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Abstract 

This paper develops a mechanism design approach to study externalities and re-distribution. The 
mechanism screens individuals’ social weights to strike a balance among broad distributional 
objectives, incentives to work, and incentives to reduce externalities. The welfare-optimal 
allocation can be decentralized through income taxation, defining income-dependent externality 
payments. Two applications use individual-level administrative data on incomes, pollution 
measures, and financial burdens to demonstrate how population characteristics shape the optimal 
policy on carbon emissions. 
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1. INTRODUCTION

Grand externality problems call for grand policy solutions. However, these solutions may
encounter difficulties in gaining policy traction if the distribution of policy costs and
benefits is perceived as unfair. Economists generally accept that equity considerations
can distort policies when individuals’ economic outcomes are influenced by exogenous
factors such as background, ability, and health. The same principle can apply when so-
ciety shifts course to fight grand externality problems like climate change, resulting in
unanticipated and unequally distributed costs.
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To reduce inequality, efficiency may have to be compromised; for instance, setting
a corrective tax below the level considered efficient would reduce its burden. One could
also compensate individuals through direct transfers but, without complete informa-
tion, scarce funds might not reach those with the greatest needs. From a broader per-
spective, society already has tools to address inequality, notably progressive income tax-
ation and the associated transfers for redistribution. Could these also serve to tackle the
inequality from externalities and policies designed for them? The answer to this ques-
tion, as we find in this paper, has far-reaching consequences: efficiency-equity tradeoffs
for incomes and externalities are interconnected and must be addressed jointly. To do
so, we develop a mechanism design approach to jointly determine income and exter-
nality taxation.

In our model, the policy maker lacks knowledge of (i) how the externality affects each
individual, (ii) what financial burden the externality policy places on individuals’ private
economy, and (iii) what the income-earning potential of each individual is. The policy
maker has preferences for the distribution of outcomes, which we capture by welfare
weights. The weights encompass broad objectives, including efficiency-equity tradeoffs
for both incomes and externalities.

Our main result is that the optimal mechanism ties together individuals’ incomes
and corrective taxes, resulting in income-dependent pricing of externalities. Condition-
ing the externality tax on income leads to gains in both efficiency and equity.1 For an
inequality averse policy maker, the optimal income-dependent externality tax sched-
ule can be either progressive or regressive,2 and it can lie below or above the efficient,
Pigouvian level. These results are new and they can explain when there is a case for
stricter climate policies for the wealthy, as proposed in the World Inequality Report (Ch
6, 2022): “To accelerate carbon emissions reductions among the wealthiest, progressive
carbon taxes can become a useful instrument.”

The policy maker can infer the redistributive value of deviating from the efficient
corrective tax on externalities such as pollution by noting that either wealthier or poorer
people may find it easier to reduce tax burdens by polluting less. When there is a classical
preference for aversion to income inequality, we show that if the poor find it easier to
pollute less, the externality tax schedule generally deviates upwards for a transfer from
the rich to poor. Conversely, if the rich pollute less, the tax schedule deviates downwards
to limit an opposite transfer.

Another, distinct reason to deviate from the efficient corrective tax is aversion to in-
equality of cost burdens. For instance, the policy maker can be concerned about cost
burdens due to externality taxes, regardless of incomes of individuals who bear them.
This preference alone leads to a reduced corrective tax. The concern can depend on
income, as phenomena such as energy or transport poverty are amplified at lower in-
comes.3 In such situations, the policy maker could have a classical aversion to income

1In practice, one can make externality-related expenses deductible in income taxation, cover externality-
related expenses through social programs, or make the tax income-dependent directly. We discuss exam-
ples of these below.

2We call an externality tax progressive if the tax rate increases in income and regressive in the opposite
case.

3Energy poverty refers to a situation where a household cannot afford to pay their energy bills. In the
UK, a household is classified as “fuel poor” if the required fuel costs are at least 10% of the household’s
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equality and a parallel aversion to inequality of cost burdens, with the latter diminish-
ing in individuals’ incomes. Formally, we show that welfare weights that satisfy a certain
intuitive decreasing differences condition can capture such preferences.

