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Abstract 
 
This paper proposes a modified version of Swamy’s test of slope homogeneity for panel data 
models where the cross section dimension (N) could be large relative to the time series 
dimension (T). The proposed test exploits the cross section dispersion of individual slopes 
weighted by their relative precision. In the case of models with strictly exogenous regressors 
and normally distributed errors, the test is shown to have a standard normal distribution as (N, 
T)  ∞. Under non-normal errors and in the case of stationary dynamic models, the 
condition on the relative expansion rates of N and T for the test to be valid is given by 

⎯→⎯ j

N /T 
 0, as (N, T)  ∞. Using Monte Carlo experiments, it is shown that the test has the 

correct size and satisfactory power in panels with strictly exogenous regressors for various 
combinations of N and T. For autoregressive (AR) models the proposed test performs well for 
moderate values of the root of the autoregressive process. But for AR models with roots near 
unity a bias-corrected bootstrapped version of the test is proposed which performs well even 
if N is large relative to T. The proposed cross section dispersion tests are applied to testing the 
homogeneity of slopes in autoregressive models of individual earnings using the PSID data. 
The results show statistically significant evidence of slope heterogeneity in the earnings 
dynamics, even when individuals with similar educational backgrounds are considered as sub-
sets. 

⎯→⎯ ⎯→⎯ j
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1 Introduction

In many empirical studies, it is assumed that the slope coefficients of interest in panel data models
are homogeneous across individual units. When the cross section dimension (N) is relatively small
and the time series dimension of the panel (T ) large, the hypothesis of slope homogeneity can
be tested using the SURE (seemingly unrelated regression equation) framework of Zellner (1962).
This framework is particularly attractive as it also automatically deals with the possibility of cross
section error correlations and dynamics when N is reasonably small (around 5-10) and T sufficiently
large (around 80-100). However, in many empirical applications N is often (much) larger than T
and the SURE approach would not be applicable.

In view of this Pesaran, Smith and Im (1996) proposed the application of the Hausman (1978)
testing procedure where the standard fixed effects estimator is compared to the mean group estima-
tor. However, as will be discussed below, such a procedure is not applicable in the case of panel data
models that contain only strictly exogenous regressors and/or in the case of pure autoregressive
models.

Recently Phillips and Sul (2003) have also proposed a ‘Hausman type’ test for slope homogeneity
for stationary first-order autoregression (AR(1)) panel data models in presence of cross section
dependence, with N fixed as T goes to infinity. It will be shown below that their testing approach
is not valid under cross section independence.

This paper proposes a modified version of the test proposed by Swamy (1970) that applies
to panel data models where the cross section dimension could be large relative to the time se-
ries dimension. The proposed test is applicable to static as well as to stationary dynamic panel
data models, possibly with heteroskedastic errors. In the case of models with strictly exogenous
regressors and normally distributed errors, the proposed test is shown to have a standard normal

distribution as (N,T )
j→∞, where (N,T )

j→∞ denotes N and T →∞ jointly. Under non-normal
errors and in the case of stationary dynamic models, the condition on the relative expansion rates

of N and T for the test to be valid is given by
√
N/T → 0 , as (N,T )

j→∞.
The small sample properties of the proposed test are investigated by means of Monte Carlo

experiments. It is shown that the test has satisfactory size and power for T as small as 10 with
N as large as 200 in panel data models containing only strictly exogenous regressors, even with
non-normal errors. For autoregressive (AR) models the proposed test performs well for moderate
values of the root of the AR process under various N and T combinations. But for AR panels with
T < N , and roots near unity, a bias-corrected bootstrapped version of the test is proposed which
is shown to perform well even if N is large relative to T .

The use of slope homogeneity tests in empirical contexts is illustrated by applying them to
testing the homogeneity of slopes in autoregressive models of earnings using the Panel Study of
Income Dynamics (PSID) data. The results show evidence of slope heterogeneity in the real earnings
dynamics, even when individuals with similar educational backgrounds are considered as sub-sets.

The plan of the paper is as follows. Section 2 sets up the model and reviews existing tests of
slope homogeneity. Section 3 considers the asymptotic distribution of alternative dispersion type
tests of slope homogeneity and establishes their asymptotic distribution in the context of panel data
models where N could be large relative to T . Section 4 considers the application of the proposed
∆̃ test to stationary dynamic panel data models and develops the biased-corrected bootstrapped
version of the test. Section 5 sets up the Monte Carlo design and summarizes the results. Section
6 discusses the empirical application, and Section 7 provides some concluding remarks.
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2 The Model and Existing Tests of Slope Homogeneity

Consider the panel data model with fixed effects and heterogeneous slopes

yit = αi + β
′
ixit + εit, i = 1, ...,N , t = 1, ..., T (2.1)

where αi is bounded on a compact set, xit is a k × 1 vector of regressors, βi is a k × 1 vector of
unknown slope coefficients. Stacking the time series observations for i yields

yi = αiτT +Xiβi + εi, i = 1, 2, ..,N, (2.2)

where yi = (yi1, ..., yiT )
′, τT is a T × 1 vector of ones, Xi = (xi1, ...,xiT )

′, and εi = (εi1, ..., εiT )
′.

Let

QiT = T−1
(
X′
iMτXi

)
, ξiT = T−1/2X′

iMτεi, (2.3)

and

QN = (NT )−1
(

N∑

i=1

σ−2i X′
iMτXi

)

, (2.4)

whereMτ = IT − τT (τ ′TτT )
−1
τ ′T , and IT is an identity matrix of order T .

Consider now the following assumptions:
Assumption 1: εit ∼ IID(0, σ2i ) with 0 < σ2i <∞ for all i, and εit and εjs are independently

distributed for i �= j and/or t �= s.
Assumption 2: The k × k matrices QiT , i = 1, 2, ...,N , defined by (2.3) are positive definite,

Q−1
iT has finite second order moments for each i, and QiT tends to a non-stochastic positive definite

matrix, Qi, as T →∞.
Assumption 3: The k × 1 vectors ξiT , i = 1, 2, ...,N defined by (2.3) are independently

distributed across i, and for each i, ξiT →d N
(
0,σ2iQi

)
, as T →∞.

Assumption 4: The k× k pooled observation matrix QN defined by (2.4) is positive definite,

and tends to a non-stochastic positive definite matrix, Q, as (N,T )
j→∞.1

Assumption 5: (T − 1) (ε′iMτεi)
−1 has finite second order moments for each i.

The null hypothesis of interest is

H0 : βi = β for all i, ‖β‖ < K <∞, (2.5)

against the alternatives

H1 : βi �= β, for a non-zero fraction of slopes.
Assumption 6: Under H1, the fraction of slopes that are not the same does not tend to zero

as N →∞.
Remark 2.1 In the case of randomly distributed slopes, where βi ∼ IID(β,Σβ), the null and the
alternative hypothesis can be characterized by H0 : Σβ = 0, and H1 : Σβ �= 0, respectively.

Remark 2.2 The above assumptions cover both cases of strictly exogenous regressors, as well as
when xit contains lagged values of yit.

Remark 2.3 In the case where the errors, εit, are normally distributed Assumption 5 is met if
T > 5. See, for example, Smith (1988) for a proof.2

1(N,T )
j→ denotes joint asymptotics with N and T →∞ in no particular order.

2Under normality, the rth moment of the inverse of ε′iAεi exits if rank(A) > 2r, where A is a T × T positive
semi-definite symmetric matrix.
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2.1 The Standard F Test

There are a number of procedures that can be used to test H0, the most familiar of which is the
standard F test defined by

F =

[
N (T − k − 1)

k (N − 1)

](
RSSR− USSR

USSR

)
, (2.6)

where RSSR and USSR are restricted and unrestricted residual sum of squares, respectively,
obtained under the null (βi = β) and the alternative hypotheses. This test is applicable when the
regressors are strictly exogenous and the error variances homoskedastic, σ2i = σ2. But it is likely to
perform rather poorly in cases where the regressors might contain lagged values of the dependent
variable and/or if the error variances are cross sectionally heteroskedastic.

2.2 Hausman Type Test by Pesaran, Smith and Im

For cases where N > T , Pesaran, Smith and Im (1996) propose using the Hausman (1978) test
where the standard fixed effects (FE) estimator of β,

β̂FE =

(
N∑

i=1

X′
iMτXi

)−1 N∑

i=1

X′
iMτyi, (2.7)

is compared to the mean group (MG) estimator defined by

β̂MG = N−1
N∑

i=1

β̂i, (2.8)

where

β̂i =
(
X′
iMτXi

)−1
X′
iMτyi. (2.9)

For the Hausman test to have the correct size and be consistent two conditions must be met,
however.

(a) Under the null hypothesis, β̂FE and β̂MG must both be consistent, with β̂FE being asymp-
totically more efficient such that

Avar
(
β̂MG − β̂FE

)
= Avar

(
β̂MG

)
−Avar

(
β̂FE

)
> 0.

(b) Under the alternative hypothesis β̂MG − β̂FE should tend to a non-zero vector.

In the context of dynamic panel data models with exogenous regressors both of these conditions
are met, so long as the exogenous regressors are not drawn from the same distribution, and a
Hausman type test based on the difference β̂FE − β̂MG would be valid and is shown to have
reasonable small sample properties. See Pesaran, Smith and Im (1996) and Hsiao and Pesaran
(2004).

However, there are two major concerns with the routine use of the Hausman procedure as a test
of slope homogeneity. It could lack power for certain parameter values, as its implicit null does not
necessarily coincide with the null hypothesis of interest. Second, and more importantly, the Haus-
man test will not be applicable in the case of panel data models containing only strictly exogenous
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regressors, and/or in the case of pure autoregressive models. In the former case, both estimators,
β̂FE and β̂MG, are unbiased under the null and the alternative hypotheses and condition (b) will

not be satisfied. Whilst, in the case of pure autoregressive panel data models
√
NT

(
β̂FE − β

)

and
√
NT

(
β̂MG − β

)
will be asymptotically equivalent and condition (a) will not be met.

2.3 G Test of Phillips and Sul

Phillips and Sul (2003) propose a different type of Hausman test where instead of comparing two
different pooled estimators of the regression coefficients (as discussed above), they propose basing
the test of slope homogeneity on the difference between the individual estimates and a suitably
defined pooled estimator. In the context of the panel regression model (2.2), their test statistic can
be written as

G =
(
β̂N − τN ⊗ β̂pooled

)′
Σ̂−1g

(
β̂N − τN ⊗ β̂pooled

)
,

where β̂N = (β̂
′
1, β̂

′
2, ..., β̂

′
N )

′ is an Nk× 1 stacked vector of all the N individual estimates, β̂pooled
is a suitable pooled estimator of β (= βi) , and Σ̂g is a consistent estimator of Σg, the asymptotic
variance matrix of β̂N − τN ⊗ β̂pooled, under H0. Under Assumptions 1-4 and assuming H0 holds
and N is fixed, then G →d χ2Nk as T → ∞, so long as the Σg is a non-stochastic positive definite
matrix.

As compared to the Hausman test based on β̂MG−β̂FE , the G test is likely to be more powerful;
but its use will be limited to panel data models where N is small relative to T . Also, the G test
will not be valid in the case of pure dynamic models, very much for the same kind of reasons noted
above in relation to the Hausman test based on β̂MG − β̂FE. This is easily established in the case
of the stationary first order autoregressive panel data model considered by Phillips and Sul (2003)
where

yit = αi (1− λi) + λiyit−1 + εit, |λi| < 1,
and the aim is to test H0 : λi = λ. Phillips and Sul also consider the case where the errors, εit, are
cross sectionally dependent through a single factor model. But, given the focus of our analysis, we
shall abstract from this problem and continue to assume that εit are cross sectionally independent.
Under this set up the appropriate form of the G statistic is given by

G =
(
λ̂N − τN λ̂pooled

)′
Σ̂−1g

(
λ̂N − τN λ̂pooled

)
,

where λ̂N =
(
λ̂1, λ̂2, ..., λ̂N

)′
is the N × 1 vector of the individual estimates and λ̂pooled is a pooled

estimator, such that (λ̂
′
N , λ̂pooled)

′ →p λτN+1 under the null hypothesis. Phillips and Sul consider
a number of different estimators, including Andrew’s (1993) median unbiased estimator and its
extension to panels. But, as they note, all such estimators yield the same asymptotic covariance
matrix as T →∞. Using the fixed effects estimator for λ̂pooled, and the least squares estimators of
λi for λ̂i, it is easily verified that under H0

Avar
[√

T
(
λ̂i − λ̂FE

)]
= Avar

[√
T
(
λ̂i − λ

)
−
√
T
(
λ̂FE − λ

)]

=
(
1− λ2

)
−
(
1− λ2

N

)
,

Acov
[√

T
(
λ̂i − λ̂FE

)
,
√
T
(
λ̂j − λ̂FE

)]
= −

(
1− λ2

N

)
.
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Therefore

Σg =

(
1− λ2

T

)(
IN −N−1τNτ

′
N

)
,

where Rank(Σg) = N − 1 and Σg is non-invertible.

