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Abstract

In an integrated economy-ecosystem model humans choose their land use and leave the
residual land as habitat for three species forming a food chain. The size of habitat determines
the diversity and abundance of species. That biodiversity generates, in turn, a flow of
ecosystem services with public-good characteristics for human consumption. The ecosystem
submodel yields (rather than assumes!) population growth functions with each species’
growth depending on the size of habitat. First the relationship between habitat and species
growth (sustenance, decline and extinction) is explored. The laissez-faire economy is shown
to result in an underprovision of habitat, making the case for land use restrictions for nature
protection. The optimal land use policy is characterized with full regard of ecosystem
dynamics. Finally, labor-augmenting technical change is introduced to generate ever
increasing pressure towards further habitat reductions. In the laissez-faire economy the habitat
is consequently squeezed to zero in the long-run so that all species are doomed. Social
optimality demands, however, to refrain from using all land for economic purposes despite
ever-growing labor productivity.
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1 Introduction

Observations and predictions of continuing world-wide biodiversity decline have concerned
the public and have led, over the last decades, to a fast growing literature on the economic
and ecological issues involved (Perrings et al. 1995, Swanson 1995). Undisputedly, a major
reason for that biodiversity problem is the pressure from expanding economic activities.
The loss of habitat through land conversion to "agroscapes" and urbanization is among the
factors that have had the greatest impact on species loss (Swanson 1994, Holling et al. 1995,
Moran and Pearce 1997, Dailey et al. 1997). Although many countries have introduced and
stepped up nature protection programs' the rate of land conversion for economic purposes

is still positive even in countries with shrinking human populations.?

The principal reason for concerns about declining biodiversity are the positive correla-
tions between the flow of ecosystem services and biodiversity (Daily et al. 1997, Daily 1997)
on the one hand and between biodiversity and habitat on the other hand. It is obvious,
therefore, that the analysis of the impact of economic land use on the ecosystem and the
feedback effects on ecosystem services calls for an integrated economic-ecological analysis.
The economic submodel would have to specify (i) the forces for the (continuing expansion
of) economic land use and (ii) possible reasons as to why the allocation of ecosystem services
might not be appropriately guided by prices and markets. The ecosystem submodel would
have to establish (i) how reductions in ’'wild lands’ affect biodiversity and (ii) how these
changes translate into quantitative and qualitative variations in the supply of ecosystem

services.

Our subsequent integrated economy-ecosystem model will explicitly address all these
aspects. We will refrain from following many economic-ecological studies that offer an
elaborate economic analysis with a minor ecological appendix. Our economic submodel
will rather be kept very simple while priority will be given to the theoretical foundation
of the ecosystem with particular emphasis on the link between the size of habitat and

biodiversity.

Regarding this link, the widely accepted and plausible hypothesis is that biodiversity
is an increasing function of habitat. There is a long tradition (since Arrhenius 1921) in

ecological research to determine species-area relationships through field studies. As an

LA remarkable more recent example of such a program is the Council Directive 92/43/EEC on the

conservation of natural habitats and of wild fauna and flora (Habitat Directive) of the European Union.
2In its *Strategy for a Sustainable Development’ presented at the World Economic Summit in September

2002, the German government reports that in Germany the land use for economic purposes is currently
expanded by 130 hectare every day. The government also announced its goal to reduce that increase in

land use to 30 hectare per day in the year 2020.



empirical generalization from such studies the biogeographical literature suggests species-
area curves following a so-called power law: the elasticity of the number of species with
respect to the size of habitat is found to be positive but less than one (e.g. Myers and
Giller 1988). The insights from such an approach are limited, however, not only because
the universality of that relation is questioned (e.g. Crawley and Harral 2001) but also

because it lacks a rigorous theoretical basis.

Another approach with an equally long tradition is population ecology. It was devel-
oped initially to describe the dynamics of aquatic species communities and fishery (Gordon
1954, Eggert 1998) but it has also been applied to terrestrial communities (Kremer and
Morcom 2000) which are the exclusive focus of the present paper. Arguing within the
population ecology framework, Swanson (1994) draws his attention directly to the impact
of habitat size on the growth of species. He assumes that "... the 'natural’ growth rate
of a biological resource is affected by the allotment of natural habitat" (ibidem, p. 812)
and concludes from his study of a simple one-species harvesting model that "... the passive
"undercutting’ of species through base resource reallocation [i.e. habitat reduction through
land conversion; the authors| probably explains most species endangerment and extinc-
tions ..." (ibidem, p. 814). Swanson’s approach to species-area relationships is richer and
more demanding than the power-law concept. Yet it doesn’t explain exactly how changes
in the size of habitat affect species growth and the interactions of individual organisms
among themselves and their physical and chemical environment are not addressed because
population ecology is a macro-approach with species populations being the basic units of

analysis.?

As reviewed by Chave and Levin (2003), ecologists developed various methods for
providing microfoundations of the macro-properties of ecosystems. However, we are not
aware of approaches capable of serving as a microfoundation of population models. In their
economic analysis of non-convex ecosystems Dasgupta and Maler (2003) acknowledge the
desirability, if not need, of such a microfoundation. Yet they don’t follow that line finding
"

. it easier to study the macro dynamics of an ecosystem directly without peering at

microfoundations" (ibidem, p. 506).

In the present paper we will develop such a microfoundation of population ecology
linking in addition, population growth, sustenance and extinction to the size of habitat.
Building on Hannon (1976), Tschirhart (2000, 2002) and Eichner and Pethig (2003), we

3This is not to say that the differential equations of populations ecology are arbitrary constructs. On
the contrary, they have been modeled and can be calibrated using valuable empirical information from
numerous field studies. However, they are not derived from a more basic theory, and in this sense they are

not microfounded.



use economic methodology to explain the interactions among organisms of three different
species forming a food chain: The top predators (carnivores) feed on herbivores, the latter
feed on plants and the plants feed on a vital base resource whose supply is proportional
to the size of habitat. In the short-run period of the ecosystem submodel all populations
are constant and the representative organisms of all species behave as if they maximize
their net offspring as price takers choosing their prey biomass demand and the supply of
own biomass subject to a budget constraint. The aggregate net offspring each species has
generated in the short-run equilibrium allocation then gives rise to that species’ population
dynamics over time. Technically, a system of three differential equations is derived (rather
than assumed, as in conventional models of population ecology) that links changes of species
populations in time (flows) to populations (stocks) in an interdependent way. Implied in
that system of equations there is a link between the size of habitat and population dynamics
that will be carefully developed and elaborated because it is an important and the most

innovative building block of our approach.

To sum up, the structure of the complete integrated economy-ecosystem model is as
follows. Humans and all nonhuman species share the available land which is in fixed supply.
Since land used for economic purposes is lost as habitat for nonhuman species the humans
determine the size of habitat via their choice of economic land thus making the ecosystem
dependent on the economy. Conversely, the economy depends on the ecosystem through
the flow of ecosystem services that are non-marketed public goods! and assumed to be

positively correlated to the size of habitat and populations.

The principal aim of the present paper is to investigate the interdependence of the
economy and the ecosystem constituted by the impact of the economy on the ecosystem
through economic land use and by the feedback impact of the ecosystem on the economy
through changes in the flow of ecosystem services via changes in species abundance and

". .. what propor-

diversity. We also aim at contributing to answering the question as to
tion ... of land must remain relatively undisturbed ... to sustain the delivery of essential
ecosystem services" (Dailey et al. 1997, p. 14); a question, whose further investigation

would be profitable for society according to Dailey et al. (1997).