The level of the corrective tax is intimately linked to the optimal shape of the tax
schedule, that is, to its progressivity or regressivity. Starting with a simple tax reform,
we develop three separate determinants of externality tax progressivity (regressivity), all
functions of income: (i) aversion to inequality of cost burdens, (ii) behavioral response of
emissions, and (iii) of earnings. For example, when the aversion to inequality of cost bur-
dens declines in income, the planner cares more about low-income polluters’ cost bur-
dens than those of the high-income polluters. This alone would lead the planner to im-
plement a progressive reform, that is, to choose a higher emissions tax for high income
brackets. Similarly for the other two determinants, when the behavioral responses of
emissions and earnings vary across income groups, the relevant efficiency-equity trade-
offs vary with income, which leads to a progressive reform under intuitive conditions.
Building on this preliminary analysis, we then develop determinants of progressivity
(regressivity) for the general optimal tax system.

For the general optimal tax system, we find a strong result on how the income tax
progression changes due to the externality. The income tax schedules are adjusted to
maintain, on average, the progressivity of the standalone income tax schedule that was
optimal prior to the externality problem. Thus, whether the efficiency-equity tradeoffs
call for progressive or regressive externality taxation, the mean progression of the tax
system is preserved. Intuitively, the externality problem does not change society’s taste
for redistribution between income groups, reflected by the original tax progression. To
preserve the overall progressivity, a reform that introduces progressive externality taxes
should be accompanied by a decrease in progressivity of income taxation, leading to an
income tax formulas that differ from those in the theory of optimal income taxation (e.g.,
Diamond, 1998, Saez, 2001). Notably, our formulas can lead to income tax progression,
even without a classical aversion to income inequality.

Real-life corrective policies, broadly interpreted, are increasingly conditioned on in-
come. California plans to introduce a system of income-based electricity charges to con-
sumers.4 In the U.S., household with gross income exceeding a certain limit are not qual-
ified to receive clean vehicle tax credits.5 In France, there has been an additional electric
vehicle subsidy to buy or lease a vehicle for low-income households.6 Carbon pricing in-
creases costs of electricity and natural gas to incentivize emission reductions, but many
countries grant low-income households subsidized rates even if they distort incentives.7

income before housing costs (see UK Office for National Statistics, 2023) Similarly, transport poverty refers
to situations where people do not have access to affordable transport options.

4The proposal is prepared by California Public Utilities Commission (2024a).
5The inflation reduction act grants vehicle tax credit, but households with gross income above a certain

threshold (e.g. $300,000 for married couples) are not eligible (Internal Revenue Service, 2024).
6The "ecological bonus” supports financial assistance to households who buy or lease a low-emissions

vehicle. Drivers with annual income less than a threshold (14,100e) receive an elevated subsidy (European
Commission, 2024).

7For instance, Low Income Home Energy Assistance Program (LIHEAP, Department of Health and Hu-
man Services, 2024) California Alternate Rates for Energy (CARE, California Public Utilities Commission,

https://www.ons.gov.uk/peoplepopulationandcommunity/housing/articles/howfuelpovertyismeasuredintheuk/march2023
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Our results contribute to a broader search for principles to assist policy makers in tailor-
ing policies to different income levels.

To help policy makers to see how the theory results can be applied, we consider two
empirical cases, both building on individual-level administrative data on incomes, pol-
lution measures, and financial burdens from the policy. In both applications, we use be-
havioral elasticities by income groups and a distribution of welfare weights in sufficient
statistics test for evaluating a tax reform.

The first application uses data for new vehicles, their owners, kilometers driven, and,
the incidence of taxes from Finland. People with lower incomes are more likely to buy
a polluting vehicle and thus polluters have relatively high welfare weights in the pop-
ulation. In this application, the optimal corrective tax is set below the level considered
efficient. Our sufficient statistics test shows that reforming the tax to become progres-
sive is welfare-enhancing. The second application uses data for electricity consump-
tion metered at a household level, and the type of contract. Households whose con-
tracts expired during the crisis were exposed to a price shock, allowing us to estimate the
semi-elasticity of consumption responses to a consumption tax among different income
groups. Wealthier households consume relatively more and, because they receive lower
weights than low-income households, the optimal tax on consumption is set above the
level considered efficient. The sufficient statistics test shows that in this application re-
forming the tax to become regressive increases welfare.