2.4 Swamy’s Test

Swamy (1970) bases his test of slope homogeneity on the dispersion of individual slope estimates
from a suitable pooled estimator. Like the F test, Swamy’s test is developed for panels where N
is small relative to T , but allows for cross section heteroskedasticity. Swamy’s statistic applied to
the slope coefficients can be written as

Ŝ =
N∑

i=1

(
β̂i − β̂WFE

)′ X′
iMτXi

σ̂2i

(
β̂i − β̂WFE

)
, (2.10)

where

σ̂2i =

(
yi −Xiβ̂i

)′
Mτ

(
yi −Xiβ̂i

)

(T − k − 1) , (2.11)

and β̂WFE is the weighted FE (WFE) pooled estimator of slope coefficients defined by

β̂WFE =

(
N∑

i=1

X′
iMτXi

σ̂2i

)−1 N∑

i=1

X′
iMτyi

σ̂2i
.

In the case where N is fixed and T tends to infinity, under H0 the Swamy statistic, Ŝ, is asymp-
totically chi-square-distributed with k (N − 1) degrees of freedom.3

3 Dispersion Type Tests for Large Panels

Our survey of the literature suggests that there are no satisfactory tests of slope homogeneity in
panels where N is large relative to T . The standard F test and its extension by Swamy (1970) are
appropriate for panels where N is small relative to T . Hausman type tests advanced by Pesaran,
Smith and Im (1996) apply to large N panels, but are not generally applicable and can suffer from
low power. In this paper we propose standardized dispersion statistics that are asymptotically

normally distributed as (N,T )
j→∞.

In addition to Swamy’s test statistic, Ŝ, defined by (2.10), we also consider the following version

S̃ =
N∑

i=1

(
β̂i − β̃WFE

)′ X′
iMτXi

σ̃2i

(
β̂i − β̃WFE

)
(3.1)

where σ̃2i is an estimator of σ
2
i based on β̂FE, namely

σ̃2i =

(
yi −Xiβ̂FE

)′
Mτ

(
yi −Xiβ̂FE

)

T − 1 , (3.2)

3See also Hsiao (2003, p.149).
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and β̃WFE is the weighted FE estimator also computed using σ̃2i , namely

β̃WFE =

(
N∑

i=1

X′
iMτXi

σ̃2i

)−1 N∑

i=1

X′
iMτyi

σ̃2i
. (3.3)

Although the difference between Ŝ and S̃ might appear slight at first, the choice of the estimator
of σ2i has important implications for the properties of the two dispersion tests as N and T tends
to infinity.

To establish the asymptotic results for the Swamy’s version of the dispersion test we need the
following more restrictive version of Assumption 5:

Assumption 5′: σ̂2i is a consistent estimator of σ
2
i such that

σ2i
σ̂2i
= 1 +Op

(
T−1

)
, (3.4)

and E
(
1/σ̂2i

)
exists and is bounded.

We also note that under Assumptions 1-4

ξ′iTQ
−1
iT ξiT = Op(1), N−1

N∑

i=1

σ−2i QiT = QN = Op(1), (3.5)

and

Avar

(

N−1/2
N∑

i=1

σ−2i ξiT

)

= lim
N→∞

(

N−1
N∑

i=1

σ−2i Qi

)

= Q = O(1). (3.6)

Consider first the Swamy’s version of the dispersion test. Under H0 we have

(
β̂i − β̂WFE

)
= T−1/2Q−1

iT ξiT − T−1/2N−1/2

(

N−1
N∑

i=1

σ̂−2i QiT

)−1(

N−1/2
N∑

i=1

σ̂−2i ξiT

)

,
(3.7)

where QiT and ξiT are given by (2.3). Using this result in (2.10) it is easily seen that

1√
N

Ŝ =
1√
N

N∑

i=1

ξ′iTQ
−1
iT ξiT

σ̂2i
− 1√

N

(∑N
i=1 σ̂

−2
i ξiT√
N

)′(∑N
i=1 σ̂

−2
i QiT

N

)−1(∑N
i=1 σ̂

−2
i ξiT√
N

)

.

In view of (3.5) and (3.6) and using (3.4) we have,

N−1/2
N∑

i=1

σ̂−2i ξ
′
iTQ

−1
iT ξiT = N−1/2

N∑

i=1

(
ξ′iTQ

−1
iT ξiT

σ2i

)

+Op

(√
N

T

)

,

N−1/2
N∑

i=1

σ̂−2i ξiT = N−1/2
N∑

i=1

σ−2i ξiT +Op

(√
N

T

)

,

and

N−1
N∑

i=1

σ̂−2i QiT = N−1
N∑

i=1

σ−2i QiT +Op

(
1

T

)
.
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Hence (again using (3.5) and (3.6))

N−1/2Ŝ = N−1/2
N∑

i=1

(
ξ′iTQ

−1
iT ξiT
σ2i

)

+Op

(√
N

T

)

+Op

(
1√
N

)
,

or equivalently

N−1/2Ŝ = N−1/2
N∑

i=1

(
ε′iPiεi

σ2i

)
+Op

(√
N

T

)

+Op

(
1√
N

)
, (3.8)

where

Pi =MτXi

(
X′
iMτXi

)−1
X′
iMτ . (3.9)

Consider now our modified version of Swamy’s statistic, S̃, which under H0 can be similarly
written as

1√
N

S̃ =
1√
N

N∑

i=1

ξ′iTQ
−1
iT ξiT

σ̃2i
− 1√

N

(∑N
i=1 σ̃

−2
i ξiT√
N

)′(∑N
i=1 σ̃

−2
i QiT

N

)−1(∑N
i=1 σ̃

−2
i ξiT√
N

)

.
(3.10)

Using (3.2) first note that after some algebra under H0 we have

(T − 1)σ̃2i = ε′iMτεi − 2N−1/2ξ∗′NQ
∗−1
N ξiT +N−1ξ∗′NQ

∗−1
N QiTQ

∗−1
N ξ∗N .

where

Q∗
N = N−1

N∑

i=1

QiT , ξ
∗
N = N−1/2

N∑

i=1

ξiT .

But using results in (3.5) and (3.6) and recalling that 0 < σ2i <∞, we also have4

Q∗
N = Op(1), ξ

∗
N = Op(1).

Therefore,

σ̃2i =
ε′iMτεi

T − 1 +Op
(
N−1/2T−1

)
. (3.11)

It is also clear from (3.11) that for N sufficiently large σ̃−2i has second order moments for any
T so long as Assumption 5 is satisfied. Therefore, under Assumptions 2 and 3 the second order
moments of σ̃−2i ξiT and σ̃−2i QiT will exist for N large and we have

N−1/2
N∑

i=1

σ̃−2i ξ
′
iTQ

−1
iT ξiT = N−1/2

N∑

i=1

(
ε′iMτεi

T − 1

)−1
ξ′iTQ

−1
iT ξiT +Op

(
T−1

)
,

N−1/2
N∑

i=1

σ̃−2i ξiT = N−1/2
N∑

i=1

(
ε′iMτεi

T − 1

)−1
ξiT +Op

(
T−1

)
,

4Note that by assumption QiT and ξiT have finite second order moments.
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and

N−1
N∑

i=1

σ̃−2i QiT = N−1
N∑

i=1

(
ε′iMτεi

T − 1

)−1
QiT +Op

(
N−1/2T−1

)
.

Using these results in (3.10)

N−1/2S̃ = N−1/2
N∑

i=1

(
ε′iMτεi

T − 1

)−1
ξ′iTQ

−1
iT ξiT +Op

(
T−1

)
+Op

(
N−1/2

)
,

or equivalently, since ξ′iTQ
−1
iT ξiT = ε

′
iPiεi,

N−1/2S̃ = N−1/2
N∑

i=1

zi +Op
(
T−1

)
+Op

(
N−1/2

)
, (3.12)

where

zi =

(
ε′iMτεi

T − 1

)−1
ε′iPiεi. (3.13)

A comparison of (3.8) and (3.12) clearly shows that for N and T large the S̃ version of the
dispersion test could be preferable to the Ŝ version since the latter requires N and T to increase
at the same rates whilst the former does not necessarily require this condition. In fact, as we shall
see below, in the case of strictly exogenous regressors the slope homogeneity test based on S̃ would

be valid for (N,T )
j→∞, whilst a test based on Ŝ, in addition to (N,T )

j→∞ would also require
that

√
N/T → 0. In the case of dynamic panels both versions of the dispersion test require the

additional condition
√
N/T → 0, and a bias-corrected bootstrapped test will be considered.

Before proceeding further we summarize the above results in the following theorem.

Theorem 3.1 Consider the panel data model (2.1), and suppose that Assumptions 1-5 hold. Then
the dispersion statistics Ŝ and S̃ defined by (2.10) and (3.1), respectively, can be written as

N−1/2Ŝ = N−1/2
N∑

i=1

(
ε′iPiεi

σ2i

)
+Op

(
N1/2T−1

)
+Op

(
N−1/2

)
, (3.14)

N−1/2S̃ = N−1/2
N∑

i=1

zi +Op
(
T−1

)
+Op

(
N−1/2

)
, (3.15)

where Pi and zi are defined by (3.9) and (3.13), respectively.

This theorem is fairly general and applies irrespective of whether the regressors are strictly
exogenous or contain lagged dependent variables, and holds for non-normal errors.

Consider now the case where the regressors are strictly exogenous and the errors are normally
distributed, εi ∼ IIDN

(
0,σ2i IT

)
. In this case σ−2i ε

′
iPiεi has a chi-square distribution with k

degrees of freedom and the following standardized version of Ŝ could be used when N and T are
both large

∆̂ =
√
N

(
N−1Ŝ − k

2k

)

. (3.16)
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Using (3.14) it is easily seen that

∆̂ = N−1/2
N∑

i=1

(
σ−2i ε

′
iPiεi − k

2k

)
+Op

(
N1/2T−1

)
+Op

(
N−1/2

)
,

and under H0, ∆̂→d N(0, 1) as (N,T )
j→∞ such that

√
N/T → 0.

Turning to the S̃ version of the test, using well known results in von Neumann (1941) on
moments of the ratio of quadratic forms in standard normal variates, we first note that

E (zi) =
E (ε′iPiεi)

E (ε′iMτεi) / (T − 1)
=
(T − 1)tr (Pi)

tr (Mτ )
= k,

and

E
(
z2i
)
=

E (ε′iPiεiε
′
iPiεi)

E (ε′iMτεiε
′
iMτεi) / (T − 1)2

=

(
T − 1
T + 1

)(
k2 + 2k

)
,

so that

var (zi) = v2(T, k) =
2k (T − 1)− 2k2

T + 1
. (3.17)

These results, therefore, motivate the following standardized version of the S̃ statistic

∆̃ =
√
N

(
N−1S̃ − k

v(T, k)

)

, (3.18)

which in view of (3.15) can also be written as

∆̃ =
1√
N

N∑

i=1

(
zi − k

v(T, k)

)
+Op

(
T−1

)
+Op

(
N−1/2

)
.

Since (zi − k) /v(T, k) ∼ IID(0, 1), using standard central limit theorems it follows that under H0,

∆̃→d N (0, 1) as (N,T )
j→∞. The following theorem provides a formal statement of these results.

Theorem 3.2 Consider the panel data model (2.1), suppose that the k×1 regressors xit are strictly
exogenous, εi ∼ IIDN

(
0,σ2i IT

)
, and Assumptions 1-5 hold. Then under H0

∆̂→d N (0, 1) , as (N,T )
j→∞, such that

√
N/T → 0,

and
∆̃→d N (0, 1) , as (N,T )

j→∞,

where the standardized dispersion statistics, ∆̂ and ∆̃ are defined by (3.16) and (3.18), respectively.

Under strictly exogenous regressors and normal errors the null distribution of the ∆̃ statistic
does not depend on the relative expansion rates ofN and T , whilst the same is not true of the Swamy
version of the test. The differences between the two versions are, however, less clear cut as the
exogeniety and the normality assumptions are relaxed. For example, if the normality assumption
is relaxed, to eliminate the dependence of ∆̃ on the higher order moments of εit, we also need√
N/T → 0, as (N,T )

j→∞. This result is summarized in the following corollary to Theorem 3.2.
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Corollary 3.1 Suppose that the conditions of Theorem 3.2 are met, but the errors, εit, are not
necessarily normally distributed. Instead assume that they are independently distributed over i and

t and have finite fourth order moments. Then as (N,T )
j→∞,

√
N
(
N−1S̃ − k

)
→d N(0, var(zi)),

if it is also required that
√
N/T → 0, as (N,T )

j→ ∞. The finite T expression for var(zi) in the
case of non-normal errors would be rather complicated to obtain, but the result in (3.17) derived
for the normal error case is likely to provide a reasonable approximation in practice.

See Appendix A.1 for a proof.

Remark 3.1 The proposed testing approach can be readily extended to testing the homogeneity of
a sub-set of slope coefficients. Consider the following partitioned form of (2.1):

yi
T×1

= αiτT + Xi1
T×k1

βi1 + Xi2
T×k2

βi2 + εi, i = 1, 2, ..,N,

or
yi
T×1

= X∗
i1

T×(k1+1)
θi + Xi2

T×k2
βi2 + εi,

where X∗
i1 = (τT ,Xi1) and θi =

(
αi,β

′
i1

)′
. Suppose the slope homogeneity hypothesis of interest

is given by

H0 : βi2 = β2, for i = 1, 2, ...,N. (3.19)

Our version of the dispersion test statistic in this case is given by

S̃2 =
N∑

i=1

(
β̂i2 − β̃2,WFE

)′ X′
i2M

∗
i1Xi2

σ̃2i

(
β̂i2 − β̃2,WFE

)
,

where
β̂i2 =

(
X′
i2M

∗
i1Xi2

)−1
X′
i2M

∗
i1yi.

