%  (302%)

M3 Industry (σ2
s) 0.12% 1974% 0.35% 460% 4.4 32 1.63% 1.98% 3.07%  (249%)

M4 Regional (σ2
i) 0.19% 714% 0.41% 242% 3.4 20 1.86% 2.24% 3.32%  (165%)

M0 Heterogeneous (σ2
jis) 0.45% 382% 0.69% 187% 2.9 19 3.09% 3.74% 5.44%  (181%)

 

Simulated one year ahead loss distributions for all return model specifications imposing two more extreme adverse shocks to U.S. U.S. market equity 
returns . 200,000 simulations are used, and the same return default threshold, λ, by rating when rating information is used (this is the case for all 
models except M1a) is imposed. 
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Table 11 

Mean Group Estimates of Factor Loadings, Heterogeneous Model (M0b) 

Alternative specification 
 

Factors MGE 
β̂  

S.E. of MGE 

( )ˆ. .s e β
 

t-ratios 

constant 

1tq +∆  

, 1i tρ +∆  

1
o
tp +∆  

, 1i ty +∆  

0.010 

0.780 

-4.326 

0.041 

0.700 

0.003 

0.031 

0.520 

0.038 

0.260 

3.075 

24.874 

-6.923 

1.064 

2.695 

avg. R2  

avg. 2R  

# of firm quarters 

0.157 

0.103 

17,114 

  

 

1tq +∆  is the cross-sectional average of all equity indices in the GVAR model 

using 1996 PPP weights, , 1i tρ +∆  is the change in the domestic interest rate, 1

o

tp +∆  is 
the change in oil prices and  , 1i ty +∆  is the change in domestic real GDP. 
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Table 12 

Impact of Various 2.33σ Shocks to on Alternative Model 

Statistics of Simulated Losses, One Year Ahead, same λ 

 

       Value-at-Risk 

Scenario EL 
%∆ EL to 
Baseline UL 

% ∆ UL to 
Baseline Skewness Kurtosis 99.0% 99.5% 

99.9%  
(%∆ to Baseline)

Baseline 0.091% 0.208%  2.7 12 0.92% 1.00% 1.43% 

-2.33σ shock to U.S. real output growth 0.090% -1% 0.205% -2% 2.6 11 0.91% 0.97% 1.39%  (-3%) 

+2.33σ shock to German interest rates 0.097% 6% 0.215% 4% 2.7 12 0.94% 1.07% 1.52%  (6%) 

-2.33σ shock to U.S. equity returns 0.137% 51% 0.259% 25% 2.3 10 1.08% 1.26% 1.74%  (22%) 

+2.33σ shock to U.S. equity returns 0.066% -28% 0.176% -15% 3.1 15 0.79% 0.94% 1.28%  (-11%) 
 

Simulated one year ahead loss distributions using the alternative specification of the fully heterogeneous model M0, described in Section 6.4.  
Comparing loss distributions for the baseline scenario, adverse shocks to U.S. real output growth and German short maturity interest rates, and 
symmetric shocks to U.S. equity returns.  For all scenarios, 200,000 simulations are used, and the same return default threshold, λ, by rating when 
rating information is used (this is the case for all models except M1a) is imposed. 
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Table 13  

Impact of Granularity using Vasicek model 
 

 # of loans in portfolio (N) 

 119 243 1,000 5,000 10,000 

Deviation from asymptotic lower bound 80% 44% 12% 3% 2% 
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Figure 1: Scatter plot of unconditional (horizontal axis) and conditional (vertical axis) one-year probabilities of 
default (PD) for 243 firms in portfolio.  Top panel: same default threshold (λ) by credit rating for all firms.  Bottom 
panel: same distance to default (DD) by credit rating for all firms. 
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Figure 2: Comparing the tail of the baseline loss distributions across models, same λ identifying restriction by 
rating when rating information is used, 200,000 simulations.  Top panel: 20% tail (losses beyond the 80th 
percentile).  Bottom panel: 5% tail (losses beyond the 95th percentile).  Model M0 is fully heterogeneous model, M1a 
is homogenous (no rating information), M1b is homogeneous (with rating information), M2 is firm fixed effects, M3 
is industry fixed and marginal effects, and M4 is regional fixed and marginal effects. 
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Figure 3: Comparing simulated loss densities across different shocks to U.S. real equity prices, fully heterogeneous 
model M0 imposing the same default threshold λ identifying condition, 200,000 simulations.  All densities are 
estimated with an Epanechnikov kernel using Silverman’s (1986) optimal bandwidth.  The vertical axis is cropped 
at the top (hence the up-arrow) to allow for better visualization of the different densities; most of the loss 
density is at or very near the origin.  The ordering of the shocks is clearly seen in the plot around the 1% 
portfolio loss point: from benign and lowest density to most adverse and highest density.  
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