Literature. Our theory and empirical results amplify the relevance of earlier empirical
literature showing that carbon pricing policies can have potentially large distributional
ramifications (e.g., Känzig, 2023). The environmental economics literature has mostly
focused on inequality between income groups (vertical inequality) created by uncom-
pensated carbon pricing (West, 2004, Hassett et al., 2009, Grainger and Kolstad, 2010,
Williams III et al., 2015), but, more recently, large variation of policy cost incidence has
been documented also within income groups (Fischer and Pizer, 2019, Davis and Knit-
tel, 2019, Cronin et al., 2019, Pizer and Sexton, 2020, Douenne, 2020). This horizontal
inequality is often argued to be quantitatively important to the design of climate and en-
ergy policies. Our results show why horizontal equity matters and how it interacts with
vertical equity in the optimal policy design. Both dimensions are critical when ques-
tions such as “Should the policy treat low and high income polluters differently?” are
considered.

The current paper belongs to an emerging strand of the mechanism design litera-
ture emphasizing redistribution (e.g., Dworczak et al., 2021, Akbarpour et al., 2024b,a).
In this literature, Pai and Strack (2022) develop an optimal externality tax which is non-
linear in the agent’s consumption, depending on a relationship between the willingness
to pay and the social value of allocating consumption to the agent. The main difference
between our setting and the literature is that in our model incomes are observable and
endogenous depending on privately known abilities. The behavioral response related to
incomes is elementary for the mechanisms driving our results, differentiating us in the

2024b) provide a price reduction for low-income consumers. These subsidies increase production and
emissions, see Hahn and Metcalfe (2021).
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literature on redistribution mechanisms. In addition, our welfare objective allows rep-
resenting quite broad vertical and horizontal equity concerns. In developing this broad
objective, we build on the literature in assuming that agents’ behavior screens their wel-
fare weights.

The designer in our setting faces a screening problem in multiple dimensions, but
the core screening is about agents’ abilities and costs to participate in emissions reduc-
tions. Technically, this random participation model comes close to those in Rochet and
Stole (2003), Kleven et al. (2009), Lehmann et al. (2014), Ahlvik and Liski (2022). In this
main model, choices of earnings are continuous and participations to emissions reduc-
tion are discrete, but, as an extension, we develop a sufficient statistics result for contin-
uous choices in both dimensions.8

Our finding that the welfare-optimal externality payment is income-dependent is
new in the public finance literature. The main difference lies in our more general mech-
anism design approach without exogenous restrictions on the instruments available.
Pigouvian tax can be interpreted as a form of commodity taxation which should not be
distorted for equity reasons when consumption preferences are homogeneous accord-
ing to the famous Atkinson-Stiglitz theorem (1976). The result is known to break down if
marginal welfare weights correlate with consumption preferences (Saez, 2002).9 Similar
correlations arise in our model but in a different setting because taxes are directly con-
ditioned on incomes, resulting in nonlinear externality payments in income; in a very
different setting without externality policies, Ferey et al. (2023) derive jointly optimal tax
formulas for income and savings allowing earnings-dependent savings taxation.10

Organization of the paper. In Section 2, we introduce the direct mechanism and de-
velop the primitives of the allocation problem. In Section 3, we present our first theorem
for decentralization in which an income tax schedule and a linear tax on the externality
are optimally designed under the restriction that the two taxes are independent. This
benchmark result serves to introduce rudimentary efficiency-equity tradeoffs, some of
which extend to the general setting. In Section 4, we start by developing a sufficient
statistics for reforming the constant externality tax to exhibit dependence on income.
The formula developed serves to introduce three measures linked to welfare weights and

8For recent advances in multidimensional mechanism design and their application to income taxation,
see Spiritus et al. (2022) and Golosov and Krasikov (2023).

9See Allcott et al. (2019) for a corrective motive for taxation (internalities) in this setting.
10Related to the literature on the Atkinson-Stiglitz theorem, Kaplow (2012) and Jacobs and De Mooij