β̃2,WFE =

(
N∑

i=1

X′
i2M

∗
i1Xi2

σ̃2i

)−1 N∑

i=1

X′
i2M

∗
i1yi

σ̃2i
,

M∗
i1 = IT −X∗

i1

(
X∗′
i1X

∗
i1

)−1
X∗′
i1,

σ̃2i =

(
yi −Xi2β̂2,FE

)′
M∗
i1

(
yi −Xi2β̂2,FE

)

Ti − k1 − 1
,

and

β̂2,FE =

(
N∑

i=1

X′
i2M

∗
i1Xi2

)−1 N∑

i=1

X′
i2M

∗
i1yi.

Using a similar line of reasoning as above, it is now easily seen that under H0 defined by (3.19)

∆̃2 =
√
N

(
N−1S̃2 − k2
v(T, k1, k2)

)

→d N (0, 1) , as (N,T )
j→∞,

where

v2(T, k1, k2) =
2k2 (T − k1 − 1)− 2k22

T − k1 + 1
.
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Remark 3.2 The proposed slope homogeneity tests can also be extended to unbalanced panels.
Denoting the number of time series observations on the ith cross section by Ti, our version of the
standardized dispersion statistic is given by

∆̃ =
1√
N

N∑

i=1

(
d̃i − k

v(Ti, k)

)

, (3.20)

where

v2(Ti, k) =
2k (Ti − 1)− 2k2

Ti + 1
,

d̃i =
(
β̂i − β̃WFE

)′ X′
iMτiXi

σ̃2i

(
β̂i − β̃WFE

)
,

Xi = (xi1,xi2, ...,xiTi), Mτi = ITi − τTi
(
τ ′TiτTi

)−1
τ ′Ti with τTi being a Ti × 1 vector of unity,

β̂i =
(
X′
iMτiXi

)−1
X′
iMτiyi, (3.21)

β̃WFE =

(
N∑

i=1

X′
iMτiXi

σ̃2i

)−1 N∑

i=1

X′
iMτiyi

σ̃2i
, (3.22)

yi = (yi1, yi2, ..., yiTi)
′

σ̃2i =

(
yi −Xiβ̂FE

)′
Mτi

(
yi −Xiβ̂FE

)

Ti − 1
,

and

β̂FE =

(
N∑

i=1

X′
iMτiXi

)−1 N∑

i=1

X′
iMτiyi. (3.23)

An extension to testing the homogeneity of a sub-set of slope coefficients in the case of the unbalanced
panels is straightforward and is easily derived using the result in Remark 3.1.

3.1 Asymptotic Local Power of the ∆̃ Test

For the analysis of the asymptotic power of the ∆̃ test, we adopt the following local alternatives5

H1,NT : βi = β +
δi

N1/4T 1/2
, i = 1, 2, ...,N, (3.24)

where δi, i = 1, 2, ..., N are k × 1 vectors of fixed constants. As we shall with N → ∞, it is not
necessary that δi are non-zero for all i.

Under the above local alternatives and assuming that the regressors are strictly exogenous we
have6

∆̃ =
1√
N

N∑

i=1

(
zi − k

v(T, k)

)
+

ψNT
v(T, k)

+Op

(
N−1/4

)
+Op

(
T−1

)
,

5Similar results also hold for the ∆̂ version of the test.
6For a proof see Appendix A.2.
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where

ψNT =
1

N

N∑

i=1

σ̃−2i δ
′
iQiTδi −

(
1

N

N∑

i=1

σ̃−2i δ
′
iQiT

)(
1

N

N∑

i=1

σ̃−2i QiT

)−1(
1

N

N∑

i=1

σ̃−2i QiTδi

)

.

Hence, it readily follows that under H1,NT

∆̃→d N

(
ψ√
2k

, 1

)
, as (N,T )

j→∞,

where

ψ = lim
N→∞





1

N

N∑

i=1

σ−2i δ
′
iQiδi −

(
1

N

N∑

i=1

σ−2i δ
′
iQi

)(
1

N

N∑

i=1

σ−2i Qi

)−1(
1

N

N∑

i=1

σ−2i Qiδi

)


.

Recall that Qi = p limT→∞
(
T−1X′

iMτXi

)
. The ∆̃ test has power against local alternatives if

ψ > 0. Since Qi is a symmetric positive definite matrix, using the the Cholesky decomposition,
Qi = C′iCi, and setting δ̃i = Ciδi/σi, andWi = σ−1i Ci we have

ψ = lim
N→∞





1

N

N∑

i=1

δ̃
′
iδ̃i −

(
1

N

N∑

i=1

δ̃
′
iWi

)(
1

N

N∑

i=1

W′
iWi

)−1(
1

N

N∑

i=1

W′
iδ̃i

)



= lim
N→∞

1

N






N∑

i=1

δ̃
′
iδ̃i −

(
N∑

i=1

δ̃
′
iWi

)(
N∑

i=1

W′
iWi

)−1( N∑

i=1

W′
iδ̃i

)


.

Let δ̃ =
(
δ̃
′
1, δ̃

′
2, ..., δ̃

′
N

)′
, andW =(W′

1,W
′
2, ....,W

′
N)

′, and write ψ as

ψ = lim
N→∞

(
δ̃
′
Mwδ̃

N

)

,

where Mw = IT−W (W′W)−1W. Hence, ψ ≥ 0, and in general the ∆̃ test is asymptotically
powerful if δi �= 0 for a non-zero fraction of the cross section units in the limit, as specified under
Assumption 6. Such an alternative, for example, allows a sub-set of the slope coefficients and/or a
sub-set of cross section units to be homogeneous.

The above result also suggests that the power of the ∆̃ test is likely to increase faster with T
than with N .

4 Testing Slope Homogeneity in Autoregressive Models

Consider the stationary pth order autoregressive (AR(p)) processes

yit = αi +

p∑

j=1

λijyi,t−j + εit, (4.1)

i = 1, 2, ...,N , where the roots of the characteristic equation 1 =
∑p
j=1 λijx

j, fall outside the unit

circle, and assume that εit ∼ IIDN
(
0, σ2i

)
. Testing the homogeneity of the slopes

H0 : λij = λj for all i = 1, 2, ..., N and j = 1, 2, ..., p, (4.2)
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can be carried out as computing the dispersion statistic, (3.1), with

Xi = (yi,−1,yi,−2, ...,yi,−p) ,

yi,−j = (yi,−j+1, yi,−j+2, ...., yi,T−j)
′ , j = 1, 2, ..., p.

Using standard results from the literature of stationary autoregressive processes, it is easily estab-
lished that Assumptions 1-5 are satisfied in the case of stationary autoregressive processes, and as
a result Theorem 3.1 continues to hold in this case as well. In particular we have

N−1/2S̃ =
1√
N

N∑

i=1

zi +Op
(
T−1

)
+Op

(
N−1/2

)
, (4.3)

where zi is defined by (3.13), withXi = (yi,−1,yi,−2, ...,yi,−p). However, in the case of AR processes
exact expressions for the mean and variance of zi are not easy to derive, and more importantly such
exact results would in general depend on the unknown autoregressive coefficients, λij , which further
complicates any test that is directly based on the Swamy statistic, S̃. To deal with this problem
we explore two alternative approaches. (i) An asymptotic procedure where E(zi) and V ar(zi) are
approximated by terms of up to order T−1. (ii) A bootstrap approach where the small sample
dependence of E(zi) and V ar(zi) on λi = (λi1, λi2, ..., λip)

′ is taken into account using re-sampling
techniques based on bias-corrected estimates of λ̂i.

4.1 An Asymptotic ∆̃ Test for AR(p) Panel Data Models

In the case of dynamic models the two versions of the dispersion tests, ∆̂ and ∆̃, are asymptotically
equivalent. Consider the ∆̃ version of the test and using (3.9) in (3.13) first note that

zi =

(
ε′iMτXi√

T

)(
X
′

iMτXi

T

)−1 (
X
′

iMτεi√
T

)

(T − 1)−1 ε′iMτεi
. (4.4)

Since (4.1) is a stationary process it then readily follows that under H0

zi →d χ2p, as T →∞.

Therefore, it is reasonable to conjecture that up to order T−1, E(zi) and V ar(zi) are given by p
and 2p, respectively. The proof of this conjecture turns out to be quite complicated. A rigorous
proof is given in Appendix A.3 for the AR(1) case where it is established that indeed

E (zi) = 1 +O
(
T−1

)
.

Supposing now that this result holds more generally, namely

E (zi) = p+O
(
T−1

)
, (4.5)

and write (4.3) as

√
N

(
N−1S̃ − p

vz

)

=
1√
N

N∑

i=1

(
zi −E(zi)

vz

)
+
1

N

N∑

i=1

√
N [E(zi)− p]

vz
+Op

(
T−1

)
,
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where V ar(zi) = v2z . Hence, using (4.5) we have

√
N

(
N−1S̃ − p

vz

)

=
1√
N

N∑

i=1

(
zi −E(zi)

vz

)
+O

(√
N

T

)

+Op
(
T−1

)
.

Under H0, the first term in this expression is scaled sums of i.i.d. random variables and tends to
N(0, 1) as N → ∞. Therefore, under Assumptions 1-4, and assuming that (4.5) holds, we have
(under H0):

∆̃ =
√
N

(
N−1S̃ − p√

2p

)

→d N (0, 1) as (N,T )
j→∞, such that

√
N

T
→ 0. (4.6)

One important implication of this result is that the test is valid even when N increases faster than
T , so long as

√
N/T → 0. The ∆̃ test is clearly more restrictive when applied to dynamic models

and requires T to be sufficiently large so that the small sample bias of E(zi) and V ar(zi) become
negligible relative to

√
N .

4.2 Bias-Corrected Bootstrap Tests of Slope Homogeneity for the AR(1) Model

One possible way of improving over the asymptotic test developed for the AR models would be to
follow the recent literature and use bootstrap techniques.7 Here we make use of a bias-corrected
version of the recursive bootstrap procedure.8

One of the main problems in application of bootstrap techniques to dynamic models in small T
samples is the fact that the OLS estimates of the individual coefficients, λi, or their FE (or WFE)
counterparts are biased when T is small; a bias that persists with N → ∞. To deal with this
problem we focus on the AR(1) case and use the bias-corrected version of λ̃WFE as proposed by
Hahn and Kuersteiner (2002).9 Denoting the bias-corrected version of λ̃WFE by ◦, we have

λ̊WFE = λ̃WFE +
1

T

(
1 + λ̃WFE

)
, (4.7)

and estimate the associated intercepts as

α̊i,WFE = ȳi − λ̊WFE ȳi,−1,

where ȳi = T−1
∑T
t=1 yit, and ȳi,−1 = T−1

∑T
t=1 yi,t−1. The residuals are given by

e̊it = yit − α̊i,WFE − λ̊WFE yi,t−1,

with the associated bias-corrected estimator of σ2i given by σ̊2i = (T − 1)−1∑T
t=1 (̊eit)

2. The bth

bootstrap sample, y
(b)
it for i = 1, 2, ..., N and t = 1, 2, ..., T can now be generated as

y
(b)
it = α̊i,WFE + λ̊WFE y

(b)
i,t−1 + σ̊iζ

(b)
it , for t = 1, 2, ..., T,

7For example, see Beran (1988), Horowitz (1994), Li and Maddala (1996) and Bun (2004), although none of these
authors make any bias corrections in their bootstrapping procedures.

8Bias-corrected estimates are also used in the literature on the derivation of the bootstrap confidence intervals to
generate the bootstrap samples in dynamic AR(p) models. See Kilian (1998), among others.

9Bias corrections for the OLS estimates of individual λi are provided by Marriott and Pope (1954), and further
elaborated by Kendall (1954) and Orcutt and Winokur (1969). Bias corrections for the OLS estimates in the case of
higher order AR processes are provided in Shaman and Stine (1988). No bias corrections seem to be available for FE
or WFE estimates of AR(p) panel data models in the case of p ≥ 2.
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where y
(b)
i0 = yi0, and ζ

(b)
it are random draws with replacements from the set of pooled standardized

residuals, e̊it/̊σi, i = 1, 2, ...,N , and t = 1, 2, ..., T . With y
(b)
it , for i = 1, 2, ...,N and t = 1, 2, ..., T

the bootstrap statistics

∆̃(b) =
√
N

(
N−1S̃(b) − 1√

2

)

, b = 1, 2, ..., B,

can be computed using (3.1) to obtain the bootstrap p-values

pB =
1

B

B∑

b=1

I
(
∆̃(b) −∆

)
,

where B is the number of bootstrap sample, I(A) takes the value of unity if A > 0 or zero otherwise,
and ∆̃ is the standardized dispersion statistic applied to the actual observations. If pB < 0.05, say,
we reject the null hypothesis of slope homogeneity.

5 Finite Sample Properties of Slope Homogeneity Tests

In this section we shall use Monte Carlo techniques to evaluate the finite sample properties of the
alternative tests of slope homogeneity. We shall focus on our proposed test, ∆̃ defined by (3.18)
and compare its performance to the Swamy and Hausman tests of slope homogeneity. We also
considered the G test of Phillips and Sul (2003), but the G statistic could not be computed due
to the singularity problem discussed in Section 2.3.10 The Swamy’s Ŝ statistic is defined by (2.10)
which we consider to be distributed as χ2k(N−1) under H0. For the Hausman test (called H test)

we make use of the following statistic11

H =
(
β̂MG−β̃WFE

)′
V̂−1
H

(
β̂MG−β̃WFE

)
a
∼ χ2k, (5.1)

where β̂MG and β̃WFE are given by (2.8) and (3.3), respectively, and

V̂H =
1

N2

N∑

i=1

σ̂2i
(
X′
iMτXi

)−1 −
(

N∑

i=1

X′
iMτXi

σ̃2i

)−1
, (5.2)

with σ̂2i and σ̃2i being defined by (2.11) and (3.2), respectively. We report empirical size and power
of these tests at 5% nominal level, for various pairs of N and T , including cases where N is much
larger than T which is often encountered with micro data sets, as well as when T > N which is more
prevalent in the case of macro data sets. We consider panels with strictly exogenous regressors, as
well as simple dynamic panels.

