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The paper uses both the single rotation and ongoing rotation framework to study the impact of 
yield tax, lump-sum tax, cash flow tax and tax on interest rate earnings on the privately 
optimal rotation period when forest value growth is stochastic and forest owners are either 
risk neutral or risk averse. In the case of risk-neutral forest owner higher yield tax raises the 
optimal harvesting threshold and thereby prolongs the expected rotation period. The same 
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expected rotation period shorter than under risk neutrality both in the single and ongoing 
rotation cases. Comparative statics of taxes are similar as under risk neutrality with the 
exception of cash flow tax, which may not be neutral anymore. Numerical results indicate that 
the optimal harvesting threshold both as a function of the yield tax and the forest value 
volatility increases more rapidly under risk neutrality than under risk aversion. 
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1 Introduction

The behavioral impacts of several kinds of forest taxes on privately optimal rotation age have
been studied both in the ongoing rotation Faustmann model, where the forest owner maximizes
the net present value of harvest revenue (see e.g. Chang 1982, 1983, Johansson and Löfgren 1985,
and Camponia and Mendelsohn 1987) and also in the Hartman type model (see Hartman 1986
and Samuelson 1976), where private landowners are interested not only in the present value of net
harvest revenue, but also in the private amenity services provided by forest stands (for behavioral
analysis, see Koskela and Ollikainen 2001 and for welfare analysis, see Koskela and Ollikainen
2003a, 2003b). If the amenity services matter for forest owners, then the conventional wisdom
concerning the effect of forest taxes on privately optimal rotation age, distilled from the basic
Faustmannian ongoing rotation framework, predominantly ceases to hold. This is simply because
in the Hartmannian framework with amenity services forest taxes affect the relative benefits of
timber revenue and amenity production in a way, which depends on the precise nature of amenity
valuation. An additional important aspect in terms of welfare analysis is the potential role of
externalities of amenity services of forest stands (see Englin and Klan 1990 and Koskela and
Ollikainen 2003a, 2003b). All these studies mentioned above, however, have made the heroic
assumptions of constant timber prices, constant total cost of clear-cutting and replanting as well
as constant interest rate, perfect capital markets and perfect foresight.

The perfect foresight assumption has been relaxed in studies focusing the implications of
stochastic timber prices (see e.g. Plantinga 1998, Insley 2002, and Gjolberg and Guttormsen
2002), risk of forest fire (see e.g. Reed 1984), and stochastic forest growth on optimal Faust-
mannian rotation age (see e.g. Willassen 1998, Sødal 2002, and Alvarez 2003) and as well as in
the study focusing the implications of variable and stochastic interest rate on Wicksellian single
rotation age (see Alvarez and Koskela 2003, 2004). But to our knowledge neither the behavioral
impacts of various types of forest taxes on privately optimal rotation age nor the optimal design
of forest taxes have not been studied in this literature with stochastic timber prices, risk of forest
fire, stochastic forest growth and interest rate. Thorsen 1998 has studied the case where forest
owners have two sources of taxable income, namely stochastic farm income and a controllable
income represented by the harvesting of a stock of timber. But in his paper land value is set to
zero. In this paper we analyze the unexplored issue of the behavioral effects of various types of
forest taxes on the private rotation decision under stochastic forest value growth. More precisely,
we study the impacts of (i) yield tax, i.e. tax levied on timber revenues, (ii) lump-sum tax,
(iii) cash flow tax and (iv) tax on interest rate earnings on privately optimal rotation age both
in the single rotation and in the ongoing rotation frameworks. Moreover, and importantly, we
study both the case when harvesters are either risk-neutral or when they are risk-averse. The
risk averse case has not to our knowledge been previously studied in stochastic rotation models.

We show in the case of a risk neutral forest owner that both in the single and ongoing
rotation frameworks increased yield tax and higher lump-sum tax increase the optimal harvesting
threshold and thereby lengthen the expected rotation period. The same qualitative result holds
in the case of interest rate earnings taxation, while the optimal harvesting threshold is shown to
be independent of the cash flow tax. If forest owners are risk averse, then the optimal harvesting
threshold is lower and the expected rotation period shorter than under risk neutrality both in the
single and in the ongoing rotation cases. Under risk aversion the effective forest value uncertainty
in the future is higher than under risk neutrality. Hence, risk averse harvesters typically want
to shorten the length of the rotation period. In the case of risk aversion higher lump-sum tax
increases the optimal harvesting threshold. As for the impact of other taxes increased yield tax
increases, while higher interest rate earnings tax decreases the optimal harvesting threshold. It is
also worth pointing out that under risk aversion the optimal harvesting threshold is not typically
independent of a cash flow tax. The reason for this result is that at the optimal threshold the
marginal expected net harvesting return has to be equal to the elasticity of the utility function.
Hence, the optimal threshold can be independent of the cash flow tax only if the elasticity is a
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constant which does not depend on the tax. As an interesting implication of this observation, we
find that a cash flow tax can be neutral even under risk aversion whenever the utility function is
iso-elastic (for example, of the HARA-type).

We proceed as follows: In section 2 we characterize the optimal rotation problem in the
presence of stochastic forest value growth and various types of taxes and explore the impact of
taxes on the optimal harvesting threshold and the value of the single rotation problem. Section 3
characterizes the optimal ongoing rotation problem in terms of the optimal harvesting threshold
and the expected cumulative net present value of future harvests the focus being in the potential
role of various types of taxes in terms of the harvesting threshold and the value of the ongoing
harvesting opportunity when harvesters are risk neutral. In section 4 we study the impact of
risk aversion on the relationship between various types of taxes on the harvesting threshold and
on the value of the ongoing harvesting opportunity and the optimal rotation policy in both
frameworks. In section 5 we present some numerical calculations concerning the relationship
between the harvesting threshold, taxes, volatility, and risk aversion. Finally, there is a brief
concluding section.

2 The Optimal Single Rotation Policy under Taxation and
Risk Neutrality

In this section we characterize the unexplored issue of the optimal rotation problem under various
types of taxes when risk-neutral forest owners are interested in the expected cumulative harvest
revenue in the presence of stochastic forest stand value. We proceed as follows: First, we specify
the dynamics of the system and define both the ongoing rotation and the single rotation problems.
Second, we characterize the optimal single rotation policy and its relationship both to forest value
volatility and to the following taxes: yield tax, lump-sum tax, tax on interest rate earnings, and
cash flow tax.

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space, and assume that the dynamics
of the controlled stochastic forest stand value growth are described by the generalized Itô-equation
(cf. Willasen 1998)

Xν
t = x +

∫ t

0

µ(Xν
s )ds +

∫ t

0

σ(Xν
s )dWs −

∑

τk≤t

ζk, 0 ≤ t ≤ τν(0), (2.1)

where τν(0) = inf{t ≥ 0 : Xν
t ≤ 0} ≤ ∞ denotes the potentially finite date at which the forest

stand value vanishes. The drift µ : R+ 7→ R and the volatility coefficient σ : R+ 7→ R+ are
assumed to be sufficiently smooth (at least continuous) mappings for guaranteeing the existence
of a solution for (2.1), and ν = ({τk}k≤N ; {ζk}k≤N )N≤∞ is an admissible cutting strategy for the
system (2.1). It is worth pointing out that N denotes the potentially finite number of rotation
cycles prior the forest stand value vanishes. Moreover, the rotation dates {τk}k≤N constitute an
increasing sequence of Ft-stopping times and the cutting values {ζk}k≤N constitute a sequence
of non-negative impulses. As usually, we assume that the system is instantaneously driven to a
known generic initial state x0 ∈ R+ whenever the irreversible harvesting decision is exercised.
Naturally, this means that if the forest stand is cut when the system is in the state y ∈ R+,
it is instantaneously driven to the new lower state x0 implying that ζ = y − x0. We denote
as V the class of admissible harvesting strategies ν = (τ1, τ2, . . . , . . . ; ζ1, ζ2, . . . )k≤N and assume
that τk → τν(0) almost surely for all ν ∈ V and x ∈ R+. We assume that the upper boundary
∞ is natural for Xν

t in the absence of regulation. Thus, although the value of the forest stand
may be expected to increase intertemporally, it is never expected to become infinitely high in
finite time. We also assume that if the lower boundary is regular for the diffusion in the absence
of harvesting, then it is killing (implying that the considered model is defined up to the first
time the forest value vanishes). As usually, we denote the differential operator associated to the
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controlled diffusion as

A =
1
2
σ2(x)

d2

dx2
+ µ(x)

d

dx
.