In section 2 the integrated economy-ecosystem model will be set up. A rather brief
description of the simple economic submodel in section 2.1 is followed by the introduction
and discussion of the more elaborate ecosystem submodel in section 2.2. Section 3 serves to

explore essential characteristics of our 'microfounded population ecology approach’ derived

4In order to sharpen our focus we exclude from the analysis all ecosystem services that are directly
related to harvested and marketed ecosystem goods. We don’t consider pollution either which is a severe

side effect of economic activities with the potential of impairing ecosystems and ecosystem services.



in section 2.2 with a special emphasis on the effects of parametric variations of the size of
habitat on species growth, sustenance and extinction. The richness and plausibility of pop-
ulation dynamics implied by the present model is illustrated in several exemplary numerical
simulations. While a complete rigorous characterization of the dynamics is clearly beyond
the scope of the present paper we will explore a number of important features of the link be-
tween size of habitat and species diversity. Our model tends to support the widely accepted
view that species diversity and abundance decrease with successive reductions in habitat.
Yet the dynamics of the ecosystem render this link much more complex than suggested by
the power law referred to above. In section 4 the focus is on the integrated analysis of
both submodels. The laissez-faire economy is shown to result in an underprovision of habi-
tat making the case for land use restrictions for nature protection. The optimal land use
policy is characterized with full regard of ecosystem dynamics. Finally, labor-augmenting
technical change is introduced to generate ever increasing pressure towards further habitat
reductions. As a consequence, in the laissez-faire economy the habitat is squeezed to zero
in the long-run so that all species are doomed. In contrast, social optimality demands to
refrain from using all land for economic purposes despite ever growing labor productivity.

Section 5 concludes.

2 The integrated economy-ecosystem model

The economy submodel is populated by a fixed number of consumers who derive utility
from a composite consumer good and from ecosystem services. Labor is needed to produce
the consumer good and to prepare land for economic use. Since marginal (labor) cost
of converting land is strictly increasing some residual land area is left as habitat for all
nonhuman species. The ecosystem submodel is microfounded, dynamic and links the size of
habitat to species growth and species diversity. Ecosystem services are public goods whose
flow is assumed to be positively correlated with the size of habitat and the size and number
of populations. Thus both submodels are linked as follows: humans unilaterally determine
the size of habitat. The latter determines species abundance and diversity over time and

with it the flow of ecosystem services which, in turn, affects the well-being of consumers.

Sections 2.1 and 2.2 serve to specify the submodels of the economy and the ecosystem,
respectively. The complete integrated economy-ecosystem model will be analyzed in section
4.



2.1 The economy submodel

Consider a simple economy in which the amount y of a composite consumer good is produced
by means of the production function®

y=Y <€y, ry) = EZT;_”, (1)
g

where o € [0,1] is a parameter characterizing the Cobb-Douglas technology. In (1), ¢, and
r, denote the inputs "labor” and ’land’, respectively. All variables refer to one and the same

point in time, but the time index is suppressed to avoid clutter.

The total endowment of land is denoted 7. 7, is the land area used by humans
for economic purposes. This land includes land for business buildings and installations,
residential houses, and traffic infrastructure etc. To a large extent those economic land
uses consist in sealing the land such that it becomes unsuitable as a habitat for most
nonhuman species. Agricultural land is also land used for economic purposes and will thus
be included in r, although it can still serve as a habitat for some nonhuman species. To
simplify, we assume that all land, r,, set aside for economic uses is lost for use by all
nonhuman species.’ As a consequence 7 — r, is the land available for nonhuman species

called habitat, for short.

Claiming land for economic uses is not costless. The land development activity is

modeled by the production function

n=r()=r-1 )
+ r

where r4 is the land claimed for economic uses with the help of labor input ¢, and where
¢ > 0 is a productivity-reducing technological parameter. Note that in (2) r4 is strictly

increasing and strictly concave in ¢, with r; tending toward 7 for /. becoming very large.

As for the demand side of the economy, there are n. identical consumers with utility

3
u="U <yc,r — ry,nl,nz,n3> =lny.+n-(F—ry) + Zﬁmi, (3)
+ 4+ + + + i=1

where n and 6; for i = 1,2,3 are positive preference parameters. According to (3) the

representative consumer’s utility depends on his or her consumption y. of the (private)

SUpper-case letters represent functions. Subscripts assigned to upper-case letters denote partial
derivates. A plus or minus sign underneath an argument of a function denotes the sign of the corresponding

partial derivative.
In a more elaborate approach one would want to distinguish ’human-dominated ecosystems’ (on eco-

nomic land) and ’natural ecosystems’ (on land not used for economic purposes). The former is ignored in

our present model.



consumer good and on ecosystem services which are assumed to be positively correlated with
both the size of habitat, 7—r,, and the populations of all (nonhuman) species, n, ny and ns,
that will be determined later in the ecosystem submodel.” The consumer’s appreciation of
the size of habitat, 0U/0 (7 — r,) > 0, reflects her benefits accruing from ecosystem services
related to the habitat. Likewise, 0U/0n; > 0 (for i = 1,2, 3) is interpreted as the marginal
utility from ecosystem services that increase with growing populations. As described by
Dailey et al. (1997) in detail, ecosystem services come in a great variety of different forms:
"many ecosystem services are not traded or valued in the marketplace; many serve as public
good rather than provide direct benefits to individual landowners;" (Dailey et al. 1997, p.
13). Here we restrict our attention to the large subset of public ecosystem services and
neglect all private and marketable ecosystem goods that are supplied through harvesting

or mining of biological resources.®

The economy submodel is closed by the equations

Ty = Tq, (4)
nNeYe = Y, (5)
b+t = L (6)

(4), (5) and (6) represent conventional scarcity constraints accounting for the limited supply
of land, the consumer good and labor supply, respectively. The aggregate labor endowment,
¢, is assumed to be time invariant in the sections 2 and 3 of the present paper. Later in

section 4 we will also explore the implications of growing labor supply.

Consider now the economy (1)-(6) with competitive markets for labor, for the con-
sumer good and for land with prices py, p, and p,, respectively, in the absence of any
government intervention or regulation (laissez faire). In that scenario the profits of the

consumer good industry and the land development industry are, respectively,

Ty = pyKZT;w - pfgy — DrTy, (7)
_
Ta = Py [r - g—] — pel,y. (8)
r
Maximization of profits on competitive markets implies
1— 0?
Uooy_pe ooy oy 2l )
Ty Dy Ey Py Pe c

We combine (9), (2) and (4) to obtain, after some rearrangement of terms,

or o
e l—t,=0. 1
T R R A (10)

TAccording to Dailey et al. (1997, p. 6), "... biodiversity is a direct source of ecosystem goods."
8See footnote 4.



When equation (6) is considered in (10) we solve (10) for /,:

f_ ci-20) \/02 (1-20) el — o)t

. 11
207 40272 + oF (11)

Inserting (11) into (2) and accounting for (4) yields the equilibrium value

Tq="Ty=7T—

1
)

_1-20 (1-20)° | (1—o)
+\/ 40272 + coT

20T

(12)

As expected, the land area claimed for economic use is expanded if the land use be-
comes more productive ((dr,/de) < 0) and if the economy’s labor endowment becomes
larger ((dr,/d¢) > 0). With the help of (11) and (12) the entire equilibrium allocation
0y, 0y, 7y, T, Ye, y) and the pertaining market clearing prices (p, = 1, p,, p,) can readily be

calculated.

In the laissez-faire market economy, humans are insensitive land claimers responding
only to increasing costs of development while ignoring the impact of economic land use on all
nonhuman species and denying nonhuman species any 'codetermination’ in how to allocate
the total land area for economic and ecological uses. To be sure, consumers do benefit from
ecosystem services for free as specified in (3) but they are assumed to take as given these
services whose supply is determined by the state of the ecosystem, described by 7 —r,, ni,
no and n3. The laissez-faire market mechanism doesn’t account for the impact of economic
land use on ecosystem services. Although changes in the supply of ecosystem services
directly affect the consumers’ well-being they leave unchanged the short-run equilibrium of

our economy over time.?

So far we have characterized the (time-invariant) allocation of resources in the sub-
model of the laissez-faire market economy specifying, in particular, the size of land, r,, to
be used for economic purposes. Since the size of habitat is ry := 7 —r,, economic land use is
the channel through which the economy impacts on the ecosystem. Quite realistically, the
size of habitat is unilaterally determined by the extent of the humans’ economic land use
(equation (12)). This observation gives rise to the question what the intertemporal impact
is on the ecosystem of the land area used for economic purposes. To answer this question

we now proceed to set up the ecosystem submodel.