Initially, we consider the following simple data generating process (DGP):

yit = αi + βixit + εit, t = 1, 2, ..., T , i = 1, 2, ..., N,

10In e-mail correspondences Dr. Sul has confirmed to us that there is an error in equation (27) in Phillips and Sul
(2003) that defines the G statistic.
11We also tried a number of other variants of the Hausman test. But they all performed very similarly.
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where αi ∼ N (1, 1), with xit generated as

xit = αi(1− ρi) + ρixit−1 +
(
1− ρ2i

)1/2
vit, t = −49, ..., 0, ..., T , i = 1, 2, ...,N, (5.3)

where ρi ∼ IIDU (0.05, 0.95), vit ∼ IIDN
(
0, σ2ix

)
with σ2ix ∼ IIDχ2(1). ρi and σ2ix are fixed

across replications. The first 50 observations are discarded to reduce the effect of initial value on
the generated values of xit. εit ∼ IID

(
0, σ2i

)
is drawn from (i) standard normal distribution and

(ii)
(
χ2(2)− 2

)
/2, and σ2i ∼ IIDχ2(2)/2. Under the null hypothesis, βi = 1 for all i, and under the

alternative hypothesis, βi = 1 for i = 1, ..., [2N/3], and βj ∼ N (1, 0.04), for j = [2N/3] + 1, ...,N
, where [2N/3] is the nearest integer value. αi, βi, and σ2i are fixed across replications. All
combinations of T = 10, 20, 30, 50, 100, 200 and N = 20, 30, 50, 100, 200 are used as sample sizes.

For examining empirical size and power of the tests in the case of regression models with different
numbers of covariates, the following DGP is used:

yit = αi +
k∑

ℓ=1

xiℓtβiℓ + εit, i = 1, 2, ...,N, t = 1, 2, ..., T,

where, as before, αi ∼ IIDN (1, 1), xiℓt is generated as specified in (5.3), εit ∼ IIDN
(
0, σ2i

)
,

σ2i ∼ IID
(
kχ2 (2) /2

)
, k = 1, .., 4, so that the population R2 of individual equations in the panel

are invariant to the number of included regressors. Under the null hypothesis βiℓ = 1 for all i and
ℓ, and under the alternative hypothesis we set βi1 ∼ IIDN (1, 0.04) and βiℓ = βi1 for ℓ = 2, 3, 4.
αi, xiℓt, βiℓ, and σ2i are fixed across replications. For these experiments the sample sizes being
considered are the combinations of T = 20, 30 and N = 20, 30, 50, 100, 200.

In the case of dynamic models, two specifications are considered. The first is the AR(1) speci-
fication

yit = (1− λi)αi + λiyit−1 + εit, t = −49, ..., 0, ..., T , i = 1, 2, ..., N,

where αi ∼ N (1, 1), λi is specified as (i) λi = λ = 0.2, 0.4, 0.6, 0.8, 0.9 under the null hypothesis,
and (ii) λi ∼ IIDU (λ− 0.2, λ+ 0.2) for λ = 0.2, 0.4, 0.6, 0.8 and λi ∼ IIDU (0.0, 1.0), under
the alternative hypothesis. εit ∼ IIDN

(
0, σ2i

)
with σ2i ∼ IIDχ2(2)/2. αi, λi, and σ2i are fixed

across replications. The first 49 observations are discarded. For these experiments, we consider
the combinations of sample sizes N and T = 20, 30, 50, 100, 200. For bootstrap, 499 bootstrap
samples are generated and the combinations of the sample sizes T = 20, 30, 50 and N = 20, 30,
50, 100, 200 are considered.

The second dynamic DGP is:

yit = (1− λi1 − λ2)αi + λi1yit−1 + λ2yit−2 + εit, t = −49, ..., 0, ..., T , i = 1, ...,N,

where αi ∼ N (1, 1), λ2 = 0.2, and (i) λ1i = 0.6 for all i under the null hypothesis, and (ii)
λ1i ∼ IIDU (0.4, 0.8) under the alternative. εit ∼ IIDN

(
0, σ2i

)
with σ2i ∼ IIDχ2(2)/2. αi, λ1i,

and σ2i are fixed across replications. The first 48 observations are discarded. For these experiments,
we consider the combinations of sample sizes N and T = 20, 30, 50, 100, 200.

For all experiments 2, 000 replications are used.

5.1 Results

Tables 1 to 3 summarize the results for the DGP with strictly exogenous regressors. First, as
predicted by the asymptotic theory, Swamy’s Ŝ test tends to over-reject when N is small relative
to T , with the extent of over-rejection diminishing as T is increased relative to T . In the case of
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T = 20 and N = 200, more typical of micro data sets, the empirical size of the Ŝ test is as much
as 34%, and only approaches its nominal size of 5% when T is increased to 200. The standardized
dispersion test, ∆̃, and the Hausman test, H, both have correct sizes. The power of the ∆̃ test
also seems to be satisfactory. However, as our theory predicts, the H test has no power in the
case of these experiments. Table 2 suggests that the effect of non-normal errors might not be very
important for the ∆̃ test. Size and power estimates in Tables 1 and 2 are very similar. Even when
N = 200 and T = 10, where Corollary 3.1 predicts that the effects of error non-normality can be
most serious for the ∆̃ test, the empirical size of the ∆̃ test is 4.50%. Table 3 reports the size and
power of the tests in the case of regression models with different numbers of covariates, k = 1, 2, 3, 4.
The results are similar to those provided in Table 1, although, considering that we have controlled
for the overall fit of the regressions, the power of the ∆̃ test decreases as k increases.

The results for the dynamic DGPs are given in Tables 4 and 5. In the case of these experiments
the H test is not valid, and the Ŝ and ∆̃ tests are asymptotically equivalent and their validity

requires that
√
N/T → 0 as (N,T )

j→ ∞. The results of the Monte Carlo experiments are in
line with our theoretical findings. The H statistic is often negative, particularly for values of λ
below 0.4, and in cases where it is positive (and hence applicable), the H test exhibits serious
over-rejections. The dispersion tests have satisfactory sizes for most combinations of N and T , so
long as λ is relatively small, namely λ ≤ 0.4. For these values of λ the Ŝ test tends to be more
powerful than the ∆̃ test. The Ŝ test starts to over-reject as λ is increased to 0.6 and beyond.
By comparison, the ∆̃ test only shows evidence of significant over-rejection when λ is increased to
0.9 and only for values of N that are considerably larger than T . For the value of λ in the range
of 0.6 to 0.8, the size of the ∆̃ test continues to be close to its nominal value for all N and T .
The same table also illustrates that the ∆̃ test has reasonable power. Under the alternatives of
λi ∼ IIDU(λ − 0.2, λ + 0.2), the power increases as λ increases, purely because the explanatory
power of the estimated model increases. A power comparison of the Ŝ and ∆̃ tests for values
of λ ≥ 0.6 is complicated by the over-rejection tendency of the former test. Table 5 reports the
performance of the tests for the heteroskedastic AR(2) case. Basically the results are similar to
those summarized in Table 4 for the AR(1) case.

Table 6 compares the standard normal approximation, (conventional) bootstrap approximation,
and Hahn and Kuersteiner (2002) bias-corrected bootstrap approximation of the ∆̃ test.12 The bias-
corrected bootstrap procedure controls the size remarkably well, even when the value of λ is above
0.8. On the other hand, the conventional bootstrap (non-bias-corrected version) fails to reduce the
size distortion of the test. Except when λ = 0.2 and T = 20, the bias-corrected bootstrap method
yields reasonable power.

Therefore, in practice, when N ≤ T and it is believed that λ is not close to unity (say the value
of λ is below 0.8), the asymptotic version of the ∆̃ test is recommended. For all N and T , and
with the value of λ around 0.9, the Hahn and Kuersteiner (2002) bias-corrected bootstrapped ∆̃
test seems to be more appropriate.

6 Application: Testing Slope Homogeneity in Earnings Dynamics

In this section we examine the slope homogeneity of the dynamic earnings equations using the
Panel Study of Income Dynamics (PSID) data set used in Meghir and Pistaferri (2004). Briefly,
these authors select male heads aged 25 to 55 with at least nine years of usable earnings data. The

12A bias-corrected bootstrapped test based on Ŝ could also be considered, but was not pursued as we expected it
to perform very similarly to the bias-corrected bootstrapped test based on ∆̃.
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selection process leads to a sample of 2, 069 individuals and 31, 631 individual-year observations.
We further select the individuals who have at least 15 observations, and this leaves us with 1, 031
individuals and 19, 992 individual-year observations. Following Meghir and Pistaferri (2004), we
also categorize the individuals into three education groups: High School Dropouts (HSD, those
with less than 12 grades of schooling), High School Graduates (HSG, those with at least a high
school diploma, but no college degree), and College Graduates (CLG, those with a college degree
or more). In what follows the earning equations for the different educational backgrounds; HSD,
HSG, and CLG are denoted by the superscripts e = 1, 2, and 3, and for the pooled sample by 0.
The number of individuals in the three categories are N(1) = 249, N (2) = 531, and N (3) = 251.

The panel is unbalanced with t = 1, ...T
(e)
i and i = 1, ..., N(e), and an average time period of around

18 years.
In the research on earnings dynamics, it is standard to adopt a two-step procedure where in

the first stage log of real earnings is regressed on a number of control variables such as age, race
and year dummies. The dynamics are then modelled based on the residuals from this first stage
regression. The use of the control variables and the grouping of the individuals by educational
backgrounds is aimed at eliminating (minimizing) the effects of individual heterogeneities at the
second stage.

It is, therefore, of interest to examine the extent to which the two-step strategy has been
successful in dealing with the heterogeneity problem. With this in mind we follow closely the
two-step procedure adopted by Meghir and Pistaferri (2004) and first run regressions of log real

earnings, w
(e)
it , on the control variables: a square of “age” (AGE

(e)2
it ), race (WHITE

(e)
i ), year

dummies (Y EAR(t)), region of residence (NE
(e)
it , CE

(e)
it , STH

(e)
it ), and residence in a Standard

Metropolitan Statistical Area, (SMSA
(e)
it ), for each education group e = 0, 1, 2, 3, separately.13

The residuals from these regressions, which we denote by y
(e)
it , are then used in the second stage to

estimate dynamics of the earnings process.
Specifically,

y
(e)
it = α

(e)
i + λ(e)y

(e)
it−1 + σ

(e)
i ε

(e)
it , e = 0, 1, 2, 3,

where within each education group λ(e) is assumed to be homogeneous across the different individ-

uals. Our interest is to test the hypothesis that λ(e) = λ
(e)
i for all i in e.

The test results are given in the first panel of Table 7. The ∆̃ statistics and the associated
bootstrapped p values by education groups all lead to strong rejections of the homogeneity hy-
pothesis. Judging by the size of the ∆̃ statistics, the rejection is stronger for the pooled sample as
compared to the sub-samples, confirming the importance of education as a discriminatory factor
in the characterizations of heterogeneity of earnings dynamics across individuals. The test results
also indicate the possibility of other statistically significant sources of heterogeneity within each of
the education groups, and casts some doubt on the two-step estimation procedure adopted in the
literature for dealing with heterogeneity; a point recently emphasized by Alvarez, Browning and
Ejrnæs (2002).

In Table 7 we also provide a number of different FE estimates of λ(e), e = 0, 1, 2, 3, on the
assumption of within group slope homogeneity. Given the relatively small number of time series
observations available (on average 18), the bias corrections to the FE estimates are quite large.
The cross section error variance heterogeneity also plays an important role in this application, as
can be seen from a comparison of FE and WFE estimates with the latter being larger. Focussing

13Log real earnings are computed as w
(e)
it = ln

(
LABY

(e)
it /PCEDt

)
, where LABY

(e)
it is earnings in current US

dollar, and PCEDt is the personal consumption expenditure deflator, base year 1992.
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on the bias-corrected WFE estimates, we also observe that the persistence of earnings dynamics
rises systematically from 0.52 in the case of the school drop outs to 0.72 for the college graduates.
This seems sensible, and partly reflects the more reliable job prospects that are usually open to
individuals with a higher level of education.

The homogeneity test results suggest that further efforts are needed also to take account of
within group heterogeneity. One possibility would be to adopt a Bayesian approach, assuming that

λ
(e)
i , i = 1, 2, ..., N (e) are draws from a common probability distribution and focus attention on the
whole posterior density function of the persistent coefficients, rather than the average estimates
that tend to divert attention from the heterogeneity problem. Another possibility would be to
follow Alvarez, Browning and Ejrnæs (2002) and consider particular parametric functions, relating

λ
(e)
i to individual characteristics as a way of capturing within group heterogeneity. Finally, one
could consider a finer categorization of the individuals in the panel; say by further splitting of the
education groups or by introducing new categories such as occupational classifications. The slope
homogeneity tests provide an indication of the statistical importance of the heterogeneity problem,
but are silent as how best to deal with the problem.