Before proceeding in our analysis we first denote as Xt the diffusion Xν
t in the absence of

interventions. As is well-known from the classical theory of diffusions, there are two linearly inde-
pendent fundamental solutions ψ(x) and ϕ(x) satisfying a set of appropriate boundary conditions
based on the boundary behavior of the underlying diffusion X and spanning the set of solutions
of the ordinary differential equation (Au)(x) = (1 − s)ru(x) (cf. Borodin and Salminen 2002,
pp. 18 - 19). Moreover, ψ′(x)ϕ(x) − ϕ′(x)ψ(x) = BS′(x), where S′(x) denotes the density of
the scale function of X and B > 0 denotes the constant Wronskian of the fundamental solutions
ψ(x) and ϕ(x). As we will later observe, it is the increasing fundamental solution ψ(x) which
plays a key role in the determination of the optimal rotation policy.

Given the stochastic forest stand value growth described in (2.1) and our assumptions, we
now determine the harvesting strategy which will maximize the expected cumulative net present
value of all future harvests from the present up to a potentially infinite future. Given our interest
on the impact of taxation on the optimal rotation policy and its value, we will assume that taxes
are constant so that each time the harvesting opportunity is exercised, the decision maker receives
an exercise payoff (1− t)x− (c+T ), where t ∈ [0, 1) measures the yield tax rate at which timber
revenues are taxed, c > 0 is a sunk cost capturing the direct costs of the irreversible decision (i.e.
the harvesting and replanting costs), and T is an exogenously determined parameter satisfying
the condition T > −c. Thus, if −c < T < 0 the term T can be interpreted as a lump-sum
subsidy. It is worth observing that if T = −tc, then the tax regime can be interpreted as a cash
flow tax. We will also assume that (1 − t)x0 < c + T and that interest earnings are taxed at a
rate s ∈ [0, 1]. Consequently, given the description of the revenues associated to the irreversible
harvesting decision, our objective is to study the following optimal rotation problem

V (x) = sup
ν∈V

Ex

[
N∑

k=1

e−(1−s)rτk((1− t)Xν
τk
− (c + T ))

]
, x ∈ R+ (2.2)

and to determine an admissible cutting policy ν∗ ∈ V for which this maximum is attained. Hence,
we consider the rotation policy which will maximize the expected cumulative net present value
of the future harvests from the present up to a potentially arbitrarily distant future.

Given our assumptions above, we now define the value of the associated single rotation prob-
lem as

J(x) = sup
τ<τ(0)

Ex

[
e−(1−s)rτ ((1− t)Xτ − (c + T ))

]
, (2.3)

where τ is an arbitrary Ft-stopping time satisfying the condition τ < τ(0), where τ(0) = inf{t ≥
0 : Xt ≤ 0}. It is at this point worth defining the mapping θ : R+ 7→ R which measures the net
rate at which the timber revenues are appreciating as

θ(x) = (1− t)(µ(x)− (1− s)rx) + (1− s)r(c + T ).

It is worth observing that θ(x) can alternatively be interpreted as the rate at which the net
harvesting yield is expected to increase by postponing the irreversible harvesting decision for
an infinitesimally short period of time. We shall assume throughout this study the absence of
speculative bubbles condition

Ex

∫ τ(0)

0

e−rs|θ(Xs)|ds < ∞.

This guarantees the existence of the expected cumulative present value of the flow θ(x) meaning
that the value of the optimal policy is finite. Our main result characterizing the optimal single
rotation policy and its value under risk neutrality are now summarized in our next lemma.
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Lemma 2.1. Assume that there is a threshold x̌ ∈ R+ such that θ(x) T 0 when x S x̌. Then
under risk neutrality there is a harvesting threshold

x∗ = argmax
{

(1− t)x− (c + T )
ψ(x)

}

satisfying the ordinary first order condition (1− t)ψ(x∗) = ψ′(x∗)((1− t)x∗−(c+T )). Especially,
τ∗ = inf{t ≥ 0 : Xt 6∈ (0, x∗)} is the optimal rotation date and the value of the single rotation
problem reads as

J(x) = ψ(x) sup
y≥x

[
(1− t)y − (c + T )

ψ(y)

]
=

{
(1− t)x− (c + T ) x ≥ x∗

(1− t) ψ(x)
ψ′(x∗) x < x∗.

(2.4)

Proof. See Appendix A.

Lemma 2.1 states a set of weak conditions under which the associated Wicksellian single
rotation problem is solvable and under which the optimal rotation policy can be described in
terms of a single optimal harvesting threshold at which the harvesting opportunity should be
exercised. It is worth noticing that at the optimal harvesting threshold x∗ we have

(1− t)x∗ + max(−T, 0) = J(x∗) + c + max(T, 0). (2.5)

This means that at the optimum the project value (after-tax timber revenues + subsidy) has to
coincide with its full cost (lost option value + costs + lump sum tax payments). As we will later
observe, it is this balance equation which differs in the ongoing rotation case, since in that case
the harvesting opportunity is valuable even after the harvesting opportunity has been exercised.
A key implication of Lemma 2.1 is now summarized in the following.

Corollary 2.2. Assume that the conditions of Lemma 2.1 are satisfied, that the net appreci-
ation rate µ(x) − rx is non-increasing, and that limx↓0 µ(x) ≤ 0 whenever the lower boundary
0 is attainable for the forest value process Xt. Then the value of the optimal Wicksellian sin-
gle rotation policy J(x) is increasing and convex. Moreover, increased volatility increases its
value and postpones rational harvesting by expanding the continuation region where harvesting is
suboptimal.

Proof. See Appendix C.

Corollary 2.2 states a set of typically satisfied conditions under which increased forest value
volatility increases both the value and the harvesting threshold of the optimal rotation policy. As
usually, the main reason for this finding is that higher forest value volatility increases the value
of waiting while leaving the expected net revenues from harvesting unchanged. Put somewhat
differently, as is clear from the balance equation (2.5), increased volatility increases the full costs
of the harvesting opportunity while leaving the project value unchanged and, therefore, tend to
increase the optimal harvesting threshold.

Now we are in position to explore the impact of taxes on the harvesting threshold x∗ and the
value J(x) of the single rotation problem. These findings are characterized in the following.

Corollary 2.3. When Lemma 2.1, characterizing the optimal single rotation policy, holds

(A) higher yield tax increases the optimal harvesting threshold and decreases the value of the
harvesting opportunity;

(B) higher lump-sum tax increases the optimal harvesting threshold and decreases the value of
the harvesting opportunity;

(C) higher taxation of interest rate earnings increases both the optimal harvesting threshold and
the value of the harvesting opportunity by decreasing the after tax discount rate.

4



Moreover, if T = −tc then the optimal harvesting threshold is independent of the cash flow tax.

Proof. See Appendix D.

These results are natural and their interpretation goes as follows. In the case of yield tax,
lump-sum tax and interest rate tax, higher taxes will increase the optimal harvesting threshold.
A rise in the yield tax decreases the net return from harvesting while leaving the costs unchanged.
Therefore, a higher yield tax decreases the value of the optimal harvesting policy and increases
the optimal rotation threshold. A higher lump-sum tax is equivalent to a higher harvesting and
replanting cost. Thus, a higher lump-sum tax increases the costs associated with harvesting
while leaving the timber revenues unchanged. Hence, it decreases the value of the optimal policy
and increases the optimal harvesting threshold. Finally, a cash flow tax is neutral since while an
higher cash flow tax decreases the net timber revenues it simultaneously decreases the harvesting
costs in the same proportion (cf. Smith (1963)).

3 The Optimal Ongoing Rotation Strategy under Taxation
and Risk Neutrality

We now consider the ongoing rotation problem (2.2) when harvesters are risk neutral. We proceed
as follows. First, we characterize the optimal rotation policy in terms of the optimal harvesting
threshold and the expected cumulative present value of future harvests. We provide conditions
under which the problem is solvable and under which it can be described in terms of a unique
harvesting threshold. Second, we study the impact of the same taxes as earlier on the harvesting
threshold and the value of future harvesting opportunities.

