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risk reduction through active credit portfolio management. However, if the firm risk 
exposures are draws from different parameter distributions, say for different sectors or 
countries, then further risk reduction is possible, even asymptotically, by changing the 
portfolio weights. In either case, neglecting parameter heterogeneity can lead to 
underestimation of expected losses. But, once expected losses are controlled for, neglecting 
parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected 
loss or value-at-risk. The theoretical results are confirmed empirically using returns and credit 
ratings for firms in the U.S. and Japan across seven sectors. Ignoring parameter heterogeneity 
results in far riskier credit portfolios. 
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1 Introduction

The importance of modeling correlated defaults has been recognized in the credit risk literature

for some time. Early treatment can be traced to the single homogeneous factor model due to

Vasicek (1987, 1991), which also forms the basis of New Basel Accord (BCBS, 2004) as outlined

in detail by Gordy (2003). Extensions to multiple factors were proposed by Wilson (1997a,b) and

Gupton, Finger and Bhatia (1997) in the form of the industry credit portfolio model CreditMetrics.1

Practically all of these models are adaptations of Merton’s (1974) options based approach, which

develops a simple model of firm performance with a threshold value below which the firm defaults.

In this paper we build on the seminal work of Vasicek and Gordy and examine the scope for

diversification of a credit portfolio by allowing for firm-specific heterogeneity of the return process

as well as allowing for the default thresholds to vary across firm types, such as for instance by

credit rating. Our theoretical results indicate that if the firm parameters are heterogeneous but

come from a common distribution, there is no scope for further risk reduction for a sufficiently

large portfolio, i.e. one where idiosyncratic risk has already been diversified away. This would

preclude gains from active portfolio management by changing the exposure weights (unless the

portfolio is small, of course). However, if the firm parameters come from different distributions,

say for different sectors or countries, there will be further scope for credit risk diversification by

changing the portfolio weights, even in the case of sufficiently large portfolios. In either case,

neglecting parameter heterogeneity can lead to underestimation of expected losses (EL). But once

EL is controlled for, neglecting parameter heterogeneity can lead to overestimation of unexpected

losses or risk, whether measured by loss volatility, i.e. unexpected loss (UL), or value-at-risk (VaR).

Different degrees of heterogeneity are also assumed for the default thresholds which introduces

new complications. For the same return correlation, default correlations may be different across

firms due to differences in default thresholds. In empirical applications the default threshold is

typically modeled as a function of the firm’s balance sheet. Not only is accounting information a

noisy and possibly unreliable indicator of a firm’s potential health, but in a multi-country setting

it presents additional challenges of different accounting standards and bankruptcy rules. In view

of these measurement problems, Pesaran, Schuermann, Treutler, and Weiner (2005) propose an

alternative approach to estimating the default thresholds using firm-specific credit ratings and

historical default frequencies that we also adopt here.

We present empirical results for a portfolio of over 800 firms across U.S. and Japan. Return

regressions with different degrees of parameter heterogeneity are estimated recursively using ten-

year rolling estimation windows, with the loss distributions simulated for six out-of-sample one-

year periods, allowing for differences in default thresholds by credit ratings. The results are found

1For a summary of this and other industry models, see Saunders and Allen (2002), and for detailed comparisons,

see Koyluoglu and Hickman (1998), Crouhy et al. (2000), and Gordy (2000).
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to be robust across the six years. We show that, for a given EL, risk is significantly reduced

when parameter heterogeneity is taken into account. Importantly, the introduction of parameter

heterogeneity allows one to exploit whatever diversification potential that might exist in the selected

sample portfolio. Allowing for the differences in default thresholds across firms with different ratings

also proves to be of crucial importance. This is perhaps not surprising, considering that cross

firm default correlations tend to increase significantly with a fall in credit ratings even if return

correlations remain fixed across all firms in the portfolio. Note that ceteris paribus it is the default

correlations, and not the return correlations, that determine the shape of a credit loss distribution.

Our results have bearing on risk and capital management as well as the pricing of credit assets.

For example, in the case of a commercial bank, ignoring heterogeneity may result in underpro-

visioning for loan losses since EL is underestimated, and may result in overcapitalization against

(bank) default since risk is overestimated. The risk assessment and pricing of complex credit asset

such as collateralized debt obligations (CDOs) may be adversely affected since they are driven by

the shape of the loss distribution which is segmented into tranches.

The most important distinction between our approach and the literature is around firm (or asset)

heterogeneity: the risky asset pricing literature typically develops a model for a representative bond

or firm.2 Naturally, there will always be idiosyncratic or firm-specific differences, also allowed for

in the risky asset pricing models. But our interest is in explicitly allowing for firm heterogeneity

with respect to both the default threshold (or distance to default) and systematic risk sensitivity,

an important dimension of diversification. Along the way we are able to derive fat-tailed correlated

losses from Gaussian (i.e. non-fat-tailed) risk factors and explore the potential for (and limits of)

cross-sector and/or cross-country risk diversification.

At a technical level we are able to generalize the theoretical results of Vasicek (1987, 1991) and

others (discussed in Gordy, 2000, 2003)) in a number of directions. By working with densities rather

than cumulative distribution functions we are able to derive a number of closed form solutions for

the loss density function under alternative assumptions regarding the probability distributions of

systematic and idiosyncratic shocks, as well as heterogeneous risk exposures across firms in the

portfolio. The earlier theoretical studies by Vasicek and others focus on the derivation of the

cumulative distribution function which limit closed form analysis to the relatively simple case of

the double-Gaussin shocks where the systematic and idiosyncratic shocks are both assumed to be

Gaussian.

The plan for the remainder of the paper is as follows: Section 2 introduces the basic model of

firm value and default. Section 3 considers the problem of correlated defaults. Section 4 derives

the portfolio loss distribution under different heterogeneity assumptions, starting with the simple

case of a homogeneous portfolio as introduced by Vasicek. The potential of sectoral and geographic

2To be sure, one can find mention of multi-factor risk sensitivity (e.g. Duffie and Singleton (2003, Section 11.3.3)),

but to our knowledge this topic has received at best casual treatment.
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diversification is discussed in Section 5. Section 6 provides more detail regarding the specification

and identification of the default threshold needed for the empirical application, which is presented

in Section 7. There we explore the impact of heterogeneity empirically using returns for firms in

the U.S. and Japan across seven sectors and analyze the resulting loss distributions by simulation.

Section 8 provides some concluding remarks. A technical Appendix presents generalizations of some

material in Sections 3 and 4.

2 Firm Value and Default

Much of the research on credit risk modelling is based on the option theoretic default model of

Merton (1974). Merton recognized that a lender is effectively writing a put option on the assets of

the borrowing firm; owners and owner-managers (i.e. shareholders) hold the call option. If the value

of the firm falls below a certain threshold, the owners will put the firm to the debt-holders. Thus

a firm is expected to default when the value of its assets falls below a threshold value determined

by its liabilities.

Following Pesaran, Schuermann, Treutler, and Weiner (2005), hereafter PSTW, consider a firm

i having asset value Vit at time t, and an outstanding stock of debt, Dit. Under the Merton model

default occurs at the maturity date of the debt, t+ h, if the firm’s assets, Vi,t+h, are less than the

face value of the debt at that time, Di,t+h. A more nuanced approach is taken by the first-passage

models (e.g. Black and Cox, 1976) where default would occur the first time that Vit falls below a

default boundary (or threshold) over the period t to t+h.3 The default probabilities are computed

with respect to the probability distribution of asset values at the terminal date, t + h in the case

of the Merton model, and over the period from t to t + h in the case of the first-passage model.

Therefore, the Merton approach may be thought of as a European option and the first-passage

approach as an American option.

The value of the firm at time t is the sum of debt and equity, namely

Vit = Dit +Eit, with Dit > 0. (1)

Conditional on time t information, default will take place at time t + h if Vi,t+h ≤ Di,t+h. In

the Merton model debt is assumed to be fixed over the horizon h. Because default is costly

and violations to the absolute priority rule in bankruptcy proceedings are common, in practice

debtholders have an incentive to put the firm into receivership even before the equity value of

the firm hits the zero value.4 Similarly, the bank might also have an incentive of forcing the
3For a review of these models, see, for example, Lando (2004, Chapter 3). More recent modeling approaches also

allow for strategic default considerations, as in Mella-Barral and Perraudin (1997).
4See, for instance, Leland and Toft (1996) who develop a model where default is determined endogenously, rather

than by the imposition of a positive net worth condition. More recently, Broadie, Chernov, and Sundaresan (2004)

show that in the presence of APR default can be optimal when Eit > 0 even in the case of a single debt class.
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firm to default once the firm’s equity falls below a non-zero threshold.5 Importantly, default in a

credit relationship is typically a weaker condition than outright bankruptcy. An obligor may meet

the technical default condition, e.g. a missed coupon payment, without subsequently going into

bankruptcy. As a result we shall assume that default takes place if

0 < Ei,t+h < Ci,t+h, (2)

where Ci,t+h is a positive default threshold which could vary over time and with the firm’s particular

characteristics (such as region or industry sector). Natural candidates include quantitative factors

such as leverage, profitability, firm age (most of which appear in models of firm default), as well as

more qualitative factors such as management quality.6

We are now in a position to consider the evolution of firm equity value which we assume follows

a standard geometric random walk model:

ln(Ei,t+1) = ln(Eit) + µi + ξi,t+1, ξi,t+1 ∼ iidN(0, σ2ξi), (3)

with a non-zero drift, µi, and idiosyncratic Gaussian innovations with a zero mean and firm-

specific volatility, σξi . Consequently, the equity value of firm i at time t + h is ln(Ei,t+h) =

ln(Eit) + hµi +
Ph

s=1 ξi,t+s, and by (2) default occurs if

ln(Ei,t+h) = ln(Ei,t) + hµi +
hX

s=1

ξi,t+s < ln (Ci,t+h) , (4)

or if the h-period change in equity value or return falls below the log-threshold-equity ratio, λi,t+h,

defined by

ln

µ
Ei,t+h

Eit

¶
< ln

µ
Ci,t+h

Eit

¶
= λi,t+h. (5)

Equation (5) tells us that the relative (rather than absolute) decline in firm value must be large

enough over the horizon h to result in default. Using (4), default occurs if hµi+
Ph

s=1 ξi,t+s < λi,t+h.

Therefore, under (3) the probability that firm i defaults at the terminal date t+ h is given by

πi,t+h = Φ

Ã
λi,t+h − h µi

σξi
√
h

!
, (6)

where Φ(·) is the standard normal cumulative distribution function. In the theoretical discussions
that follows we shall assume that the firm-specific default thresholds are given, and do not consider

the effects of their sampling uncertainty on the analysis of loss distributions.

5For a treatment of this scenario, see Garbade (2001).
6For models of bankruptcy and default at the firm level, see, for instance, Altman (1968), Lennox (1999), Shumway

(2001), and Hillegeist, Keating, Cram and Lundstedt (2004).
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3 Cross Firm Default Correlations

In the context of the Merton model the cross firm default correlations can be introduced by assuming

that shocks to the value of a firm’s equity, ξi,t+1, defined by (3), have the following multifactor

structure

ξi,t+1 = γ0ift+1 + σiεi,t+1, εi,t+1 ∼ iid(0, 1) (7)

where ft+1 is an m× 1 vector of common factors, γi is the associated vector of factor loadings, and
εi,t+1 is the firm-specific idiosyncratic shock, assumed to be distributed independently across i.7

The common factors could be treated as unobserved or observed through macroeconomic variables

such as output growth, inflation, interest rates and exchange rates.8 In what follows we suppose

the factors are unobserved, distributed independently of εi,t+1, and have constant variances.9 Thus,

without loss of generality we assume that ft+1 ∼ (0, Im), where Im is an identity matrix of order

m.10

The above multifactor model plays a central role in the analysis of market risk, and its use in

credit risk analysis seems a natural step towards a more cohesive understanding of the two types of

risks and their relationships to one another. A homogeneous version of the factor model has also

been used extensively for the analysis of credit portfolio risk by Vasicek (1987, 1991), as we shall

see to good effect. But under homogeneity of factor loadings where γi = γ and γ0ift+1 = γ0ft+1,

the distinction between a one factor and multifactor models is redundant.

Using (7) in (3) we now have

ln(Ei,t+1)− ln(Eit) = ri,t+1 = µi + γ0ift+1 + σiεi,t+1. (8)

Under our assumptions

σ2ξi = γ0iγi + σ2i , (9)

7A separate line of research has focused on correlated default intensities as in Schönbucher (1998), Duffie and

Singleton (1999), Duffie and Gârleanu (2001) and Duffie and Wang (2004). There are a host of other approaches,

including the contagion model of Davis and Lo (2001) as well as Giesecke and Weber’s (2004) indirect dependence

approach, where default correlation is introduced through local interaction of firms with their business partners as well

as via global dependence on economic risk factors. The idea of generalizing default dependence beyond correlation

using copulas is discussed in Li (2000), Embrechts, McNeil, and Straumann (2001), Schönbucher (2002) and Frey and

McNeil (2003).
8PSTW provide an empirical implementation of this model by linking the (observable) factors, ft+1, to the variables

in a global vector autoregressive model.
9The more general case where the factors may exhibit time varying volatility can be readily dealt with by allowing

the factor loadings to vary over time, in line with market volatilities. But in this paper we shall not pursue this line

of research, primarily because the focus of our empirical analysis is on quarterly and annual default risks, and over

such horizons asset return volatilities appear to be rather limited and of second order importance.
10The issues concerning the empirical implementation of the multifactor models in the context of credit risk models

is discussed in Section 7.

6



which decomposes the conditional return variance into the part due the systematic risk factors, γ0iγi,

and the residual or idiosyncratic variance, σ2i . The presence of the common factors also introduces a

varying degree of asset return correlations across firms, which in turn leads to variation in cross firm

default correlations for a given set of default thresholds, λi,t+1. The extent of default correlation

depends on the size of the factor loadings, γi, the importance of the idiosyncratic shocks, σi,

the values of the default thresholds, λi,t+1, and the shape of the distribution assumed for εi,t+1,

particularly its left tail properties. The correlation coefficient of returns of firms i and j is given by

ρij =
δ0iδj¡

1 + δ0iδi
¢1/2 ¡

1 + δ0jδj
¢1/2 , (10)

where δi = γi/σi is the standardized m× 1 vector of factor loadings (systematic risk exposures) of
firm i.

To derive the cross correlation of firm defaults, which we denote by ρ∗ij,t+1, let zi,t+1 to be the

default outcome for firm i, over a single period such that11

zi,t+1 = I (λi,t+1 − ri,t+1) , (11)

where I(A) is an indicator function that takes the value of unity if A ≥ 0, and zero otherwise. Then

ρ∗ij,t+1 =
E (zi,t+1zj,t+1)− πi,t+1πj,t+1p

πi,t+1(1− πi,t+1)
p
πj,t+1(1− πj,t+1)

(12)

where πi,t+1 = E (zi,t+1) is firm i0s default probability over the period t to t + 1. It is clear that

the default correlation, ρ∗ij,t+1, depends on the default thresholds, λi,t+1, as well as the return

correlation, ρij , defined by (10). For given values of the thresholds, λi,t+1, a relatively simple

expression for ρ∗ij,t+1 can be obtained if conditional on ft+1, εi,t+1 and εj,t+1 are cross sectionally

independent and ft+1 and εi,t+1 have a joint Gaussian distribution. In this case

πi,t+1 = Φ

 λi,t+1 − µiq
σ2i + γ0iγi

 . (13)

The argument of Φ(·) in (13) is commonly referred to as a “distance to default” (DD) such that

DDi,t+1 = Φ
−1(πi,t+1) = (λi,t+1 − µi) /

q
σ2i + γ0iγi. (14)

To derive an expression for E (zi,t+1zj,t+1) we first note that conditional on ft+1, zi,t+1 and zj,t+1

are independently distributed and

E (zi,t+1zj,t+1) = Ef [E (zi,t+1zj,t+1 |ft+1 )] (15)

= Ef [E (zi,t+1 |ft+1 )E (zj,t+1 |ft+1 )] .
11To simplify the exposition, and without any loss of generality, we set h = 1.
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Also

E (zi,t+1 |ft+1 ) = E
¡
I
¡
λi,t+1 − µi − γ0ift+1 − σiεi,t+1

¢ |ft+1 ¢
= Φ

µ
λi,t+1 − µi − γ0ift+1

σi

¶
= Φ

¡
ai,t+1 − δ0ift+1

¢
,

where as before δi = γi/σi and ai,t+1 = σ−1i (λi,t+1 − µi).
12 Hence, unconditionally

E (zi,t+1zj,t+1) = Ef

£
Φ
¡
ai,t+1 − δ0ift+1

¢
Φ
¡
aj,t+1 − δ0jft+1

¢¤
, (16)

where the expectations are now taken with respect to the distribution of the common factors, ft+1.