°In an economic model with more than one consumer good and with non-separable utility functions
changes in the state of the ecosystem would change the economy’s equilibrium allocation, in general.
However these second-order effects are not at the core of the issue of allocative efficiency in an integrated

economy-ecosystem world and are therefore ignored in the present model.



2.2 The ecosystem submodel

Building on Eichner and Pethig (2003) we consider an ecosystem with 3 species forming a
food chain: Species 3 feeds on species 2, species 2 feeds on species 1 and species 1 feeds on
a resource referred to as ’species 0’ for analytical convenience. Basic units of analysis are
the individual organisms of each species. To simplify, all organisms of the same species are
assumed to be identical and the representative organism of species ¢ is called organism ¢,

for short.

In the short-run period the population n; of each species ¢ is constant. Organism ¢

generates net offspring b; according to the function B’ : D' — R, where

bi = B <35i—1, Zis nz) 1=1,2,3 (13)
+ - +70

and D' := Ry x [0, %] xR,. In (13), z;_ is organism i's intake of biomass of its prey species
t — 1, and z; is organism ¢’s loss of own biomass to its predator, species i + 1. The latter
is bounded from above by Z;, a positive constant. To avoid clumpsy phrases we refer to
organism 1’s intake of the resource, ¢, as 'intake of biomass of species 0’. B’ is a concave

function satisfying B*(0,0,n;) < 0, B* (z;_1, Z;,n;) < 0 and

>0 if (xi,l, Zl) € Di,

=0 otherwise,

Bfn (CUzeh Zianz') {

where D := {(2;_1,2,n;) € D' | ;-1 > 0,2 < Z and n; € [0,7,]} and where 7, is a posi-
tive constant. The idea behind including n; as an argument of the function B’ is that the
representative organism’s generation of net offspring is the more hampered, the further n;
drops below some critical population level 7; > 0. Due to reduced ability and/or opportu-
nity to reproduce species ¢ is an endangered species, if n; < n;. This hypothesis is in line
with empirical evidence provided in ecological studies and known as Allee’s Law (Berryman
2003).1°

In our ecosystem model the biomasses of all species are viewed as commodities traded
in a system of virtual competitive markets, where ’intake of prey biomass’ translates into ’de-
mand for prey biomass’ and ’loss of own biomass’ is interpreted as ’supply of own biomass’.
To further specify this ’economic approach’ to the ecosystem, denote by p; the price of

biomass of species i and by e; organism i’s (exogenous) lumpsum income. Prices and

19 According to Allee’s Law, there is reduced reproduction or reduced survival at low population densities.
Since small populations have lower chances to reproduce or survive, Allee’s Law is of special interest to

ecologists for the study of endangered species.



incomes are denominated in virtual units of account. Organism :’s transactions are con-

strained by the inequality!!
€ + Pizi 2 Pi—1Ti—1 1=1,2,3. (14)

Obviously, (14) closely resembles the household’s budget constraint that economists use
to employ for describing the consumer’s decision problem. According to (14) organism
¢ has two kinds of incomes for buying prey biomass p; 1x; 1: the exogenous lumpsum
income e; > 0 and the receipts from selling own biomass, p;z;. The lumpsum income
is a species-specific parameter reflecting organism ¢’s status or power as a predator, i.e.
its ’entitlement’ to feed on its prey without being forced to sacrifice own biomass to its
predators. We therefore interpret e; as the predation power of organism 7. e; is organism 4’s
only income if 7 has no enemies - either because i is the top predator (i = 3 in our model)

or because i’s predator has become extinct.'?

If the predator species i + 1 exists and if the biomass of species i — 1 is scarce'?

(pi—1 > 0), organism ¢ is able to expand its purchase of prey biomass beyond x; | = ¢;/p; 1,
if and only if it is willing to earn some biomass income, p;z; > 0, to pay for the extra food.
Hence the extra purchase of prey biomass p;z;/p;_1 requires a sacrifice of own biomass z;
which readily reflects what ecologists refer to as organism i’s predation risk, the risk of

being preyed upon while preying (Lima and Dill 1990).

Having specified organism 7’s budget constraint we now turn to its decision problem.
All individual organisms are assumed to be price takers and to behave as if they solve the

maximization problem:

max  B'(zi_i,2,m) st (14). (15)

(zi—1,2i)

Recalling that in the short run all populations n; are constant, an ecosystem allocation

(wo, T1, T2, 70, 21, 22) is said to be feasible if'*

ro = Mo, (16a)

Nz = MNip1T; fori=1,2, (16b)

"The constraint (14) differs significantly from the constraints the organisms are subjected to in Eichner

and Pethig (2003). The present specification is well suited for studying the extinction issue.

12Tn these cases, any positive supply of own biomass (z; > 0) would necessarily be an excess supply, and
therefore the market for biomass i doesn’t exist (p; = 0).

13Tt will be shown below that all prices are positive in the short-run ecosystem equilibrium.

4While the equality sign in (16b) is imperative the more general form of (16a) would be 7o > nizg
allowing aggregate demand to fall short of supply. For an analytical treatment of resource abundance see

Eichner and Pethig (2003).



where ry := 7 — r, (with 7, as specified in (12)) denotes the land endowment available
as habitat for all nonhuman species. Taking the equation (16a) literally, each organism
of species 1 is supposed to consume the amount zq = ro/n; of land. However, following
Swanson (1994, p. 811), we take the land area as a proxi for the "... flow of biological

" such

services, or base resources or biological necessities for the organisms’ sustenance . ..
as water, air, minerals and sunlight. In fact, we assume that there is a composite base
resource whose supply is proportional to the size of habitat. Hence we essentially equate

the size of habitat, ry, with the supply of a composite base resource.'®

Next we specify the coordination of market transactions by prices. A short-run ecosys-
tem equilibrium is said to be constituted by a price vector (po, p1, p2, p3 = 0) and transac-
tions (g, 1, 2, 21, 29, 23 = 0) if (15), (16a) and (16b) are satisfied.

To obtain more specific results we replace (13) by the parametric net offspring function

B’ (@51, 2i,15) = Al (i) - 232y - (zi — Zz‘)l_ai — Yis (17)
where
A" (n;) := min [1, N—} , (18)
1

and where 0 < ;; < 1 and ~; > 0. Solving (15) yields the biomass demands and supplies

e e
Ty = &ayﬁ +o—, a=az — (1= al)_l’ (19a)
Do Do P
e &
Ty = 22&222 +az—, 7= %y — (1= a2)_2’ (19b)
D1 D1 P
€3
r, = & 19¢
. = 2 (19¢)

whose properties conform to our intuition: The demand curves slope down and the supply
curves slope up. Moreover, an increase in an organism’s predation power raises its demand

for prey biomass but reduces its supply of own biomass.

Inserting (19) in (16) allows us to completely characterize the short-run ecosystem

15The supply of the resource, 7o, is a flow defined for each point in time. The resource is perfectly
renewable as its supply at each point in time always equals the size of habitat at that point in time. Water
and sunlight may be considered approximations of such resources. In a more elaborate analysis one might

want to model renewable base resources with stock-flow interdependencies.

10



equilibrium by

nzes + Nngeo + niep

= 20

Do o ) ( a‘)
nses + noes +n1(l — aq)e

p = M3e3tmees _1( 1) t (20b)

nia1z1

nzez +na(l —as)e

Py = 3€3 2( B 2) 2’ (20¢)

Noigz9y

z = -2, (20d)
n

r = nlalzl(n363+n262) : (206)
ng [nges + ngeg +nq (1 — ag)eq]

Ty = NnoQig€e3z29 (20f)

nzes + no(l — ag)es’

P Q121 (77,363 + ’n262) : (20g)
nses + nges +n1(l — ag)ey
QpZoNnszes
29 = . 20h
? nzez +na(l — az)es (208)

The equations (20) demonstrate that with the parametric functions (17) and (18) a short-
run equilibrium exists and is unique with all equilibrium prices being strictly positive. The
equilibrium prices (20a)-(20c) are scarcity indicators for the habitat and for the species 1

and 2, respectively. Observe that the supplies of own biomass z; and 2, are positive, too.