Instead of tackling the stochastic impulse control problem via dynamic programming ar-
guments, we now consider the admissible ongoing rotation strategy characterized by a known
constant harvesting threshold at which the irreversible harvesting policy is exercised. Once the
harvesting policy has been exercised the forest value process is instantaneously driven to an ex-
ogenously given generic initial state at which the forest value process is restarted. More precisely,
we now plan to consider the admissible harvesting policy ν characterized by the sequence of har-
vests ζk = max(x, y)− x0, k ≥ 1, and the sequence of harvesting dates τ1 = inf{t ≥ 0 : Xν

t ≥ y}
and τk+1 = inf{t ≥ τk : Xν

t ≥ y}, k ≥ 1. Having characterized the considered harvesting strat-
egy, it is now clear that for all x < y we have the finding that the value of such a potentially
suboptimal cutting strategy reads as (cf. Alvarez 2004a)

Vy(x) = Ex

[
e−(1−s)rτy

(
(1− t)Xτy − (c + T ) + Vy(x0)

)]

= ((1− t)y − (c + T ) + Vy(x0))
ψ(x)
ψ(y)

, (3.1)

where τy = inf{t ≥ 0 : Xt ≥ y} denotes the first date at which the underlying value process Xt

exceeds the threshold y. Letting x tend to y yields

(1− t)y + Vy(x0) + max(−T, 0) = Vy(y) + c + max(T, 0). (3.2)

This states that for any harvesting threshold the value of the considered potentially suboptimal
ongoing rotation policy satisfies the familiar balance equation stating that the project value
(current after-tax timber revenues + future harvesting potential + subsidy) has to be equal to its
full cost (direct costs + lost option value + lump-sum tax payments). It is useful to compare this
equation with (2.5) which characterizes the optimal policy in the single rotation case. As one
can directly observe from (3.2) the main difference is the term Vy(x0) capturing the value of the
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future remaining harvesting opportunities which are naturally absent in the single rotation case.
Letting x ↓ x0 in (3.1) and reordering terms then yields that

Vy(x0) =
ψ(x0)((1− t)y − (c + T ))

ψ(y)− ψ(x0)
. (3.3)

Plugging now (3.3) into (3.1) then yields that for all x ∈ (0, y) we have

Vy(x) =
ψ(x)((1− t)y − (c + T ))

ψ(y)− ψ(x0)
. (3.4)

Consequently, we find that for all potentially suboptimal rotation policies described in the begin-
ning of this section the expected cumulative present value of the future harvests from the present
up to a potentially infinite future reads as

Vy(x) =

{
(1− t)x− (c + T ) + ψ(x0)g(y) x ≥ y

ψ(x)g(y) x < y,
(3.5)

where

g(y) =
((1− t)y − (c + T ))

ψ(y)− ψ(x0)
.

Standard differentiation now yields

g′(y) =
[(1− t)(ψ(y)− ψ(x0))− ψ′(y)((1− t)y − (c + T ))]

(ψ(y)− ψ(x0))2
. (3.6)

Therefore, if a threshold y∗ maximizing the mapping g(y) on the set (x0,∞) exists, it has to
satisfy the ordinary first order condition

(1− t)(ψ(y∗)− ψ(x0)) = ψ′(y∗)((1− t)y∗ − (c + T )). (3.7)

Our main result characterizing the optimal ongoing rotation policy and its value under risk
neutrality is now summarized in the following.

Proposition 3.1. Assume that the conditions of Lemma 2.1 are satisfied and that the net appre-
ciation rate µ(x)−rx is non-increasing, and that limx↓0 µ(x) ≤ 0 whenever the lower boundary 0
is attainable for the forest value process Xt. Then, there is a unique optimal harvesting threshold
y∗ satisfying the optimality condition (3.7). The expected cumulative present value of the future
harvests accrued by following the optimal harvesting policy reads as

V (x) =

{
(1− t)x− (c + T ) + ψ(x0)g(y∗) x ≥ y∗

ψ(x)g(y∗) x < y∗
(3.8)

and the optimal ongoing rotation strategy is characterized by the pair (τ∗k , ζ∗k), where ζ∗k =
max(x, y∗)− x0 is the optimal rotation size, τ∗1 = inf{t ≥ 0 : Xν

t ≥ y∗}, and τ∗k+1 = inf{t ≥ τ∗k :
Xν

t ≥ y∗}, k ≥ 1, denotes the sequence of optimal rotation dates. Moreover, V (x) is increasing
and convex and the marginal expected present value of the future harvests can be expressed as

V ′(x) = (1− t)min
(

1,
ψ′(x)
ψ′(y∗)

)
= (1− t)

(
1−

(
1− ψ′(x)

ψ′(y∗)

)+
)

. (3.9)

Proof. See Appendix E.
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Proposition 3.1 states a set of typically satisfied conditions under which the considered on-
going rotation problem is solvable and under which the optimal ongoing rotation policy can be
described in terms of an unique harvesting threshold at which the harvesting opportunity should
be exercised. As intuitively is clear, the value of the optimal rotation policy is increasing and
convex as a function of the current forest value. Interestingly, our results indicate that considered
rotation problem is strongly connected to traditional capital theoretic models since the marginal
value V ′(x) can be interpreted as the Tobin’s q associated with the considered harvesting prob-
lem (cf. Abel 1990 who provides an excellent survey of the classical q-theory of investment).
According to (3.9) the marginal value is dominated by the constant 1− t, that is, V ′(x) ≤ 1− t.
Thus, the optimal rotation rule actually states that harvesting is suboptimal as long as the value
accrued from harvesting yet another marginal falls short of its marginal return 1− t. It is worth
noticing that the second term in (3.9) (the option-like term) can be interpreted as the value of
waiting associated with the ongoing rotation policy in the sense that it measures the gain which
can be accrued from postponing the exercise of the harvesting opportunity. As intuitively is
clear, this gain vanishes at the optimal threshold when harvesting becomes optimal.

Next we ask: What is the effect of higher forest stand value volatility on the optimal harvesting
policy? We can show the following.

Proposition 3.2. Assume that the conditions of Proposition 3.1 are satisfied. Then, increased
volatility increases the value of the optimal rotation policy and prolongs the expected rotation
period by increasing the rotation threshold at which harvesting is optimal.

Proof. See Appendix F.

Proposition 3.2 extends the findings of Corollary 2.2 to the ongoing rotation case. Again we
find that although higher forest value volatility increases the expected net revenues it simultane-
ously raises the value of waiting by increasing the expected cumulative net present value of the
future harvesting opportunities. Since the latter effect dominates the former, we find that higher
forest value volatility unambiguously increases both the value of the optimal ongoing rotation
policy and the optimal rotation threshold.

Now we are again in the position to study the effect of taxes on the optimal harvesting
threshold y∗ and the value of the harvesting opportunity in the ongoing rotation framework.
Our qualitative results are now presented in

Proposition 3.3. Assume that the conditions of Proposition 3.1 are satisfied. Then,

(A) increased yield tax increases the optimal harvesting threshold and decreases the value of the
ongoing harvesting opportunity;

(B) an increase in the lump sum tax increases the optimal harvesting threshold and decreases
the value of the ongoing harvesting opportunity;

(C) higher taxation of interest rate earnings increases both the value and the optimal rotation
threshold of the ongoing harvesting opportunity.

Moreover, if T = −tc then the optimal ongoing rotation threshold is independent of the cash flow
tax.

Proof. See Appendix G.

According to Proposition 3.3 the qualitative effects of taxes are similar as in the case of the
single rotation problem (cf. Corollary 2.3). The main reason for this argument is essentially
the similarity of the first order conditions characterizing the optimal harvesting threshold (see
Lemma 2.1 and the first order condition (3.7)). The interpretation of this result goes in an
analogous way we presented after Corollary 2.3.

7



4 Stochastic Forest Value, Risk Aversion, and Taxation

Having considered the optimal rotation policy and the impact of taxes under risk neutrality, it
is our purpose in this section to analyze the impact of taxation on the optimal rotation policy in
the presence of risk aversion. We want to notice that to our knowledge this is an issue which has
not been previously analyzed in stochastic rotation models even in the absence of taxation. To
this end, we denote as U : R 7→ R the utility function of the harvester and assume that U(x) is
twice continuously differentiable, monotonically increasing and strictly concave. For the sake of
simplicity, we will also assume in this section that the lower boundary 0 is unattainable for the
underlying stand value dynamics Xt. Given these assumptions, define the mapping Λ : R 7→ R
measuring the growth rate of the expected net present value of utility as

Λ(x) =
1
2
(1− t)2σ2(x)U ′′(π(x)) + (1− t)µ(x)U ′(π(x))− (1− s)rU(π(x)),

where π(x) = (1− t)x− (c+T ), and assume that Λ ∈ L1(R+). It is our purpose now to consider
both the Wicksellian single rotation problem

J(x) = sup
τ<τ(0)

Ex

[
e−(1−s)rτU((1− t)Xτ − (c + T ))

]
, (4.1)

and the Faustmannian ongoing rotation problem

V (x) = sup
ν∈V

Ex

[
N∑

k=1

e−(1−s)rτkU((1− t)Xν
τk
− (c + T ))

]
, x ∈ R+. (4.2)

In the case of single rotation problem we can now establish the following

Proposition 4.1. Assume that there is a unique threshold x̌1 > 0 such that Λ(x) T 0 when

x S x̌1. Then, under risk aversion there is a unique optimal harvesting threshold

x∗ = argmax
{

U((1− t)x− (c + T ))
ψ(x)

}

satisfying the ordinary first order condition (1− t)U ′((1− t)x∗ − (c + T ))ψ(x∗) = ψ′(x∗)U((1−
t)x∗ − (c + T )). Especially, τ∗ = inf{t ≥ 0 : Xt 6∈ (0, x∗)} is the optimal rotation date and the
value of the single rotation problem reads as

J(x) = ψ(x) sup
y≥x

[
U((1− t)y − (c + T ))

ψ(y)

]
=

{
U((1− t)x− (c + T )) x ≥ x∗
ψ(x)(1−t)U ′((1−t)x∗−(c+T ))

ψ′(x∗) x < x∗.
(4.3)

Proof. See Appendix H.