(2015) assume homogeneity of preferences with respect to the externality, which leads to a separation of
Mirrleesian and Pigouvian taxation. Cremer et al. (1998) and Cremer et al. (2003) characterize the optimal
tax also without homogeneity within income groups and show that the optimal externality taxation can
become nonlinear in quantities, but independent of income. Feger and Radulescu (2020) study the socially
optimal electricity pricing in an Atkinson-Stiglitz framework, and derive a model where (constant) exter-
nality prices deviate from the Pigouvian level. Hänsel et al. (2022) also note the importance of horizontal
inequality and the tradeoff between efficiency and equity that may arise from distorting the carbon tax
from the standard Pigouvian level. Douenne et al. (2023) study climate policies and inequality in a dynamic
Ramsey framework, in contrast to the mechanism design model considered in this paper. Bierbrauer (2023)
develops a sufficient statistics test for deviations from the uniform pricing of externalities between sectors
of the economy in an equilibrium setting.
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behavioral responses. The measures feature strongly in the main theorem and they will
be quantified in the applications. The main result of the section is the characterization
of the system of income taxes, defining also the externality payments. The decentraliza-
tion leads to a set of relatively general results on externality tax levels and tax progres-
sion both for direct income and externality taxes. In Section 5, we present extensions to
continuous choices, heterogeneity in emissions, tagging, and consider robustness with
respect to functional forms and welfare specifications. In Section 6, the results from the
two applications are summarized. The main appendix contains the proofs of the theo-
rems and details of the empirical applications. Other proofs are in the online appendix.

2. THE SET-UP

Assumptions. We consider a unit mass of individuals heterogeneous in their ability n ∈
[n,n] ⊂ R+, cost q ∈ R of switching from dirty to clean consumption, and benefit b ∈
R+ from a marginal reduction in aggregate pollution. An individual’s type θ = (n, q, b) is
privately known and distributed (independently of other individuals’ types) according
to a cumulative distribution function F and differentiable density f with full support on
[n,n] × R × R+. Marginal distributions are denoted by Fi, conditional distributions by
Fi|j , and hazard rates of marginal and conditional distributions by hi = fi/(1− Fi) and
hi|j = fi|j/(1− Fi|j) for i, j ∈ {n, q, b}.

Each individual makes observable (i.e., taxable) choices on how much to earn, y ∈
R+, and whether to reduce pollution, x ∈ {0,1}. Utility from choice (y,x) for type θ =

(n, q, b) is quasi-linear,

u(θ;y,x, t, x) = y− k(y,n)− xq+ bx− t, (1)

in which t ∈ R is a transfer to the agent, and x = E[x] ∈ [0,1] is the mean pollution re-
duction in the population. Ability n links to income y through cost of effort function
k(y,n). For exposition, we assume an iso-elastic parametric class, k(y,n) = ϵ

1+ϵ (
y
n )

1+ϵ
ϵ ,

with elasticity ϵ > 0, and show in the extensions that the main results hold under general
assumptions on earnings.11 Here y/n can be interpreted as the time an individual needs
to work to earn income y.

The revelation principle allows restricting attention to incentive-compatible direct
mechanisms. The mechanism (y,x, t) : Θ→R+×{0,1}×R assigns earnings, actions and
transfers to each private type so that individuals will want to self-select the treatment
designed for them:

θ ∈ argmax
θ′

u(θ;y(θ′), x(θ′), t(θ′),E[x]) (2)

for all θ ∈ Θ. Here, E[x] = Eθ∼F [x(θ)] so the individual’s payoff is affected by both the
action assigned to them and the actions assigned to others, but the economy is “large” in
that no single individual has a noticeable effect on the public-good provision (pollution
reductions), in contrast to Clarke (1971) and Groves (1973).

11The extensions also cover the case in which pollution emissions depend on earnings as, for example,
commuting can be an input to earnings.
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Each individual has a social welfare weight, ω ∈R++, with the mean over all individ-
uals normalized to one, E[ω] = 1. An individual’s welfare weight is not observable but the
government knows the joint distribution of ω and θ when designing (y,x, t) to maximize
social welfare

E[ωu(θ)] (3)

subject to incentive compatibility in (2) and budget constraint:12

E[t(θ)] = 0. (4)

That the government cannot observe the individual’s welfare weight is important: an
equity-efficiency tradeoff arises since the government has to rely on the joint distribu-
tion for (ω, θ) when attempting to identify those in need.13 We assume that the joint den-
sity distribution for (ω, θ) is continuously differentiable and that objective (3) remains
bounded for all admissible policies.

The distribution of weights allows representing society’s broad preferences for allo-
cations.

ASSUMPTION 1. (Vertical equity) E[ω|n] is strictly decreasing in n.

Throughout the analysis, unless otherwise explicitly stated, we hold this assumption
which captures aversion to inequality created by differences in ability. In any incentive-
compatible mechanism higher ability types will select into earning higher incomes than
lower types, and therefore the assumption captures aversion to income inequality in a
traditional sense. But even broader preferences for redistribution can be represented by
the distribution of weights:

ASSUMPTION 2. (Horizontal equity) For given n, the conditional weight E[ω|n, q]

(a) is strictly increasing in q

(b) is strictly decreasing in q

on its domain [n,n]×R.