As noted by Crouhy, Galai and Mark (2000), under the double Gaussian assumption E (zi,t+1zj,t+1)

is also given by

E (zi,t+1zj,t+1) = Φ2
£
Φ−1 (πi,t+1) ,Φ−1 (πj,t+1) , ρij

¤
, (17)

where Φ2[·] is the bivariate standard normal cumulative distribution function.

4 Losses in a Credit Portfolio

Consider now a credit portfolio composed of N different credit assets such as loans, each with

exposures or weights wit, at time t, for i = 1, 2, .., N , such that13

NX
i=1

wit = 1,
NX
i=1

w2it = O
¡
N−1¢ , wit ≥ 0. (18)

A sufficient condition for (18) to hold is given by wit = O
¡
N−1¢, which is the standard granularity

condition where no single exposure dominates the portfolio.14 Suppose further that loss-given-

default (LGD) of obligor i is denoted by ϕi,t+1 which lies in the range [0, 1].
15 Under this set-up

the portfolio loss over the period t to t+ 1 is given by

cN,t+1 =
NX
i=1

witϕi,t+1zi,t+1. (19)

In cases where for each i, ϕi,t+1 and zi,t+1 are independently distributed, the analysis can be

conducted conditional on given values of LGD. In such a case the ϕi,t+1’s could be treated as fixed

values and absorbed in the portfolio weights without loss of generality. However, a more interesting,

12Note that ai,t+1 reduces to the distance to default, DDi,t+1, defined by (14) when γi = 0.
13The assumption that N is time-invariant is made for simplicity and can be relaxed.
14Conditions (18) on the portfolio weights was in fact embodied in the initial proposal of the New Basel Accord

in the form of the Granularity Adjustments which was designed to mitigate the effects of significant single-borrower

concentrations on the credit loss distribution. See BCBS (2001, Ch.8).
15LGD is often modelled by assuming that ϕi,t+1 follows a Beta distribution across i with parameters calibrated

to match the mean and standard deviation of historical observations on the severity of credit losses.
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and arguably practically more relevant case, arises where ϕi,t+1 and zi,t+1 are correlated through

common business cycle effects. This case presents new technical difficulties and is addressed briefly

in Appendix A. For now, and without loss of generality, let ϕi,t+1 = 1 ∀i, t, meaning that a
defaulted asset has no recovery value, and write (19) as

cN,t+1 =
NX
i=1

witzi,t+1. (20)

The probability distribution function of cN,t+1 can now be derived both conditional on an

information set available at time t, It, or unconditionally. The two types of distributions coincide
when the factors, ft+1, are assumed to be serially independent, a case often maintained in the

literature. In this paper we consider a dynamic factor model and allow the factors to be serially

correlated. In particular, we shall assume that ft+1 follows a covariance stationary process, and It
contains at least ft and its lagged values, or their determinants (proxies) when they are unobserved.

A simple example of a dynamic factor model is the Gaussian vector autoregressive specification

ft+1 = Λf t + ηt+1, ηt+1 | It ∼ iidN(0,Ωηη), (21)

where It is the public information known at time t, and Λ is an m×m matrix of fixed coefficients

with all its eigenvalues inside the unit circle such that

V ar (ft+1 | It) =
∞X
s=0

ΛsΩηηΛ
0s = Im. (22)

Along with much of the literature on credit risk, the focus of our analysis will be on the limit

distribution of cN,t+1 | It, as N → ∞. The limit properties of this conditional loss distribution
establishes the degree to which diversification of the credit portfolio is possible.16 Not surprisingly,

the limit distribution of cN,t+1 depends on the nature of the return process {ri,t+1} and the extent to
which the returns are cross-sectionally correlated. Our discussion shall be in terms of the variance

of the loss distribution, though occasionally we refer to the standard deviation or loss volatility,

also known as unexpected loss (UL).

4.1 Credit Risk under Firm Homogeneity

Vasicek (1987) was among the first to consider the limit distribution of cN,t+1 using asset return

equations with a factor structure. However, he focused on the perfectly homogeneous case with

the same factor loadings, γi = γ, the same default thresholds, λi,t+1 = λ, the same firm-specific

volatilities, σi = σ, and zero unconditional returns, µi = 0, for all i and t. As noted earlier a

16The concept of “diversity” of financial markets has been recently discussed by Fernholz, Karatzas and Kardaras

(2003), who provide a formal analysis in the context of the standard geometric Brownian motion model of asset

returns.
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multifactor model with homogeneous factor loadings is equivalent to a single factor model. Under

Vasicek’s homogeneity assumptions we have

ri,t+1 = γft+1 + σ εi,t+1,

where the single factor ft+1 is also assumed to be serially independent. In this model the pair-wise

asset return correlations, ρij , is identical for all obligor pairs in the portfolio and is given by

ρij = ρ =
γ2

σ2 + γ2
. (23)

Furthermore, since default depends on the sign of λ − ri,t+1 = λ − (γft+1 + σ εi,t+1) , and not its

magnitude, without loss of generality the normalization, σ2+ γ2 = 1 is often used in the literature,

thus yielding γ = ±√ρ. The remaining parameter, λ, is then calibrated to a pre-specified default
probability, π, assuming a joint Gaussian distribution for ft+1 and εi,t+1:Ã

εi,t+1

ft+1

!
| It ∼ iidN (0, I2) . (24)

Under the above assumptions it is easily seen that

π = E (cN,t+1) =
NX
i=1

witE(zi,t+1) = E(zi,t+1) = Pr (ri,t+1 ≤ λ) = Φ (λ) .

Vasicek’s model, therefore, takes the following simple form

ri,t+1 =
√
ρft+1 +

p
1− ρ εi,t+1, (25)

with the default threshold given by

λ = Φ−1 (π) , (26)

so that the distance to default and default thresholds are the same, and λ can be easily estimated

from historical default frequency of the portfolio. When default thresholds are allowed to vary

across firms, identification issues arise which are discussed in Section 6. In Vasicek’s model the

pair-wise correlation of firm defaults is given by (see (12) and (17))

ρ∗ (π, ρ) =
Φ2
£
Φ−1 (π) ,Φ−1 (π) , ρ

¤− π2

π(1− π)
. (27)

For example, for the typical parameter values of π = 0.01, and ρ = 0.30, we have ρ∗ = 0.05. In

Figure 1, the top left chart labeled “Gaussian” (we shall return to the other charts in this figure in

Section 4.4 below) provides plots of ρ∗ (ρ, π) against ρ, for a few selected values of π. It is clear that

the default correlation, ρ∗, is related non-linearly to ρ, and tends to be considerably lower than ρ.

Also there is a clear tendency for the (ρ∗, ρ) relationship to shift downwards as π is reduced. For

10



very small values of π, sizable default correlations are predicted only for very high values of return

correlations.17

[Insert Figure 1 about here]

4.2 Limits to Diversification - Vasicek’s Model

Since the underlying returns are correlated, there is a non-zero lower bound to the unconditional

loss variance, V ar (cN,t+1), and full diversification will not be possible. Under the Vasicek model

V ar (cN,t+1 | It) = π(1− π)

 NX
j=1

w2jt

+ π(1− π)ρ∗
 NX

j 6=j0
wjtwj0t

 ,

where π = E (zj,t+1) and ρ∗ is defined by (27). Since,
PN

j=1wj = 1, it is easily seen that

NX
j=1

w2jt +
NX

j 6=j0
wjtwj0t = 1,

so that

V ar (cN,t+1 | It) = π(1− π)

ρ∗ + (1− ρ∗)
NX
j=1

w2jt

 . (28)

Under the granularity condition, (18), for N sufficiently large the second term in brackets becomes

negligible. Hence, in the limit

lim
N→∞

V ar (cN,t+1 | It) = π(1− π)ρ∗. (29)

The larger the default correlation, ρ∗, the larger will be the portfolio loss variance. For a finite

value of N , loss variance is minimized by adopting an equal weighted portfolio, with wjt = 1/N .

For sufficiently large N , only the granularity condition (18) matters, and nothing can be gained by

further optimization with respect to the weights, wjt.

4.3 Vasicek’s Limit Distribution

The loss distribution for the perfectly homogeneous model is derived in Vasicek (1991, 2002) and

Gordy (2000). Denoting the fraction of the portfolio lost to defaults by x, the following limiting

density is obtained (as N →∞):

fc (x | It) =
r
1− ρ

ρ

φ
h√

1−ρΦ−1(x)−Φ−1(π)√
ρ

i
φ [Φ−1(x)]

 , for 0 < x ≤ 1, ρ 6= 0, (30)

17Determinants of ρ∗ in the case where the errors have Student-t distribution with the same degree of freedom is

discussed below. In particular, see (32).
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where φ (·) is the density function of a standard normal. The associated cumulative loss distribution
function is

Fc (x | It) = Φ
·√
1− ρΦ−1(x)− Φ−1(π)√

ρ

¸
. (31)

As can be seen, Vasicek’s credit loss limit distribution is fully determined by two parameters, namely

the default probability, π, and the pair-wise return correlation coefficient, ρ. The former fixes the

expected loss of the portfolio, while the latter controls the shape of the loss distribution. In effect

one parameter, ρ, controls all aspects relating to the shape of the loss distribution: its volatility,

skewness and kurtosis. It would not be possible to calibrate two Vasicek loss distributions with the

same expected and unexpected losses, but with different degrees of fat-tailedness, for example.

In Appendix B.1 we generalize the portfolio loss density under firm homogeneity to the case

where ft+1 and εi,t+1 may have non-Gaussian distributions. We show that Vasicek’s distribution

is just a special case. As an illustration of this general class of distributions, we derive the loss

density for the case where idiosyncratic shocks are Gaussian but the common factor is Student t

distributed with v degrees of freedom.

4.4 Default Correlations of Vasicek’s Model under Non-Gaussian Distributions

It is well known that asset return distributions are fat-tailed and its neglect might result in under

estimation of default correlations. In the context of Vasicek’s model the importance of this issue

can be investigated by considering the Student t distribution for the innovations (εi,t+1 and/or ft+1)

with low degrees of freedom, tv, where v > 2 denotes the degrees of freedom of the distribution.

When εi,t+1 is Gaussian but ft+1 ∼ iid tv, the computation of the default correlation coefficient,

ρ∗, is straightforward and can be carried out using (16) with ft+1 generated as draws from iid tv.

However, the derivations are more complicated when εi,t+1 is t distributed. In this case we must

assume that εi,t+1 and ft+1 are both t distributed with the same degrees of freedom, otherwise ri,t+1,

given by (25), will have a non-standard distribution and the threshold parameter, λ, can not be

derived analytically in terms of π. But when εi,t+1 and ft+1 are both t distributed with the same

degrees of freedom, v, then ri,t+1 will also be t distributed with v degrees of freedom and we have

π = Pr (ri,t+1 ≤ λ) = Tv (λ) ,

where Tv (·) denotes the cumulative distribution function of tv, and hence, λ = T−1v (π). Also

E (zi,t+1 |ft+1 ) = E
h
I
³
λ−√ρft+1 −

p
1− ρ εi,t+1

´
|ft+1

i
= Tv

µ
λ√
1− ρ

−
r

ρ

1− ρ
ft+1

¶
.

Using this result in (15) and then in (12) now yields

ρ∗ (π, ρ, v) =
Ef

½h
Tv

³
T−1v (π)√
1−ρ −

q
ρ
1−ρft+1

´i2¾
− π2

π(1− π)
, (32)
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which is comparable to (27) obtained for Gaussian innovations. Expectations here are taken with

respect to the distribution of ft+1 assumed to be distributed as tv.

Figure 1 contains simulated plots of ρ∗ (ρ, π, v) against ρ, for a few selected values of π and for

three values of v: 10, 5 and 3. As the innovations become increasingly fat-tailed, i.e. as v declines,

the curve becomes steeper meaning that default correlation ρ∗ increases more dramatically as return

correlation, ρ, goes up. Moreover, differences in the default probability, π, matter less as the lines

collapse on top of one another. Note the Gaussian case in the upper left represents v =∞. Taken
together it is clear that as innovations become more fat-tailed, the return correlation becomes the

more important determinant of credit risk compared to the average default probability π, and

they can potentially generate extremely large tail losses. For example, using (29) and (27), the

unexpected loss of a Gaussian portfolio with π = 0.01, ρ = 0.3 is 0.021, while the unexpected

loss of the same portfolio but with t3 or t5 distributed shocks are 0.038 and 0.027, respectively.

The unexpected loss with t10 distributed shocks is essentially indistinguishable from the UL in the

double-Gausian case.18

4.5 Credit Risk with Firm Heterogeneity

Building on Vasicek’s work we now consider models that allow for firm heterogeneity across a

number of relevant parameters. In this section we provide some analytical derivations and show

how the theoretical work of Vasicek’s can be generalized. An empirical evaluation of the importance

of allowing for firm heterogeneity in credit risk analysis is discussed in Section 7.

Under the heterogeneous multifactor return process (8), the portfolio loss, cN,t+1, can be written

as

cN,t+1 =
NX
i=1

witI
¡
ai,t+1 − δ0ift+1 − εi,t+1

¢
, (33)

where, as before δi = γi/σi are the standardized factor loadings, and ai,t+1 = (λi,t+1 − µi)/σi. In

addition to allowing for parameter heterogeneity, we also relax the assumption that the conditional

on It the common factors, ft+1, and the idiosyncratic shocks, εi,t+1, are normally distributed with
zero means. Accordingly we assume that

εi,t+1 | It ∼ iid (0, 1), for all i and t,

ft+1 | It ∼ iid (µft, Im), for all t,

where under the dynamic factor model (21), µft = Λft. Allowing µft to be time-varying enables us

to explicitly consider the possible effects of business cycle variations on the loss distribution. In the

credit risk literature µft is usually set to zero.
19 For future use we shall denote the It-conditional

18This latter result is obtained using (29) and (32),
19With the possible exception of Wilson (1997a,b).
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probability density and the cumulative distribution functions of εi,t+1 and ft+1, by fε(·) and Fε(·),
and ff (·) and Ff (·), respectively.

To deal with parameter heterogeneity across firms we abstract from time variations in the

default thresholds (namely set ai,t+1 = ai) and adopt the following random coefficient model

θi = θ + vi, vi v iid (0,Ωvv), for i = 1, 2, ..., N, (34)

where

θi =
¡
ai, δ

0
i

¢0
, θ =

¡
a, δ0

¢0
, vi =

¡
via,v

0
iδ

¢0
, (35)

and

Ωvv =

Ã
ωaa ωaδ

ωδa Ωδδ

!
, (36)

is a positive semi-definite symmetric matrix, and vi’s are distributed independently of (εj,t+1, ft+1)

for all i, j and t. Allowing for such parameter heterogeneity may be desirable when firms have

different sensitivities to the systematic risk factors ft+1, and those sensitivities or factor loadings

are known only up to their distributional properties described in (34). A practical example might

be assessing the credit risk for a portfolio of borrowers which are privately held, i.e. not publicly

traded. This is typically the case for much of middle market and most of small business lending. For

such firms it would be very difficult to obtain individual estimates of θi, and an average estimate

based on θ may need to be used.

4.6 Limits to Unexpected Loss under Parameter Heterogeneity

The extent to which credit losses are diversifiable can be investigated using a number of different

measures. For reasons of analytical tractability here we focus on loss variance, V ar (cN,t+1 | It), or
its square root, unexpected loss, and note that in general

V ar (cN,t+1 | It) = Ef [V ar (cN,t+1 | ft+1, It)] + V arf [E (cN,t+1 | ft+1, It)] . (37)

Because of the dependence of the default indicators, zi,t+1, across i, through the common factors

ft+1, unexpected loss remains even with a portfolio of infinitely many exposures. The problem

of correlated defaults can be dealt with by first conditioning the analysis on the source of cross-

dependence (namely ft+1) and noting that conditional on ft+1 the default indicators, zi,t+1 =

I
¡
ai − δ0ift+1 − εi,t+1

¢
, i = 1, 2, ...,N , are independently distributed.