Proposition 4.1 states a set of conditions under which the associated Wicksellian single rota-
tion problem in the presence of risk aversion is solvable and under which the optimal rotation
policy can be described in terms of a single harvesting threshold. Assuming that the net appre-
ciation rate µ(x)− rx is non-increasing we can now establish the following.

Proposition 4.2. Assume that the conditions of Proposition 4.1 are satisfied and that the net
appreciation rate µ(x) − rx is non-increasing. Then, increased forest stand value volatility in-
creases the optimal harvesting threshold x∗ and, therefore, prolongs the expected length of the
optimal Wicksellian single rotation period.

Proof. See Appendix I.
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Proposition 4.2 states a set of conditions under which the optimal rotation threshold is an
increasing function of forest value volatility. It is worth noticing that the effect of volatility
is essentially based on the convexity of the value function on the continuation region where
harvesting is suboptimal. Since this observation is closely related to our findings in the risk
neutral case as well, we next ask an important new question: How does risk aversion affect the
optimal harvesting threshold and thereby the expected length of the rotation period? We can
now establish the following.

Proposition 4.3. Assume that the conditions of Proposition 4.1 are satisfied and that the util-
ity function satisfies the condition U(π(x∗)) ≥ U ′(π(x∗))π(x∗). Then, the optimal harvesting
threshold is lower under risk aversion than under risk neutrality.

Proof. The first order optimality condition can be re-expressed as

(1− t)ψ(x∗) = ψ′(x∗)
U(π(x∗))
U ′(π(x∗))

.

Therefore, condition U(π(x∗)) ≥ U ′(π(x∗))π(x∗) implies that (1 − t)ψ(x∗) ≥ ψ′(x∗)π(x∗) from
which the alleged result follows.

Hence risk aversion will shorten the expected length of the rotation period compared with the
risk neutral case by lowering the optimal harvesting threshold. This result is of importance, since
it emphasizes the intertemporal aspect of risk arising from the time dependence of the driving
Brownian motion. Our result simply indicates that a risk averse harvester prefers less uncertain
returns. Therefore, the optimal harvesting threshold has to decrease.

Next we study the effects of the same taxes analyzed earlier in the case of risk neutrality. Our
main results on the comparative static properties of the single rotation problem are characterized
in the following.

Proposition 4.4. Assume that the conditions of Proposition 4.1 are satisfied. Then,

(A) increased yield tax decreases the value of the single harvesting opportunity and if the con-
dition of Proposition 4.3 is also satisfied, then increased yield tax increases the optimal
harvesting threshold as well;

(B) an increase in the lump sum tax increases the optimal harvesting threshold and decreases
the value of the single harvesting opportunity;

(C) higher taxation of interest rate earnings increases the optimal harvesting threshold and
decreases the value of the single harvesting opportunity by decreasing the after tax discount
rate.

A cash flow tax is not neutral.

Proof. The proof is analogous with the proof of Corollary 2.3.

According to Proposition 4.4 a higher yield tax decreases the value of a single rotation pol-
icy. The reason for this clear since a higher yield tax decreases the net timber revenues. The
monotonicity of the utility function then implies that it decreases the expected utility as well
and, therefore, the value of the optimal policy. A higher lump sum tax decreases the value of the
optimal policy and increases the optimal rotation threshold by increasing the harvesting costs
and, therefore, by decreasing the expected utility and increasing the break-even level at which
net harvesting revenues are equal to harvesting costs. Finally, higher taxation of interest rate
earnings increases the optimal harvesting threshold by decreasing the after-tax discount rate.
As usually, we observe that a cash flow tax is not neutral when forest owners are risk averse.
This result is essentially based on the observation that at the optimal threshold the marginal
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expected net harvesting return has to coincide with the elasticity of the utility function. There-
fore, the optimal harvesting threshold is independent of the cash flow tax only if the elasticity is
a constant.

Next we study the impact of taxes on the harvesting threshold and the value of the harvesting
opportunity in the presence of risk aversion under the Faustmannian ongoing rotation problem.
These findings are presented in the following.

Proposition 4.5. Assume that Λ(x) is non-increasing, that there is a unique threshold x̌1 > 0
such that Λ(x) T 0 when x S x̌1, and that limx↓x̃(1−t)U ′(π(x))(ψ(x)−ψ(x0))−ψ′(x)U(π(x)) > 0,
where x̃ denotes the break-even state satisfying the condition (1− t)x̃ = c + T . Then, under risk
aversion there is a unique optimal harvesting threshold

y∗ = argmax
{

U((1− t)x− (c + T ))
ψ(x)− ψ(x0)

}
∈ (x̃, x∗)

satisfying the ordinary first order condition (1 − t)U ′((1 − t)y∗ − (c + T ))(ψ(y∗) − ψ(x0)) =
ψ′(y∗)U((1−t)y∗−(c+T )). The expected cumulative present value of the future harvests accrued
by following the optimal harvesting policy reads as

V (x) =

{
U((1− t)x− (c + T )) + ψ(x0)G(y∗) x ≥ y∗

ψ(x)G(y∗) x < y∗
(4.4)

where

G(x) =
U((1− t)x− (c + T ))

ψ(x)− ψ(x0)
.

In this case, the optimal ongoing rotation strategy is characterized by the pair (τ∗k , ζ∗k), where
ζ∗k = max(x, y∗)− x0, τ∗1 = inf{t ≥ 0 : Xν

t ≥ y∗}, and τ∗k+1 = inf{t ≥ τ∗k : Xν
t ≥ y∗}, k ≥ 1.

Proof. See Appendix J.

Proposition 4.5 states a set of conditions under which the Faustmannian ongoing rotation
problem is solvable under risk aversion. It is worth noticing that, as intuitively is clear, the
conditions of Proposition 4.5 are stronger than the conditions of Proposition 4.1 guaranteeing
the existence of an optimal Wicksellian single rotation policy. More precisely, although the
growth rate of the expected net present value of the utility has to change sign on the state
space of the underlying forest value process in this case as well, it also has to be monotonic as
a function of the underlying forest value process in order to guarantee the uniqueness of the
optimal harvesting threshold.

Having established a set of sufficient conditions guaranteeing the existence and uniqueness
of an optimal ongoing rotation policy under risk aversion we next consider the impact of higher
forest value volatility on the optimal ongoing rotation policy and its value.

Proposition 4.6. Assume that the conditions of Proposition 4.5 are satisfied and that the net
appreciation rate ρ(x) is non-increasing. Then, increased forest stand value volatility increases
the optimal harvesting threshold y∗ and, therefore, prolongs the expected length of the optimal
Faustmannian ongoing rotation period.

Proof. The proof is analogous with the proof of 3.2.

Proposition 4.6 states a set of conditions under which higher forest value volatility unambigu-
ously increases the optimal harvesting threshold and, therefore, under which the required rate
of return is an increasing function of volatility. It is worth pointing out that as in the case of
Proposition 4.2, the net appreciation rate µ(x)− rx of the forest value is the principal determi-
nant of the sign of the relationship between forest value volatility and the optimal rotation policy
and, therefore, that the form of the utility function is of importance only in the determination
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of the optimal harvesting threshold. This observation is of interest since it demonstrates that
the sign of the relationship between forest value volatility and the optimal rotation policy is a
process-specific, not a payoff-specific, property (cf. Alvarez 2003). The effect of risk aversion on
the optimal harvesting threshold and thereby on the expected length of the rotation period is
now summarized in the following.

Proposition 4.7. Assume that the conditions of Proposition 4.5 are satisfied and that the util-
ity function satisfies the condition U(π(y∗)) ≥ U ′(π(y∗))π(y∗). Then, the optimal harvesting
threshold is lower under risk aversion than under risk neutrality.

Proof. The proof is analogous with the proof of Proposition 4.3.

Proposition 4.7 extends the results of Proposition 4.3 to the ongoing rotation case. More
precisely, it states a set of typically satisfied conditions under which the optimal harvesting
threshold is lower under risk aversion than under risk neutrality. The main reason for this
observation naturally is that the effective forest value uncertainty in the future under risk aversion
is higher than under risk neutrality. Hence, rational risk averse harvesters typically want to
shorten the expected length of the rotation period by lowering the optimal harvesting threshold.
Finally, the comparative static properties of the optimal rotation policy and its value as functions
of the considered taxes are now summarized in the following.

Proposition 4.8. Assume that the conditions of Proposition 4.5 are satisfied. Then,

(A) increased yield tax decreases the value of the ongoing harvesting opportunity and if the
condition of Proposition 4.7 is also satisfied, then increased yield tax increases the optimal
harvesting threshold as well;

(B) an increase in the lump sum tax increases the optimal harvesting threshold and decreases
the value of the single harvesting opportunity;

(C) higher taxation of interest rate earnings decreases the optimal harvesting threshold and
increases the value of the single harvesting opportunity by decreasing the after tax discount
rate.

A cash flow tax is not neutral.