Horizontal preferences are thus related to differences in individuals’ cost of reducing
emissions. Assumption 2a places a high weight on individuals who have high costs in a
given ability (income) class. This could hold, for example, for emissions of commuters
who cannot shift to public transportation but the same may not hold for emissions from
air miles for those who have a preference to fly for leisure, and then Assumption 2b may
be more appropriate. The dependence on q captures broad preferences for horizontal

12This can be alternatively seen as a resource constraint, because the aggregate consumption should not
exceed aggregate output: E[c(n, q)] = E[y(n, q)] where we define consumption c(n, q) = y(n, q)− t(n, q).

13That individuals cannot observe their welfare weight is not important. It can be shown that even if in-
dividuals could observe their own welfare weights, there is an optimal mechanism which does not ask indi-
viduals to report them. This is intuitive; individual’s own welfare weight does not affect private preferences.
A similar result appears in, e.g., Dworczak et al. (2021).
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equity, including the case that q correlates with some other underlying characteristics
that the policy maker cares about.14

We focus on mechanisms in which agents only report two dimensional type (n, q).
This is without loss of generality in the sense that welfare cannot be improved by reports
on b because private b does not affect preferences over allocations (y,x, t) assigned to
the individual, as shown by Lemma C.1 in Online Appendix C.9.

We assume that the mechanism cannot randomize the treatment.15 Then, from the
form of utility u, the Spence-Mirrlees condition holds in the y-dimension conditional
on x, implying that higher types n choose higher earnings than lower types n in both
clean (x = 1) and dirty classes (x = 0). The condition is also satisfied in the emissions
choice dimension, ∂2u/∂x∂q < 0, which together with separated preferences with re-
spect to earnings and emissions implies a cut-off cost q(n) for emissions reductions in
each ability class n. Those with q ≤ q(n) choose x= 1 and others choose x= 0.

Allocation problem. The allocation is characterized by (y0(n), y1(n), q(n))n∈[n,n], with
earnings depending on emissions choices x ∈ {0,1} and the associated transfers
(t0(n), t1(n)) satisfying the incentive-compatibility and budget constraints. Let v(n, q) =
u − bx be the private utility, net of the externality, which can be expressed as a sum of
“ground-level utility” and rents due to private information:

v(n, q) = v+R(n, q) (5)

where v is the utility for the lowest ability type n having high cost q > q(n), who thereby
receives no information rents.16 Term R(n, q) encapsulates the information rents held
by all other types:

R(n, q) =
[
−
∫ n

n
kn(y

0(s), s)ds
]
1q>q(n) +

[
q(n)− q−

∫ n

n
kn(y

1(s), s)ds
]
1q≤q(n). (6)

If q > q(n), the agent does not reduce emissions and earns only labor-related rents, the
first integral term.17 If q ≤ q(n), a second dimension of rents emerges if the agent can
reduce emissions with a cost lower than the marginal type. Intuitively, an individual
having a preference for the clean alternative, such as driving an electric vehicle, does
not incur a cost due to the policy. Rents earned in both dimensions n and q shape the
welfare objective of the designer.

14One interpretation is that the weights arise from a local approximation of a welfare function (see Sec-
tion 5), although an independent content for the horizontal equity concern in the welfare function repre-
sentation is subject to well-known challenges (Kaplow, 1989, Musgrave, 1990, Auerbach and Hassett, 2002).

15The mechanism treats individuals symmetrically: the allocation is function of type (n, q), not on indi-
vidual’s identity, and the allocation is deterministic. The assumption is common in random-participation
models; see Rochet and Stole (2003).

16With some abuse of the terminology, we call any such type the “lowest type”, though there is a contin-
uum.