The conditional variance of zi,t+1 is bounded since

V ar (zi,t+1 | ft+1,It) = E (zi,t+1 | ft+1, It)− [E (zi,t+1 | ft+1,It)]2 ≤ 1
4
. (38)

Then by the conditional independence of the zi,t+1 we have
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V ar (cN,t+1 | ft+1, It) =
NX
i=1

w2itV ar (zi,t+1 | ft+1, It) ≤
1

4

Ã
NX
i=1

w2it

!
. (39)

Hence, under (18)

E [V ar (cN,t+1 | ft+1, It)] ≤ 1
4

Ã
NX
i=1

w2it

!
→ 0, as N →∞, (40)

and in the limit the loss variance, V ar (cN,t+1 | It) , is dominated by the second term in (37).

Namely, we have

lim
N→∞

V ar (cN,t+1 | It) = lim
N→∞

{V ar [E (cN,t+1 | ft+1, It)]} , (41)

which is similar to Proposition 2 in Gordy (2003). This result clearly shows that when the portfolio

weights satisfy the granularity condition, (18), the limit behavior of the unexpected loss does not

depend on the weights wit.. Furthermore, this result holds irrespective of whether ai and δi are

homogeneous, or vary across i.

Under the random coefficient model, (34), asymptotic loss variance, given by (41), can be

obtained by integrating out the heterogeneous effects of ai and δi. First note that cN,t+1 =PN
i=1witI

¡
ai − δ0ift+1 − εi,t+1

¢
, which under (34) can be written as

cN,t+1 =
NX
i=1

witI
¡
a− δ0ft+1 − ζi,t+1

¢
, (42)

where

ζi,t+1 = εi,t+1 − v0igt+1 (43)

and gt+1 = (1,−f 0t+1)0. Conditional on ft+1, ζi,t+1 is distributed independently across i with zero
mean and the variance

ω2t+1 = 1 + g
0
t+1Ωvvgt+1 (44)

where g0t+1Ωvvgt+1 is the variance contribution arising from the random coefficients model (i.e. due

to parameter heterogeneity). The expected loss conditional on ft+1 is given by

E (cN,t+1 | ft+1, It) =
NX
i=1

wit Pr
¡
ζi,t+1 ≤ a− δ0ft+1 | ft+1,It

¢
=

NX
i=1

witFκ

µ
θ0gt+1
ωt+1

¶
,

and since
PN

i=1wit = 1, then

E (cN,t+1 | ft+1, It) = Fκ

µ
θ0gt+1
ωt+1

¶
, (45)
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where Fκ (·) is the cumulative distribution function of the standardized composite innovations

κi,t+1 =
ζi,t+1
ωt+1

| ft+1,It ∼ iid(0, 1). (46)

Therefore, using (41), we have20

lim
N→∞

V ar (cN,t+1 | It) = V ar

·
Fκ

µ
θ0gt+1
ωt+1

¶
| It
¸
, (47)

which does not depend on the exposure weights, wit. This result represents a generalization of the

limit variance obtained for the homogeneous case, given above by (29).

As in the homogeneous case, it is also clear that the limit of V ar (cN,t+1 | It) as N → ∞
vanishes if and only if ft+1 conditional on It is non-stochastic. Restated, allowing the portfolio
to grow without bound, i.e. N → ∞, eliminates idiosyncratic but not systematic risk. In general,

when the returns are cross-sectionally correlated, cN,t+1 converges to a random variable with a

non-degenerate probability distribution.

The implication for credit risk management is clear: changing the exposure weights that satisfy

(18) will have no risk diversification impact so long as all firms in the portfolio have the same risk

factor loading distribution. To achieve systematic diversification one needs different firm types,

e.g. along industry or country lines, and we treat this in Section 5 below.

4.7 Implications of Parameter Heterogeneity for the Loss Distribution

Parameter heterogeneity can significantly affect the shape of the loss distribution as well as expected

and unexpected losses. An analysis of the effects of heterogeneity on loss distribution in the general

case, however, is analytically complicated and is best carried out via stochastic simulations, an

approach that we consider in Section 7 below. But useful insights can be gained by limiting the

analysis to the effects of heterogeneity of the mean returns and/or default thresholds across firms,

assuming the factor loadings and the error variances are the same across firms.21 This amounts to

a single factor model with γi = γ and σi = σ, and using (33) we have

cN,t+1 =
NX
i=1

wit I (ai − δ ft+1 − εi,t+1) ,

where δ = γ/σ, and ai = (λi − µi)/σ. This set-up is sufficiently general to allow for possible

heterogeneity in the mean returns, µi, and/or default thresholds, λi. Suppose that ai follows the

random coefficient model

ai = a+ vi, vi ∼ iid N(0, σ2v). (48)

20Numerical values of limN→∞ V ar (cN,t+1 | It) can be obtained by stochastic simulations, taking independent
draws from any given distribution of κi,t+1.
21Further details for the fully heterogeneous case can be found in Appendix B.2.
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It is then easily seen that

E (cN,t+1) = π =
NX
i=1

wit Pr (δ ft+1 + εi,t+1 − vi ≤ a) = Φ

 aq
1 + δ2 + σ2v

 , (49)

and

lim
N→∞

[V ar (cN,t+1) | It] = V arf

"
Φ

Ã
a− δ ft+1p
1 + σ2v

!
| It
#
. (50)

These results clearly show that both expected and unexpected losses are affected by mean re-

turn/threshold heterogeneity.

In this relatively simple example the degree of heterogeneity is unambiguously measured by the

size of σ2v, and it is easily seen that,

∂π

∂σ2v
= φ

 aq
1 + δ2 + σ2v

 − a/2¡
1 + δ2 + σ2v

¢3/2 ,
which is positive since in practice one would expect a < 0. Notice that the distance to default is

aq
1 + δ2 + σ2v

= Φ−1 (π) , (51)

and for values of π relevant in credit risk management, Φ−1 (π) < 0. Therefore, for typical values

of π, the effect of heterogeneity would be to increase expected losses. The dependence of π on σ2v is

monotonic, and the higher the degree of heterogeneity the larger will be π.

To examine the effect of heterogeneity on unexpected losses, we first control for the effect of

changes in σ2v on expected losses by setting a =
q
1 + δ2 + σ2v Φ

−1 (π). From (49) it is clear that

this choice of a ensures that E (cN,t+1) = π, irrespective of the value of σ2v. Using (50) it now

follows that

lim
N→∞

[V ar (cN,t+1) | It] = V arf

h
Φ
³
Φ−1 (π)

p
1 + κ2 − κft+1

´
| It
i
.

where κ = δ/
p
1 + σ2v. Also, the pair-wise correlation coefficient, ρij , in this case is given by

ρij = ρ =
δ2

1 + δ2 + σ2v
=

κ2

1 + κ2
, (52)

and as in the homogeneous case is the same across all i and j. Hence, noting that κ2 = ρ/(1− ρ),

we have

lim
N→∞

[V ar (cN,t+1) | It] = V arf

·
Φ

µ
Φ−1 (π)√
1− ρ

−
r

ρ

1− ρ
ft+1

¶
| It
¸
.

Therefore, under E (cN,t+1) = π, in the limit as N →∞ the loss variance depends on the degree of

parameter heterogeneity, σ2v, only through the return correlation coefficient, ρ. From (52) note that

for a given value of δ (the standardized factor loading), ρ is a decreasing function of σ2v. A rise in
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heterogeneity (or an increases in σ2v) reduces ρ, which in turn results in a reduction of unexpected

losses. So, once expected losses are appropriately corrected to take account of the increased first-

order risk of dealing with a heterogeneous sample, that very heterogeneity widens the scope for

diversification of the credit risk portfolio. Indeed as we shall see in Section 7.4, simulation reveals

that once expected losses are controlled for, ignoring parameter heterogeneity results in significant

overestimation of credit risk, especially in the tails.

5 Possible Sectoral or Geographic Diversification

The results obtained so far provides the limits to risk diversification through inclusion of addi-

tional firms with different idiosyncratic characteristics. For the homogeneous case there is a lower

bound to the loss variance given by V ar [Fε (a− δft+1) | It], and for the heterogeneous case by
V ar

h
Fκ

³
a−δ0ft+1
ωt+1

´
| It
i
, where ωt+1 is the volatility of the composite innovation. In both cases

as N → ∞, unexpected losses do not depend on the exposure weights, wit. Furthermore, if the

factors ft+1 are serially independent (as is often assumed in the finance literature), then the above

bounds hold unconditionally, namely the lower bound to risk diversification is given by

V ar (cN,t+1) > V ar

·
Fκ

µ
a− δ0ft+1

ωt+1

¶¸
= V ar

·
Fκ

µ
θ0gt+1
ωt+1

¶¸
.

Once idiosyncratic risk vanishes, there is no scope for further risk reduction so long as N is suffi-

ciently large and wit satisfy the granularity conditions, (18).

There may, however, be important possibilities for further diversification if we could group the

firms into different categories with the parameters of each category having different distributions.

One might think of these categories as different industries, sectors, or countries, for instance, whose

sensitivities to the systematic risk factors can be viewed as draws from different distributions. As

a simple example suppose there are N = NA +NB firms grouped into country A (say Japan) and

country B (say U.S.) such that

A : rAi,t+1 = µAi + γ0Aift+1 + σAiεAi,t+1, i = 1, 2, ..., NA,

B : rBi,t+1 = µBi + γ0Bift+1 + σBiεBi,t+1, i = 1, 2, ..., NB,

where

µAi = µA + vAµi, µBi = µB + vBµi,

γAi = γA + vAγi, γBi = γB + vBγi.

Thus, for example, fixed effects for Japanese firms (A) are randomly distributed around a country

mean, µA, and the Japanese systematic factor loading is also randomly distributed around a country
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effect, γA. Suppose further that those errors
³
vAµi,v

0
Aγi

´0
and

³
vBµi,v

0
Bγi

´0
are independently

distributed: Ã
vAµi

vAγi

!
∼ iid

¡
0,ΩA

vv

¢
, and

Ã
vBµi

vBγi

!
∼ iid

¡
0,ΩB

vv

¢
.

Therefore, cross-country or -sector dependence arises only through ft+1 and not through the para-

meter distributions themselves, although it is now possible that different factors could affect the

firm returns in different countries or sectors.

Consider now the following credit portfolio composed of two separate portfolios each with

weights 't and (1−'t):

c
(A,B)
N,t+1 = 't

NAX
i=1

wiAI (λiA − riA,t+1) + (1−'t)

NBX
i=1

wiBI (λiB − riB,t+1) ,

where
NAX
i=1

wiA =

NBX
i=1

wiB = 1,

and
NAX
i=1

w2iA → 0,
NBX
i=1

w2iB → 0, as NA and NA →∞,

meaning the two sub-portfolios have a large number of relatively small exposures. We may compare

the “joint” portfolio to the following “single-country” portfolios

c
(A)
NA,t+1

=

NAX
i=1

wiAI (λiA − riA,t+1) , and c
(B)
NB ,t+1

=

NBX
i=1

wiBI (λiB − riB,t+1) .

It is now easily seen that the limit of the unexpected losses associated with these portfolios as

NA, NB →∞, are given by

lim
NA→∞

V ar
h
c
(A)
NA,t+1

| It
i
= V ar

·
Fκ

µ
θ0Agt+1
ωA,t+1

¶
| It
¸
= VtA, (53)

lim
NB→∞

V ar
h
c
(B)
NB ,t+1

| It
i
= V ar

·
Fκ

µ
θ0Bgt+1
ωB,t+1

¶
| It
¸
= VtB,

lim
NA,NB→∞

V ar
h
c
(A,B)
N,t+1 | It

i
= '2

tVtA + (1−'t)
2VtB + 2't(1−'t)Cov

h
c
(A)
N,t+1, c

(B)
N,t+1

i
,

where θA = (aA, δ0A)0, θB = (aB, δ
0
B)
0, and ω2s,t+1 = 1+g

0
t+1Ω

s
vvgt+1, for s = A,B. Note that both

NA and NB individually need to be sufficiently large for idiosyncratic risk to vanish.
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Unexpected losses of the combined portfolio will be minimized by choosing22

'∗t =
VtB − Cov

h
c
(A)
N,t+1, c

(B)
N,t+1

i
VtA + VtB − 2Cov

h
c
(A)
N,t+1, c

(B)
N,t+1

i . (54)

Not surprisingly it is optimal to place a larger weight on the portfolio with a smaller unexpected

loss conditional on It. Using '∗t we have

lim
N→∞

V ar
h
c
(A,B)
N,t+1 | It

i
=

VtAVtB − Cov2
h
c
(A)
N,t+1, c

(B)
N,t+1

i
VtA + VtB − 2Cov

h
c
(A)
N,t+1, c

(B)
N,t+1

i , (55)

which is at least as small as both VtA or VtB. Therefore, the joint sectorally or geographically

diversified portfolio will almost always be less risky than both standalone portfolios A or B.

6 Specification and Identification of Default Thresholds

The probability of default for the ith firm, given by equation (6) and repeated here for convenience,

πi,t+h = Φ

Ã
λi,t+h − h µi

σξi
√
h

!
,

provides a functional relationship between a firm’s equity returns (as characterized by µi and σξi),

its default threshold, λi,t+h, and the default probability, πi,t+h. In the case of publicly traded

companies, µi and σξi can be consistently estimated from market returns based on historical data

using either rolling or expanding observation windows. In general, however, λi,t+h and πi,t+h can

not be directly observed. One possibility would be to use balance sheet and other accounting data

to estimate λi,t+h. This approach is taken up by KMV, for example. But as argued in PSTW, the

accounting information is likely to be noisy and might not be all that reliable due to information

asymmetries and agency problems between managers, share-, and debtholders.23 Moreover, in a

multi-country setting, the accounting based route presents additional challenges such as different

accounting standards and bankruptcy rules that exist across countries. In addition to accounting

data, other firm characteristics, such as leverage, firm age and perhaps size, and management

quality could also be important in the determination of default thresholds that are quite difficult

to observe. In view of these measurement problems, PSTW propose an alternative estimation

22This solution assumes that it is possible to take a short positition in sub-portfolio A (e.g. by offering default

protection on that portfolio). If we rule out the possibility of short positions, we must consider possible corner

solutions. Specifically, suppose that VtB ≤ VtA, then if VtB < Cov[c
(A)
N,t+1, c

(B)
N,t+1], we have '

∗
t = 0 and the smallest

attainable variance for the combined portfolio is VtB. Otherwise, if Cov[c
(A)
N,t+1, c

(B)
N,t+1] ≤ VtA, we can use the above

formula for '∗t .
23With this in mind, Duffie and Lando (2001) allow for the possibility of imperfect information about the firm’s

assets and default threshold in the context of a first-passage model.

20



approach where firm-specific default thresholds are obtained using firm-specific credit ratings and

historical default frequencies.

Suppose that at the end of period t firm i is assigned a credit rating which we denote by Rt.

Typically Rt may take on values such as ‘Aaa’, ‘Aa’, ‘Baa’,..., ‘Caa’ in Moody’s terminology, or

‘AAA’, ‘AA’, ‘BBB’,..., ‘CCC’ in Standard & Poor’s (S&P) and Fitch’s terminology. Suppose also

that over a period of length h, the observed default frequency of R-rated firms is given by π̂R,t+h.
Therefore, under (3) and assuming that the number of R-rated firms are sufficiently large, this
default rate is just the weighted average probability of default of all R-rated firms, namely

π̂R,t+h =
X
i∈Rt

witΦ

Ã
λi,t+h − h µ̄i

σ̄ξi
√
h

!
, (56)

where µ̄i and σ̄ξi are the unconditional estimates of µi and σξi obtained using observations on

firm-specific returns up to the end of period t, and wit is the weight of the ith firm in the portfolio

of R-rated firms at the end of period t, with
P

i∈Rt
wit = 1. The number of R-rated firms at the

end of period t will be denoted by NtR.