7 Concluding Remarks

In this paper we have developed simple tests of slope homogeneity in linear panel data models
where N could be much larger than T . The proposed tests are based on modifications of Swamy’s
dispersion statistic and examine the cross section “dispersion” of individual slopes weighted by their
relative precisions. It is shown that this test is valid when earlier tests based on Hausman (1978)
procedure fail to be applicable. The Monte Carlo evidence shows that the proposed ∆̃ test has good
small sample properties in the case of panel data models with strictly exogenous regressors even if
N is much larger than T . The ∆̃ test has satisfactory performance for moderately large T and N
of similar orders of magnitude in the case of stationary dynamic models, when the dominant root
of the process is not close to unity. In cases where N is much larger than T and/or the dominant
root of the dynamic process is near unity, a bias-corrected bootstrap procedure is proposed which
seems to perform reasonably well based on Monte Carlo experiments.

The proposed tests are applied to testing the slope homogeneity of the dynamic earnings equa-
tions using PSID data, and the results show evidence of slope heterogeneity, even if attention is
confined to the individuals with similar educational backgrounds.

An important further extension of the tests developed in this paper is to consider testing slope
homogeneity in panel data models with multi-factor error structures recently examined in Pesaran
(2004). This is, however, beyond the scope of the present paper.
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Appendix A: Mathematical Proofs

A.1 Proof of Corollary 3.1

We first note, suppressing the subscript i to simplify the notations, that zi defined by (3.13) can be write as

z =
υ′Pυ

υ′Mτυ/ (T − 1)
=

υ′Pυ

(1 +WT )

= υ
′Pυ

(
1−WT +

W 2
T

1 +WT

)
(A.1)

where

WT =
υ′Mτυ

(T − 1) − 1,

υ ∼ IID (0, IT ) and P is defined by (3.9). Note also that in this case P is a function of strictly exogenous regressors
and by Assumption 5 E [1/ (1 +WT )] is bounded.

By using the moments of the quadratic forms in i.i.d. random variables14

E
(
υ
′Pυ

)
= k,

and
E
[(
υ
′Pυ

) (
υ
′Mτυ

)]
= γ2tr (P⊙Mτ) + tr (P) tr (Mτ ) + 2tr (PMτ ) ,

where γ2 is the Pearson’s measures of kurtosis, which is zero for normal distributions, and ⊙ signifies Hadamard
product. Since tr (P⊙Mτ ) = tr

(
P⊙ IT −P⊙ T−1τT τ

′

T

)
= T−1 (T − 1)−1 k, tr (Mτ ) = T − 1, PMτ = P,

E
[(
υ
′Pυ

) (
υ
′Mτυ

)]
= γ2

T − 1
T

k + k (T − 1) + 2k,

so that the expectation of the second term of (A.1) is

E
[(
υ
′Pυ

)
WT

]
=

γ2k

T
+

2k

T − 1 ,

which is O
(
T−1

)
. Also,

E

[
υ
′Pυ

(
W 2
T

1 +WT

)]
≤ E

∣∣υ′Pυ
∣∣E

∣∣W 2
T

∣∣E
∣∣∣∣

1

1 +WT

∣∣∣∣

= O
(
T−1

)

since E |υ′Pυ| = O (1) and E |1/ (1 +WT )| = O (1), and E
(
W 2
T

)
= γ2/T + 2/ (T − 1) = O

(
T−1

)
, using results in

Appendix A.5 of Ullah (2004). Hence,

E (zi) = k +O
(
T−1

)
. (A.2)

Using (3.15) note that

√
N
(
N−1S̃ − k

)
=

1√
N

N∑

i=1

[zi −E (zi)] +

√
N

T

{
1

N

N∑

i=1

T [E (zi)− k]

}

+Op
(
T−1

)
.

However, in the light of (A.2) it is clear that

1

N

N∑

i=1

T [k −E (zi)] = O(1),

and if
√
N/T → 0 as (N,T )

j→∞ it will also follows that

√
N
(
N−1S̃ − k

)
→d N(0, var(zi)) as (N,T )

j→∞ such that
√
N/T → 0.

14For example, see Appendix A.5 in Ullah (2004).
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A.2 Proof of Asymptotic Power

Under the local alternatives (defined by (3.24))

βi = β +
δi

N1/4T 1/2
,

we first note that15 √
T
(
β̂i − β̃WFE

)
= κiNT + κiNT ,

where
κiNT = Q̃

−1
iT ξ̃iT −N−1/2Q̃−1

N ξ̃N ,

and

κiNT =
δi

N1/4
− 1

N1/4
Q̃−1
N

(∑N
i=1 Q̃iT δi

N

)

,

with

Q̃iT = σ̃−2i QiT , ξ̃iT = σ̃−2i ξiT , (A.3)

and

Q̃N = N−1
N∑

i=1

Q̃iT , ξ̃N = N−1/2
N∑

i=1

ξ̃iT . (A.4)

Hence

N−1/2S̃ =
T√
N

N∑

i=1

(
β̂i − β̃WFE

)
′

Q̃iT

(
β̂i − β̃WFE

)

=
1√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT +
1√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT

+
2√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT .

The first term is the component of the test statistic that remains under the null hypothesis and is already shown to
be given by

1√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT =
1√
N

N∑

i=1

zi +Op
(
T−1

)
+Op

(
N−1/2

)
.

Similarly,

1√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT = N−1/4

[(∑N
i=1 ξ̃

′

iT δi√
N

)

− ξ̃′NQ̃−1
N

(∑N
i=1 Q̃iT δi

N

)]

= Op

(
N−1/4

)
,

and

1√
N

N∑

i=1

κ
′

iNT Q̃iTκiNT = ψNT ,

where

ψNT =
1

N

N∑

i=1

δ
′

iQ̃iTδi −
(
1

N

N∑

i=1

δ
′

iQ̃iT

)(
1

N

N∑

i=1

Q̃iT

)−1(
1

N

N∑

i=1

Q̃iT δi

)

.

Therefore

N−1/2S̃ =
1√
N

N∑

i=1

zi + ψNT +Op

(
N−1/4

)
+Op

(
T−1

)
.

Using this result in (3.18) we have

∆̃ =
1√
N

N∑

i=1

(
zi − k

v(T, k)

)
+

ψNT
v(T, k)

+Op

(
N−1/4

)
+Op

(
T−1

)
,

as required.

15This relation generalizes (3.7).

[A.2]



A.3 Derivation of E (zi) in the Case of AR(1) Models with Normal Errors

Suppressing the subscript i to simplify the notations, the AR(1) model is given by

yt = α(1− λ) + λyt−1 + εt, t = 1, 2, ..., T, (A.5)

where α is bounded on a compact set, |λ| < 1, εt ∼ IIDN
(
0, σ2

)
with 0 < σ2 < ∞, and it is assumed that the

process is initialized with y0 = α + ε0, and ε0 ∼ IIDN
(
0, δ2

)
. The choice of δ depends on the initialization of the

process and will be given by δ = σ
(
1− λ2

)
−1/2

if the process has started at t = −M , with M →∞. For this model
specification z defined in (3.13) can be written as

z =

(
T−1/2ε′Mτy−1

)2

[
(T − 1)−1 ε′Mτε

] (
T−1y′

−1Mτy−1
) ,

where ε = (ε1, ..., εT )
′, y−1 = (y0, y1, ..., yT−1)

′, and as before Mτ = IT − τ T (τ ′T τ T )−1 τ ′T , with τT being a T × 1
vector of unity.

Rewrite the AR(1) processes in matrix notations as

y∗ = ατT+1 + B−1Dυ, (A.6)

where y∗ = (y0, y1, ..., yT )
′, υ = (ε0/δ, ε1/σ, ..., εT/σ)

′ so that υ ∼ N (0T+1×1, IT+1), 0T+1×1 is a (T + 1)×1 vector of
zeros, IT+1 is an identity matrix of order T +1, τT+1 is a (T + 1)×1 vector of ones, D is a (T + 1)×(T + 1) diagonal
matrix with its first element equal to δ and the remaining elements equal to σ, and

B =






1 0 · · · 0 0
−λ 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · −λ 1





.

Also y =G0y
∗, y−1 =G1y

∗, where G0 = (0T×1, IT ) and G1 = (IT ,0T×1). Hence, noting that MτG1τ T+1 = 0 we
have

z =
(υ′Aυ)

2

(υ′Bυ) (υ′Cυ)
,

where

A =
G′

0MτG1B−1D√
T

, (A.7)

B =
G′

0MτG0

T − 1 , (A.8)

C =
DB−1′G′

1MτG1B−1D
T

. (A.9)

Proposition A.1 Under the stationary AR(1) specification with normal errors given by (A.5), we have

E (z) = E

(
4 (υ′Aυ)

2

bc
− 2 (υ

′Aυ)
2
(υ′Bυ)

b2c

−2 (υ
′Aυ)

2
(υ′Cυ)

bc2
+
(υ′Aυ)

2
(υ′Bυ) (υ′Cυ)

b2c2

)

+O
(
T−1

)
(A.10)

= 1 +O
(
T−1

)
, (A.11)

where υ, A, B, C are defined in (A.6), (A.7), (A.8), (A.9), respectively, and tr (B) = b (= 1), and tr (C) = c > 0.

Proof. Firstly we show (A.10), then (A.11). Define16

υ
′Bυ = b (1 +XT ) ,

υ
′Cυ = c (1 + YT ) ,

16Note that b = 1 and c is O(1). See Appendix B.
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whereXT = b−1 (υ′Bυ − b), YT = c−1 (υ′Cυ − c). We also note that since by the assumption υ ∼ N
(
0(T+1)×1, IT+1

)
,

and B and C are symmetric positive semi-definite matrices with rank T − 1, then

E

(
b

υ′Bυ

)
= O (1) ,

and
E
( c

υ′Cυ

)
= O (1) ,

so long as T > 3 (Smith 1988).
Also

z =
(υ′Aυ)

2

bc

(
1−XT +

X2
T

1 +XT

)(
1− YT +

Y 2
T

1 + YT

)

=
(υ′Aυ)

2

bc

[
(1−XT ) (1− YT ) +

Y 2
T

1 + YT
− XTY

2
T

1 + YT
+

X2
T

1 +XT
− YTX

2
T

1 +XT
+

Y 2
TX

2
T

(1 +XT ) (1 + YT )

]
.

As B and C are symmetric positive semi-definite matrices, by Lemma B.1 in Appendix B

E
[
X2
T

]
=

tr
(
B2
)

[tr (B)]2
= O

(
T−1

)
, E

[
Y 2
T

]
=

tr
(
C2
)

[tr (C)]2
= O

(
T−1

)
,

so that

E [z] = E

[
(υ′Aυ)

2

bc
(1−XT ) (1− YT )

]

+O
(
T−1

)

= E

[
4 (υ′Aυ)

2

bc
− 2 (υ

′Aυ)
2
(υ′Bυ)

b2c
− 2 (υ

′Aυ)
2
(υ′Cυ)

bc2
+
(υ′Aυ)

2
(υ′Bυ) (υ′Cυ)

b2c2

]

+O
(
T−1

)
,

since

E

∣∣∣∣∣
(υ′Aυ)

2

bc

Y 2
T

1 + YT

∣∣∣∣∣
< E

∣∣∣∣∣
(υ′Aυ)

2

bc

∣∣∣∣∣
E

∣∣∣∣
1

1 + YT

∣∣∣∣E
∣∣Y 2
T

∣∣

= O
(
E
∣∣Y 2
T

∣∣) = O
(
T−1

)
,

and

E

∣∣∣∣∣
(υ′Aυ)

2

bc

XTY
2
T

1 +XT

∣∣∣∣∣
< E

∣∣∣∣∣
(υ′Aυ)

2

bc

∣∣∣∣∣
E |XT |E

∣∣∣∣
1

1 +XT

∣∣∣∣E
∣∣Y 2
T

∣∣

= O
(
T−1

)
.

Similarly E
∣∣∣
[
b−1c−1 (υ′Aυ)

2
] [
X2
T (1 +XT )

−1
]∣∣∣ and E

∣∣∣
[
b−1c−1 (υ′Aυ)

2
] [
YTX

2
T (1 + YT )

−1
]∣∣∣ are at most O

(
T−1

)
,

and

E

∣∣∣∣∣
(υ′Aυ)

2

bc

Y 2
TX

2
T

(1 +XT ) (1 + YT )

∣∣∣∣∣
< E

∣∣∣∣∣
(υ′Aυ)

2

bc

∣∣∣∣∣
E

∣∣∣∣
1

1 + YT

∣∣∣∣E
∣∣∣∣

1

1 +XT

∣∣∣∣E
∣∣Y 2
T

∣∣E
∣∣X2

T

∣∣

= O
(
E
∣∣Y 2
T

∣∣E
∣∣X2

T

∣∣) = O
(
T−2

)
.

Consider now (A.11). By using the moments of the quadratic forms in i.i.d. standard normal random variables17

E
[(
υ
′Aυ

)2]
= [tr (A)]2 + tr

(
A2+A′A

)
.

Using (B.2) in Appendix B

E
[(
υ
′Aυ

)2]
= c+O

(
T−1

)
.