Having determined the short-run allocation in the ecosystem we now link that allo-
cation to the growth of populations over time. At the end of the short-run period each
organism has acquired a positive or negative amount of net offspring b;. The adjustment
in time of the population of species 7 is then given by the simple differential equations

dni
dt

Combining (17), (20) and (21) yields the differential equations of population growth

7;111 = nNi- Gl (T(]a ni, Na, n3) ) (228‘)
7;112 = Ng- G2 (n17 na, n3) ) (22b)
7'L3 = nNg3- G3 (TLZ, TL3) y (22C)

11



where

l1—ay
o 1- S nie;
G () = A'(m)- <T—0> <z ( . 1) 2 iz M0 . —71,(23a)
" (1—a) (Zi:l nm) +o (Zi:Z ”iei)
o
G2() = A%(ny)- niaiz; >ip nici
n2 (Z?:Z niei> + (1 —ag)nieq
3 1—ao
1 S nie;
o - ( a;) 22:2 ¢ — Yo, (23b)
(1 —ao) (Zi:? nz-ez-> + agnszes
_ as
G3 R — A3 . n2a2z2 . 63 (= 170&3 _ . 23
() (r3) [ ns et B(L—a)es (23) V3 (23¢)

The system (22) of differential equations determines the dynamics of the three-species
ecosystem submodel. It is worth noting that while the regeneration efficiency terms A*(n;)
from (18) don’t affect the allocation (20) of the short-run ecosystem equilibrium at all, they

do play an important role in the growth functions (22).

Having introduced and analysed the submodels of the economy and the ecosystem in
the preceding sections 2.1 and 2.2, we are now in the position to explore the integrated model
regarding, in particular, the (in)efficiency of economic land use. However, before doing so it
is both worthwhile and necessary to shed more light on the complex link between the size of
habitat and the dynamics of species populations as established in (22) and (23). Recall from
section 2.1 that the size of habitat is unilaterally determined by humans. Hence changes in
economic land use, induced e.g. by changes in the labor endowment of the economy or by
technical progress, hit the ecosystem as exogenous shocks and trigger complex repercussions
of interdependent population growth until eventually a new long-run ecosystem equilibrium
(stationary point) is reached. A full-scale systematic analytical characterization of how the
dynamic system (22) depends on the size of habitat, r¢, is clearly beyond the scope of the
present paper. Yet the subsequent section 3 aims at illuminating, with the help of several
numerical examples, the complexity and richness of ecosystem adjustment to changes in

the size of habitat with a special emphasis on species sustenance and extinction.

3 Dynamic ecosystem responses to the size of habitat

In the first part of the present section we will investigate some general characteristics of
the system (22) of differential equations with respect to the size of habitat and after that
we will illustrate how the ecosystem reacts to changes in the size of habitat by means of

several numerical simulations.

12



Closer inspection of (22) and (23) shows that the growth of species 1 depends on 7
directly and that the growth of the other species depends on r( in an indirect way, because
the population of species 1 enters their growth functions. To further clarify the impact
of the size of habitat on population dynamics it is convenient to distinguish between the
system (22) of differential equations, called 'system (22)" hereafter, and a modified version
of it which differs from the system (22) only in replacing (18) by A’ (n;) =1 fori=1,2,3.
We denote this modified version as 'reference system (22)’. Of course, the reference system
(22) is an auxiliary system of differential equations that coincides with system (22) only
partly. However, since its properties are less complex than those of the 'true’ system (22) it
will turn out to be very helpful in specifying important characteristics of the system (22).

We therefore proceed by investigating the reference system (22) first.

We denote by ng := (nig, 129, n30) € R the triple of populations at ¢ = 0, called
the initial populations, and by n® := (nft, nf nf) € R a stationary point of the reference
system (22). Restricting the parameter space as specified in the Appendix and assum-
ing that the reference system (22) runs into a stationary point'® for each ny € R} and
ro € Ry, there exists a function N¥ : R} x Ry — R% such that n® = N¥ (ng,ro) =
[NE (ng, 19) , N®2 (ng,0) , N™ (ng,70)] is the stationary point of the reference system (22),
if the initial populations are ny and the habitat size is ry.!” Obviously, a predator species
is bound to perish if the initial population of its prey species is zero. We therefore have the

trivial results
- N2 (ng,r9) = N® (ng,r9) = 0 for all ng € R with nio =0,
- N (ng,rg) = 0 for all ny € R} with nyy = 0.

Initial populations exhibiting n; > 0 and n; ; = 0 for some ¢ = 1,2, 3 will be disregarded

in the sequel. For all other ng € R, three cases have to be distinguished:

(i) If ny € R%, then'®

1

nt = N (ng,ro) = g (%) UM (e e, e5), (24a)
1 1

n = N (ng,r) = M?(e1, ez, e3) - nl, (24b)

n = N (ng,r) = M?(er,ey,e3) - ni. (24c)

16This assumption has to be supported by a global stability analysis which is beyond the scope of the

present paper. Our numerical simulations strongly suggest this feature of global stability.
"By R4+, Ry we denote the sets of positive and non-negative real numbers, respectively. R? stands for

the non-negative Euclidean 3-orthant.
18The definition of the functions M (-) for i = 1,2,3 is provided in the Appendix.
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(ii) If ng € R% with nip > 0, ng > 0 and nzo = 0, then

1

1 1
nft = N2 (ng,r9) = M?(e1,e5,0) - ni, (25b)
n = N (ng,r) =0, (25¢)

(iii) If ny € RY with ny9 > 0 and ngyy = nze = 0, then

1

n{% = NT (’I”L(), TO) - @ ' <é> : M (617 0, 0) ) (268‘)
21 B!
nd = nf=o0. (26b)

Closer inspection of the function N reveals that the reference system (22) has the following

properties:!?

(i) Each species that exists in the initial state along with all downstream species never

goes extinct in the long run irrespective of how large or small the habitat is.
(ii) The stationary population of such a species is linear increasing in the size of habitat.

(iii) The stationary population of such a species depends only on how many more upstream
species are present in the initial state but not on the size of its own and the size of the

other species’ initial populations.

Property (i) characterizes the reference system as an unrealistically robust system: There
is no way to endanger and extinguish a species whose initial population is positive (along
with the populations of all downstream species) except through deleting the entire habitat,
ro = 0. It is therefore interesting to explore how the properties (i)-(iii) need to be modified
when the regeneration efficiency term (18) comes to bear that is incorporated in system
(22) and distinguishes it from the reference system (22) discussed so far. To begin with,
the dynamics of the reference system (22) and those of the system (22) coincide - and hence
properties (i)-(iii) also characterize the ’true’ system (22) - if and only if the dynamics of
the reference system (22) are such that n; > 7n; for all i and for all ¢ > 0 (which obviously
presupposes n;y > f; for all 7). Although this is an important piece of information the
properties (i)-(iii) cannot tell us anything about species endangerment and extinction in
our ecosystem submodel. More specifically, even if one sets n;y > n; for all species that
exist initially, the dynamics and the stationary point of the reference system (22) become

irrelevant or even misleading as an indicator of the behavior of the system (22) if in case

19While the properties (ii) and (iii) follow directly from (24)-(26) the property (i) is proven in the
Appendix.
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of small habitats the population dynamics of the reference system (22) exhibit n;; < n; for

some t > 0 and for some 7 whose initial population was positive.