The consistency of the above estimating equation requires wit to be pre-determined and non-

dominating. Clearly, other grouping of firms can also be entertained. For example, firms can be

grouped by industry or geographical regions as well as by their credit ratings. It would also be

possible to consider averaging over firms with particular rating histories. In considering these and

many other “types” three important considerations ought to be born in mind. First, the types

should be reasonably homogeneous from the stand-point of default. Second, the number of firms

of the same type must be sufficiently large so that the estimating equation (56) holds. Third, there

must be non-zero incidence of defaults across firms of the same type, namely π̂R,t+h 6= 0. Within
type homogeneity is required since equation (56) contains NtR unknown threshold parameters,

λi,t+h i ∈ Rt. Their identification would require imposing homogeneity restrictions across the

parameters, and/or finding new moment conditions that relate the default thresholds to the other

characteristics of the empirical distribution of firm defaults. This identification problem is a direct

consequence of allowing for heterogeneity in default thresholds. Recall that for the case of the

homogeneous Vasicek model, the default threshold is easily identified; see (26).

In what follows we consider two alternative exact identification schemes:

1. Within type homogeneity of defaults thresholds, namely

λi,t+h = λR,t+h, for all i ∈ Rt. (57)

2. Within type homogeneity of distance-to-default

DDi,t+h =
λi,t+h − h µ̄i

σ̄ξi
√
h

= DDR,t+h, for all i ∈ Rt. (58)
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Under the first identification scheme, the common default threshold, λR,t+h, can be obtained

by solving the following non-linear equation in λR,t+h :

X
i∈Rt

witΦ

Ã
λR,t+h − h µ̄i

σ̄ξi
√
h

!
− π̂R,t+h = 0, (59)

i.e. we solve for λR,t+h such that firms in the portfolio with rating R have on average the uncondi-

tional probability of default π̂R,t+h. It is easily seen that this equation has a unique, finite solution

so long as π̂R,t+h 6= 0. Under the second identification scheme,

λ̂i,t+h = DDR,t+h σ̄ξi
√
h+ h µ̄i, for i ∈ Rt, (60)

where

DDR,t+h = Φ−1 (π̂R,t+h) , (61)

and Φ−1 (·) is the inverse of the cumulative distribution function of the standard normal.24 Once
again the estimated default thresholds, λ̂i,t+h, will be finite so long as π̂R,t+h 6= {0, 1}. Condition
(58) imposes the same unconditional probability of default for each R−rated firm, whereas (57)
simply imposes that this needs to hold on average across R−rated firms in the portfolio.

Of the two, the assumption of the same distance-to-default seems more in line with the way

credit ratings are established by the main rating companies. First, the idea that firms with similar

distances-to-default have similar probabilities of default is central to structural models of default.

For instance, KMV makes use of a one-to-one mapping from DDs to EDFs (expected default

frequencies). Second, rating agencies attempt to group firms according to their (unconditional)

probability of default (subject possibly to some adjustments for differences in their expected loss

given defaults), and in a structural model this is equivalent to grouping firms according to distance-

to-default. In our empirical analysis we shall focus on the threshold estimates given by (60), with

a brief discussion of the sensitivity of the results to other identification choices for λi,h+t.

7 An Empirical Application: Heterogeneity and Risk Diversifica-

tion

In this section we consider different types of heterogeneity across firms and illustrate their effects

on the resulting loss distribution by simulating losses for credit portfolios comprised of public firms

from the U.S. and Japan. We form these credit portfolios at the end of each year from 1997 to

2002 and then simulate portfolio losses for the following year. All of the simulation parameters are

estimated recursively using 10-year (40-quarter) rolling windows. The simulations are out-of-sample

in that the models, fitted over a ten-year sample, are used to simulate losses for the subsequent

24Note that Φ−1 (πi,t+h) < 0 for πi,t+h < 0.5. In practice πi,t+h tends to be quite small.
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11th year. This recursive procedure allows us to explore possible time variation in the underlying

parameters as well as the effects that such time variations might have on loss distributions.

7.1 Data and Portfolio Construction

The loss simulations require an estimate of the unconditional probability of default for each firm.

These may be obtained at the level of the credit rating, R, assigned to the firm by rating agencies

such as Moody’s, S&P or Fitch. We estimate probabilities of default recursively for each grade using

10-year rolling windows of all firm rating histories from S&P. These probabilities are estimated using

the time-homogeneous Markov or parametric duration estimator discussed in Lando and Skødeberg

(2002) and Jafry and Schuermann (2004). We impose a minimum annual probability of default

(PD) of 0.001% or 0.1 basis points. Our estimated PDs for both AAA and AA fall below this

minimum for all six cohorts.

In order to be selected for inclusion in our portfolios, a firm needs a credit rating as well as 10

years of consecutive quarterly equity returns that match the rolling estimation window. In case

both ratings are available the S&P rating is chosen.25 For the first sample or cohort (which ends

in 1997) we have 211 Japanese firms and 628 U.S. firms, a portfolio of 839 firms in total. At the

end of the following year the portfolio is rebalanced, retaining surviving firms and augmenting the

portfolio with new firms that have a rating at the end of that year, i.e. 1998, and also have 40

consecutive quarters of returns. All returns are computed in U.S. dollars (USD). For Japanese

firms this is done by subtracting the rate of change of yen/USD exchange rate from their yen-

denominated returns.26 Our analysis and conclusions are clearly conditional on the population of

publicly traded firms with sufficiently long track records, and need not extend to firms that are not

publicly traded or have relatively short histories.

To make the portfolio exposures representative of the rated universe in each country, we re-

weight the portfolio exposures (in USD) by rating in the following manner. Suppose that each

obligor begins with $100 of exposure. If 10% of all rated Japanese firms have a BB rating, but
15.6% of the Japanese firms in our portfolio are BB-rated, then each of these firms will be given
10.0
15.6 × $100 = $63 of exposure. In the U.S. the difference in the ratings distribution across the two
agencies is modest, but not so in Japan where Moody’s rates more than twice as many firms as

S&P. To address this issue we take the average of the two agencies’ ratings distributions by rating

for each country.27

25The decision rule is driven by the use of S&P ratings histories to compute the default probabilities πR.
26Our source of return data for U.S. firms is CRSP while for Japanese firms it is Datastream.
27The precise exposure allocation is as follows. Denote FVic to be the (face value) exposure to firm i in country c.

The portfolio total nominal face value is $1bn. Then

FVic = $1bn · wc · 1

Nc
· θ(R)c for i ∈ R,

where wc is the share of the total portfolio for country c (75% for the U.S., 25% for Japan), Nc is the number of
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The portfolio composition is adjusted annually, starting with 1998, to reflect defaults, upgrades

and downgrades which may have occurred during the year. Since credit migration matrices even at

annual frequencies are diagonally dominant, with average staying probabilities exceeding 90% for

investment grades, annual portfolio rebalancing seems a reasonable compromise between accuracy

and computational burden; the alternative would be quarterly rebalancing. We also update the

ratings distribution each year to allow for compositional changes in the universe of rated firms. For

example, at the end of 1997 B-rated firms made up only 1.54% of all rated Japanese firms, but by

year-end 2002 this proportion had risen to 6.75%. Below in Table 1 we show the average ratings

distribution for each country for 1997 and 2002. It becomes clear that there has been a systematic

deterioration in average credit quality over this period. In addition, estimated probabilities of

default for non-investment grade ratings, and for CCC in particular, have risen noticeably over this
period. As a result, the weighted average annual probability of default, π̂, has increased from 1.23%

for the year-end 1997 portfolio to 3.26% for the year-end 2002 portfolio.

[Insert Table 1 about here.]

Using two-digit SIC codes we group firms into seven broad sectors to ensure a sufficient number

of firms per sector. The sectors and percentage of firms by sector by country at year-end 1997 are

summarized below in Table 2.

[Insert Table 2 about here.]

7.2 Model Specifications

To explore the role of geographic and industry or sectoral heterogeneity we introduce two new

indices into the notation of the previous sections. Specifically, denote rijc,t+1 to be the return of

firm i in sector j in country c over the quarter t to t+1, where i = 1, ..., Ijc, j = 1, ..., Ic, c = 1, ..., C.

The application will explore C = 2 countries (Japan and U.S.) and Ic = 7 sectors/industries in

each country. Following the multi-factor return model given by (8), we employ the following return

regressions adapted to our empirical applications:

rijc,t+1 = αijc + β0ijcft+1 + uijc,t+1, (62)

where ft+1 ∼
¡
µf ,Σf

¢
, µf is an m× 1 vector of constants, and Σf is the covariance matrix of the

common factors, also assumed fixed. In terms of the return parameters of (3) and (8), the expected

return can be written as

µ
ijc,t+1

= αijc + β0ijcµf , (63)

firms in country c, θ(R)c is the rating representation adjustment. Note that θ(R)c will vary across time to reflect
compositional changes in the rated universe of firms in county c.
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and the unexpected component as

ξ
ijc,t+1

= β0ijc(ft+1 − µf ) + uijc,t+1. (64)

Note also that the total return variance is

σ2ξ
ijc

= β0ijcΣfβijc + σ2
ijc
, (65)

where σ2
ijc
is the variance of the idiosyncratic component, uijc,t+1.

Following a standard approach in the finance literature, we model firm returns using an unob-

served components or factor approach, either single or multiple, with increasing degrees of hetero-

geneity.28 One obvious source of heterogeneity is geography or country. As we have two countries,

we estimate each model specification first by pooling the U.S. and Japanese firms (referred to as

the “pooled model” specification) and then by estimating two separate models for each of the two

countries (the “modeled separately” specification).

The empirical exercise involves a number of variations on the basic firm return equation given

by (62) using market-cap weighted market returns for each country r̄c,t+1 as proxies for two of the

possible m common factors. Sector returns for a country c, r̄jc,t+1, j = 1, ..., Ic, are computed in

a similar fashion, namely using the market-cap weighted average of firm returns in that sector.29

The “global” market return index, r̄t+1, is made up of just the two countries U.S. and Japan and

is simply the weighted sum of the two individual country returns,

r̄t+1 = wUS r̄US,t+1 + (1−wUS)r̄JP,t+1, (66)

where wUS measures the relative size of the U.S. economy. We estimate wUS by taking the average

U.S. share of PPP-denominated GDP over 1997-2002, and obtain wUS = 0.75. To obtain the global

sector return r̄j,t+1 for a particular sector j we proceed similarly to (66) and define

r̄j,t+1 = wUS r̄j,t+1,US + (1− wUS)r̄j,t+1,JP . (67)

The simplest model is the fully homogeneous return specification assumed by Vasicek:

rijc,t+1 = αc + βcr̄c,t+1 + uijc,t+1, (68)

with uijc,t+1 ∼ iidN(0, σ2c). For the pooled model, σ
2
c = σ2, αc = α, βc = β and r̄c,t+1 = r̄t+1 as in

(66) for c = US and JP .

Next is the fixed effects specification where we allow αijc to vary across firms i in each sector

j and country c but holding the error variances fixed across all firms (σ2c). The third model

28An application where the firm returns are linked to observable macroeconomic factors using a global VAR model

is provided in PSTW.
29The weights for period t+ 1 are based on the average of the market capitalization (in USD) at end of periods t

and t+ 1.
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specification allows for full parameter heterogeneity where firm alphas, factor loadings and error

variances are allowed to vary across firms. Here too we estimate two versions, where in the second

we add an industry or sector factor so that each firm’s returns is regressed on r̄c,t+1 as well as on

r̄cj,t+1. To be clear, for the pooled model, r̄c,t+1 = r̄t+1 as in (66), and r̄cj,t+1 = r̄j,t+1 as in (67),

for c = US and JP .

The fourth and final model specification is the principal components (PCA) model. See Ap-

pendix C for further detailed account of this specification. Using the procedure outlined in Bai

and Ng (2002) we extract m̂ relevant principal components which capture most of the in-sample

variation in firm returns. In the application, the procedure resulted in two factors for the U.S.,

three for Japan and three for the pooled model (i.e. when firm returns from the U.S. and Japan

are pooled). The procedure was conducted for the 1997 cohort of firms, using the prior ten years of

quarterly data. For tractability the number of factors was kept fixed for the subsequent cohort of

firms, though the actual factors were, of course, re-estimated. Table 3 summarizes all eight model

specifications that we consider.

[Insert Table 3 about here.]

For simulation of loss distributions, in addition to the return equations, we also need to specify

the determination of the default thresholds noted in the last column of Table 3. The first two

models, I and II, do not make use of credit rating information at the firm level. The Vasicek model

treats all firms identically at the country level (for the two-country pooled model, all firms are

treated identically), and so imposing within type homogeneity of distance to default is identical to

within type homogeneity of default thresholds. Model II uses within type homogeneity of default

thresholds where firms are typed at the country level, or not at all for the pooled models. The default

thresholds for the remaining models, labeled λi/DDR in Table 3, use the identifying restriction

(58), namely that the distance to default DD is the same across all firms of a given rating. An

estimate of λi is obtained using (60) where estimates of µi and σ
2
ξ
i

are obtained using (63) and (65),

respectively.

We shall also consider simulation results using the alternative identification scheme for the

default thresholds based on (57), which imposes the same threshold for all firms in a given rating.

Further, to allow for direct comparisons, all models are calibrated to have the same expected loss

within a given sample period.

7.3 Return Regression Results

The return regression parameters, estimated recursively using a 10-year rolling window, are sum-

marized in Table 4. Note that these are all in-sample estimates. We focus our discussion on the

average pair-wise correlation of returns and the average pair-wise correlation of residuals as they
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map naturally into our loss modeling framework. The average pair-wise correlation of residuals is

of particular interest since it gives an indication of how close a particular model is to conditional

independence.

[Insert Table 4 about here.]

Starting with the results in Panel A of Table 4, we note that the in-sample average pair-wise

correlation of quarterly returns for the first ten years (1988-1997) is 0.1933 for the U.S. firms as

compared to the much higher figure of 0.6011 for the Japanese firms. But the average pair-wise

correlation for the pooled sample is very close to the U.S.-only sample at 0.1937.30 The factor

models generally do a good job of accounting for the cross-section correlation of returns, at least

in-sample. Considering first the U.S. and Japan pooled results, the average pair-wise correlation

of residuals for the whole portfolio is around 0.022 for the Vasicek, fixed effect and single factor

CAPM models. Adding an industry factor reduces that residual correlation to 0.015, and the PCA

model by construction leaves almost no cross-section residual correlation. In-sample goodness of

fit across models as measured by R̄2 (not reported in the table) range from 0.135 for the Vasicek

to 0.229 for the sector CAPM to 0.339 for the PCA model.

Staying with the pooled model, notice the high degree of residual correlation that remains for

the Japanese firms, ranging from around 42% (fixed effect) to 39% (CAPM). The reason is simple:

the “global” market weighted return, r̄t+1, is dominated by U.S. firms. The overall portfolio average

is low since residuals from U.S. and Japanese firm regressions are relatively uncorrelated and in

some cases even negatively correlated.

Estimating the models separately for each country helps, and this is seen clearly in the last

three columns of Table 4, Panel A. While the overall average pair-wise correlation of residuals is

quite similar at around 1.5% to 2%, for Japanese firms it is reduced dramatically, from a range

of 39% to 42% under the pooled specification to a range of 2% to 6% when estimated separately.

Similarly for U.S. firms, the average pair-wise correlation is reduced from a range of 7% to 9.5%

in the pooled approach to a range of 2% to 3.5% when estimated separately. Clearly geographic

heterogeneity plays an important role.

The results reported in Table 4 also show the high degree of variability in the coefficient estimates

that exists across firms. This is illustrated by Figure 2 where the empirical densities (smoothed

histograms) of the firm betas based on the one factor or CAPM model (Model IV) are displayed

separately for the two countries. The estimates of the Japanese betas are more tightly distributed

around their mean than are U.S. betas. We see a similar pattern with the firm alphas. These

30For 1988-1997, the average pairwise correlation of USD-denominated returns for Japanese firms of 0.6011 is

slightly higher than the average correlation of Yen-denominated returns of 0.5520 due to the common currency

adjustment. However, local currency returns for Japanese firms in our sample are still noticeably more correlated

than those for U.S. firms. This pattern holds for the later periods as well.
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results are line with our assumption in Section 5 that the parameters of the return equations across

the two countries can be viewed as draws from two different distributions.