Proof. The proof is analogous with the proof of Proposition 3.3.

According to Proposition 4.8 the qualitative effects of taxes on the optimal ongoing rotation
policy and its value under risk aversion are similar as in the case of the single rotation problem
(cf. Proposition 4.4). Again, this argument is essentially based on the similarity of the first order
conditions characterizing the optimal harvesting thresholds.

Note: It is worth observing that if the utility function of the decision maker is of the standard
HARA-type (cf. Merton 1971) U(x) = xγ/γ, where γ ∈ (0, 1) is a known exogenously determined
constant and 1 − γ measures the relative risk aversion of the forest owner, then the optimality
condition characterizing the Wicksellian rotation threshold reads as

(1− t)ψ(x∗) =
1
γ

ψ′(x∗)((1− t)x∗ − (c + T ))

and the optimality condition characterizing the Faustmannian rotation threshold reads as

(1− t)(ψ(y∗)− ψ(x0)) = ψ′(y∗)
1
γ

((1− t)y∗ − (c + T )).
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Hence, we observe that if T = −tc then the optimality conditions read as γψ(x∗) = ψ′(x∗)(x∗−c)
and γ(ψ(y∗)−ψ(x0)) = ψ′(y∗)(y∗−c) demonstrating that a cash flow tax is neutral in the HARA-
utility case. A second important observation is that

∂x∗

∂γ
=

ψ′(x∗)π(x∗)
γ(ψ′′(x∗)π(x∗) + (1− t)(1− γ)ψ′(x∗))

> 0

and that
∂y∗

∂γ
=

ψ′(y∗)π(y∗)
γ(ψ′′(y∗)π(y∗) + (1− t)(1− γ)ψ′(y∗))

> 0

proving that increased relative risk aversion (i.e. a decreased γ) decreases the optimal rotation
threshold x∗ and, therefore, shortens the expected length of the optimal rotation cycle both in
the Wicksellian single rotation and in the Faustmannian ongoing rotation framework.

5 Explicit Example

Having considered theoretically the relationship between various taxes and the privately optimal
rotation policy both in the single rotation and in the ongoing rotation frameworks when forest
owners are either risk neutral or risk averse we now illustrate our results more explicitly under
parametric specifications concerning the forest value process and utility function.

5.1 Risk Neutrality

In order to illustrate our results in the risk neutral case explicitly, we assume that the underlying
value process evolves according to an ordinary geometric Brownian motion described by the
stochastic differential equation

dXt = µXtdt + σXtdWt X0 = x ∈ R+,

where µ and σ are exogenously determined constants (cf. Clarke and Reed 1989). It is well-
known that in this case, the increasing fundamental solution, discussed in Section 3, reads as
ψ(x) = xκ, where

κ =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2(1− s)r

σ2

denotes the positive root of the characteristic equation σ2κ(κ− 1)− 2µκ− 2(1− s)r = 0.
Given these assumptions, we observe that if r > µ, which guarantees the finiteness of the

value of the optimal policy, then the value of the optimal single rotation policy reads as

J(x) = xκ sup
y≥x

[
y−κ((1− t)y − (c + T ))

]
=

{
(1− t)x− (c + T ) x ≥ x∗
(1−t)

κ xκx∗1−κ x < x∗,
(5.1)

where

x∗ =
(

1 +
1

κ− 1

)
(c + T )
(1− t)

denotes the optimal harvesting threshold. As one can see the optimal threshold depends on yield
and lump sum taxes, harvesting and replanting cost, as well as on the net interest rate as well
as drift and volatility parameters of the underlying forest value process.

On the other hand, we observe from Proposition 3.1 that if r > µ then the value of the
optimal ongoing rotation policy reads as

V (x) =

{
(1− t)x− (c + T ) + (1−t)

κ xκ
0y∗1−κ x ≥ y∗

(1−t)
κ xκy∗1−κ x < y∗

(5.2)
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where the optimal harvesting threshold y∗ < x∗ constitutes the unique root of the equation

(1− t)(y∗κ − xκ
0 ) = κy∗κ−1((1− t)y∗ − (c + T )),

which can be re-expressed as

y∗ =
κ(c + T )

(κ− 1)(1− t)
− xκ

0y∗1−κ

κ− 1
.

In order to compare the quantitative difference between the optimal thresholds x∗ and y∗ we
first observe that if (1 − s)r = kµ + 1

2σ2k(k − 1), where k ∈ R+, then κ = k. Therefore, if
(1− s)r = 2µ + σ2 then κ = 2,

x∗ =
2(c + T )
(1− t)

,

and

y∗ =
(c + T )
(1− t)

+

√
(c + T )2 − (1− t)2x2

0

1− t
∈

(
(c + T )
(1− t)

, x∗
)

.

It is, therefore, clear that in this special case the difference x∗ − y∗ between the single rotation
and ongoing rotation thresholds is a decreasing function of the yield tax t and the lump-sum tax
T .

5.2 Risk Aversion

In order to illustrate our general results explicitly in the case of risk aversion, assume that
the utility function of the decision maker is of the standard HARA-type (cf. Merton 1971)
U(x) = xγ/γ, where γ ∈ (0, 1) is a known exogenously determined constant measuring the relative
risk aversion of the forest owner. In that case, we observe that if (1 − s)r > γµ + 1

2σ2γ(γ − 1),
which guarantees the finiteness of the value of the optimal policy, then the optimal harvesting
threshold in the single rotation case satisfies the ordinary first order condition

(1− t)γx∗ = κ((1− t)x∗ − (c + T ))

implying that

x∗ =
κ(c + T )

(κ− γ)(1− t)
. (5.3)

Comparing this optimal harvesting threshold to the one in the case of risk neutrality suggests that
in the single rotation case risk aversion decreases the harvesting threshold thereby shortening
the the expected length of the optimal rotation period, ceteris paribus. It is also worth noticing
that the optimal rotation threshold is an increasing function of the parameter γ. Consequently,
our results unambiguously indicate that increased risk aversion decreases the optimal rotation
threshold and, therefore, shortens the expected length of the rotation period. Moreover, it is also
worth emphasizing that (5.3) clearly indicates that in the HARA-utility case a cash flow tax is
neutral. More precisely, if T = −tc then x∗ = κc/(κ− γ) which is independent of t.

In the ongoing rotation case the optimality condition reads as

(1− t)(y∗κ − xκ
0 ) =

κ

γ
y∗κ−1((1− t)y∗ − (c + T )). (5.4)

Unfortunately, determining the root of this equation is impossible in the general case. However,
if we again assume that if (1− s)r = 2µ + σ2 then κ = 2 and the optimality condition becomes

(1− t)(y∗2 − x2
0) =

2
γ

y∗((1− t)y∗ − (c + T )).
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This implies that

y∗ =
(c + T )

(1− t)(2− γ)
+

√
(c + T )2 − (1− t)2(2− γ)γx2

0

(1− t)(2− γ)
∈

(
(c + T )

(1− t)(2− γ)
, x∗

)

Moreover, since the HARA-utility mapping satisfies for all x ≥ x̃ the inequality

U(π(x))
U ′(π(x))

=
(

1 +
1− γ

γ

)
π(x) ≥ π(x),

we observe in accordance with the findings of Proposition 4.7 that risk aversion decreases the
optimal rotation threshold and, therefore, shortens the expected length of the optimal rotation
period in the ongoing rotation case as well. It is also worth noticing that as in the Wicksellian
single rotation case, a cash flow tax is again neutral. More precisely, if T = −tc, then the
optimality condition (5.4) reads as γ(y∗κ−xκ

0 ) = κy∗κ−1(y∗− c) which, in turn, implies that the
optimal rotation threshold is independent of t. Now we turn to look at numerical results.

In the ongoing rotation case the optimal harvesting threshold is illustrated in Figure 1 as a
function of the yield tax by using the assumptions: c = 1, T = 0, µ = 0.01, r = 0.03, σ = 0.01, s =
0, and x0 = 0.01. In accordance with our general findings, the exercise threshold increases non-
linearly as a function of the yield tax. Moreover, higher relative risk aversion, i.e. a lower γ, will
decrease the optimal harvesting threshold thereby shortening the expected length of the optimal
rotation period.

In Figure 2, we illustrate the optimal harvesting threshold as a function of the forest value
volatility and explore how it depends on the attitude towards the riskiness of forest stand value.
We use the following assumptions: c = 1, T = 0, µ = 0.01, r = 0.03, t = 0.1, s = 0, and x0 = 0.01.
As intuitively is clear, the optimal exercise threshold is a non-linear function of forest stand value
volatility both in the risk neutral and in the risk averse case. As was established in our general
analysis, the optimal rotation threshold is lower under risk aversion than under risk neutrality.
Moreover, as in the case of a yield tax, we find that higher relative risk aversion decreases the
optimal harvesting threshold and, therefore, shortens the expected length of the optimal rotation
cycle. However, it is worth mentioning that Figure 2 clearly indicates that the monotonicity of
the impact of higher forest value volatility depends heavily on the relative risk aversion of forest
owners. More precisely, Figure 2 indicates that the rate at which the optimal rotation threshold
increases as a function of forest value volatility decreases as the relative risk aversion of forest
owners increases.