A full investigation of the dynamics of the system (22) for small habitats is clearly
beyond the scope of the present paper. Nevertheless, in what follows we will offer some
interesting and specific information on these dynamics with an emphasis on the impact of
the size of habitat by means of numerical analysis. Before we turn to the numerical examples
it is convenient to define the function N° : R x Ry, — R3 where n° = N* (ng,ry) =
[N5! (ng, m0) , N52 (ng, 7o) , N% (ng, 79)] represents the stationary point of the system (22),
if the initial populations are ny and the habitat size is ry. The existence of such a function
relies on the assumption that the system (22) reaches a stationary point for any given

ng € R} and ro € Ry (see footnote 16).

O in comparative dynamic analy-

Table 1 reports on a series of numerical exercises?
sis. The starting point (example 1) describes an ecosystem with habitat ry = 832 and
initial populations ny = (537.53,461.00, 62.43) which happen to coincide with the station-
ary populations: ng = N* (ng,79) = N (ng,rs). The examples 2-9 are generated through
successive habitat reductions by 50 percent. In example 2 the habitat is cut to half from
832 to 416. After that the dynamics of system (22) apply until eventually the stationary
point nf = n% = (268.77,230.50, 31.21) is reached. The example 3 builds on example 2
through taking the stationary populations from example 2 as initial populations for exam-
ple 3. This rule applies to all further examples listed in Table 1. As in example 2, the
pertaining stationary point n® = N* (ng, ) coincides in the following examples 3-5 with
the stationary point nft = N (ng, 7o) of the reference system (22) as noted in the last three
columns of Table 1. In the examples 2-5, all species survive in the long run although the

stationary populations shrink (linearly) with each habitat reduction.

The solid lines in Figure 1 illustrate the time paths of all populations for an example
of type 2-5.21 TInitially the ecosystem is in a long-run (stationary) equilibrium with pop-
ulations (nyg,n29,n30). Then, at ¢ = 0, the habitat is cut to half with the consequence
that the populations of all species start to shrink. Species 1 suffers the steepest decline.
After having reached its minimum population at ¢ = ¢* species 1 begins to recover due to
lower pressure from its predator species 2. The population of species 2 reaches its minimum

later at ¢ > t* and then also recovers moderately. The top predator species 3 is also bound

20The numerical examples are calculated with the help of the computer program Mathematica. The

program for simulations is available from the authors upon request.
2lFigure 1 is a freehand drawing emphasizing the main properties of the population time paths in a very

stylized way only. The exact plotted graphs can be obtained by the authors upon request.
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to decline due to reduced prey abundance but then manages to stabilize its population
above its critical level n3. Figure 1 thus shows that in case of the examples 2-5 the long-run
impact of the reduction in habitat is a new stationary state with all populations positive and
above their critical levels (of endangerment) but smaller than before the shock. Moreover,
during the transition to the new stationary state the populations of the species 1 and 2 take
a dip below their later stationary values. Since such dips continue to occur with successive
reductions in habitat there is the risk that the population of some species ¢ drops below its

threshold value n; and thus becomes endangered.

n
n;
o7
n, - = s
2 - - n
Ny , = 1
= R
\ "
=
P s
- n;
’
n;
_//
n;
N3
\ an
RN 7y
\
~
~<_ .
t
0 t i t 41.2

Figure 1: Three-species examples

This is exactly what happens to species 3 in example 6 of Table 1 where the habitat
is reduced to 26. The population time paths of example 6 are depicted by the solid lines
in the left part of figure 1 and the dashed lines in the right part of it. Until ¢ = ¢ the time
paths of the reference system (22) and the system (22) coincide.? But the population of
species 3 becomes ng; = ng at t = t with a tendency of further decline. The term A3 (131)

switches from 1 to ns;/f3 driving species 3 toward extinction®® while the populations of

22This observation does not imply, of course, that the time paths of the example 6 and the examples 2-5

are identical for ¢+ < £. We only make the point (to save on pages) that their main features are the same.
Z31f one would incorrectly have continued at ¢ = # to follow the dynamics of the reference system (22)

one would have reached the stationary point nft = (16.80, 14.41,1.95) as listed in the columns 8, 9 and 10
of row 6 in Table 1.
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species 2 and 1 experience a marked recovery. Interestingly, the recovery of species 1 is
faster than that of species 2 and even overshoots the stationary population to which it
converges eventually. The time t* = 41.2 at which species 3 perishes can be interpreted
as a new starting point of the ecosystem dynamics with the populations prevailing at t*
regarded as the associated ’initial’ populations: ngx = 0, ng= > ng and ny= > ny. For
t € [t*, 0o the dynamics of example 6 are such that n; > n; for i = 1,2. The stationary
state approached satisfies N (ng,r9) = N (ng,ro) with N (.) as specified by (25). To
sum up, the long-run impact of the habitat reduction in example 6 is that species 3 goes
extinct and the stationary populations of the species 1 and 2 are smaller than they were

before that reduction.

The examples 7-11 in Table 1 consider an ecosystem inhabited by the species 1 and
2 only. Their gist is the same as that of the examples 2-5 in the 3-species ecosystem.
Although the habitat is further reduced in the examples 7-11 step by step, both species
prevail in the long run and the dynamics of both, the system (22) and the reference system
(22), coincide. This is no longer true in example 12 which resembles example 6 in that the
dynamics of both systems diverge because species 2 hits its critical population level ny at
some point in time and is then bound to perish. Species 1 is left as the only species in the
by now very small habitat. With further reductions of habitat (examples 13, 14 and 15 in
Table 1) the stationary population of species 1 (i.e. its carrying capacity) shrinks. Once the
size of habitat drops below 1.875, the carrying capacity becomes less than n; = 2 implying

that species 1 cannot survive anymore.

The principal message of the examples 2-15 in Table 1 is that it is the combination
of the size of habitat and the initial populations that jointly determine the dynamics and
the long-run state of the ecosystem for any given set of all other parameters. If the size
of habitat is given, the dynamics and even the stationary point that is eventually reached
depend on the initial populations. For an illustration consider the examples 11, 16 and 17
in Table 1. Their common feature is n3y = 0 and ry = 3.15 and they differ with respect
to the initial populations: in example 16 these populations are about four times and in
example 17 about eight times as large as in example 11. As Table 1 shows quadrupling
the initial populations of example 11 doesn’t change the long-run ecosystem equilibrium:
the stationary points of the examples 11 and 16 are the same. Nonetheless, the dynamics
differ in an interesting way. While in example 11 both populations stay above their critical
levels ny and ny at all times, in example 16 the population of species 1 declines so sharply
that it drops below 7; temporarily but then manages to recover to N%(ng, 1) > 7y as
illustrated by the solid lines in Figure 2. Example 16 thus demonstrates the possibility that

after having been exposed to high pressure from a large predator population a prey species
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may succeed to prevail in the long run despite temporary severe decline and endangerment.
However, if that pressure is further stepped up as in example 17, the population of species
1 declines even more sharply, falls short of the critical level n; at some point in time and is
not capable to recover anymore. The associated time paths of populations are depicted in
Figure 2 by the solid lines for all ¢ < £ and by the dashed lines for all # > . The monotone
decline of species 1 and its eventual extinction deprive the predators of their prey without

which they cannot survive either.?*

n;

n,

My,

Figure 2: Two-species examples

Although our examples strongly suggest that some features of our examples may
be valid far beyond the numerical specifications of those examples, we are aware that
nomological insights cannot be gained by way of induction. Nonetheless, we find it worth
summarizing some major "suggestive conclusions" (in the sequel denoted as conjectures)

from the examples discussed above:

(i) Let N® (ng,ro) satisfy the condition: For i = 1,2,3 it is true that N5 (ng, ro) > 0, if
n;o > 0. Then N¥ (no, 7"0) =NFI (ng, TO).

240bserve that the initial populations in example 16 [17] are the same as those in example 8 [7]. Hence
the solid lines [the combined solid and dashed lines| in Figure 2 can alternatively be interpreted as resulting
from a massive cut of habitat from ro = 6.5 [rp = 13] to ro = 3.15. The results suggest that the "speed" of

habitat reduction matters.
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(ii) If N¥ (ng,70) # N (ng,ro), then there exist one or more species i such that N (ng, 7o)
=0 and N® (ng,ry) > 0.