[Insert Figure 2 about here]

Panels B through F in Table 4 show the recursive estimation results using a 10-year rolling

window for the next five ten-year periods. We note that average pair-wise cross-sectional correla-

tions of firm returns remain at around 20% through 1999 (though they show a steady decline for

Japanese firms), but starting with the cohort of 1991-2000 (Panel D), the average correlation for

the portfolio drops to 0.139. The sudden and substantial market reversals in the U.S. in March

2000 and the subsequent market declines probably play a strong role in explaining these results.

Turning now to the different models, the basic pattern across models remains unchanged as

we move down the table (and thus forward in time). Figures 3a (U.S.) and 3b (Japan) show the

empirical density plots of firm betas for three time periods: years ending 1997, 2000 and 2002. We

notice for both countries that the distribution of estimated betas has been shifting subtly to the left.

While the dispersion of U.S. betas has not changed much over the course of these rolling windows,

the Japanese distribution appears to be widening. The (cross-sectional) firm heterogeneity we seek

to explore here is thus exhibiting some time variation as well.31

[Insert Figures 3a and 3b about here]

7.4 Impact of Heterogeneity on Credit Losses

We simulate firm returns out-of-sample using (62), assuming that the systematic and idiosyncratic

components are serially uncorrelated and independently distributed, thus imposing the conditional

independence.32 The loss distributions for the different model specifications are then simulated

using appropriate default thresholds with LGD = 100%. All the simulations are based on 200,000

replications.

7.4.1 Comparison of Simulated and Asymptotic Results for the Vasicek Model

We begin by comparing the simulated loss distributions for our finite-sized portfolio to the as-

ymptotic portfolio results which are available for the Vasicek model. Of interest are loss volatility

31Throughout the analysis we have been assuming time invariant volatilities. While it is well known that high

frequency (daily, weekly) firm returns exhibit volatility clustering, this effect tends to vanish as the data frequency

declines due to temporal aggregation effects. Nonetheless, we conducted standard diagnostic tests for ARCH effects on

all firm return regressions in the case of Model III(a) and calculated the percentage of firm-specific return regressions

in which the ARCH effects are significant at the 5% level. For most periods the percentage of firms with significant

ARCH effects fell between 5 and 10%; the detailed results are available upon request from the authors. Overall the

evidence is not sufficiently overwhelming to motivate ARCH modeling across all firms.
32A more detailed description can be found in Appendix D.

28



or unexpected loss (UL), given by the square root of (28), and various quantiles or VaRs. The

asymptotic results for this case are given in Vasicek (2002).

[Insert Table 5 about here]

Table 5 reports the loss simulation results for the “pooled” version of Model I for each of the six

rolling windows A through F. The first row in Table 5 describes the losses forecast in 1998 using the

model estimated over the sample period 1988-1997. For each year we report the portfolio expected

default rate, π̂, which is equal to expected loss under our assumption of no loss recovery and the

average portfolio return correlation, ρ, given by the empirical analog of (23), namely

ρ̂ =
β̂
2
V̂ (r̄t+1)

β̂
2
V̂ (r̄t+1) + σ̂2u

, (69)

where β̂ and σ̂2u are computed recursively using Model I. The estimated variance of r̄t+1, V̂ (r̄t+1),

is computed from the aggregate returns, r̄t+1, using a rolling 10-year observation window. For the

size of the portfolio we report the total number of firms, Nt, and the effective number of equal-sized

exposures, N∗
t =

³PNt
i=1w

2
it

´−1
, where wit are the exposure weights. Table 5 also reports the

asymptotic and simulated UL and VaRs, as well as their differences denoted as “granularity.”

Looking across the first row of Table 5 we see that our two-country portfolio of 839 firms,

with an effective number of 638 equal-sized exposures, is relatively close to an asymptotically

diversified portfolio. Simulated UL is 1.47%, only 7bp above the asymptotic result. Similarly for

the three quantiles 99.0%, 99.5% and 99.9% VaR, the last corresponding to the loss calibration

level of the New Basel Accord (BCBS, 2004), the simulated loss levels are never far from, though

always above, their asymptotic counterparts. For instance, simulated 99.9% VaR is 12.05% of total

portfolio notional, just 23bp above the level achievable with an infinitely large portfolio. Looking

down the table, it is clear that the two-country portfolios for the later cohorts are also close to an

asymptotically diversified portfolio.

Introduction of credit rating information in the Vasicek model affects the losses through changes

to the default correlation, ρ∗, even though the pair-wise return correlations continue to be the same

across all firms. From (27) and Figure 1 we know that for any given value of return correlation,

ρ, default correlation, ρ∗, is increasing in the unconditional probability of default, π, so long as

π < 0.5. This can be seen clearly by computing the default correlation by credit rating, ρ∗R,

given an estimate of a rating specific default rate, π̂R, and the same distance to default by rating

identifying restriction, DDR, given by (58).33 In Panel A of Table 6 we report default correlations

by credit rating for 2003 based on estimates using the last rolling sample window, 1993-2002.34 The

top two ratings, AAA & AA, are combined because we impose a minimum unconditional default

probability of 0.001% per annum; see also the discussion in Section 7.1.
33These correlations can be easily computed using (12).
34We do not report the results for previous years as they are qualitatively very similar.
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[Insert Table 6 about here]

The strong differentiation of the default correlation by credit rating, ρ̂∗R, suggests that credit

rating is indeed an important characterization of default heterogeneity, even while imposing strict

homogeneity of return correlations. Put differently, a high default rate for a low credit rating, say

B, is associated with high default correlation, and vice versa. Gordy (2000) reports similar steeply
increasing default correlations as one descends the credit rating scale.35

7.4.2 Loss Simulation Results

Although most of the loss simulations we report below are calibrated to have the same EL across

all models, we start by examining the impact of a simple source of heterogeneity, namely firm

fixed effects, on expected and unexpected losses. Recall from the theoretical results in Section

4.7 that the introduction of heterogeneity in ai = (λi − µi)/σ, by assuming ai = a + vi, vi ∼ iid

N(0, σ2v), resulted in increased expected and, once EL is controlled for, decreased unexpected losses.

Empirically one may introduce this heterogeneity through a firm fixed effect which impacts µi and

therefore ai. The results are displayed in Table 7, where Panel A shows the impact on EL while

Panel B imposes the same EL across the two model specifications and shows the impact on UL.

For the first cohort, 1998, the simulated EL increases from 1.23% to 1.72%, as predicted by theory.

Panel B shows that UL declines from 1.47% to 1.39%, again as predicted. This pattern holds true

for all six years. Then same point can be made by instead calibrating the Vasicek model to have

the same EL as the fixed effects model, namely 1.72%, in which case the corresponding UL would

be 1.91% versus 1.79% for the fixed effects model.

[Insert Table 7 about here]

Recall from Section 7.2 that the portfolio weight based on PPP-denominated output wUS = 0.75.

There is no reason to believe that this weight minimizes portfolio loss volatility — for the given

portfolio EL. To illustrate the portfolio optimization results described in Section 5, we assign firm

exposures so that each country sub-portfolio has the same EL as the baseline global portfolio:

3.26%. We then carry out simulations for the least year, 2003, using the CAPM Model IV for

the U.S. and Japan pooled model which contains a single common factor with different parameter

distributions across the two countries.

The simulated UL for the baseline portfolio is ULUS&Japan = 1.28%.36 Using these simulations,

we also find that ULUS = 1.29%, ULJapan = 2.18%, and ρUS,Japan = 0.39. Using (54) and (55), we

35Default correlations across credit ratings can also be similarly computed, and these are summarized in Panel B

of Table 6. The diagonal entries are just the within-rating default correlation presented in Panel A.
36This is slightly different from the corresponding UL of 1.27% reported below in Table 8 since we have altered the

firm exposures to equate EL across the two country sub-portfolios.
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find the volatility minimizing weight assigns more exposure to U.S. firms relative to the baseline of

75%, namely '∗US = 86.5%, and the resulting loss volatility UL
∗
US&Japan = 1.26%, somewhat lower

than the volatility for the baseline portfolio of 1.28%.

Before embarking on a detailed model-by-model, year-by-year discussion of the loss simulation

results, it is helpful to look at Figure 4 to gain an overview of the results. In Figure 4 we show

the loss densities for 2003 across the six different specifications (separate country models). It is

immediately apparent that the models are grouped into two sets. While the models differ in several

ways, the main distinction between the two groups is the use of credit ratings. The more skewed

densities with the mode closer to the vertical axis are generated by two models (I and II) which

do not make use of credit rating information while the other four (III through VI) incorporate

this information. Whatever other sources of heterogeneity may be important, an estimate of the

unconditional probability of default, as provided by a credit rating, clearly has a significant influence

on the overall shape of the loss density.

We turn now to Table 8 where we report the loss simulations results for each of the six rolling

windows. We proceed by discussing in some detail the loss simulations for the first period and then

draw comparisons across years. In addition to the model number and name in Table 8, we provide

the EL calibration using the default threshold λ and distance to default, DD.

[Insert Table 8 about here]

For each year we report the first four simulated moments of the loss distribution (note that

the first moment or expected loss is the same across all models by construction) as well as three

commonly reported quantiles, 99.0%, 99.5% and 99.9%. We also calculate expected shortfall; the

results are qualitatively no different, and so we report here only the VaR results. The first set

of columns is for the pooled specification while the second set is for the country specific models,

analogous to the presentation of the in-sample regression results in Table 4.

The fully homogeneous model of Vasicek (Model I) generates the most extreme losses and has

the largest unexpected losses. Allowing for firm fixed effects but keeping firm error variances the

same, Model II, results in only a small reduction in risk (while controlling for expected losses). UL

drops slightly from 1.47% to 1.39%, the resulting loss distribution is somewhat less skewed (2.8 vs.

3.1) and fat-tailed (kurtosis of 16.9 vs. 19.5), and risk as measured by VaR is a bit lower as well.

For instance 99.9% VaR drops from 12.05% of portfolio notional to 11.14%.

The above simulations do not make use of firm rating information.37 Model III simply adds

ratings in the form of a rating-specific default threshold λR and distance to default DDR to the

Vasicek specification in Model I. For the pooled model we go from one (two for the country-specific

models) to seven (fourteen) λ’s, along the lines outlined in Section 6. Comparing Model III to Model

37To be sure, the overall portfolio EL is calibrated using default rates by credit rating, but so far we have not used

this information at a firm level.
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I, UL drops by about one-third from 1.47% to 1.07% while 99.9% VaR is reduced by nearly 80%

from 12.05% to 6.72%. Credit ratings seem to capture relevant firm-specific information, and this

is useful even though the information is grouped together into just a few (seven) rating categories.

Models IV and (b) allow for heterogeneous slopes (factor loadings) and firm-specific error vari-

ances, with Model V also adding an industry return factor. Overall the difference in risk is small.

UL and VaR increase somewhat with the addition of these parameters. Adding an industry factor

above and beyond a market factor with heterogeneous slopes makes little difference to the resulting

loss distribution as is clear by comparing Models IV and V. UL is nearly the same, 0.86% vs. 0.88%,

as are VaR levels, e.g. 5.56% vs. 5.58% at the 99.9% VaR level.

Finally, the principal components Model VI generates UL results that are similar to Model III,

which is Model I with ratings information, namely 1.08% vs. 1.07%. VaR, however, is higher.

For instance, 99.9% VaR is 7.69%, compared to 6.72% for Model III. In this way Model VI also

generates tail losses which are higher than Models IV and V. Although the PCA model performs

best on an in-sample basis, it is highly unlikely that the conditional independence attained by the

PCA model in-sample would carry through to out-of-sample.

Allowing for geographic heterogeneity in the simple Vasicek case reduces risk as can be seen

by the last set of columns labeled “U.S. & Japan Modeled Separately.” For the Vasicek model this

amounts to doubling the number of parameters as there is one set for each country. UL drops by

about 14% from 1.47% to 1.29%, skewness and kurtosis both decline, as does VaR. For instance,

99.9% VaR declines by nearly 20% from 12.05% to 10.14%.

In general, however, pooled and separate country models generate similar loss distributions.

Modeling the U.S. and Japan separately usually results in lower risk for Models I and II. Once

firm-specific factor loadings are allowed for, as in Models IV and V, VaR is actually slightly higher

for the separate country model, although the second through fourth moments are the same. For

instance, in the case of the basic CAPM model, Model IV, 99.9% VaR increases from 5.56% to

5.75%. A similar pattern can be seen when adding an industry factor in Model V. Model VI,

however, shows risk reduction by allowing for country heterogeneity. Moreover, the results for the

last period shown in Panel F, Table 8, indicates that even for the simple Vasicek model, Model I,

pooling need not always increase risk: 99.9% VaR is 17.47% for the pooled model but 17.81% for

the country-specific model. Indeed for this last period, allowing the parameters to vary by country

increases VaR for all models save the last one, Model VI. Some of these results could be due

to parameter instability and the associated estimation errors. Nevertheless, the model ranking is

robust to comparisons over time, i.e. comparing Panels A through F. Overall it seems that allowing

for country-specific factor loadings is more important than requiring different country models to

have their own specific factors.

Broadly speaking, risk, measured either by loss volatility (UL) or VaR, declines as model het-

erogeneity increases. The exception seems to be the PCA model (Model VI). Note that the out-of-
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sample loss simulations are performed under the maintened assumption of conditional independence.

Recall from Table 4 that only Model VI had an (in-sample) average pair-wise cross-sectional corre-

lation of residuals which was effectively zero. All other models had some remaining correlation. Put

differently, while Model VI is conditionally independent on an in-sample basis, it seems that the

others are not. So long as on an out-of-sample basis Model VI is still closer to conditional indepen-

dence than the others, and there is currently no way of verifying this, the other models will generate

risk forecasts which are biased downward, meaning that risk would be underestimated. Measuring

and evaluating out-of-sample conditional dependence is an important topic which requires further

investigation.

It may be useful to return to the loss densities in Figure 4. There are clearly important

differences across the models. Relative to the Vasicek model which has only three parameters per

country (αc, βc, σc), adding just fixed effects, Model II, does not seem to change the shape of the loss

distribution. However, once credit rating information is included, the distributional shape changes

dramatically. For example, Model III, which simply adds credit rating information to the Model

I specification (i.e. it adds just seven parameters per country) yields a loss distribution which is

remarkably similar to those generated by the fully heterogeneous model specification. Credit ratings

seem indeed to be a useful and informative summary statistic for firm-level unconditional credit

risk.

[Insert Figure 4 about here]

Moving down the panels in Table 8 we notice that the portfolio is getting riskier over time;

expected loss rises every year. If we compare value-at-risk, say at the 99.5%, for a model, say

the one-factor CAPM model (Model IV) applied to the two countries separately, we see that VaR

increases from 4.33% in 1998 to 6.21% in 2000 to 7.66% in 2003.

[Insert Table 9 about here]

Next we check to see if our conclusions so far are robust to the default threshold identification

choice discussed in Section 6. Table 9 addresses this issue, where in Panel A we have repeated

several model results from Panel F in Table 8, namely the loss simulation results for the final year

under the basic same distance to default identification assumption given by (58). Panel B imposes

an alternative identifying assumption of the same default threshold λ, as in (57). First, note that

by construction the two identification procedures are identical for Models I and III. Focusing on the

pooled models, we find that imposing same DD (58) in Panel A generates levels of 99.9% value-

at-risk that are somewhat higher than those generated by same λ (57) in Panel B. For instance,

looking at the result for U.S. & Japan modeled separately, under same λ, Model VI yields 99.9%

VaR of 9.82% as seen in Panel B, far less than 99.9% VaR of 11.11% in Panel A. We are currently
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exploring more fully these results, but initial closer examination reveals that imposing same DD

generates more extreme tail events for investment grade firms than does imposing same λ while the

differences for speculative grade firms are more modest. More broadly, however, we note that the

risk ranking across model specifications is robust to the choice of default threshold identification.

What is clear from the discussion is that there is a rich and complex interaction between the

underlying model parameters and the resulting loss distributions. Some of this complexity can

be summarized more simply using the default correlation ρ∗ij between any two firms i and j, as

computed in Section 7.4.1 where we discussed the default correlation by credit rating, ρ∗R. We

can conduct similar analysis across a broader set of models that use the same DD identifying

assumption, and these results are summarized in Table 10 for the year, 2003. We report the

portfolio EL for the year, 3.26%, which is the same across all models, the average return correlation,

ρ̂, computed using (10), the average default correlation using (27), as well as portfolio loss volatility,

UL, taken from Table 8. Note that for the first two models, I and III, parameter restrictions result

in only one return correlation ρ for all firms. Through the introduction of ratings information and

consequently heterogeneity in unconditional default probabilities, we notice a sharp reduction in

average default correlation, ρ̂∗, from 1.81% for Model I, to 0.26% for Model III. This reduction

in average default correlation is accompanied by a reduction in UL, as seen in the last column of

Table 10.