17For example, see Appendix A.4 Ullah (2004).
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Also, using results in Ullah (2004, Appendix A.4), together with (B.2) and (B.3) in Appendix B, and noting that
tr (AC) = tr (A′C),

E
[(
υ
′Aυ

)2 (
υ
′Cυ

)]
= [tr (A)]2 tr (C) + 4tr

(
A2C

)
+ 2tr

(
A′AC

)
+ 2tr

(
AA′C

)

+4tr (A) tr (AC) + tr (C) tr
(
A2 +A′A

)

= tr (C) tr
(
A′A

)
+O(T−1)

= c2 +O(T−1).

Next, again using results in Ullah (2004, Appendix A.4), together with (B.2) and (B.4) in Appendix B

E
[(
υ
′Aυ

)2 (
υ
′Bυ

)]
= [tr (A)]2 tr (B) + 4tr

(
A2B

)
+ 2tr

(
A′AB

)
+ 2tr

(
AA′B

)

+4tr (A) tr (AB) + tr (B) tr
(
A2 +A′A

)

= tr (B) tr
(
A′A

)
+O(T−1)

= bc+O(T−1).

Finally, using results in Ullah (2004, Appendix A.4), together with (B.2) - (B.6) in Appendix B,

E
[(
ε′Aε

)2 (
ε′Bε

) (
ε′Cε

)]

= [tr (A)]2 tr (B) tr (C)

+ 8tr (A) tr
(
ABC+A′BC

)

+ tr (B)
[
4tr

(
A2C

)
+ 2tr

(
A′AC

)
+ 2tr

(
AA′C

)]

+ tr (C)
[
4tr

(
A2B

)
+ 2tr

(
A′AB

)
+ 2tr

(
AA′B

)]

+ 2tr
(
A2) tr (BC) + 2tr

(
A′A

)
tr (BC) + 8tr (AB) tr (AC)

+ 2 [tr (A)]2 tr (BC) + 4tr (A) tr (B) tr (AC) + 4tr (A) tr (C) tr (AB)

+ tr (B) tr (C) tr
(
A2) + tr (B) tr (C) tr

(
A′A

)

+ 8tr
(
A2BC

)
+ 8tr

(
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)
+ 8tr

(
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)
+ 8tr

(
A2CB

)

+ 8tr (ABAC) + 4tr
(
A′BAC

)
+ 4tr

(
ABA′C

)

= tr (B) tr (C) tr
(
A′A

)
+O(T−1)

= bc2 +O(T−1).

Therefore, we can conclude
E (z) = 1 +O(T−1),

as required.
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Appendix B: Lemmas

Lemma B.1 SupposeH is a (T × T ) symmetric positive semi-definite matrix with bounded eigenvalues where νt(H) ≥
0 for t = 0, 1, ..., T , where νt(H) = O (1). Then,

tr
(
H2

)

[tr (H)]2
= O

(
T−1

)
. (B.1)

Proof. We first note that
tr
(
H2

)

[tr (H)]2
=

∑T
t=1 ν

2
t (H)(∑T

t=1 νt(H)
)2 =

T−1
∑T

t=1 ν
2
t (H)

T
(
T−1

∑T
t=1 νt(H)

)2 .

But (
T∑

t=1

νt(H)

)2

=
T∑

t=1

ν2t (H) + 2
∑

t>t′

νt(H)νt′(H),

so (
T∑

t=1

νt(H)

)2

≥
T∑

t=1

ν2t (H).

Hence (B.1) allows considering that
∑T

t=1 νt(H) = O (T ) and
∑T

t=1 ν
2
t (H) = O (T ).

Lemma B.2 Consider the non-stochastic matrices A, B, and C defined by (A.7), (A.8), and (A.9) in Appendix
A.3, respectively. Then,

tr (B) = 1, tr
(
A′A

)
= tr (C) = O (1) , tr (A) = O

(
T−1/2

)
, tr

(
A2) = O

(
T−1

)
, (B.2)

tr
(
A′C

)
= O

(
T−1/2

)
, tr

(
A′AC

)
= O

(
T−1

)
, tr

(
AA′C

)
= O

(
T−1

)
, tr

(
A2C

)
= O

(
T−1

)
, (B.3)

tr
(
A′AB

)
= O

(
T−1

)
, tr

(
AA′B

)
= O

(
T−1

)
, tr (AB) = O

(
T−3/2

)
, tr

(
A2B

)
= O

(
T−1

)
, (B.4)

tr (BC) = O
(
T−1

)
, tr

(
A′BC

)
= O

(
T−3/2

)
, tr (ABC) = O

(
T−3/2

)
, (B.5)

and

tr
(
A2BC

)
, tr

(
A′ABC

)
, tr

(
AA′BC

)
, tr

(
A2CB

)
,

tr (ABAC) , tr
(
A′BAC

)
, tr

(
ABA′C

)
are at most O

(
T−2

)
. (B.6)

Proof.
We first note that

H01 =G
′

0MτG1 =

(
01×T 01×1
Mτ 0T×1

)
,

and

G′

0MτG0 =

(
01×1 01×T
0T×1 Mτ

)
, G′

1MτG1 =

(
Mτ 0T×1
01×T 01×1

)
.

The matricesG′

0MτG0 andG
′

1MτG1 are idempotent with two zero eigenvalues and T−1 unit eigenvalues. Therefore,
noting that B is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix with σmax =
Max(σ, δ) < K <∞ we have, using (A.9),

0 ≤ νt(C) ≤
σmax
T

,

where νt(C) for t = 0, 1, ..., T are the eigenvalues of C. Also it is easily verified that

G0G
′

0 = IT , A
′A = C, (B.7)

and

A′B =
B′−1G′

1MτG0G
′

0MτG0

T 1/2(T − 1) = (T − 1)−1A′, (B.8)
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AA′B = (T − 1)−1AA′. (B.9)

To prove the results in (B.2), we first note that

tr(B) = 1, tr(C) =

T∑

t=0

νt(C) ≤
(T + 1)σmax

T
= O(1). (B.10)

Since σmax is bounded, to simplify the derivations and without loss of generality in what follows we set δ = σ = 1,
(so that D = IT+1) and note that

B−1 =






1 0 · · · 0 0
λ 1 · · · 0 0
...

...
. . .

...
...

λT−1 λT−2 · · · 1 0
λT λT−1 · · · λ 1





,

A = T−1/2G′

0MτG1B−1

= T−1/2 (E− F) , (B.11)

E =






0 0 · · · 0 0 0
1 0 · · · 0 0 0
λ 1 · · · 0 0 0
...

...
. . .

...
...
...

λT−2 λT−3 · · · 1 0 0
λT−1 λT−2 · · · λ 1 0






, F =






0 0 · · · 0 0
gT−1 gT−2 · · · g0 0
...

...
. . .

...
...

gT−2 gT−2 · · · g0 0
gT−1 gT−2 · · · g0 0





,

where

gℓ =
1

T

ℓ∑

j=0

λj =
1

T

(
1− λℓ+1

1− λ

)
= O

(
T−1

)
(since |λ| < 1), for ℓ = 0, 1, ..., T − 1.

Therefore,

tr (A) =
−1√
T

T−2∑

ℓ=0

gℓ =
−1
T
√
T

T−2∑

ℓ=0

(
1− λℓ+1

1− λ

)
= O(T−1/2). (B.12)

Consider now tr
(
A2

)
. Using (B.11)

tr
(
A2) = T−1

[
tr
(
E2
)
+ tr

(
F2
)
− 2tr (EF)

]
. (B.13)

But it is easily seen that

tr
(
E2
)
= 0,

tr
(
F2
)
=

(
T−1∑

ℓ=0

gℓ

)(
T−2∑

ℓ=0

gℓ

)

= O(1),

tr (EF) =
T−3∑

ℓ=0

(
1− λT−ℓ−2

1− λ

)
gℓ =

1

T

T−3∑

ℓ=0

(
1− λT−ℓ−2

1− λ

)(
1− λℓ+1

1− λ

)
= O(1),

which together with (B.13) establishes that tr
(
A2

)
= O

(
T−1

)
.

To prove the results in (B.3), we observe that18

tr
(
A′AC

)
= tr

(
C2) =

T∑

t=0

ν2t (C) ≤
σmax
T

= O
(
T−1

)
.

By Cauchy-Schwarz inequality

[
tr
(
AA′C

)]2 ≤ tr
(
AA′AA′

)
tr
(
C′C

)
= tr

([
A′A

]2)
tr
(
C2) =

[
tr
(
C2)]2 ,

18Recall that C′ = C and A′A = C.
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which establishes |tr (AA′C)| = O
(
T−1

)
. Similarly, again by Cauchy-Schwarz inequality and noting that A′A = C,

[
tr
(
A2C

)]2 ≤ tr
(
AAA′A′

)
tr
(
C2
)
= tr

(
AA′C

)
tr
(
C2
)
,

which establishes
∣∣tr

(
A2C

)∣∣ = O
(
T−1

)
. To derive the order of tr (A′C), again by Cauchy-Schwarz inequality

[
tr
(
A′C

)]2 ≤ tr
(
A′A

)
tr
(
C′C

)
= tr(C)tr(C2).

Therefore, since tr(C) =O(1), it follows that |tr (A′C)| = O(T−1/2).
To establish the results in (B.4), by Cauchy-Schwarz inequality

[
tr
(
A2B

)]2 ≤ tr
(
AA′C

)
tr
(
B2
)
.

But

tr
(
B2
)
=

tr
[
(G′

0MτG0)
2
]

(T − 1)2
=

tr [(G′

0MτG0)]

(T − 1)2
=

1

T − 1 = O
(
T−1

)
,

hence,
∣∣tr

(
A2B

)∣∣ = O
(
T−1

)
. Similarly,

[
tr
(
A′AB

)]2
= [tr (CB)]2 ≤ tr

(
C2) tr

(
B2
)
= O

(
T−2

)
,

which establishes |tr (A′AB)| = O
(
T−1

)
. Using (B.9)

tr
(
AA′B

)
=(T − 1)−1tr

(
A′A

)
= (T − 1)−1tr (C) = O

(
T−1

)
.

Also

tr (AB) = T−1/2(T − 1)−1tr
(
G′

0MτG1B′−1G′

0MτG0

)

= T−1/2(T − 1)−1tr
(
G′

0MτG1B′−1
)
=

1

T − 1 tr (A) = O
(
T−3/2

)
.

To prove the results in (B.5), a further application of the Cauchy-Schwarz inequality to A and BCnow yields

[
tr
(
A′BC

)]2 ≤ tr
(
A′A

)
tr
(
C′B′BC

)
= tr(C)tr

(
B2C2

)
,

[tr (ABC)]2 ≤ tr
(
AA′

)
tr
(
C′B′BC

)
= tr(C)tr

(
B2C2) .

But as easily seen [
tr
(
B2C2)]2 ≤ tr

(
B4
)
tr
(
C4) ≤ O

(
T−6

)

so that ∣∣tr
(
B2C2)∣∣ ≤ O

(
T−3

)
,

and hence ∣∣tr
(
A′BC

)∣∣ = O(T−3/2), and |tr (ABC)| = O(T−3/2).

Similarly,
[tr (BC)]2 ≤ tr

(
B2) tr

(
C2) = O

(
T−2

)
,

and |tr (BC)| = O(T−1).
Finally, the various higher order terms in (B.6) can be established following similar lines. Firstly,

tr
(
A′ABC

)
= tr(BC2) ≤ tr(B2)tr(C4) = O(T−4),

so that
∣∣tr(BC2)

∣∣ = O(T−2), and

[
tr
(
A2BC

)]2 ≤ tr
(
AA′C

)
tr
(
C2B2

)
= O

(
T−4

)
,

[
tr
(
A2CB

)]2 ≤ tr
(
AA′C

)
tr
(
C2B2

)
= O

(
T−4

)
.

Similarly,
[tr (ABAC)]2 ≤ tr

(
ABB′A′

)
tr
(
C′A′AC

)
= tr

(
B2C

)
tr
(
C3) = O(T−4).

Furthermore,

[
tr
(
AA′BC

)]2
=
[
tr
(
A′BCA

)]2 ≤ tr
(
A′BB′A

)
tr
(
A′C′CA

)
= tr

(
B2AA′

)
tr
(
C2AA′

)
,

[B.3]



and

[
tr
(
A′BAC

)]2 ≤ tr
(
A′BB′A

)
tr
(
C′A′AC

)
= tr

(
B2AA′

)
tr
(
C3) ,

[
tr
(
ABA′C

)]2 ≤ tr
(
ABB′A′

)
tr
(
C′AA′C

)
= tr

(
B2C

)
tr
(
C2AA′

)
.

Also using (B.8) and (B.9) we have

tr
(
AA′B2

)
=

1

T − 1 tr
(
AA′B

)
=

1

(T − 1)2
tr
(
AA′

)
=

tr(A′A)

(T − 1)2
= O(T−2).

[
tr
(
C2AA′

)]2
=

[
tr
(
AA′C2)]2 ≤ tr

(
AA′AA′

)
tr
(
C4) = tr

(
A′AA′A

)
tr
(
C4)

= tr(C2)tr
(
C4) = O(T−4).

Finally, it is easily established that

tr
(
B2C

)
= O(T−2), tr

(
C3
)
= O(T−2).