(iii) If N¥ (ng,70) # NE (ng, o), then there exists 7y > rq such that N (ng, ) = N (ng, r})

for all ry > 7.

(iv) Let ng, ny € R3 satisfy sign n;o = signnf, for i = 1,2, 3. There is ny, ny € RY, ng # nj

such that N* (ng, ) # N* (nf,ro) for any given 7y > 0.

Conjecture (i) is straightforward for those time paths of system (22) that satisfy n; > n;
for all 7 and for all ¢ > 0 since this condition is necessary and sufficient for the dynamics
of both systems to be identical. However, if there is a species i with a positive initial
population that drops below the critical level n; at some point in time ¢t > 0 we infer from
our numerical examples that it either goes extinct or it recovers and eventually reaches its
stationary population level N°¢(ng, 7o) = N (ng,79) > #;. Conjecture (i) claims that,
under its presuppositions, it is not possible that N (ng,ro) > N5 (ng,ro) for all i and
N5 €]n;, 0] for some i. Conjecture (ii) formalizes our claim that a species either goes
extinct or reaches the stationary point of the reference system (22). Conjecture (iii) asserts
a positive correlation between the size of habitat and species diversity. Conjecture (iv)
claims that the stationary state reached depends on the initial populations which means,

essentially, that the ’speed’ of habitat reduction matters with respect to species’ diversity.

Leaving these conjectures for future analytical exploration the major validated insight
from our preceding investigation is that the incorporation into the system (22) of Allee’s law
(i.e. the assumption that a species’ ability to reproduce is impaired when its population falls
short of a critical level), implies that the dynamics (22) diverge from that of the reference
system (22) in significant ways and the more so the smaller is the habitat. We showed
that a species existing in the initial state may not survive in the long run. Sustenance or

extinction depends, ceteribus paribus, on both the size of habitat and on initial populations.

4 Economic land use: social optimum versus laissez-faire

As announced at the end of section 2 we now take up the integrated model to explore
the issue of efficient economic land use or efficient nature protection, respectively. Recall
from section 2.1 that with given technologies and labor endowment the economic land use,
ry, is uniquely determined and time-invariant in the laissez-faire market economy. The
economic decision on economic land use makes the ecosystem dependent on the economy.

However, fixing the economic land use and, uno actu, the size of habitat has an impact on
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the supply of ecosystem services through complex intra-ecosystem interactions as shown in
section 3. Consumers demand and use ecosystem services and therefore their well-being
depends on the state of the ecosystem. However, we have shown that due to missing markets
(and separability assumptions) the laissez-faire economy doesn’t respond to changes in the

supply of ecosystem services (see footnote 9) indicating an inefficient resource allocation.

The present section serves to specify that allocative distortion by invoking a social
planner who includes the provision of ecosystem services into her optimization calculus and
respects, at the same time, the ecosystem allocation mechanism.?> We aim at determining
the optimal economic land use for comparison with the laissez-faire allocation of land.
Although various policy instruments are available for implementing the optimal partition
of land we don’t offer a comparative policy assessment but rather implicitly assume that
land use restrictions (land zoning legislation) are directly imposed. In the sequel we will
first address the optimality and misallocation issue for the ’static’ economy of section 2.1,

and after that we explore the consequences of an exogenously growing labor supply.

Recall that in the laissez-faire economy with competitive markets of section 2.1 the
land used for economic purposes, r,, has been determined in (12). Hence with time-invariant
labor endowment, /, the size of habitat turns out also to be time-invariant. To see whether

this allocation is efficient consider a Utilitarian social planner solving the problem
max /‘mUmeﬂa s.t. (1)-(6), (220)-(22), 14 < 7o = F —Tyy  (27)
0

where ¢ is a positive social discount rate and n. is the constant population of humans.
(27) is an optimal control problem where n;, ny and nz are state variables and all other
variables are controls. By means of substitution, all controls other than the variable ¢, can
be eliminated such that the Lagrangean associated to (27) reads

1
L = ncU{—Y[E—ET,R(ET)],T—R(f,«),nl,ng,ng}—i—)\nlanl [f—R(é,«),TLI,TLQ,TLg]

c

F Ay n2G? (01, 19, 3) + ApanaG® (ng, n3) . (28)

An interior solution to (28) satisfies?®

) U,«Rg I nlAan}ﬂRe

YR, —Y, = n, >0, 29
¢ — Y et U, (29)
) 3
Aop = Odn, = A, G =D NGl — U, i=1,2,3. (30)
k=1

25Tn principle, the social planner could include in her optimization exercise all biomass transactions which
is probably a more realistic procedure for agriculture than for wildlife. Since we don’t follow that approach

in the present paper, (27) may be interpreted as a secondbest optimization approach.
Z6Due to (18) and (23), (28) is not differentiable at n; = i; for i = 1,2,3. We restrict our attentions to

solutions in which this ’complication’ doesn’t matter.
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The first term on the right side of (29), n.U,R,/U, > 0, is the consumers’ aggregate
marginal willingness-to-pay for increasing the size of habitat through a small decrease in
labor input for economic land development. The second term on the right side of (29),
nl)\mG}nRZ/Uy > 0, represents the marginal social value of reducing economic land use
that consists of the (present value of the) beneficial effects of the increase in net offspring
generation brought about by a small expansion of habitat.?” Both these marginal social
benefits are not accounted for in the laissez-faire market allocation because maximizing
profits m, and 7, from (7) and (8) implies Y; R, = Y;. Consequently, the market allocation
doesn’t satisfy (29).

To obtain more specific information on the nature of the allocative distortion in the
market economy consider the function y =Y [( — ., R (¢,)] =: Y (£,) whose first derivative
is the left side of (29). Assuming that Y, > 0 and that Y and R are concave in ¢, we find
that Y is strictly concave in ¢, and attains its maximum at ?gr =Y,R;—Y,=0. Hence we

conclude:

(i) In each short-run equilibrium of the laissez-faire market economy, £, = ¢ is chosen
as to maximize the output of the consumer good. The corresponding size of habitat
is rdl =7 — R (M) for all ¢.

(ii) For each point in time, the social planner chooses ¢,; = 3, such that

Yo [0 =05, R(6G)] Re (67) > Ye [0 = 63, R(6)] -

rt’

Since this inequality holds if and only if ¥ (¢3) > 0, it follows that £5, < 2" and hence
o i=T— R (£5,) > r}! for all t > 0.

In other words, the optimal habitat is larger than the laissez-faire habitat at each point
in time implying that ecosystem services are underprovided in the laissez-faire market
economy. Although the equations (29) and (30) don’t contain enough information to fully
characterize the time sequence of 73, the optimal habitat cannot be expected to be time-

invariant, in general.

Our preceding exploration of the social planner’s allocation plan has been restricted
to interior solutions of (28). The implicit assumption underlying this restriction is that
along the entire optimal time path the populations of all species are positive. This, in
turn presupposes that the initial populations, i.e. n; for t = 0 and 7 = 1, 2, 3, support an

optimal long-run ecosystem equilibrium with positive stationary populations of all species.

2TOne may wonder why the marginal utilities U,, do not show up in the social planner’s solution (29)
as some kind of positive externality. The reason is that the beneficial effects of ni, ns and ng for the

consumers are captured indirectly only in (30) and in the values of U,., Uy, G} and A,, in (29).
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We don’t know how large this subset of initial populations is, but we know that for any
pair of different initial populations from this set the associated time paths of habitats
will generally differ. In sharp contrast, the laissez-faire habitat 7! remains unaffected by

variations in initial populations.

In search for further informative results we now restrict our focus to long-run interior
ecosystem equilibria defined by n; = )\nl = 0 for + = 1,2,3. Quite obviously, a long-run

equilibrium requires
Gl (rﬂa ny, Na, 713) — G2 (nla Na, 713) — G3 (712, n3) - O (31)
Due to (31), the equations (30) simplify to

3
OAne =D Ay Gh, + ncb; i=1,2,3, (32)

k=1
where the utility function U employed in (30) is replaced by the parametric function (3).