[Insert Table 10 about here]

Allowing for richer return specifications through differentiated factor loadings increases the

simulated out-of-sample return correlation: ρ̂ increases from 9.2% for Model III to just above 10%

for Models IV and V, and to nearly 15% for Model VI. Naturally the average default correlation,

ρ̂∗, also rises somewhat, from 0.26% for Model III to just above 0.3% for Models IV and V and

0.8% for Model VI. Yet even with this increased default correlation, loss volatility is never higher

than for Model III. Indeed, the PCA model has an implied default correlation which is triple that of

the Vasicek model with rating information (Model III), but with the same loss volatility. However,

looking at the last column of Table 10 we see that 99.9% VaR for Model VI at 11.15% which is

noticably larger than that of Model III at 9.46%.

8 Concluding Remarks

In this paper we have considered a simple model of credit risk and derived the limit distribution

of losses under different distributional assumptions regarding the structure of systematic and idio-

syncratic risks and the nature of firm heterogeneity. The analytical and simulation results point to

some interesting conclusions. Theory indicates that under the maintained assumption of conditional

independence, meaning that all cross-firm dependence is captured by the systematic risk factors,

34



if the firm parameters are heterogeneous but come from a common distribution, asymptotically

(when the number of exposures, N , is sufficiently large) there is no scope for further risk reduction

through active credit portfolio management. However, if the firm parameters come from different

distributions, say from different sectors or countries, then further risk reduction is possible, even

asymptotically, by changing the portfolio weights. In either case, neglecting parameter heterogene-

ity can lead to underestimation of expected losses. Then once expected losses are controlled for,

neglecting parameter heterogeneity can lead to overestimation of risk, whether measured by un-

expected loss or value-at-risk. Effectively the loss distribution is more skewed and fat-tailed when

heterogeneity is ignored.

In light of these observations a natural question is: which sources of heterogeneity are most

important from the perspective of portfolio losses? Turning first to the return specification, firm

fixed effects do not seem very important. However, allowing for flexible factor sensitivities does

appear to be important, especially for capturing cross-firm dependence. If the maintained assump-

tion of conditional independence is violated, i.e. if there remains cross-sectional dependence in the

residuals from the return regressions, then risk will be underestimated. Thus proper specification

of the return model is key by allowing for heterogenous factor loadings and the possible addition

of industry return factors.

By contrast, the differences in pooled versus country-specific results suggest that further sub-

dividing the firm return specification and error variances by country matters less. Indeed, the

differences within a given model in the pooled approach compared with modeling the two countries

separately are generally smaller than the differences across the different models. Thus allowing for

country-specific factor loadings is important, but requiring country-specific factors is less so.

Finally, allowing for heterogeneity in unconditional probabilities of default, for instance by

grouping firms according to credit ratings, appears to be of crucial importance. Even if we maintain

the assumption that firm returns are equi-correlated, going from one distance-to-default to seven,

one for each credit rating, with seven unconditional default probabilities, seems to capture much of

the relevant heterogeneity. In this way the focus of the New Basel Accord on internal (or external)

credit ratings seems well placed.
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A Allowing for Correlated Loss Severity

In this appendix we consider the loss function is given by (19) and assume that LGD variables,

ϕi,t+1, depend on the common factors ft+1. But we assume that conditional on ft+1, ϕi,t+1 and

zi,t+1 are independently distributed.38 A common formulation for LGD is the Beta distribution,

convenient because it is bounded between 0 and 1, with two shape parameters that can be expressed

in terms of the average and volatility of observed LGDs. Specifically, suppose that

fϕ
¡
ϕi,t+1 | ft+1, It

¢
∼ Beta(pt+1, qt+1),

where Beta(pt+1, qt+1) is a Beta distribution with parameters p and q that depend on ft+1, and

possibly on It. Note also that

E
¡
ϕi,t+1 | ft+1, It

¢
=

pt+1
pt+1 + qt+1

.

We shall consider the following logistic form as an example of this mean function

E
¡
ϕi,t+1 | ft+1,It

¢
=

eκ
0ft+1

1 + eκ0ft+1
,

where κ measures the degree to which mean LGD varies with the business cycle indicators, here

represented by ft+1. Clearly other functional forms and business cycle indicators can also be used.

Note that LGD is assumed not to vary systematically across exposures i but only over t.39

Since
¯̄
ϕi,t+1zi,t+1

¯̄ ≤ 1, firstly the results (40) and (41) continue to hold. Also under the random
coefficient model (34) we have

E (cN,t+1 | ft+1, It) =
Ã

eκ
0ft+1

1 + eκ0ft+1

!
Fκ

µ
θ0gt+1
ωt+1

¶
,

where θ =
¡
a, δ0

¢0
,gt+1 = (1,−f 0t+1)0, and hence

lim
N→∞

V ar (cN,t+1 | It) = V ar

"Ã
eκ

0ft+1

1 + eκ0ft+1

!
Fκ

µ
θ0gt+1
ωt+1

¶
| It
#
.

Finally, the limit distribution in this case can also be derived noting that

cN,t+1 | ft+1, It a.s.→
Ã

eκ
0ft+1

1 + eκ0ft+1

!
Fκ

µ
θ0gt+1
ωt+1

¶
.

38For empirical evidence of procyclical LGD, see Frye (2000), Altman et al. (2003) and Hu and Perraudin (2002).
39This formulation ties the two random variables of interest, default and LGD, to the same systematic risk factor(s)

while allowing the factor loadings to be different. Again, the basic idea is that credit risk correlations/dependence,

difficult if not impossible to observe directly, are modeled indirectly through the systematic factors. This is both

conceptually desirable because we are using a structural model, as well as pragmatically and empirically useful since

we focus the modeling effort where the data is dense and not sparse.
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B Limit Behavior of Credit Loss Distribution

B.1 Loss Densities under Homogeneous Parameters

In order to show how our approach relates to that of Vasicek, here we consider the homogeneous

parameter case but do not require ft+1 and εi,t+1 to have Gaussian distributions. Since in the

homogeneous case the multifactor model is equivalent to a single factor model, we consider scalar

values for δi and ft+1 and denote them by δ and ft+1, respectively. In this case we note that

conditional on ft+1, the random variables zi,t+1 are identically and independently distributed as

well as being integrable. (Recall that |wizi,t+1| ≤ 1 for all i and t.) Hence, conditional on ft+1 and

as N →∞, we have
cN,t+1 | ft+1, It a.s.→ Fε (a− δft+1) .

In the limit the probability density function of cN,t+1 | It can be obtained from the probability

density functions of ft+1 and εi,t+1, which we denote here by ff (·) and fε(·), respectively. It will
be helpful to write the loss density fc(·) in terms of the systematic risk factor density ff (·) and the
standardized idiosyncratic shock density fε(·).

Therefore, conditional on It and denoting the limit of cN,t+1 as N →∞, by ct+1 we have (with

probability 1)

ct+1 = Fε (a− δft+1) . (70)

Now making use of standard results on transformation of probability densities, for δ 6= 0 we have

fc (ct+1 | It) =
¯̄̄̄
∂Fε (a− δft+1)

∂ft+1

¯̄̄̄−1
ff (ft+1 | It) ,

where ft+1 is given in terms of ct+1, via (70), namely

ft+1 =
a− F−1ε (ct+1)

δ
,

and |∂Fε (a− δft+1) /∂ft+1| is the Jacobian of the transformation which is given by
∂Fε (a− δft+1)

∂ft+1
= −δfε (a− δft+1) = −δfε

£
F−1ε (ct+1)

¤
.

Hence

fc (ct+1 | It) =
ff

³
a−F−1ε (c,t+1)

δ | It
´

|δ| fε
£
F−1ε (ct+1)

¤ , for 0 < ct+1 ≤ 1. (71)

B.1.1 Relation to Vasicek’s Loss Distribution

The above results provide a simple generalization of Vasicek’s one-factor loss density distribution

given by (30), and reduces to it when µft = 0, and assuming that the innovations, ft+1 and εi,t+1
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are both Gaussian. In this case

ff (ft+1 | It) = φ (ft+1) ,

fε (εi,t+1 | It) = φ (εi,t+1) , Fε (·) = Φ (·) ,

and

fc (x | It) = 1

|δ|

φ
h
a−Φ−1(x)

δ

i
φ [Φ−1(x)]

 , for 0 < x ≤ 1, |δ| 6= 0 (72)

where we have used x for ct+1. Furthermore, in the homogeneous case

δ =

r
ρ

1− ρ
, for ρ > 0, (73)

and

π = Φ

Ã
ap
1 + δ2

!
. (74)

Hence

a =
Φ−1(π)√
1− ρ

. (75)

Using (73) and (75) in (72) now yields Vasicek’s loss density given by (30) (note that φ(x) = φ(−x)).
Under the double-Gaussian assumption, the distribution of δft+1 + εt+1 (conditional on It ) is

also Gaussian with mean δµft and variance 1 + δ2. Therefore,

E (cN,t+1 | It) = Φ
Ã
a− δµftp
1 + δ2

!
.

Using (75) and (73) the conditional mean loss can therefore be written as

E (cN,t+1 | It) = Φ
£
Φ−1 (π)−√ρµft

¤
, (76)

and reduces to π only when µft = 0. It is also interesting to note that under µft 6= 0, Vasicek’s

loss density and distributions become

fc (x | It) =
r
1− ρ

ρ


φ
hq

1−ρ
ρ Φ

−1(x)−
q

1
ρΦ

−1(π) + µft

i
φ [Φ−1(x)]

 , for 0 < x ≤ 1, ρ > 0. (77)

For ρ > 0, the cumulative distribution function associated with this density is given by

Fc (x | It) = Φ
µr

1− ρ

ρ
Φ−1(x)−

r
1

ρ
Φ−1 (π) + µft

¶
. (78)

Also
∂Fc (x | It)

∂µft
= φ

µr
1− ρ

ρ
Φ−1(x)−

r
1

ρ
Φ−1 (π) + µft

¶
> 0,

which shows that good news (a rise in µft) reduces the probability of losses above a given thresholds,

i.e. reduces value-at-risk, as to be expected.
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B.1.2 Non-Gaussian Innovations

It is interesting to note that Vasicek and others in this literature first derive the loss distribution

function and then obtain the density - while we obtain the density first and then integrate to

obtain the distribution function. One of the advantages of our procedure (aside from lending itself

readily to heterogeneous generalizations) is that it can be used to derive analytic loss densities for

non-Gaussian idiosyncratic shocks as well as non-Gaussian conditional distributions of ft+1. For

example, in the case where idiosyncratic shocks are Gaussian but the conditional distribution of

the common factor is t distributed with v degrees of freedom, we have

fc (x | It) =
tv

³q
v

v−2
h
a−Φ−1(x)

δ − µft

i´
|δ|φ [Φ−1(x)] , for 0 < x ≤ 1, |δ| 6= 0, v > 2,

where

tv (u) =
1√

vB(v/2, 1/2)

£
1 + v−1u2

¤−(v+1)/2
,

and B(v/2, 1/2) is the beta function.40

Using (71), other loss distributions can also be generated for different choices of the probability

densities of ft+1 and εi,t+1, although they might not be analytically tractable. In such cases the

loss distribution can be generated by stochastic simulations.

B.2 Loss Densities under Heterogeneous Parameters

Here we consider the credit loss distribution under the heterogeneous model, introduced in Section

4.5. In this case, cN,t+1, is given by (42): cN,t+1 =
PN

i=1wiI
¡
a− δ0ft+1 − ζi,t+1

¢
. Since conditional

on ft+1, the composite errors, ζi,t+1 = εi,t+1− via+v
0
iδft+1, are independently distributed across i,

then

cN,t+1 | ft+1, It a.s.→ Fκ

µ
θ0gt+1
ωt+1

¶
,

where as before Fκ (·) denotes the cumulative distribution function of the standardized composite
errors, κi,t+1, defined by (46), gt+1 =

¡
1,−f 0t+1

¢0 and ωt+1 is given by (44). Once again the limiting
distribution of credit loss depends on the conditional densities of ζi,t+1 and ft+1. For example, if

(εi,t+1, via,v
0
iδ) follows a multivariate Gaussian distribution, then κi,t+1 | ft+1, It ∼ iidN(0, 1).

The probability density of the fraction of the portfolio lost, x, over the range (0,1), can be

derived from the (conditional) joint probability density function assumed for the factors, f , by

application of standard change-of-variable techniques to the non-linear transformation

x = Fκ

Ã
a− δ0fp

1 + ωaa − 2ω0αδf + f 0Ωδδf

!
. (79)

40We verified that this loss density (and its CDF, computed numerically using quadrature methods) generates very

similar values for the Gaussian in (72) for v = 30, and is nearly indistinguishable for v = 60.
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For a generalm factor set up analytical derivations are quite complicated and will not be attempted

here. Instead, we consider the relatively simple case of a single factor model, where f is a scalar,

f . Suppose f = ψ(x) satisfies the transformation, (79), and note that

fc (x | It) =
¯̄
ψ0(x)

¯̄
ff
£
ψ(x)− µft

¤
, for 0 < x ≤ 1,

where
¯̄
ψ0(x)

¯̄
= |x0(f)|−1. In other words, ψ(x) is that value of the systematic factor f which

generated loss of x. In the double-Gaussian case, for example, we have

x0(f) =

Ã
f (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

(1 + ωaa − 2ωaδf + ωδδf2)
3/2

!

×φ
Ã

a− δfp
1 + ωaa − 2ωaδf + ωδδf2

!
.

Hence ¯̄
ψ0(x)

¯̄
=

µ
1

φ [Φ−1(x)]

¶ ¯̄̄̄
¯
£
1 + ωaa − 2ωaδψ(x) + ωδδψ

2(x)
¤3/2

ψ(x) (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

¯̄̄̄
¯ .

and for 0 < x ≤ 1 we have

fc (x | It) =
¯̄̄̄
¯
£
1 + ωaa − 2ωaδψ(x) + ωδδψ

2(x)
¤3/2

ψ(x) (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

¯̄̄̄
¯
(
φ
£
ψ(x)− µft

¤
φ [Φ−1(x)]

)
,

This generalizes the result obtained for the homogeneous case, (72), and reduces to it if we

set ωaa = ωaδ = ωδδ = 0. It is also interesting to note that the above limiting loss distribution

does not depend on the individual values of the portfolio weights, wi, i = 1, 2, ..., N , so long as the

granularity conditions in (18) are satisfied.

C Principal Components Model

For the principal components model where

ri,t+1 = αi + β0ift+1 + ui,t+1, t = 1, ..., T

the estimates of ft+1 can be computed by application of principal component techniques to the stan-

dardized returns defined by (ri,t+1 − r̄i) /σ̂i, where r̄i =
PT

t=1 ri,t+1/T, and σ̂
2
i =

PT
t=1 (ri,t+1 − r̄i)

2 /(T−
1). The number of factors, m, can be selected using the Bai and Ng (2002) procedure. Denote the

number of selected factors by m̂ and estimated factors by f̂t+1, and suppose that they are subject

to the orthonormalization restrictions such that41

T−1
TX
t=1

f̂t+1f̂
0
t+1 = Im̂, T

−1
TX
t=1

f̂t+1 = 0. (80)

41For computational convenience, we actually impose the in-sample restrictions that the estimated factors form an

orthonormal set, namely (T − 1)−1 T
t=1 f̂t+1f̂

0
t+1 = Im̂.
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The estimates of αi and βi will be given by α̂i = T−1
PT

t=1 ri,t+1 = r̄i, β̂i = T−1
PT

t=1 ri,t+1f̂t+1,

and

σ̂2i = (T − m̂− 1)−1
TX
t=1

³
ri,t+1 − âi − β̂0if̂t+1

´2
. (81)

D Simulation of Returns and Associated Loss Distributions

To simulate h−period ahead individual firm returns, Ri,t+h ≡
Ph

l=1 ri,t+l, according to (62) we

need to simulate ft+l, and ui,t+l, for l = 1, 2, .., h. We assume that the common factors are serially

uncorrelated. This seems justified in our application where market returns are only very weakly

autocorrelated. Taking first the case of a single market factor, suppose that r̄t+l ∼ iidN(r̄, s2r̄),

where r̄ = T−1
PT

t=1 r̄t, s2r̄ = (T − 1)−1PT
t=1 (r̄t − r̄)2 ,and ui,t+l ∼ iidN(0, σ̂2i ). Then return

for the ith firm can be simulated as

r
(s)
i,t+l = α̂i + β̂ir̄

(s)
t+l + σ̂iε

(s)
i,t+l,

r̄
(s)
t+l ∼ iidN(r̄, s2r̄), ε

(s)
i,t+l ∼ iidN(0, 1)

where s = 1, 2, .., S are the replications.