6 Conclusions

In this paper we have used both the Wicksellian single rotation and the Faustmannian ongoing
rotation frameworks to explore for the first time the impact of several taxes on the private
optimal harvesting threshold and the expected rotation period when the forest stand value is
stochastic and forest owners are either risk neutral or risk averse. In stochastic rotation models
the risk averse case has not to our knowledge been studied even in the absence of taxation. More
precisely we have analyzed the effects of the following taxes on the harvesting threshold and
thereby on the expected length of rotation period: yield tax, lump-sum tax, cash flow tax and
the rate on interest rate earnings. First we characterized the optimal rotation problem in terms
of its solvability and presented weak conditions under which the optimal rotation policy can be
described in terms of a single harvesting threshold at which the optimal harvesting opportunity
should be exercised. Then we explored the impact of taxes on the optimal harvesting threshold
and thereby the expected length of rotation period in both frameworks when forest owners are
either risk neutral or risk averse.

When forest owners are risk neutral, we have shown the following results both in the single
rotation and in the ongoing rotation frameworks. Higher yield tax increases the optimal harvest-
ing threshold and thereby decreases the value of harvesting opportunity. The impact of higher
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Figure 1: The optimal harvesting threshold y∗ as a function of the yield tax rate t
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Figure 2: The optimal harvesting threshold y∗ as a function of volatility σ

lump sum tax is qualitatively similar. On the other hand, higher taxation of interest rate earn-
ings increases both the optimal harvesting threshold and the value of harvesting opportunity
by decreasing the after tax discount rate. Finally, the optimal harvesting threshold has been
shown to be independent of cash flow tax so that it is neutral in terms of rotation decisions.
Interpretations go as follows: higher yield tax decreases the net return from harvesting while
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higher lump-sum tax is equivalent to larger harvesting and replanting cost so that in both cases
the value of optimal policy goes down and the optimal harvesting threshold goes up. Higher tax
rate on interest rate earnings is equivalent to lower after tax discount rate so that the optimal
harvesting threshold goes up. Hence, in all these case taxes affect positively the expected length
of rotation period. The neutrality of cash flow tax is clear cut since changes in cash flow tax do
not affect the difference between the net timber revenues and the total harvesting and replanting
costs.

When forest owners are risk averse, we first have shown that the optimal harvesting threshold
is lower than in the risk neutral case both in the single rotation and ongoing rotation frameworks.
This is simply because uncertainty goes up over time and a risk averse harvester prefers less
uncertain returns. Thereby the expected length of rotation period is shorter under risk aversion.
In terms of the impact of taxes on the optimal harvesting threshold and the expected length
of rotation period we have shown that in the case of yield tax, lump-sum tax and taxation of
interest rate earnings the qualitative results are similar as under risk neutrality and interpretation
of results goes along similar lines. But the cash flow tax is no longer typically neutral in this
case. The reason for this observation is that at the optimal rotation threshold the marginal
expected net harvesting return has to be equal to the elasticity of the utility function of the land
owner. Therefore, the independence of the optimal rotation threshold can be guaranteed only
if the elasticity of the utility function is a constant. In line with this argument, we found that
a cash flow tax is neutral even under risk aversion as long as the utility function is iso-elastic
(for example, of the HARA-type). Finally, we have illustrated our results under parametric
specifications concerning the forest value process and the utility function of risk averse harvester.
We have shown that the optimal harvesting threshold as a function of the yield tax increases
nonlinearly, while higher relative risk aversion decreases the threshold. Moreover, the optimal
harvesting threshold as a function of forest value volatility increases more rapidly under risk
neutrality than under risk aversion.

An interesting and important further research question is, among others, the following: what
would be the optimal design of taxation from the point of view of the society in order to keep
the expected tax revenue from forests constant? Clearly our results partly suggest that forest
owners’ behavior in terms of risk attitude matters. Also tax reform issues under stochastic forest
stand value are currently open and our new results will provide a good background to study
these policy questions. An important research topic is also to study the impacts of taxation in
an extended framework where harvesters are interested not only in timber revenues but also in
amenity services provided by forests. From policy point of view this allows for possibility to
analyze the implications of public good aspects of forests in the stochastic rotation frameworks.
This is also a completely open issue under the stochastic framework.
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A Proof of Lemma 2.1

Proof. By following the proof of Lemma 2.3 in Alvarez 2004a, we can establish that

(1− t)
ψ(x)
S′(x)

− ψ′(x)
S′(x)

((1− t)x− (c + T )) = I(x),

where

I(x) =
∫ x

0

ψ(y)θ(y)m′(y)dy +

{
(c+T )B

ϕ(0) if 0 is attainable for Xt

0 if 0 is unattainable for Xt.

Our assumptions imply that I(x) > 0 for all x ≤ x̌. If x > K > x̌, then the identity

ψ′(x)
S′(x)

− ψ′(a)
S′(a)

= (1− s)r
∫ x

a

ψ(y)m′(y)dy

implies that

I(x) ≤ I(K) +
supy∈[K,x] θ(y)

(1− s)r

(
ψ′(x)
S′(x)

− ψ′(0)
S′(0)

)
.

However, since θ(x) < 0 for all x > x̌ and ψ′(x)/S′(x) → ∞ as x → ∞ since ∞ was assumed
to be a natural boundary, we find that I(x) ↓ −∞ as x →∞. Combining this observation with
the continuity and monotonicity of I(x) on [x̌,∞) then finally implies that there is a unique
threshold x∗ at which the equation I(x∗) = 0 is satisfied. Moreover, since

d

dx

[
(1− t)x− (c + T )

ψ(x)

]
=

S′(x)
ψ2(x)

I(x)

we observe that

x∗ = argmax
{

(1− t)x− (c + T )
ψ(x)

}
.

Having proved the existence and uniqueness of the threshold x∗ it now remains to establish
that the proposed value function indeed constitutes the value of the optimal rotation policy. To
this end, denote the proposed value as Jp(x) and observe that

Jp(x) = Ex

[
e−(1−s)rτ∗((1− t)Xτ∗ − (c + T ))

]

implying that J(x) ≥ Jp(x). To establish the opposite inequality, we first observe that Jp ∈
C1(R+)∩C2(R+\{x∗}), that Jp(x) ≥ max((1−t)x−(c+T ), 0), and that (AJp)(x) = (1−s)rJp(x)
on (0, x∗). However, since (AJp)(x) − (1 − s)rJp(x) = θ(x) < 0 on (x∗,∞) we find that the
proposed value constitutes a r-excessive majorant of the exercise payoff (1− t)x− (c + T ). Since
J(x) is the least of such majorants, we find that Jp(x) ≥ J(x) and, therefore, that Jp(x) =
J(x).

B Proof of Corollary 2.2

Proof. By Lemma 2.1 the value of the optimal rotation policy can be expressed as

J(x) =

{
(1− t)x− (c + T ) x ≥ x∗

(1− t) ψ(x)
ψ′(x∗) x < x∗.

On the other hand, as was established in Alvarez (2004a) the monotonicity of the appreciation
rate µ(x)− rx implies that ψ(x) is strictly convex on R+ and, therefore, that J(x) is convex as
well.
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Denote now as Ĵ(x) the value of the optimal single rotation policy associated to a less volatile
diffusion X̃t characterized by the volatility coefficient σ̃(x) satisfying the inequality σ̃(x) ≤ σ(x)
for all x ∈ R+. Since J ∈ C1(R+) ∩ C2(R+\{y∗}), J ′′(y∗±) < ∞, J(x) ≥ (1− t)x− (c + T ) for
all x ∈ R+, and

1
2
σ̃2(x)J ′′(x) + µ(x)J ′(x)− rJ(x) ≤ (AJ)(x)− rJ(x) ≤ 0

for all x ∈ R+\{y∗}, we find that J(x) constitutes a r-excessive majorant of the payoff (1 −
t)x − (c + T ) for the less volatile diffusion X̃t. Since J̃(x) is the smallest of these majorants,
we find that J̃(x) ≥ J(x) proving that increased volatility increases the value of the single
harvesting opportunity. Finally, if x ∈ Cσ̃ = {x ∈ R+ : J̃(x) > (1 − t)x − (c + T )} then
x ∈ Cσ = {x ∈ R+ : J(x) > (1− t)x− (c + T )} as well and, therefore, we observe that Cσ̃ ⊆ Cσ

which proves that increased volatility increases the optimal harvesting threshold.

C Proof of Corollary 2.3

Proof. As was established in the proof of Lemma 2.1 the optimal harvesting threshold x∗ satisfies
the condition

(1− t)ψ(x∗) = ψ′(x∗)((1− t)x∗ − (c + T ))

implying that

ψ′(x∗)x∗ − ψ(x∗) =
c + T

1− t
ψ′(x∗) > 0.