Simple but tedious calculations show that

ani - Bl’ an}ll = 52’ an}LQ = /637 an}L:g = /647 nQGil = 357
naGE = B, neGh, =B, mGh, =P, n3Go, =P, (33)
where f3; for i = 1,...,9 are parameters.?® Inserting (33) into (32) gives us®’

01 [(0 — Bs) (0 — Bo) — BrBs] + neb2B385(0 — Bo) + ncbs s s
(6 — B2) [(0 — Bs) (6 — Bo) — BrBs) — b5 [B3(6 — Bo) + Bafs]

Next we make use of the parametric production function (1) and the parametric utility

Any (34)

function (3) to rewrite (29) as

1-— 7?
(1-0) Lo _ nen A By, (35)
Ty cly

The consideration of r, =7 — ¢/{, and ¢, = { — ¢, in (35) yields

63 + (1 - 20)0 - 770(7%77 + )\mﬁl)EQ - (1 - O—)Cg - C(C + 577)(7%77 + )\nlﬁl)g
! oF " oF "
2
ar

The solution to (36) is the labor input £, = £ in the long-run ecosystem equilibrium. Since
an analytical solution is hard to obtain we will content ourselves with a few numerical
examples. For that purpose we reactivate the parameter values employed in section 3:
a; = oy = az3 = 0.5, e; =1, e = 1.85, e3 = 24, vy = 1.5, 7o = 1.2, v3 = 1.2,
NG ="ny =ng =2, 7 =832, 2, =24, 73 = 1.5, Z3 = 1, and add to them the following

economic parameters: 7 = 107°, n, = 100, o = 0.5, 6, = 0, = 03 = 1075,

28The derivation of (33) and the definition of 3; for i = 1,...,9 is provided in the Appendix.
29For the derivation of (34) we refer to the Appendix.
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labor endowment ¢ || 0.0013 | 0.005 0.1 0.3 1 5 10 100

laissez-faire ry 800.00 | 407.92 | 91.42 | 52.66 | 28.84 | 12.90 9.12 2.88

optimal 7 800.05 | 527.89 | 378.40 | 368.52 | 364.79 | 363.47 | 363.30 | 363.15

Table 2: Optimal vs. laissez-faire habitat for alternative labor endowments

Table 2 lists the long-run size of habitat in the laissez-faire economy and in the
social optimum for alternative labor endowments. Two remarkable features deserve to

be emphasized:

(i) In the laissez-faire economy, increasing economic pressure through successively increas-
ing labor endowments continuously and severely squeezes the habitat until hardly any

space for nonhuman species is left.

(ii) Growing economic pressure renders it optimal to expand economic land use at the
expense of habitat since the Utilitarian principle requires to balance benefits and costs
at the margin. However, unlike in the laissez-faire economy there appears to be a
lower bound for the optimal size of habitat with a significant area of land reserved for
the ecosystem. Consequently the allocative bias of the laissez-faire economy from the

ecosystem grows with increasing economic pressure.

It is plausible that these observations are not special features of the numerical ex-
amples on which the results in Table 2 are based. To substantiate that conjecture we will
modify the model of section 2.1 in one point only: the assumption of labor supply being
constant and time-invariant is now replaced by assuming that the labor supply grows ex-
ponentially in time: ¢, = fye“!, where w is a positive and constant growth rate. We need
not interpret this labor growth as physical growth (which is implausible when one keeps
constant the population n. of the human species) but we rather look at it as growth of labor
in efficiency units reflecting exogenous labor-saving technical progress. Such an approach
to technical change is very simple and stylized but it serves well our purpose of modelling

the growing pressure on the ecosystem of continuing productivity gains in the real world.

As a first step we will briefly consider the impact of exponential labor growth on the
allocation of the otherwise unchanged model of the laissez-faire market economy of section
2.1. Tt is obvious from equation (12) that the economic land use is now ever growing
which translates into an ever shrinking size of habitat. In fact we easily infer from (11)
that the labor input, /.., grows without bounds over time. Correspondingly, the parametric
functional form of the production function R from (2) implies that the economic land is
continously expanded over time until it eventually absorbs the entire available land area.

Hence the ecosystem with all its species is doomed.
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We don’t suggest this gloomy scenario as a realistic one regarding the long-run fate
of humanity and the ecosystem but rather look at it as a frame of reference for the social
planner’s partition of land between humans and nonhumans. The planner’s optimization
calculus is the same as in (28) except that £ is not a positive constant anymore but grows

autonomously in time according to ¢; = fye“t.

For this scenario we are able to show that there is £; > 0 such that the optimal time

path satisfies
tlgglo by =10 (37)

To prove this claim suppose the long-run optimal habitat converges to zero as in laissez-
faire or in other words ry — 0 is a long-run solution to the social planner’s optimization
problem (28). Note first that lim; ,o £, = 0 and lim,;_,» ¢, = 0o is a necessary condition
for ro — 0. Suppose now, contrary to our claim, that ¢, — 0 and hence r, — T is
optimal. Then limy, ¢, 7Y, = 00, limy, 0, 7Y, = 0, limg, o Ry = ¢, limy_,o U, = o0
and lim; ,,, 7y = 0. When this information is applied to (29) we find that the left side of
(29) converges to —oo whereas the right side of (29) converges to 0 such that the equation

(29) is violated. This contradiction proves that 7y — 0 is not a solution to (28).

In an effort to further specify the upper bound £ observe that the optimal time path is
still characterized by (29) and (30), and (31) through (36) apply correspondingly. Following

some rearrangement of terms (36) can be turned into

ort?, [(1 = 20)c = re(ne + n, )12,
H (eta ert) = + =
(1 —o)cly — cle+ 47)(nen + Ap, B1) (1 —o)cly — e+ 47) (nen + Ap, B1)
2
by — (e + A, i)™l = 0. (38)

(1 —o0)cly — c(c+ 7)) (nen + Apy B1)
Quite obviously, the term H (¢, ¢}) with function H from (38) is not zero, in general, for
any t € R,. However, in view of (38) and (37) it is true that

lim H (¢,,05) = 0. (39)
t—o00

In view of lim; , ¢; = oo and L’Hopital’s rule, (39) can be shown to imply

(7%77 + )\nlﬁl)c
F(nen + A 1) — (1 —0)

Clearly, ¢ is the long-run optimal labor input for economic land development. Via r; =

0=

(40)

R (£F) we calculate 7§ := 7 — R (¢¥) as the long-run optimal size of habitat. While in laissez-
faire the habitat is squeezed toward zero over time it turns out to be optimal to place a
lower bound on the size of habitat which reinforces and sharpens the comparative-static
results of Table 2.
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With the optimal labor input in land development converging to £ in the long run and
continuous exponential growth of labor supply it is clear that the growth of labor supply
will be absorbed in stepping up the production of the consumer good. In terms of the

formal model, observe that (1), (2) and (6) imply

U = Ugyt + (1 - U)nrltgrta (41)

. /01— -

by = — - & Uy, (42)
Pt Pt

where p; == by /l, T = y/x, for x =y, 0y, ¢, € and 9y = by Re/ry. Owing to (37) and
(2) we find that limy . 1.4 is positive and constant and that lim; ,., p; = 1. Therefore,
(41) and (42) yield

tlgilo by =l =w and tlgglo U = ow. (43)

The conclusion is that while the ecosystem converges to a long-run stationary equilibrium
with zero population growth the economy approaches an optimal steady state where the

consumer good (representing the national product) grows at the constant positive rate ow.

Due to our restricted focus on interior solutions in the preceding analysis we were
not able to address the question whether long-run optimality may be compatible with the
extinction of some or even all species. Our conjecture is that depending on the concrete
specification of all functional forms Y, R and U extinction may turn out to be optimal
under certain conditions. An exploration of this issue is beyond the scope of the present

paper, however.