For the principal components model where the factors satisfy the orthonormalization restrictions

(80), returns for the ith firm can be simulated as

r
(s)
i,t+l = α̂i + β0if

(s)
t+l + σ̂iε

(s)
i,t+l,

f
(s)
t+l ∼ iidN(0, Im̂), ε

(s)
i,t+l ∼ iidN(0, 1).

For the more general multi-factor case, let µf denote the mean and Σf the covariance matrix of

ft+l. Then returns for the ith firm can be simulated as

r
(s)
i,t+l = α̂i + β0if

(s)
t+l + σ̂iε

(s)
i,t+l,

f
(s)
t+l ∼ iidN(µf ,Σf ), ε

(s)
i,t+l ∼ iidN(0, 1).

Portfolio loss at horizon h can now be simulated using

l
(s)
t+h = Vp

"
NX
i=1

wiI
³
λ̂i,t+h −R

(s)
i,t+h

´#
,

where R(s)i,t+h ≡
Ph

l=1 r
(s)
i,t+l is the h-period cumulative return, λ̂i,t+h is the h-period default return

threshold, Vp is the face value of the whole portfolio (e.g. $1bn) and wi is the fraction of exposure to

obligor i. We assume for simplicity that defaulted instruments have no recovery value. Simulated

expected loss due to default is given by

l̄S,t+h =
1

S

SX
s=1

l
(s)
t+h.

The higher order moments of the loss distribution can be similarly simulated.
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Table 1 
Ratings Distributions and Probabilities of Default 

 
 1997 2002 
 Ratings Distribution (%)  Ratings Distribution (%)  

Credit Rating Japan U.S. Both (%)Rπ Japan U.S. Both (%)Rπ
AAA 4.8 2.86 3.35 0.001 0.75 2.37 1.97 0.001
AA 22.62 10.81 13.76 0.001 16.03 9.25 10.95 0.001
A 37.93 25.61 28.69 0.005 29.38 21.49 23.46 0.006
BBB 23.16 22.33 22.54 0.064 34.89 25.67 27.97 0.106
BB 9.94 16.3 14.71 0.481 11.85 15.72 14.75 0.63
B 1.54 19.79 15.22 3.343 6.75 19.62 16.4 5.429
CCC 0 2.31 1.73 36.49 0.35 5.89 4.5 49.78

Portfolio     1.23    3.26
 

Note: The table presents the distribution of firms by rating for U.S. and Japan as of year-end 1997 and 2002. These distributions are 
calculated by taking the average of the distribution for Moody’s and the distribution for Standard and Poor’s. We construct our 
portfolios so that the exposure weights for each country are consistent with that country’s rating distribution. The column label “Both” 
represents the exposure weights by rating for the combined portfolio (75% U.S. / 25% Japan). The final column, (%)Rπ , contains the 
estimated annual probabilities of default (PD) that are used in the simulation exercises. These PDs are estimated using the time-
homogeneous Markov or parametric duration estimator discussed in Lando and Skødeberg (2002) and Jafry and Schuermann (2004). A 
minimum annual PD of 0.001% or 0.1 basis points is imposed. 
 

 
 

Table 2 
Industry Breakdowns by Country 

 

Industry 
% of Firms at 

Year-End 1997 
 U.S. Japan 
Agriculture, Mining & Construction 5.3 8.5 
Communication, Electric & Gas 16.7 6.2 
Durable Manufacturing 22.1 34.1 
Finance, Insurance & Real Estate 23.1 14.7 
Non-durable Manufacturing 18.2 24.6 
Service 4.8 6.6 
Wholesale & Retail Trade 9.9 5.2 
Total 100.0 100.0 

 
Note: The table presents the distribution of firms by industry group for both the U.S. and Japan sub-portfolios as of year-end 1997. 
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Table 3 
Specifications of Return Equations and Default Thresholds 

for Separate Country Models, c = US, JP 
 

Models Descriptions Return Specification Default Thresholds

I Vasicek rijc,t1  c  crc,t1  uijc,t1 c/DDc

II Vasicek  FE rijc,t1   ijc  crc,t1  uijc,t1 c/DDi

III Vasicek  Rating rijc,t1  c  crc,t1  uijc,t1 R,c/DDR

IV CAPM rijc,t1   ijc  ijcrc,t1  uijc,t1  i/DDR

V CAPM  Sector rijc,t1   ijc  1,ijcrc,t1  i/DDR

 2,ijcrcj,t1  uijc,t1

VI PCA rijc,t1   ijc  ijc
 fc,t1  uijc,t1  i/DDR

Note: For the “pooled” models the c subscript is dropped fromall expressions.
 

 
Note: The table summarizes the return equations and default thresholds for the “separate country” models presented in Table 8.  

, 1ijc tr +
 

denotes the return of firm i in sector j in country c over the quarter t to t+1. In Models I through V, 
, 1c tr +

 denotes the market-cap 
weighted return in country c over the quarter t to t+1 and 

, 1cj tr +
 is the market-cap weighted return for sector j in country c over the same 

period. Model VI, the principal components model ( PCA ), is discussed in greater detail in Appendix C. For the Vasicek model all firms 
in country c have the same default threshold, cλ . Default thresholds for Model II, Vasicek + Fixed Effects (FE), are identified using an 
analog of (57) under the assumption that all firms in country c have the same threshold, 

cλ  (note that this results in firm-specific 
distances-to-default, iDD ). Models III through VI use identifying assumption (58), namely that all firms in rating R have the same 

distance-to-default DDR
, to determine default thresholds. This assumption generates fourteen different λ ’s for Model III (one for each 

country/rating pair) and firm specific 
iλ ’s for Models IV through VI.  For the “pooled” country models we drop the c subscript on 

, 1 , 1, ,c t cj tr r+ +
 and 

, 1c tf +
 so that the common factors are global factors as opposed to country-specific factors. We also omit the c subscript 

on 
cλ  and 

,cλR
, meaning that for Model I and II there is a single default threshold for all firms and that there are only seven thresholds 

for Model III - one for each rating. 
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Table 4 

Average Pair-wise Correlation of Returns and  
In-sample Residuals Based on Ten-Year Rolling Windows 

 
     Average Pair-wise Correlation of Residuals 

 Sample Average Pair-wise Correlation of Returns   US & Japan Pooled  US & Japan Modeled Separately

 Window US&JP US JP Model Specifications US&JP US JP  US&JP US JP 

Panel A 1988-1997 0.1937 0.1933 0.6011 I Vasicek 0.0222 0.0951 0.4217   0.0239 0.0365 0.0607 

      II Vascicek + FE 0.0222 0.0951 0.4217  0.0239 0.0365 0.0607 

 Sample Size 839 628 211 IV CAPM 0.0218 0.0797 0.3868  0.0242 0.0374 0.0639 

      V CAPM + Sector 0.0147 0.0711 0.3869  0.0142 0.0221 0.0227 

      VI PCA -0.0001 0.0016 0.0037  0.0000 0.0005 -0.0045 

Panel B 1989-1998 0.2150 0.2114 0.5913 I Vasicek 0.0235 0.0940 0.3793   0.0249 0.0440 0.0633 

      II Vascicek + FE 0.0235 0.0940 0.3793  0.0249 0.0440 0.0633 

 Sample Size 854 633 221 IV CAPM 0.0237 0.0825 0.3553  0.0255 0.0456 0.0666 

      V CAPM + Sector 0.0177 0.0773 0.3582  0.0193 0.0324 0.0258 

         VI PCA 0.0003 0.0011 0.0028   0.0000 0.0004 -0.0041 

Panel C 1990-1999 0.2097 0.2237 0.5666 I Vasicek 0.0533 0.1282 0.3917   0.0627 0.0731 0.1391 

      II Vascicek + FE 0.0533 0.1282 0.3917  0.0627 0.0731 0.1391 

 Sample Size 842 613 229 IV CAPM 0.0568 0.1246 0.3807  0.0661 0.0778 0.1473 

      V CAPM + Sector 0.0419 0.1168 0.3817  0.0417 0.0621 0.0390 

         VI PCA 0.0000 0.0005 0.0010   -0.0003 -0.0001 -0.0036 

Panel D 1991-2000 0.1391 0.1691 0.4638 I Vasicek 0.0533 0.1207 0.3427  0.0633 0.0783 0.1359 

      II Vascicek + FE 0.0533 0.1207 0.3427  0.0633 0.0783 0.1359 

 Sample Size 816 588 228 IV CAPM 0.0559 0.1206 0.3442  0.0649 0.0821 0.1428 

      V CAPM + Sector 0.0379 0.1039 0.3470  0.0392 0.0615 0.0427 

      VI PCA 0.0000 0.0018 0.0030  0.0002 0.0008 -0.0041 

Panel E 1992-2001 0.1309 0.1633 0.4411 I Vasicek 0.0482 0.1132 0.3282   0.0578 0.0740 0.1277 

      II Vascicek + FE 0.0482 0.1132 0.3282  0.0578 0.0740 0.1277 

 Sample Size 811 585 226 IV CAPM 0.0501 0.1135 0.3324  0.0583 0.0772 0.1339 

      V CAPM + Sector 0.0378 0.1077 0.3361  0.0381 0.0624 0.0421 

         VI PCA -0.0007 0.0001 0.0009   -0.0004 -0.0003 -0.0042 

Panel F 1993-2002 0.1545 0.1999 0.4191 I Vasicek 0.0549 0.1098 0.3332  0.0628 0.0772 0.1254 

      II Vascicek + FE 0.0549 0.1098 0.3332  0.0628 0.0772 0.1254 

 Sample Size 818 600 218 IV CAPM 0.0569 0.1157 0.3488  0.0641 0.0811 0.1324 

      V CAPM + Sector 0.0439 0.1099 0.3543  0.0426 0.0658 0.0391 

         VI PCA -0.0008 -0.0006 0.0001   -0.0007 -0.0009 -0.0043 

 
Note: This table presents the results of recursive estimation of return equations using quarterly return data. All estimation results are 
calculated using a 40-quarter rolling window. The results for the “pooled” country models are given in the first set of columns and the 
“separate” country models in the second set of columns. Portfolio determination and sample construction are discussed in Section 7.1. 
Specification of the return models is discussed in Section 7.2 (see Table 3 for further detail). The data source for returns of U.S. firms is 
CRSP. The source for Japanese firms is Datastream. Yen-denominated Japanese returns are converted to USD-denominated returns by 
subtracting the percentage change in the Yen/USD exchange rate. See Table 3 for more detail on model specifications. 
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Table 5 
Analytical and Simulated Loss Distribution Results for Vasicek Model 

Based on U.S. & Japan Pooled Return Specifications 
 

Simulation     Portfolio Size  UL  99.0% VaR  99.5% VaR  99.9% VaR 

Year π̂  ρ̂  *ρ̂   N N*  Anal. Simul. Granul.  Anal. Simul. Granul.  Anal. Simul. Granul.  Anal. Simul. Granul.

1998 1.23% 13.83% 1.63%   839 638  1.40% 1.47% 0.07%  6.81% 7.00% 0.19%  8.23% 8.48% 0.26%  11.82% 12.05% 0.23% 

1999 1.60% 15.69% 2.26%  854 635  1.89% 1.94% 0.05%  9.17% 9.30% 0.13%  11.07% 11.13% 0.06%  15.84% 15.91% 0.07% 

2000 2.10% 13.71% 2.23%  842 613  2.14% 2.22% 0.08%  10.35% 10.65% 0.30%  12.25% 12.59% 0.33%  16.92% 17.34% 0.42% 

2001 2.27% 8.00% 1.23%  816 619  1.65% 1.75% 0.10%  8.08% 8.39% 0.31%  9.24% 9.66% 0.42%  12.01% 12.72% 0.71% 

2002 2.73% 7.71% 1.32%  811 642  1.88% 1.98% 0.10%  9.22% 9.48% 0.26%  10.47% 10.74% 0.27%  13.42% 13.71% 0.29% 

2003 3.26% 9.20% 1.80%   818 654  2.38% 2.48% 0.10%  11.61% 11.92% 0.31%  13.23% 13.59% 0.36%  17.06% 17.47% 0.41% 

 

Note: This table reports comparisons of our simulated loss distributions for the U.S. & Japan Pooled Vasicek model (Model I) with analytical results for an infinitely large 
portfolio. π̂  is the portfolio EL, the return correlation  ˆ( )ρ  is estimated using equation (69), and the default correlation *ˆ( )ρ  is obtained using equation (27).  N is the number of 
obligors in our portfolio. N* = ( Σ wi

2 )-1 is the equivalent number of equal weighted exposures. Analytical Unexpected Loss (UL), the standard deviation of portfolio losses, and 
Value-at-Risk (VaR), the α-percent quantiles of the loss distribution, are computed using similar expressions to those given in Vasicek (2002). Specifically,  

* 2

, 1 2

1 1lim ( ) (1 ) ( , ) ( ), ( ),N t
n

UL π π ρ π ρ ππ π ρ
+

→∞

− −= − = Φ − Φ Φ   

, 1lim ( ) ( ,1 ,1 )N t
n

VaR Fα α π ρ
+

→∞
= − −  where 

1 11 ( ) ( )
( , , )

x
F x

ρ π
π ρ

ρ

− −− Φ − Φ
= Φ

 
 
 

 is the limiting cumulative distribution function for the Vasicek case (see (31)). 