Hence all the terms in (B.6) are of order O(T−2).
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Table 1 : Size and Power of the Slope Homogeneity Tests,
with Strictly Exogenous Regressors: Normal Errors

N\T 10 20 30 50 100 200

Size

Ŝ test
20 25.25 11.70 9.75 7.70 6.00 6.40
30 31.20 13.45 10.60 8.10 5.45 5.00
50 39.45 17.75 10.70 8.70 6.50 6.00
100 61.05 21.15 15.00 10.65 7.50 5.95
200 82.35 33.90 18.30 12.90 7.95 6.65

H test
20 7.95 6.55 4.55 6.35 5.20 4.10
30 8.75 6.95 6.50 4.70 4.90 5.35
50 6.60 5.25 5.95 4.80 5.15 5.50
100 6.85 6.20 5.85 5.00 5.30 5.40
200 9.10 5.90 5.40 6.30 5.80 5.30

∆̃ test
20 4.60 4.20 3.70 3.95 3.80 4.05
30 4.95 4.50 4.30 4.75 3.80 4.15
50 4.85 4.80 4.05 4.35 4.60 4.90
100 4.40 5.00 4.95 5.60 5.00 4.80
200 5.20 5.75 4.55 4.85 4.70 4.95

Power

Ŝ test
20 29.05 21.80 23.30 31.00 58.65 88.80
30 43.45 45.25 52.40 81.80 99.10 100.00
50 64.50 68.05 80.15 96.65 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00

H test
20 6.65 5.15 5.60 5.70 5.40 3.55
30 7.15 5.70 5.55 5.20 5.30 5.90
50 6.70 5.75 5.20 5.10 5.90 5.05
100 6.00 6.30 5.90 5.20 5.85 5.45
200 6.35 6.30 4.65 5.00 6.10 5.70

∆̃ test
20 4.65 6.90 9.45 16.60 43.65 82.55
30 7.10 15.65 26.45 65.65 98.15 100.00
50 8.55 26.85 46.80 85.95 99.90 100.00
100 26.80 71.35 99.25 100.00 100.00 100.00
200 44.95 99.15 100.00 100.00 100.00 100.00

Notes: Ŝ test, ∆̃ test, and H test statistics are defined in (2.10), (3.18), and (5.1), respectively. The
DGP is specified as yit = αi + βixit + εit, t = 1, 2, ..., T , i = 1, 2, ..., N where αi ∼ N (1, 1), with xit generated

as xit = αi(1 − ρi) + ρixit−1 +
(
1− ρ2i

)1/2
vit, t = −49, ..., 0, ..., T , i = 1, 2, ..., N where ρi ∼ IIDU (0.05, 0.95),

vit ∼ IIDN
(
0, σ2ix

)
with σ2ix ∼ IIDχ2(1). ρi and σ2ix are fixed across the replications. The first 50 observations

are discarded to reduce the effect of initial value on the generated values of xit. εit ∼ IIDN
(
0, σ2i

)
, with

σ2i ∼ IIDχ2(2)/2. Under the null hypothesis, βi = 1 for all i, and under the alternative hypothesis, βi = 1 for
i = 1, ..., [2N/3], and βj ∼ N (1, 0.04), for j = [2N/3] + 1, ..., N , where [2N/3] is the nearest integer value. αi,
βi, and σ2i are fixed across replications. All tests are conducted at 5% nominal level. All the experiments
are based on 2, 000 replications.
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Table 2 : Size and Power of Slope Homogeneity Tests,
with Strictly Exogenous Regressors:

(
χ2(2)− 2

)
/2 Errors

N\T 10 20 30 50 100 200

Size

Ŝ test
20 23.85 13.45 8.50 5.85 5.30 5.55
30 30.90 13.10 10.15 8.40 6.40 4.75
50 40.70 15.50 11.15 8.85 6.30 6.80
100 59.65 23.00 14.70 9.55 7.35 5.35
200 81.50 32.35 19.30 11.40 8.60 6.40

H test
20 6.45 6.60 6.45 4.95 4.90 5.90
30 7.60 5.75 5.90 5.20 5.00 5.05
50 7.35 6.10 5.70 5.15 5.30 4.50
100 6.75 6.55 5.25 5.05 5.25 4.40
200 8.05 6.35 6.15 5.40 4.70 5.60

∆̃ test
20 3.50 4.35 3.30 3.35 3.95 3.80
30 4.65 3.75 4.10 4.30 4.45 4.20
50 5.25 3.95 4.45 4.60 4.80 5.20
100 6.15 4.70 4.60 4.65 3.65 4.65
200 4.50 4.40 3.65 4.40 4.55 4.70

Power

Ŝ test
20 28.55 23.15 24.20 33.15 61.85 89.90
30 49.95 49.90 59.10 75.85 99.20 100.00
50 67.10 67.95 84.30 91.95 100.00 100.00
100 99.75 99.95 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00

H test
20 6.20 5.40 5.05 4.30 4.75 6.25
30 7.30 6.00 5.20 5.45 5.25 6.30
50 7.40 6.20 5.10 5.65 5.50 5.70
100 6.80 5.40 4.80 5.30 6.20 5.55
200 6.40 5.20 5.35 5.15 5.30 5.70

∆̃ test
20 4.40 7.10 9.95 18.65 48.30 84.25
30 7.00 19.15 33.15 60.40 98.10 100.00
50 9.95 26.15 54.40 79.35 99.95 100.00
100 26.55 77.40 99.00 100.00 100.00 100.00
200 62.25 99.60 100.00 100.00 100.00 100.00

Notes: See the notes on Table 1. The design is the same as that of Table 1 except εit ∼ IID
((
χ2(2)− 2

)
/2
)
.
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Table 3 : Size and Power of the Slope Homogeneity Tests with Strictly Exogenous Regressors
with Different Numbers of Covariates (k)

k=1 k=2 k=3 k=4
N\T 20 30 20 30 20 30 20 30

SIZE

Ŝ test
20 11.40 8.35 16.55 10.80 20.40 13.70 26.50 16.30
30 13.40 11.20 21.25 13.10 25.70 15.70 31.90 17.05
50 15.80 11.60 24.85 15.90 36.45 20.15 43.00 22.45
100 22.45 15.25 35.90 20.90 48.90 26.85 60.90 33.95
200 34.50 20.10 54.55 30.05 72.10 41.95 83.10 50.30

H test
20 5.60 5.40 6.20 6.45 6.50 5.40 5.45 5.90
30 5.50 6.00 6.45 5.30 6.55 5.95 6.75 6.40
50 5.45 5.75 6.85 6.30 6.75 6.30 7.65 8.15
100 6.90 5.80 7.10 5.60 6.50 5.85 6.10 6.05
200 5.60 5.70 6.20 5.15 5.75 6.70 7.05 6.05

∆̃ test
20 3.80 3.20 5.00 4.75 5.20 5.35 5.60 6.05
30 3.55 4.75 5.50 4.70 5.10 5.05 5.00 5.20
50 4.60 4.15 5.55 4.75 5.40 6.05 4.70 5.05
100 4.80 4.35 5.25 5.65 5.15 5.05 5.60 5.20
200 5.05 5.25 4.80 5.50 5.30 5.25 4.70 4.75

Power

Ŝ test
20 75.15 94.15 75.65 90.25 71.40 87.10 62.70 69.60
30 94.25 98.95 74.00 93.85 81.55 92.00 94.50 98.70
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

H test
20 6.90 8.40 6.40 7.05 6.25 6.90 6.75 5.90
30 5.95 4.55 7.35 5.95 6.45 6.15 6.20 5.80
50 6.30 5.40 6.70 5.85 6.90 6.65 6.35 5.75
100 4.85 5.65 6.00 4.95 6.55 6.75 6.80 6.30
200 6.10 5.10 6.90 5.25 6.00 5.80 5.95 5.65

∆̃ test
20 46.35 84.50 38.10 67.30 21.70 52.80 10.40 25.05
30 70.15 94.25 28.50 68.35 26.55 58.15 32.05 73.05
50 100.00 100.00 99.05 100.00 94.85 100.00 75.70 99.90
100 99.65 100.00 98.70 100.00 98.25 100.00 98.45 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 99.95 100.00

Notes: The DGP is specified as yit = αi +
∑k

ℓ=1 xiℓtβiℓ + εit, i = 1, 2, ..., N, t = 1, 2, ..., T , where αi ∼
IIDN (1, 1), xiℓt is generated as specified in the notes to Table 1, εit ∼ IIDN

(
0, σ2i

)
, where σ2i ∼ IID

(
kχ2 (2) /2

)
,

k = 1, .., 4, so that the goodness of fit for each equation in the panel i is invariant to the number of regressors.
Under the null hypothesis βiℓ = 1 for all i and ℓ, and under the alternative hypothesis we generates βiℓ as
βi1 ∼ IIDN (1, 0.04) and βiℓ = βi1 for ℓ = 2, 3, 4. αi, xiℓt, βiℓ, and σ2i are fixed across replications.
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Table 4 : Size and Power of the Slope Homogeneity Tests
for Heteroskedastic AR(1) Specifications

Size Power
N\T 20 30 50 100 200 20 30 50 100 200

λi = 0.2 for all i λi ∼ IIDU(0.0, 0.4)

Ŝ test
20 4.60 5.10 5.60 4.35 4.50 13.85 22.55 42.95 82.55 99.75
30 5.50 5.60 4.40 4.80 6.30 20.25 35.25 62.70 96.45 100.00
50 4.50 4.90 4.05 4.60 4.15 24.75 45.30 78.85 99.70 100.00
100 3.55 4.60 4.40 5.50 4.75 41.75 74.90 98.45 100.00 100.00
200 3.30 5.00 4.85 5.00 5.80 62.30 93.85 99.95 100.00 100.00
H test
20 38.50 53.40 65.75 73.40 78.00 51.35 75.05 93.80 99.40 100.00
30 45.55 65.25 79.75 88.30 91.45 64.70 89.45 99.00 100.00 100.00
50 62.80 85.25 96.30 98.60 99.50 93.80 99.60 100.00 100.00 100.00
100 89.15 98.85 100.00 100.00 100.00 97.70 99.95 100.00 100.00 100.00
200 99.65 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

∆̃ test
20 2.55 2.20 2.80 3.10 2.90 2.40 8.80 25.80 71.75 99.20
30 3.05 2.95 3.15 4.00 3.95 3.70 14.25 43.55 92.55 100.00
50 4.55 4.10 4.05 4.40 3.70 3.75 18.10 59.00 99.30 100.00
100 8.90 5.80 4.65 4.40 4.35 6.50 39.85 93.55 100.00 100.00
200 18.95 8.95 6.45 4.25 4.55 9.25 65.90 99.80 100.00 100.00

λi = 0.4 for all i λi ∼ IIDU(0.2, 0.6)

Ŝ test
20 5.70 5.55 6.25 4.70 4.25 16.15 26.10 49.25 87.45 99.95
30 5.95 6.20 5.55 4.75 6.50 24.05 41.40 71.90 98.55 100.00
50 6.40 6.15 5.10 5.80 4.75 31.55 53.40 85.95 99.85 100.00
100 5.65 6.40 5.60 6.15 5.35 54.15 82.75 99.35 100.00 100.00
200 6.60 6.40 6.80 5.55 5.60 85.80 98.70 100.00 100.00 100.00
H test
20 73.25 87.20 92.80 94.65 96.20 83.45 95.55 99.65 100.00 100.00
30 90.30 96.45 99.15 99.40 99.70 96.75 99.65 100.00 100.00 100.00
50 99.15 99.95 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

∆̃ test
20 2.80 2.20 3.00 3.20 3.15 3.70 11.05 31.75 78.75 99.85
30 2.70 3.05 3.40 3.85 4.70 4.60 18.40 53.15 96.60 100.00
50 3.40 3.65 3.95 4.55 3.40 6.35 25.15 69.35 99.70 100.00
100 6.35 4.65 4.15 4.05 4.70 10.15 54.00 97.60 100.00 100.00
200 12.50 6.30 5.65 4.05 5.00 18.45 81.30 99.95 100.00 100.00

Notes: See notes to Table 1. Ŝ test, ∆̃ test, and H test statistics are defined in (2.10), (4.6), and (5.1),
respectively. The DGP is specified as yit = (1− λi)αi + λiyit−1 + εit, t = −49, ..., 0, ..., T , i = 1, 2, ..., N , where;
αi ∼ N (1, 1); λi are as specified in the table; εit ∼ IIDN

(
0, σ2i

)
with σ2i ∼ IIDχ2(2)/2. αi, λi, and σ2i are

fixed for replications. yi,−49 = αi, and the first 49 observations are discarded. We reject the null hypothesis
when we obtain negative (H test) statistics (due to negative variance estimates, V̂H).
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(Continued)

Size Power
N\T 20 30 50 100 200 20 30 50 100 200

λi = 0.6 for all i λi ∼ IIDU(0.4, 0.8)

Ŝ test
20 7.50 7.60 7.10 5.40 4.85 21.90 35.50 62.00 95.10 99.95
30 9.15 8.40 6.65 5.45 6.45 34.10 55.40 85.55 99.90 100.00
50 9.55 9.55 7.65 6.15 5.15 45.70 69.60 94.70 100.00 100.00
100 11.00 10.50 8.00 6.70 6.50 73.65 95.10 100.00 100.00 100.00
200 15.75 13.20 10.60 7.10 7.60 93.10 99.65 100.00 100.00 100.00
H test
20 91.45 97.00 98.50 98.95 99.35 96.45 99.50 100.00 100.00 100.00
30 98.95 99.70 100.00 100.00 100.00 99.90 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