Define now the mapping F : (0, 1)× R+ 7→ R as

F (t, x) = (1− t)
ψ(x)
S′(x)

− ψ′(x)
S′(x)

((1− t)x− (c + T )).

Standard differentiation then yields that

Ft(t, x) =
ψ′(x)x− ψ(x)

S′(x)
Fx(t, x) = ψ(x)θ(x)m′(x).

However, since F (t, x∗) = 0 we find by ordinary implicit differentiation that

∂x∗

∂t
= − Ft(t, x∗)

Fx(t, x∗)
= −1

2
σ2(x∗)

ψ′(x∗)x∗ − ψ(x∗)
ψ(x∗)θ(x∗)

> 0

since x∗ is attained on the set where θ(x) < 0. Inequality ∂J(x)/∂t < 0 follows directly from the
definition of the exercise payoff. Proving part (B) of the corollary is completely analogous with
the previous analysis.

In order to consider the impact of increased taxation of interest income, denote as Jsi(x) the
value of the harvesting opportunity and as x∗i the optimal rotation threshold in the presence of the
tax rate si, i = 1, 2. Since Jsi(x) satisfies the variational inequality (AJsi)(x) ≤ (1− si)rJsi(x)
for all x ∈ R+\{x∗i } we find that if s1 ≥ s2 then

(AJs1)(x)− (1− s2)rJs1(x) ≤ −(s1 − s2)rJs1(x) ≤ 0

for all x ∈ R+\{x∗1} ∪ {x∗2} since Js1(x) ≥ 0. Moreover, since Js1(x) ≥ (1 − t)x − (c + T ) for
all x ∈ R+ we observe that Js1(x) constitutes a (1 − s2)r-excessive majorant (cf. Borodin and
Salminen 2002, pp. 32–35) of the underlying exercise payoff. Since Js2(x) is the least of these
majorants, we find that Js1(x) ≥ Js2(x) demonstrating that increased taxation of interest income
increases the value of the harvesting opportunity. In order to establish that increased taxation
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of interest income speeds up rational exercise of the harvesting opportunity, denote now as Ci =
{x ∈ R+ : Jsi

(x) > (1− t)x− (c + T )} the continuation region where exercising the opportunity
is suboptimal in the presence of the tax rate si. If x ∈ C2 then Js2(x) > (1 − t)x − (c + T ).
However, since Js1(x) ≥ Js2(x) we find that x ∈ C1 as well and, therefore, that C2 ⊆ C1 from
which the alleged result follows.

D Proof of Proposition 3.1

Proof. We prove the alleged result in two parts. First, we demonstrate that our assumptions
imply that there is a unique harvesting threshold satisfying the optimality condition (3.7) and
then we demonstrate that given this threshold the proposed value function indeed constitutes
the value of the optimal rotation policy. Define now the continuously differentiable mapping
K : (x0,∞) 7→ R as

K(x) = (1− t)(ψ(x)− ψ(x0))− ψ′(x)((1− t)x− (c + T )).

We immediately observe that

lim
x↓x0

K(x) = −ψ′(x0)((1− t)x0 − (c + T )) > 0,

K((1− t)/(c + T )) = (1− t)(ψ((1− t)/(c + T ))− ψ(x0)) > 0,

K(x∗) = −(1− t)ψ(x0) < 0,

and K(x) ≤ −(1− t)ψ(x0) on (x∗,∞) since (1− t)ψ(x) ≤ ψ′(x)((1− t)x− (c + T )) on (x∗,∞)
by the proof of Lemma 2.1. Consequently, equation K(x) = 0 has at least one root on (x0, x

∗).
In order to establish uniqueness, we first observe that standard differentiation of K(x) yields

K ′(x) = −ψ′′(x)((1− t)x− (c + T )) T 0 x S c + T

1− t

since the increasing fundamental solution ψ(x) is strictly convex. The uniqueness of the root of
equation K(x) = 0 now follows from the continuity and monotonicity of K(x) on ((c + T )/(1−
t),∞). It now remains to establish that the proposed value function satisfies the sufficient quasi-
variational inequalities

min{rV (x)− (AV )(x), V (x)− (1− t)x + (c + T )− V (x0)} = 0.

To accomplish this task, we first observe that (AV )(x) = rV (x) on (0, y∗) and that

(AV )(x)− rV (x) = (1− t)µ(x)− r((1− t)x− (c + T ))− r(1− t)
ψ(x0)
ψ′(y∗)

≤ r

(
(1− t)

[
ψ(x)
ψ′(x)

− ψ(x0)
ψ′(y∗)

]
− ((1− t)x− (c + T ))

)
,

since rψ(x) > µ(x)ψ′(x) by the strict convexity of ψ(x). Consequently, letting x ↓ y∗ yields

lim
x↓y∗

[(AV )(x)− rV (x)] ≤ r

(
(1− t)

ψ(y∗)− ψ(x0)
ψ′(y∗)

− ((1− t)y∗ − (c + T ))
)

= 0.

However, the monotonicity of ρ(x) implies that θ(x) is non-increasing as well and, therefore, that
(AV )(x) ≤ rV (x) on (y∗,∞). Consider now, in turn, the continuously differentiable mapping
∆(x) = V (x)− (1− t)x + (c + T )− V (x0). It is now clear that

∆(x) =

{
0 x ≥ y∗

(1− t) (ψ(x)−ψ(x0))
ψ′(y∗) − (1− t)x + (c + T ) x < y∗
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and, therefore, that

∆′(x) =

{
0 x ≥ y∗

(1− t) ψ′(x)
ψ′(y∗) − (1− t) x < y∗.

The convexity of ψ(x) implies that ψ′(x)/ψ′(y∗) < 1 for all x < y∗ and, therefore, that ∆(x) >
0 for all x < y∗. This demonstrates that V (x) indeed constitutes the value of the optimal
ongoing rotation problem (2.2). The monotonicity and convexity of V (x) follow directly from
the monotonicity and convexity of ψ(x). Finally, the representation (3.9) follows directly from
the definition of the value and the convexity of ψ(x).

E Proof of Proposition 3.2

Proof. Denote as ψ̃(x) the increasing fundamental solution of the differential equation

1
2
σ̃2(x)u′′(x) + µ(x)u′(x)− ru(x) = 0.

As was established in Proposition 3.8 of Alvarez 2004a, the fundamental solutions ψ(x) and ψ̃(x)
satisfy for all x ∈ (x0,∞) the inequality

ψ′(x)
ψ(x)− ψ(x0)

≤ ψ̃′(x)
ψ̃(x)− ψ̃(x0)

which, in turn, implies that

(1− t)− ψ′(x)
(ψ(x)− ψ(x0))

((1− t)x− (c + T )) ≥ (1− t)− ψ̃′(x)
(ψ̃(x)− ψ̃(x0))

((1− t)x− (c + T ))

for all x ≥ x̃, where x̃ denotes the break-even state satisfying the condition (1 − t)x̃ = c + T .
Consequently, we observe that

(1− t)− ψ̃′(y∗)
(ψ̃(y∗)− ψ̃(x0))

((1− t)y∗ − (c + T )) ≤ 0

which proves that increased volatility increases the optimal harvesting threshold. Establishing
that increased volatility increases the value of the harvesting opportunity is analogous with the
proof of Corollary 2.2.

F Proof of Proposition 3.3

Proof. As was established in the proof of Proposition 3.1 the optimal exercise threshold y∗

satisfies the ordinary first order condition

(1− t)(ψ(y∗)− ψ(x0)) = ψ′(y∗)((1− t)y∗ − (c + T ))

implying that

ψ′(y∗)y∗ − (ψ(y∗)− ψ(x0)) =
c + T

1− t
ψ′(y∗) > 0.

As in the proof of Corollary 2.3, define the continuously differentiable mapping G : (0, 1)×R+ 7→
R as

G(t, x) = (1− t)(ψ(x)− ψ(x0))− ψ′(x)((1− t)x− (c + T )).
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Standard differentiation yields

Gt(t, x) = ψ′(x)x− (ψ(x)− ψ(x0))
Gx(t, x) = −ψ′′(x)((1− t)x− (c + T )).

Therefore, implicit differentiation of the first order condition G(t, y∗) = 0 yields

∂y∗

∂t
=

(c + T )ψ′(y∗)
(1− t)ψ′′(y∗)((1− t)y∗ − (c + T ))

> 0,

since ψ′′(y∗)((1 − t)y∗ − (c + T )) > 0 at the optimal boundary. Establishing that increased
revenue taxation decreases the value of the ongoing harvesting opportunity follows directly from
the definition of the auxiliary mapping g(y) and the exercise payoff (1 − t)y − (c + T ). This
proves part (A) of our Proposition. Establishing part (B) is completely analogous. In order to
establish part (C) we first observe that the value of the ongoing harvesting opportunity at the
regeneration state x0 can be re-expressed as

Vy(x0) = ((1− t)y − (c + T ))
ψ(x0)/ψ(y)

1− ψ(x0)/ψ(y)
= ((1− t)y − (c + T ))

Ex0

[
e−(1−s)rτy

]

1−Ex0

[
e−(1−s)rτy

] .