17This is a well-known expression for information rents obtained from the incentive-compatibility con-
dition for earnings. In general, the payoff from integrating the IC condition takes the form u(θ) = u +∫ θ
θ uθ(s)ds for some utility u, type θ, and u = u(θ). Here, in our specific expression, the type varies only

in the ability dimension n having a direct impact on utility only through the cost function k(y,n).
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For the welfare objective, the ground-level utility is endogenous: it is set at a level that
exhausts the resources of the economy (budget) while respecting agents’ incentives. We
can solve the ground-level utility by taking the average over all individuals in equation
(5), using the budget constraint (4) as well as the definition of v(n, q):

v = E[y(n, q)− k(y(n, q), n)− x(n, q)q−R(n, q)] (7)

in which y(n, q) = y0(n)1q>q(n) + y1(n)1q≤q(n). Intuitively, v is the average earned in-
come, net of labor supply costs and abatement costs, minus the average rents. Using
equations (5) and (7), we can rewrite the welfare objective in (3) as:

E[ωu(θ)] = E
[
y(n, q)− k(y(n, q), n)︸ ︷︷ ︸

output

+(E[ωb]− q)1q≤q(n)︸ ︷︷ ︸
externality

+(ω− 1)R(n, q)︸ ︷︷ ︸
redistribution

]
. (3′)

The optimal earnings y1(n) and y0(n), and the margin q(n) maximize welfare with three
terms. The net output equals total earnings minus labor-supply costs. The externality
term is the weighted benefit, net of the cost of producing the externality. The redistri-
bution term is the weighted information rent, with mean-deviations in weights driving
departures from the efficient allocation of resources. That is, if all individuals had the
same weight, ω = 1, the choices would not be distorted from the efficient allocation.

Decentralization. With an appeal to the taxation principle we decentralize the alloca-
tion through transfer function t(y,x) decomposed into income tax T (y) and income-
dependent externality tax τ(y),18

t(y,x) = T (y) + (1− x)τ(y). (8)

To decentralize earnings
(
y0(n), y1(n)

)
, the marginal income tax should be equal to the

the marginal income net of marginal costs from earning the income19

T ′(y1(n)) = 1− ky(y
1(n), n) (9)

for those who reduce emissions and avoid the externality payment, and for polluters the
same condition is

T ′(y0(n)) + τ ′(y0(n)) = 1− ky(y
0(n), n). (10)

Additionally, the tax system incentivizes emission reductions x(θ) = 1 if

y1(n)− k(y1(n), n)− q− T (y1(n))≥ y0(n)− k(y0(n), n)− T (y0(n))− τ(y0(n)) (11)

and otherwise x(θ) = 0, with type q = q(n) being indifferent.

18The form of tax function in (8) is general enough to cover all possible allocations to be decentralized,
given our assumption that allocations cannot be randomized.

19The expressions here assume interior solutions and differentiable of tax functions. These assumptions
will hold by the properties of the allocations to be decentralized, given the parametric class for k(y,n).
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3. THE FIRST THEOREM: SEPARATED TAXATION

As a starter, the first theorem collapses earning schedules to one y(n) = y0(n) = y1(n)

by introducing a stand-alone income tax T (y) and a constant externality tax τ . While
this scheme is specific, the theorem serves to introduce important benchmarks for the
optimal mechanism.20

THEOREM 1. Restrict attention to a constant τ . For all n such that y(n) is strictly increas-
ing, the optimal allocation can be decentralized by tax schedule T (y) satisfying

T ′(y)

1− T ′(y)
=

(
1 +

1

ϵ

)(
1−E[ω|n′ ≥ n]

)1− Fn(n)

fn(n)n
, (12)

and it holds for any finite optimal τ > 0 that

τ =Bω +
1−E[ω|q > τ ]

hq(τ)
(13)

in which Bω = E[ωb] is the welfare-weighted Pigouvian price.

The income tax schedule follows Diamond’s famous ABC formula (Diamond, 1998),
modified here for our definition of welfare weights. Thus, A= 1+ 1

ϵ captures elasticity-
related efficiency distortion, B = 1−E[ω|n′ ≥ n] represents the preference for redistribu-
tion between ability (income) groups, and C = 1−Fn(n)

fn(n)n
characterizes the relative num-

ber of individuals responding to a marginal tax change. Importantly, while the constant
externality tax contributes to public funds and influences the level of income taxation,
it leaves income tax progression unaffected. Thus, because T (y) optimally trades off the
redistribution of rents and efficiency in earnings, the budgetary impacts of environmen-
tal taxation do not lead to “double dividend” by reducing income tax distortions in ad-
dition to environmental gains.21 All impacts of externality taxation on income taxation
are “budgetary”, a result that will change in our main theorem in Section 4.

The formula for the externality tax τ encapsulates three main motives for redistribu-
tion in this setting.