For Value-at-Risk we report α =99.0%, α =99.5%, and α =99.9%.  “Granularity” is the difference between the “Simulated” and “Analytical” values reported.  The simulation 
procedure is discussed in Appendix D. All simulations are carried out using 200,000 replications. 
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Table 6 
Simulated (Out-of-Sample) Default Correlations 

Based on Model II(b) for U.S. & Japan Pooled Return Specification 
(2003) 

 
 Panel A: Default Probabilities (in basis points) and Correlations by Credit Rating 
         
  ˆRπ  ρ̂  *ˆRρ      

 AAA & AA 0.10 9.20% 0.004%     

 A 0.58 9.20% 0.018%     

 BBB 10.59 9.20% 0.170%     

 BB 63.03 9.20% 0.615%     

 B 542.88 9.20% 2.437%     

 CCC 4,977.60 9.20% 5.865%     
         
         
 Panel B: Default Correlations by Credit Rating 
         

  AAA & AA A BBB BB B CCC  

 AAA & AA 0.004% - - - - -  

 A 0.009% 0.018% - - - -  

 BBB 0.026% 0.054% 0.170% - - -  

 BB 0.048% 0.100% 0.320% 0.615% - -  

 B 0.086% 0.183% 0.607% 1.199% 2.437% -  

 CCC 0.102% 0.224% 0.792% 1.636% 3.560% 5.865%  
 

Note: This table reports simulated (out-of-sample) default correlations by rating for Model III for the final simulation year, 2003. Recall that for the pooled version of Model III 
the pair-wise correlation of simulated (out-of-sample) returns is the same for all firms and is the same as in the Vasicek model (i.e. ,

ˆ ˆ ,i j i jρ ρ= ∀  where ρ̂  is given by equation 
(69)).  Pair-wise correlations of simulated (out-of-sample) defaults are obtained as described in Section 7.4.1, using equation (16) in (12). 
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Table 7 
The Impact of Parameter Heterogeneity on the Loss Distribution 

 
Panel A The Impact on Expected Losses (EL) of Allowing for Fixed Effects   
     
  Simulated EL  

 Year Vasicek Fixed Effect  
 1998 1.23% 1.72%  
 1999 1.60% 2.17%  
 2000 2.10% 2.67%  
 2001 2.28% 2.93%  
 2002 2.74% 3.28%  
 2003 3.26% 3.65%  

     

Panel B The Impact on Unexpected Losses (UL) of Allowing for Fixed Effects  
     
  Simulated UL  
 Year Vasicek Fixed Effect  
 1998 1.47% 1.39%  
 1999 1.94% 1.84%  
 2000 2.22% 2.10%  
 2001 1.75% 1.68%  
 2002 1.98% 1.90%  
 2003 2.48% 2.40%  

     

 
Note: The results in Panel A compare Expected Losses (EL) for the U.S. & Japan Pooled version of Model I (Vasicek) with EL allowing for firm fixed effects, iα , where we have 
deliberately not equalized EL with Model I. The results in Panel B compare Unexpected Losses (UL) for the U.S. & Japan Pooled version of the Vasicek model (Model I) with UL 
for Model II – Vasicek with Fixed Effect. In Panel B, we have equalized EL across the two models for each year. The simulation procedure is discussed in Appendix D. All 
simulations are carried out using 200,000 replications. 
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Table 8 
Out-of-Sample Simulated Annual Losses Based on 10-Year Rolling Return Regressions 

200,000 replications 

 

       US & Japan Pooled  US & Japan Modeled Separately  

 Simulation Using   Default     Value-at-Risk     Value-at-Risk  

 Year Sample Model Specifications Thresholds  UL Skew. Kurt. 99.0% 99.5% 99.9%  UL Skew. Kurt. 99.0% 99.5% 99.9%  

Panel A 1998 1988-1997 I Vasicek λc /  DDc   1.47% 3.1 19.5 7.00% 8.48% 12.05%   1.29% 2.6 15.5 6.10% 7.22% 10.14%  

    II Vasicek + FE λc /  DDc,i  1.39% 2.8 16.9 6.57% 7.86% 11.14%  1.23% 2.5 14.2 5.80% 6.82% 9.51%  

 π̂  = 1.23% III Vasicek + Rating λi /  DDR  1.07% 1.3 5.8 4.57% 5.19% 6.72%  1.01% 1.1 5.1 4.30% 4.81% 6.17%  

    IV CAPM λi /  DDR  0.86% 1.0 5.9 3.73% 4.19% 5.56%  0.88% 1.0 5.7 3.82% 4.33% 5.75%  

    V CAPM + Sector λi /  DDR  0.88% 1.0 6.1 3.81% 4.32% 5.58%  0.90% 1.1 5.9 3.89% 4.42% 5.81%  

     VI PCA λi /  DDR   1.08% 1.6 8.8 4.82% 5.62% 7.69%   1.07% 1.5 7.8 4.74% 5.47% 7.30%  

Panel B 1999 1989-1998 I Vasicek λc /  DDc   1.94% 3.0 18.1 9.30% 11.13% 15.91%   1.73% 2.8 17.9 8.25% 9.77% 14.04%  

    II Vasicek + FE λc /  DDc,i  1.84% 2.8 16.3 8.76% 10.43% 14.75%  1.65% 2.7 16.3 7.86% 9.31% 13.12%  

 π̂  = 1.60% III Vasicek + Rating λi /  DDR  1.28% 1.4 6.7 5.80% 6.62% 8.52%  1.21% 1.4 6.7 5.50% 6.23% 7.95%  

    IV CAPM λi /  DDR  0.95% 1.3 8.2 4.53% 5.16% 6.93%  0.98% 1.4 8.7 4.67% 5.35% 7.06%  

    V CAPM + Sector λi /  DDR  0.99% 1.2 7.4 4.64% 5.31% 7.06%  1.04% 1.5 8.9 4.88% 5.59% 7.67%  

     VI PCA λi /  DDR   1.20% 1.7 9.3 5.69% 6.58% 8.88%   1.20% 1.8 10.4 5.72% 6.70% 8.95%  

Panel C 2000 1990-1999 I Vasicek λc /  DDc  2.22% 2.6 14.7 10.65% 12.59% 17.34%  2.06% 2.4 12.7 9.78% 11.61% 15.87%  

    II Vasicek + FE λc /  DDc,i  2.10% 2.4 13.1 10.03% 11.81% 16.17%  1.97% 2.3 11.7 9.34% 10.97% 14.87%  

 π̂  = 2.10% III Vasicek + Rating λi /  DDR  1.43% 1.2 5.5 6.56% 7.35% 9.18%  1.39% 1.1 5.3 6.37% 7.17% 8.91%  

    IV CAPM λi /  DDR  1.05% 1.0 6.3 5.23% 5.85% 7.54%  1.12% 1.1 6.1 5.51% 6.21% 7.99%  

    V CAPM + Sector λi /  DDR  1.09% 1.0 5.7 5.33% 5.94% 7.56%  1.19% 1.1 6.2 5.74% 6.45% 8.25%  

     VI PCA λi /  DDR   1.39% 1.5 7.7 6.68% 7.69% 10.16%   1.40% 1.6 8.4 6.77% 7.79% 10.46%  
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Table 8 (continued) 
Out-of-Sample Simulated Annual Losses Based on 10-Year Rolling Return Regressions 

200,000 replications 

       US & Japan Pooled  US & Japan Modeled Separately  

 Simulation Using   Default     Value-at-Risk     Value-at-Risk  

 Year Sample Model Specifications Thresholds  UL Skew. Kurt. 99.0% 99.5% 99.9%  UL Skew. Kurt. 99.0% 99.5% 99.9%  

Panel D  2001 1991-2000 I Vasicek λc /  DDc   1.75% 1.8 8.6 8.39% 9.66% 12.72%   1.72% 1.7 8.2 8.20% 9.38% 12.04%  

    II Vasicek + FE λc /  DDc,i  1.68% 1.7 7.8 8.00% 9.22% 12.05%  1.65% 1.6 7.4 7.81% 8.91% 11.31%  

 π̂  = 2.28% III Vasicek + Rating λi /  DDR  1.22% 0.7 3.8 5.71% 6.23% 7.38%  1.23% 0.7 3.9 5.71% 6.23% 7.40%  

    IV CAPM λi /  DDR  1.13% 0.8 4.4 5.54% 6.09% 7.46%  1.20% 0.8 4.5 5.76% 6.31% 7.69%  

    V CAPM + Sector λi /  DDR  1.18% 0.7 4.2 5.64% 6.20% 7.57%  1.27% 0.8 4.4 5.96% 6.58% 8.06%  

     VI PCA λi /  DDR   1.44% 1.1 5.4 6.74% 7.55% 9.49%   1.44% 1.1 5.5 6.75% 7.57% 9.66%  

Panel E 2002 1992-2001 I Vasicek λc /  DDc   1.98% 1.6 7.3 9.48% 10.74% 13.71%   1.96% 1.6 7.5 9.45% 10.62% 13.65%  

    II Vasicek + FE λc /  DDc,i  1.90% 1.6 6.9 9.15% 10.32% 12.97%  1.90% 1.6 7.0 9.17% 10.28% 13.06%  

 π̂  = 2.74% III Vasicek + Rating λi /  DDR  1.34% 0.5 3.4 6.32% 6.80% 7.91%  1.35% 0.6 3.5 6.39% 6.91% 8.07%  

    IV CAPM λi /  DDR  1.16% 0.5 3.7 5.87% 6.38% 7.55%  1.22% 0.6 3.9 6.08% 6.61% 7.89%  

    V CAPM + Sector λi /  DDR  1.19% 0.6 3.8 5.98% 6.50% 7.73%  1.26% 0.7 4.1 6.25% 6.82% 8.23%  

     VI PCA λi /  DDR   1.42% 0.9 4.8 6.95% 7.68% 9.43%   1.44% 1.0 5.2 7.03% 7.81% 9.86%  

Panel F 2003 1993-2002 I Vasicek λc /  DDc  2.48% 1.8 8.0 11.92% 13.59% 17.47%  2.56% 1.8 8.2 12.20% 13.89% 17.81%  

    II Vasicek + FE λc /  DDc,i  2.40% 1.7 7.5 11.54% 13.06% 16.84%  2.48% 1.7 7.8 11.84% 13.46% 17.07%  

 π̂  = 3.26% III Vasicek + Rating λi /  DDR  1.51% 0.6 3.7 7.46% 8.06% 9.46%  1.56% 0.7 3.9 7.65% 8.28% 9.86%  

    IV CAPM λi /  DDR  1.27% 0.8 4.7 6.98% 7.64% 9.21%  1.27% 0.8 5.0 7.00% 7.66% 9.30%  

    V CAPM + Sector λi /  DDR  1.28% 0.8 4.7 7.01% 7.64% 9.20%  1.30% 0.9 5.2 7.15% 7.83% 9.60%  

     VI PCA λi /  DDR   1.51% 1.1 5.9 7.96% 8.93% 11.15%   1.49% 1.2 6.2 7.91% 8.85% 11.11%  

 

Note: This table presents results for simulated out-of-sample annual loss distributions (4-quarter ahead loss distributions). The table presents simulation results for the “pooled” 
country models in the first set of columns and the “separate” country models in the second set of columns. Model specifications, including the return regressions and determination 
of default thresholds, are discussed in Section 7.2 (see Table 3 for more detail on the model specifications). The simulation routine is discussed in Appendix D. Simulation are 
carried out using 200,000 replications. For each year all models are calibrated to have the same Expect Loss given by π̂ . For each simulation, the table reports the standard 
deviation of losses (denoted Unexpected Losses - UL), the 3rd and 4th moments of the loss distributions, as well as the 99.0%, 99.5% and 99.9% quantiles of the distribution 
(denoted Value-at-Risk). 
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Table 9 
Comparison of Alternative Methods of Identification of Default Thresholds  

(2003) 
200,000 replications 

Panel A: Same Distance to Default by Rating: DDR                

      US & Japan Pooled  US & Japan Modeled Separately  

 Simulation Using       Value-at-Risk     Value-at-Risk  

 Year Sample Model Specifications  UL Skew. Kurt. 99.0% 99.5% 99.9%  UL Skew. Kurt. 99.0% 99.5% 99.9%  

 2003 1993-2002 I Vasicek   2.48% 1.8 8.0 11.92% 13.59% 17.47%   2.56% 1.8 8.2 12.20% 13.89% 17.81%  

    III Vasicek + Rating  1.51% 0.6 3.7 7.46% 8.06% 9.46%  1.56% 0.7 3.9 7.65% 8.28% 9.86%  

 π̂  = 3.26% IV CAPM  1.27% 0.8 4.7 6.98% 7.64% 9.21%  1.27% 0.8 5.0 7.00% 7.66% 9.30%  

    V CAPM + Sector  1.28% 0.8 4.7 7.01% 7.64% 9.20%  1.30% 0.9 5.2 7.15% 7.83% 9.60%  

     VI PCA   1.51% 1.1 5.9 7.96% 8.93% 11.15%   1.49% 1.2 6.2 7.91% 8.85% 11.11%  

                    

                    

Panel B: Same Default Threshold by Rating: λR                

      US & Japan Pooled  US & Japan Modeled Separately  

 Simulation Using       Value-at-Risk     Value-at-Risk  

 Year Sample Model Specifications  UL Skew. Kurt. 99.0% 99.5% 99.9%  UL Skew. Kurt. 99.0% 99.5% 99.9%  

 2003 1993-2002 I Vasicek   2.48% 1.8 8.0 11.92% 13.59% 17.47%   2.56% 1.8 8.2 12.20% 13.89% 17.81%  

    III Vasicek + Rating  1.51% 0.6 3.7 7.46% 8.06% 9.46%  1.56% 0.7 3.9 7.65% 8.28% 9.86%  

 π̂  = 3.26% IV CAPM  1.23% 0.7 4.1 6.76% 7.36% 8.63%  1.21% 0.6 4.1 6.64% 7.19% 8.53%  

    V CAPM + Sector  1.25% 0.7 4.2 6.81% 7.42% 8.76%  1.24% 0.7 4.4 6.83% 7.43% 8.86%  

     VI PCA   1.42% 0.8 4.6 7.44% 8.18% 9.83%   1.39% 0.9 4.8 7.39% 8.13% 9.82%  

 

Note: This table compares the two identification methods for default thresholds discussed in Section 3 for the final simulation year, 2003. Panel A repeats the five models from 
Table 8 that are calibrated according to the identifying restriction (58), same distance-to-default by rating. Panel B presents results for these models using identifying restriction 
(57), namely that all firms with a given rating have the same default threshold, λR. For the “separate” country models, we only impose that all firms in a given country with the 
same rating have the same threshold 

,cλR
. Thus, there are 7 thresholds for the “pooled” models and 14 thresholds for the “separate” country models.  See also the notes to Table 8. 

Fore more details on the model specifications, please see Table 3. 
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Table 10 

Comparison of ρ̂  and *ρ̂  for Models Using Same Distance to Default Identification Restrictions 
Based on U.S. and Japan Pooled Return Specifications 

(2003) 
 

Simulation Using    Simulated 
Year Sample Model Specifications Parameter Restrictions ρ̂  *ρ̂  UL 99.9% VaR

2003 1993-2002 I Vasicek  * *

, ,
ˆ ˆ ˆ ˆˆ ˆ ; , ,i i j i ji i jπ π ρ ρ ρ ρ= ∀ = = ∀  9.20% 1.80% 2.48% 17.47% 

   III Vasicek + Rating 
* *

, , ,
ˆ ˆ ˆ ˆˆ ˆ ; , ; ,i R i j i j R Ri R i j i R j Rπ π ρ ρ ρ ρ ′

′= ∀ ∈ = ∀ = ∀ ∈ ∈  9.20% 0.26% 1.51% 9.46% 

π̂  =   3.26% IV CAPM ˆ ˆ ;i R i Rπ π= ∀ ∈  10.09% 0.32% 1.27% 9.21% 

   V CAPM + Sector ˆ ˆ ;i R i Rπ π= ∀ ∈  10.35% 0.33% 1.28% 9.20% 

    VI PCA  ˆ ˆ ;i R i Rπ π= ∀ ∈  14.77% 0.80% 1.51% 11.15% 

 

Note: This table compares the average pair-wise correlation of simulated (out-of-sample) returns, ρ̂ , where the average is take over ,
ˆ

i j i jρ ∀ > , and the average pair-wise 

correlation of simulated (out-of-sample) defaults, *ρ̂ , across models for the final simulation year, 2003.  These results are only presented for the six models that use the same 

distance-to-default identifying restriction, equation (58).  Pair-wise correlations of simulated (out-of-sample) returns, ,
ˆ

i jρ , are given by equation (10).  Pair-wise correlations of 

simulated (out-of-sample) defaults, *
,ˆi jρ , are obtained using equation (16) in (12) as described in Section 7.4.1.  For more detail on the model specifications, please see Table 3. 
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Figure 1 
Relationship between Default Correlation (ρ*) and Return Correlation (ρ) for different values  

of the degrees of freedom of the Student t-distribution (υ) and default probability (π) 
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Note: * * ( , , )ρ ρ π ρ υ=  is calculated using equation (32) for the Student t-distribution with υ degrees of freedom and using equation (27) for the Gaussian case.  The expectations 
in equations (32) are evaluated using 1 million draws of ft+1. 
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Figure 2 
Kernel Density Estimates of Estimated Betas  

(U.S. versus Japan, 1988-1997) 
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Note: Estimated betas are from Model IV – CAPM where U.S. & Japan are modeled separately.  All densities are estimated with an Epanechnikov kernel using Silverman’s (1986) 
optimal bandwidth. 
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Figure 3a 

Kernel Density Estimates of Estimated Betas 
(U.S. Betas over Time) 
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Note: Estimated betas are from Model IV – CAPM where U.S. & Japan are modeled separately. All densities are estimated with an Epanechnikov kernel using Silverman’s (1986) 
optimal bandwidth. 



 59

 
Figure 3b 

Kernel Density Estimates of Estimated Betas 
(Japanese Betas over Time) 
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Note: Estimated betas are from Model IV – CAPM where U.S. & Japan are modeled separately. All densities are estimated with an Epanechnikov kernel using Silverman’s (1986) 
optimal bandwidth. 
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Figure 4 

Alternative Simulated Loss Densities 
(U.S. and Japan Modeled Separately, 2003) 
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Note: All densities are estimated with an Epanechnikov kernel using Silverman’s (1986) optimal bandwidth. For more details on the model specifications, please see Table 3. 
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