5 Concluding remarks

The present paper investigates the impact of the economy on the ecosystem through eco-
nomic land use that deprives species of their habitat and the feedback effects from the
ecosystem to the economy through the provision of ecosystem services. This interdepen-
dence between the economy and the ecosystem calls for an integrated analysis of both
systems. Economists have a good understanding of how to model the allocation of land
and ecosystem services in the economy. However, to our knowledge the link between the
size of habitat, species diversity and the ecosystem’s supply of services to the economy
has not yet been modeled in a way that (i) accounts for interdependent species in a dy-
namic ecosystem and (ii) is, at the same time, compact enough to allow for a tractable
integrated economy-ecosystem analysis. The core of the model presented here is a micro-

founded ecosystem submodel that is linked to the economy submodel via the allotment of
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land for habitat and via the supply of ecosystem services. The size of habitat is shown to
be an important factor for the population dynamics of all nonhuman species as well as for
their scarcity, abundance and (lack of) sustenance which in turn determines the provision

of ecosystem services.

The principal policy implication of our analysis is a rationale for restricting the laissez-
faire economic land use. Since ecosystem services have been assumed to be non-exclusive
public consumer goods, such a proposition doesn’t come too unexpectedly. However, the
theoretical foundation of the nature-protection results presented here is novel. Our results
are based on a rigorous economy-ecosystem analysis which explicitly specifies the intertem-
poral interactions and feedbacks within the ecosystem and between both subsystems. All
these interactions need to be taken into account in the design of land-use regulations aiming
at an efficient partition of total land for economic use and habitat, respectively. Most of the
extant environmental-economic modeling tends to offer a sophisticated and microfounded
analysis of the economic system whereas the environment is added as a small appendix
with the ecosystem as a black box. Our ecosystem-economy model does away with this

imbalance and reverses it, in fact.

Predator-prey relations are considered the driving force for intra-ecosystem interac-
tions. Using economic methodology (in particular price-taking maximizing behavior of
individual members of all species and the clearing of biomass markets through prices) we
derive (rather than assume) a system of differential equations of population growth that
allow to completely specify the intertemporal movement of populations for any given initial
populations and size of habitat. Note that although the well-established models of popula-
tion ecology, notably those of the Lotka-Volterra type and their refinements, also allow to
study such population dynamics they are not microfounded and their link, if any, between

population dynamics and the size of habitat is ad hoc.

Due to analytical complexity and limited space the dynamics of our 3-species-ecosystem
model have not been rigorously characterized in the present paper. However, section 3
revealed important properties of the population dynamics regarding, in particular, the
ecosystem’s response to changes in initial populations and habitat with special emphasis
on biodiversity and extinction. Although we find these dynamic ecosystem interactions
appealing and plausible, empirical tests of the model’s rich implications are an important

item on the future research agenda.
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Appendix

Definition of the functions M’ (-):

—aq

1
1 - =
M (e1,e,e5) = 7, - [ espisfiz + eapin + e1(1 — o) ] . "
(1 —a1)(espspz + e2ps + €1)
1 +(1 ) l—ao
a7 (e2 + e3p3) —v5° [ 1f3u37 —az)es } (1 —ay)es
M? (e1,€9,€3) = a ( a2)22(?ii?;+62)) o, (4db)
oy €3l +(1*CM )e o
L [(1*3;123)22(63u§+e22))} > (e2 + pses)
_ L
M (ersensea) = afz2 T 1= oo)es =: 3. (44c)
(v3/23 “%) s €3

We restrict our analysis to parameters satisfying M* (-) > 0.

Proof of property (i) on page 14: To prove (i) we show that the differential system

(22) is incompatible with n; = 0 if ny € R} . More specifically we show that lim,,_,o7; > 0
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which contradicts n; = 0. Observe that

&5}
] Ly = i Q . . 5 11—
nlllgoG () = nl}EO <n1> [(1—a1)z] V15 (45a)
. . niN3Q1€321 @2 C1l-a
lim ¢*() = | Ja- = 45b
a0 g na0 Lh (nzes +n1(1 —ar)er) (1= az)z] 7. (45b)
. weszy 1% L
| Gl . = - - - - . asz __ . 45
ns 30 ) {(1 — 062)62:| 3 V3 (45¢)

From (45a) it is obviously that lim,, o7, > 0 which establishes that n; = 0 cannot be
reached. Since n; > 0 we infer from (45b) lim,, ,ons > 0. Finally, lim,, ,on3 > 0 follows

due to the assumption that M? (-) > 0.

Derivation of (33): Note that B* | X*™! (-),z; — Z'(-) ,n;| = G* () for i = 1,2, 3, where

XO (TO, nl) = Q, (463)
ny
_ 3
niQ 2, Z~_ n;e;
X1 ) ) = =2 ’ 46b
(121,12, 123) Ny [nzez + naes +n1(1 — ar)e] e
X? (TLQ, n3) - N1202¢5%2 (466)

nzes + no(l — ag)es’

= 1— )z Y, nie;
2y maymy) = — ORI D e (46d)

b
nges + nges + nq (1 — aq)ey

5 1— ) S0, ne;
2 (npymy) = L 02)F 2t (46e)
nges + na(l — ag)es

Differentiation of (46a)-(46e) yields:

XO
X;)O = T—U, (478‘)
XO
3
XL o= X' 2z MiCi (47¢)

ny [n1(1 — 041)61 “+ Noeo + 7’L363],

1 No€o (E?:z TLZBi) + nses [n1(1 — O[1)€1 + ngegy + 71363]

X, = —-Xx' ; (47d)
n2 (Zz‘:Q ”iei) [n1(1 — ar)e; + ngey + nzes)
n1(1 — 041)6163
Xy = X' , (47¢)
(Zi:g niei) 1 (1 — aq)ey + ngey + nges)
X2 = x2.08. “ : (47f)
2 No TLQ(]_ — &2)62 + nses
2 2 €3
Xn3 = —-X*- (47g)

TLQ(]_ — &2)62 + 71363’
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3
ey Y i o N

7t o= 7t — : (48a)
' (Zi:l niei) [n1(1 — ay)er + ngey + nges

L = _7t. nie1e ’ (48h)
" (Zle niei) [n1(1 — aq)er + naey + nges)

gL g, ni €163 ’ (48¢)
" (Z?:1 niei) (1 (1 — aq)er + noes + nges|

7 = 72. Nnzip€z€3 , (48d)
" (Z?:2 niei) [n2(1 — ag)es + naes]

> 5 Naia€€

ZTZL?, - _7?. 2(2€2€3 (48¢)

(2?22 ”iei) n2(1 — ag)es + 71363]'

Next, the differentiation of G* and the consideration of (47a)-(48¢) as well as the steady

state condition B®(-) = 0 yield after tedious rearrangements

Gh = 2 (49a)
To
3 3
Gl = —am- (zi:1 niei) (zi:Z niei) —ni(l — an)ef (49D)
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" 21 1 [711(1 - a1)€1 + nges + ngeg]’
N3tp€9€3
G? = (1= )y,
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Finally, we apply (23) and (44) to establish

ani = v =: B,
510511 - (1 - al)e%

1 .
annl = —a171- BroBr2 =: 3,
1€1€9
nmGl = —(1—-a . =: (33,
e ( 24 BioBi2 i
Q1€1€3
n1G1 = — ]_ — 1)1 = 54,
" ( ) BroPiz
G2 . Bll .
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2Hme 2( 2) 2 Bi1 B3 e 2811 12 ‘
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2513
e
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13
where
Pro = €1+ paey + gjizes,
P11 = ees + l2fizes,
P2 = (1 —ay)es + poes + papses,
Pis = pa(l — ag)es + pofizes.

Derivation of (34): Using (50) in (32) we get

6>\n1 = 52)\n1 + 55>\n2 + ncgla
6)\712 - 63)%1 + 66)\712 + BS)‘TL?, + 71092,
6)\713 = 64)%1 + 67)\712 + 59)%3 + 71093.

Finally, the equation system (51) is solved to obtain

64)%1 + 67)\712 + n093

>‘n3 = )
0 — [o
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