∆̃ test
20 2.40 2.35 4.15 3.05 3.05 5.95 16.00 44.60 90.50 99.95
30 2.35 3.10 3.60 3.40 5.10 8.75 29.40 72.90 99.40 100.00
50 2.65 3.75 3.95 4.15 4.40 12.15 40.30 87.10 100.00 100.00
100 4.35 3.65 3.80 4.40 4.90 25.30 77.30 99.90 100.00 100.00
200 6.15 4.00 4.80 3.90 4.70 44.35 96.20 100.00 100.00 100.00

λi = 0.8 for all i λi ∼ IIDU(0.6, 1.0)

Ŝ test
20 13.40 11.45 10.05 6.35 5.50 34.55 54.20 84.45 99.95 100.00
30 16.10 14.25 11.35 7.35 8.20 54.75 78.65 98.10 100.00 100.00
50 20.75 17.00 12.40 9.25 7.05 73.15 94.05 100.00 100.00 100.00
100 29.55 24.40 17.90 10.50 9.20 93.80 99.90 100.00 100.00 100.00
200 46.30 35.30 25.45 13.70 11.45 99.85 100.00 100.00 100.00 100.00
H test
20 96.30 99.15 99.40 99.85 99.90 98.50 100.00 100.00 100.00 100.00
30 99.70 100.00 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

∆̃ test
20 3.05 3.70 4.95 3.90 3.60 11.70 32.55 72.35 99.85 100.00
30 3.45 4.45 4.45 4.00 4.90 21.55 56.90 95.20 100.00 100.00
50 2.95 5.35 4.35 4.75 4.85 36.35 78.95 99.40 100.00 100.00
100 4.35 5.70 5.55 4.75 5.80 64.95 97.90 100.00 100.00 100.00
200 4.70 7.05 8.30 5.95 6.25 89.90 100.00 100.00 100.00 100.00
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(Continued)

Size Power
N\T 20 30 50 100 200 20 30 50 100 200

λi = 0.9 for all i λi ∼ IIDU(0.0, 1.0)

Ŝ test
20 20.40 18.20 15.30 9.50 7.70 89.15 99.55 100.00 100.00 100.00
30 27.30 22.10 18.40 10.65 9.40 99.30 100.00 100.00 100.00 100.00
50 37.80 30.35 22.60 15.20 10.00 99.95 100.00 100.00 100.00 100.00
100 56.40 47.20 36.50 21.30 14.35 100.00 100.00 100.00 100.00 100.00
200 79.40 70.50 54.65 33.10 19.90 100.00 100.00 100.00 100.00 100.00
H test
20 97.40 99.05 99.80 100.00 99.95 99.80 100.00 100.00 100.00 100.00
30 99.80 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

∆̃ test
20 4.85 6.10 6.75 5.20 4.60 69.00 97.55 100.00 100.00 100.00
30 6.00 7.55 8.00 5.95 6.25 94.70 100.00 100.00 100.00 100.00
50 8.15 9.70 10.05 8.10 5.95 99.65 100.00 100.00 100.00 100.00
100 13.85 15.90 14.95 11.30 8.95 100.00 100.00 100.00 100.00 100.00
200 24.00 26.35 25.05 16.25 10.80 100.00 100.00 100.00 100.00 100.00

Table 5 : Size and Power of the Slope Homogeneity Tests
for Heteroskedastic AR(2) Specifications

Size Power
N\T 20 30 50 100 200 20 30 50 100 200

λ1i = 0.6 for all i λ1i ∼ IIDU (0.4, 0.8)

Ŝ test
20 14.60 13.30 10.40 6.80 6.50 30.45 39.60 63.70 96.90 100.00
30 18.65 16.20 11.05 7.00 6.50 46.15 59.25 88.80 100.00 100.00
50 25.75 19.85 13.25 8.75 6.15 60.50 78.50 97.75 100.00 100.00
100 37.05 26.95 19.10 12.05 9.25 85.05 97.20 99.95 100.00 100.00
200 56.50 42.45 26.90 15.50 10.05 97.60 100.00 100.00 100.00 100.00
H test
20 90.65 96.25 98.35 98.45 97.60 95.00 98.60 96.80 98.05 100.00
30 98.45 99.55 99.50 99.35 99.00 99.60 99.25 97.90 99.75 100.00
50 100.00 100.00 99.90 99.80 99.75 99.95 99.55 99.20 100.00 100.00
100 100.00 100.00 100.00 99.95 100.00 100.00 99.80 99.45 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00

∆̃ test
20 3.10 3.05 4.10 4.00 4.80 4.70 12.50 38.00 92.30 100.00
30 2.95 3.55 3.95 3.65 4.45 7.25 24.05 71.30 99.80 100.00
50 2.20 3.65 3.90 5.05 5.15 13.30 38.70 88.90 100.00 100.00
100 2.65 3.80 5.10 5.40 5.90 25.20 74.90 99.85 100.00 100.00
200 3.40 4.55 5.75 5.95 4.65 43.55 96.50 100.00 100.00 100.00

Notes: See notes to Table 1 and 4. The DGP is yit = (1− λi1 − λ2)αi + λi1yit−1 + λ2yit−2 + εit, t =
−49, ..., 0, ..., T , i = 1, ..., N , λ1i is as specified in the table, λ2 = 0.2. The first 48 observations are discarded.
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Table 6 : Size and Power of the Bootstrap Test of Slope Homogeneity
for Heteroskedastic AR(1) Specifications

Size Power
N\T 20 30 50 20 30 50

λi = 0.2 for all i λi ∼ IIDU(0.0, 0.4)
Standard Normal
20 1.60 1.65 2.60 3.50 8.45 26.85
30 3.30 3.40 2.75 4.05 12.90 42.85
50 5.20 3.60 4.35 3.95 17.35 58.35
100 9.20 4.90 4.65 7.00 40.25 92.30
200 19.25 10.75 6.75 9.55 67.75 99.80

Bootstrap
20 4.30 4.45 4.80 5.40 11.10 30.60
30 4.90 5.05 4.45 5.60 16.25 47.40
50 5.05 5.05 5.45 4.45 18.70 61.95
100 5.20 4.40 5.00 4.55 38.35 92.60
200 6.15 5.35 5.30 2.85 57.20 99.80

Bias-Corrected Bootstrap
20 4.25 4.55 4.70 5.20 11.30 30.75
30 5.00 5.20 4.70 5.90 16.35 47.35
50 5.40 5.30 5.75 4.85 18.75 61.55
100 5.75 4.25 5.10 5.00 38.90 92.50
200 7.30 5.50 5.45 2.80 58.00 99.80

λi = 0.4 for all i λi ∼ IIDU(0.2, 0.6)
Standard Normal
20 2.45 2.65 2.75 3.60 10.40 29.05
30 2.35 3.05 3.15 4.85 18.75 52.85
50 4.50 3.90 3.70 6.10 23.15 69.55
100 7.90 5.85 4.15 11.60 52.50 97.60
200 12.75 6.95 5.90 18.85 82.00 99.95

Bootstrap
20 5.40 5.50 4.65 6.35 13.95 33.90
30 4.25 5.45 4.95 6.50 22.50 56.70
50 5.25 5.35 5.05 7.15 25.50 72.25
100 5.65 5.65 5.15 9.60 51.90 97.80
200 5.20 4.80 5.35 9.90 78.30 99.95

Bias-Corrected Bootstrap
20 5.80 5.55 4.90 6.15 13.85 34.10
30 4.70 5.35 4.75 6.75 22.25 56.40
50 5.40 5.80 4.65 7.15 25.70 72.15
100 6.35 6.10 5.05 10.25 53.20 98.00
200 6.00 5.30 5.80 11.85 79.20 99.95

Notes: See the notes to Table 4. 499 bootstrap samples are generated, and rejection frequencies are
based on 2,000 replications. “Bootstrap” is based on the bootstrap samples generated using λ̃WFE. The
“Bias-Corrected Bootstrap” is based on the bootstrap samples generated using the bias-corrected estimator,
λ̊WFE . For further details see Section 4.2.

[T.7]



(Continued)

Size Power
N\T 20 30 50 20 30 50

λi = 0.6 for all i λi ∼ IIDU(0.4, 0.8)
Standard Normal
20 1.40 2.75 3.85 5.40 15.55 43.75
30 2.60 3.80 2.55 7.50 30.50 73.65
50 2.45 3.55 3.35 11.30 40.45 87.50
100 4.25 3.55 4.15 28.00 78.50 99.80
200 5.75 3.65 4.30 45.45 96.75 100.00

Bootstrap
20 4.25 6.05 5.20 8.70 19.85 48.15
30 4.85 5.70 3.70 10.40 34.65 76.40
50 4.30 5.40 4.95 14.25 45.80 89.15
100 4.50 4.60 4.90 29.75 80.50 99.85
200 4.30 4.30 4.95 40.80 96.80 100.00

Bias-Corrected Bootstrap
20 4.35 5.50 5.35 8.80 19.60 48.05
30 4.90 5.20 3.85 10.75 35.35 76.10
50 4.40 5.35 4.85 14.85 45.80 89.55
100 5.50 5.25 4.95 31.85 80.80 99.85
200 5.55 4.45 5.20 45.40 97.05 100.00

λi = 0.8 for all i λi ∼ IIDU(0.6, 1.0)
Standard Normal
20 2.40 3.80 4.80 12.60 31.05 71.85
30 2.95 3.85 5.45 22.05 55.10 95.75
50 3.20 5.25 5.25 36.90 76.70 99.70
100 4.65 5.75 5.90 64.90 98.20 100.00
200 4.65 7.50 8.25 90.55 100.00 100.00

Bootstrap
20 5.20 5.65 5.70 17.10 35.00 73.70
30 4.70 5.15 6.25 26.15 58.05 95.70
50 4.70 6.40 5.60 40.05 75.25 99.70
100 6.40 6.50 5.75 69.70 98.20 100.00
200 6.70 8.60 7.55 92.25 100.00 100.00

Bias-Corrected Bootstrap
20 4.50 5.10 5.20 15.50 34.15 73.25
30 4.25 4.65 5.65 23.85 55.35 95.30
50 4.20 5.50 5.25 32.95 71.15 99.45
100 5.55 5.15 4.85 63.10 97.60 100.00
200 5.00 5.55 6.05 87.45 99.95 100.00
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(Continued)

Size Power
N\T 20 30 50 20 30 50

λi = 0.9 for all i λi ∼ IIDU(0.0, 1.0)
Standard Normal
20 5.30 6.20 7.60 68.35 97.95 100.00
30 7.25 7.35 9.35 94.85 99.95 100.00
50 7.90 9.25 8.95 99.35 100.00 100.00
100 12.55 15.80 15.45 100.00 100.00 100.00
200 21.30 27.65 25.40 100.00 100.00 100.00

Bootstrap
20 6.00 6.10 7.50 74.15 98.50 100.00
30 7.95 6.95 7.85 96.05 99.95 100.00
50 8.45 7.30 6.55 99.60 100.00 100.00
100 11.95 9.95 8.50 100.00 100.00 100.00
200 18.35 16.25 10.55 100.00 100.00 100.00

Bias-Corrected Bootstrap
20 4.45 4.70 6.25 74.20 98.60 100.00
30 5.20 4.50 6.05 96.30 99.95 100.00
50 4.45 3.60 5.35 99.60 100.00 100.00
100 5.05 4.80 4.95 100.00 100.00 100.00
200 4.50 5.75 5.65 100.00 100.00 100.00
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Table 7: Slope Homogeneity Tests and Alternative Estimates of the Autoregressive Coefficient
of the Real Earnings Equations

Pooled High School High School College
Sample Dropout Graduate Graduate
e = 0 e = 1 e = 2 e = 3

N 1, 031 249 531 251
Average Ti 18.39 18.36 18.22 18.79
Total Observations 18, 961 4, 572 9, 673 4, 716

Tests for Slope Homogeneity

∆̃ test Statistic 25.59 7.20 13.65 18.32
Normal approximation p-value [0.0000] [0.0000] [0.0000] [0.0000]
Bias-corrected bootstrap p-value [0.0000] [0.0000] [0.0000] [0.0000]

Autoregressive Coefficient (λ)

FE Estimates (λ̂FE) 0.4841
(0.0065)

0.4056
(0.0147)

0.4497
(0.0095)

0.5538
(0.0106)

WFE Estimates (λ̃WFE) 0.5429
(0.0056)

0.4246
(0.0133)

0.5169
(0.0086)

0.6002
(0.0095)

Bias-Corrected WFE (̊λWFE) 0.6504
(0.0055)

0.5188
(0.0126)

0.6192
(0.0080)

0.7214
(0.0101)

Notes: Noting PSID data we used are unbalanced, FE estimator, and WFE estimator are defined by
(3.23), and (3.22) in Remark 3.2, respectively, and their associated standard errors (shown in round brackets)

are based on V̂
(
λ̂FE

)
= σ̂2

(∑N
i=1 y

′

i,−1Mτiyi,−1
)
−1

, where

σ̂2 = (T −N − 1)−1
N∑

i=1

(
yi − λ̂FEyi,−1

)
′

Mτi

(
yi − λ̂FEyi,−1

)
,

T =∑N
i=1 Ti, and V̂

(
λ̃WFE

)
=
(∑N

i=1 σ̃
−2
i y

′

i,−1Mτiyi,−1
)
−1

.

Bias corrected estimates are based on λ̊WFE = λ̃WFE+(T /N)
(
1 + λ̃WFE

)
and V̂

(
λ̊WFE

)
= T −1

(
1− λ̊2WFE

)
.

Bias-corrected bootstrapped tests also use λ̊WFE and the associated estimates to generate bootstrap samples
(see Section 4.2 for further details).
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