Define the mapping β : (0, 1) 7→ R+ as β(s) = Ex0

[
e−(1−s)rτy

]
, where τy = inf{t ≥ 0 : Xt ≥ y}.

It is now a simple exercise in ordinary differentiation to establish that β′(s) > 0 and, therefore,
that the fraction β(s)/(1−β(s)) is non-decreasing as a function of the tax rate s. Consequently,
we find that increased taxation of interest income increases the value of the ongoing harvesting
opportunity at the generic initial state x0. However, since

Vy(x) = ((1− t)y − (c + T ) + Vy(x0))Ex

[
e−(1−s)rτy

]

we find that increased taxation of interest income increases the value of the ongoing harvesting
opportunity at all states. It remains to establish that increased taxation of interest income
increases the optimal rotation threshold. To see that this is indeed the case, we first denote the
increasing fundamental solution of the ordinary differential equation (Au)(x) = (1 − s)ru(x) as
ψs(x). It is now clear from our analysis above that if s1 > s2 then ψs1(x)/ψs1(y) ≥ ψs2(x)/ψs2(y)
for all x ≤ y. Thus, we find that the mapping U : (x0, y) 7→ R+ defined as

U(x) =
ψs1(x)
ψs1(y)

− ψs1(x)− ψs1(x0)
ψs1(y)− ψs1(x0)

is non-negative, decreasing and satisfies the condition limx↑y U(x) = 0. Hence, we find that for
all ε > 0 there is a δ > 0 such that U(x) < ε for all x ∈ (y− δ, y). Therefore, we observe that for
all x ∈ (y − δ, y) we have

ψs1(x)− ψs1(x0)
ψs1(y)− ψs1(x0)

>
ψs1(x)
ψs1(y)

− ε ≥ ψs2(x)
ψs2(y)

− ε ≥ ψs2(x)− ψs2(x0)
ψs2(y)− ψs2(x0)

− ε,

which finally implies that

ψ′s1
(y)

ψs1(y)− ψs1(x0)
≤ ψ′s2

(y)
ψs2(y)− ψs2(x0)

for all y ∈ (x0,∞). Define the continuously differentiable mapping G̃ : (0, 1)× R+ 7→ R as

G̃(s, x) = (1− t)(ψs(x)− ψs(x0))− ψ′s(x)((1− t)x− (c + T )).

It is then clear that above the break-even level (c + T )/(1− t) we have

G̃(s1, x) ≥ (ψs1(x)− ψs1(x0))
(ψs2(x)− ψs2(x0))

G̃(s2, x)

from which the alleged result follows.
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G Proof of Proposition 4.1

Proof. Applying Dynkin’s proposition to the mapping x 7→ U(π(x)) yields

Ex

[
e−rτ∗U(π(Xτ∗))

]
= U(π(x)) + Ex

∫ τ∗

0

e−rsΛ(Xs)ds, (G.1)

where τ∗ = inf{t ≥ 0 : Xt 6∈ (a, b)} denotes the first exit time of the stand value diffusion Xt from
the open set (a, b), where 0 < a < b < ∞. As is known from the literature on linear diffusions,
the expected value appearing on the left hand side of (G.1) satisfies the ordinary second order
differential equation (Au)(x) = ru(x) subject to the boundary conditions u(a) = U(π(a)) and
u(b) = U(π(b)) (cf. Karlin and Taylor 1981, pp. 191–204). Hence, we find that left hand side of
(G.1) can be re-expressed as

Ex

[
e−rτ∗U(π(Xτ∗))

]
= U(π(a))

ϕ̂(x)
ϕ̂(a)

+ U(π(b))
ψ̂(x)

ψ̂(b)
,

where ψ̂(x) = ψ(x)−ψ(a)ϕ(x)/ϕ(a) denotes the increasing and ϕ̂(x) = ϕ(x)−ψ(x)ϕ(b)/ψ(b) the
decreasing fundamental solutions of the ordinary second order differential equation (Au)(x) =
ru(x) subject to the boundary conditions ψ̂(a) = 0 and ϕ̂(b) = 0 (given up to a multiplicative
constant). Similarly, the expected cumulative term on the right-hand side of equation (G.1)
satisfies the ordinary second order differential equation (Au)(x) − ru(x) + Λ(x) = 0 subject to
the boundary conditions u(a) = u(b) = 0. Consequently, we find that it can be re-expressed as

Ex

∫ τ∗

0

e−rsΛ(Xs)ds = B̂−1ϕ̂(x)
∫ x

a

ψ̂(x)Λ(y)m′(y)dy + B̂−1ψ̂(x)
∫ b

x

ϕ̂(x)Λ(y)m′(y)dy,

where

B̂ =
(

1− ψ(a)ϕ(b)
ϕ(a)ψ(b)

)
B

denotes the constant Wronskian of the solutions ψ̂(x) and ϕ̂(x). Combining these findings then
imply that

d

dx

[
U(π(x))

ψ̂(x)

]
=

S′(x)

ψ̂2(x)

[∫ x

a

ψ̂(y)Λ(y)m′(y)dy − BU(π(a))
ϕ(a)

]
,

which can be re-expressed as

(1− t)U ′(π(x))
S′(x)

ψ̂(x)− ψ̂′(x)
S′(x)

U(π(x)) =
∫ x

a

ψ̂(y)Λ(y)m′(y)dy − BU(π(a))
ϕ(a)

.

Letting a ↓ 0, invoking the unattainability of 0 for the underlying stand value diffusion, and
noticing that lima↓0 ψ̂(x) = ψ(x) then yields

(1− t)U ′(π(x))
S′(x)

ψ(x)− ψ′(x)
S′(x)

U(π(x)) =
∫ x

0

ψ(y)Λ(y)m′(y)dy,

since Λ ∈ L1(R+). Establishing now that the value of the optimal rotation policy reads as in
(4.3) and that the optimal stopping boundary

x∗ = argmax
{

U(π(x))
ψ(x)

}

exists and is unique is then completely analogous with the proof of Lemma 2.1.
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H Proof of Proposition 4.2

Proof. Consider the mapping Fσ : R+ 7→ R defined as

Fσ(x) = (1− t)U ′(π(x))
ψ(x)
ψ′(x)

− U(π(x)).

We observe that Fσ(x∗) = 0 and that

F ′σ(x) = (1− t)2U ′′(π(x))
ψ(x)
ψ′(x)

− (1− t)U ′(π(x))
ψ(x)ψ′′(x)

ψ′2(x)
< 0,

since the increasing fundamental solution ψ(x) is convex by the monotonicity of the appreciation
rate. Denote as ψ̃(x) the increasing fundamental solution associated to the less volatile stand
value dynamics characterized by the volatility coefficient σ̃(x) satisfying the condition σ̃(x) ≤
σ(x) for all x ∈ R+. As in the proof of Proposition 3.2 we observe that ψ′(x)/ψ(x) ≤ ψ̃′(x)/ψ̃(x)
implying that

Fσ(x) ≥ (1− t)U ′(π(x))
ψ̃(x)
ψ̃′(x)

− U(π(x)) = Fσ̃(x)

which proves that increased volatility increases the optimal harvesting threshold.

I Proof of Proposition 4.5

Proof. We first establish that given the conditions of our Proposition, the mapping

H(x) = (1− t)U ′(π(x))(ψ(x)− ψ(x0))− U(π(x))ψ′(x)

has a unique root on (x̃, x∗). It is now clear that our assumptions imply that

lim
x↓x̃

H(x) = (1− t)U ′(0+)(ψ(x̃+)− ψ(x0))− U(0+)ψ′(x̃+) > 0,

and that
H(x) < −(1− t)U ′(π(x))ψ(x0) < 0

for all x ≥ x∗. Hence H(x) has at least one root y∗ ∈ (x̃, x∗). To demonstrate that y∗ is unique,
we first observe by applying the proof of Proposition 4.1 that

d

dx

[
(1− t)U ′(π(x))

ψ′(x)

]
=

2rS′(x)
σ2(x)ψ′2(x)

∫ x

0

ψ(y)(Λ(x)− Λ(y))m′(y)dy ≤ 0

proving that (1− t)U ′(π(x))/ψ′(x) is non-increasing on R+. Since

H(x) = ψ′(x)
[
(1− t)U ′(π(x))

ψ′(x)
(ψ(x)− ψ(x0))− U(π(x))

]

we finally find that y∗ is unique.

J Proof of Proposition 4.6

Proof. The proof is analogous with the proof of Proposition 3.2 after re-expressing the optimality
condition as

(1− t)U ′(π(y∗))
(ψ(y∗)− ψ(x0))

ψ′(y∗)
= U(π(y∗)).
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