First, Bω = E[ωb] is the social benefit from potentially dispersed externality ben-
efits which leads to a redistributive deviation from the Pigouvian principle that “the
tax should reflect the harm”. Without any preference for redistribution, the Pigouvian
“price” on emissions would be E[b].

REMARK 1. The welfare-weighted Pigouvian price exceeds the unweighted price, Bω >

E[b], if and only if ω covaries positively with b, Cov(ω, b)> 0.

20In the corresponding direct mechanism the restriction means that action x only depends on q (then
q(n) = τ for all n ∈ [n,n]), and earnings y only depend on ability n (so y0(n) = y1(n) =: y(n)).

21This point is consistent with the literature; see, e.g., Jacobs and De Mooij (2015). A large literature on
the double dividend hypothesis considers other margins for distortions; see e.g. Goulder (1995), Bovenberg
and van der Ploeg (1994), Bovenberg (1999), Barrage (2020), Douenne et al. (2023).
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This follows directly from definitions, Bω = E[ωb] = E[ω]E[b] + Cov(ω, b). If those with
high welfare weight are hurt more by the externality (Cov(ω, b) > 0), then the external-
ity tax exceeds the expected benefit, all else equal. As b is not “contractable”, the policy
maker cannot reach welfare-improvements by targeted transfers.22

Second, term 1 − E[ω|q > τ ] captures differentials in cost burdens due to τ itself. It
represents the welfare effect when policies collect funds from polluters and distribute
them evenly throughout the entire population. Weight E[ω|q > τ ] is the mean welfare-
weight of those who continue polluting. The semi-elasticity of emissions with respect to

the tax, hq(τ) =
fq(τ)

1−Fq(τ)
, captures the behavioral response: if emissions reductions are

inelastic, hq is low and the tax has a small impact on the externality relative to the impact
on cost inequality.

PROPOSITION 1. (Horizontal equity) Suppose that either (i) n⊥⊥ q or (ii) E[ω|n] is invari-
ant in n. Then, the externality tax deviates from welfare-weighted Pigouvian price Bω :

(a) If horizontal equity Assumption 2a holds, τ < Bω .

(b) If horizontal equity Assumption 2b holds, τ > Bω .

A policy maker who has a horizontal equity concern as captured by Assumption 2a gives
a higher weight to polluters than to clean individuals, thus preferring to suppress pol-
luters’ costs by τ < Bω . However, polluters may receive a lower welfare weight, and then
Assumption 2b holds and the implications for the tax level are reversed.

The two premises in Proposition 1 are distinct. Independence n⊥⊥ q implies that the
share of clean individuals is the same across all income levels. The externality tax cannot
then screen ability and is therefore dependent only on how the policy maker weighs cost
burdens. The second premise is a failure of Assumption 1, introduced here to isolate the
pure horizontal equity concern. This assumption is consistent with a possibly different
distribution of q across incomes thus, for instance, allowing for more extreme costs at
higher incomes. Hence, the externality tax could screen ability, but if the policy maker
does not care about income inequality, it is again the horizontal concern that dictates
how the externality tax should be set.

Third, although the income tax schedule is the primary tool for dealing with the in-
equality due to ability differences, the externality tax can help to achieve the same goal
when abilities correlate with costs.

PROPOSITION 2. (Vertical equity) Suppose that E[ω|n, q] is invariant in q. It follows from
Assumption 1 that

(a) If n′ > n′′ implies Fq|n(q|n′)≥ Fq|n(q|n′′) for all n′, n′′ ∈ [n,n], then τ ≤Bω .

(b) If n′ > n′′ implies Fq|n(q|n′)≤ Fq|n(q|n′′) for all n′, n′′ ∈ [n,n], then τ ≥Bω .

22This informational assumption is one key difference to the broader environmental economics litera-
ture which has noted the importance of welfare-weighting for the social cost of carbon (Anthoff et al., 2009,
Dennig et al., 2015, Errickson et al., 2021) and for environmental valuation (Nurmi and Ahtiainen, 2018).
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The assumptions state that the policy maker has aversion to income inequality but the
welfare weights are invariant in the horizontal dimension. The stochastic dominance
condition indicates if the number of individuals who choose to become clean is larger
at low or high incomes when facing tax τ . In the first situation, lower incomes are as-
sociated with higher emissions reduction costs which calls for lowering the tax below
Bω as this mitigates a transfer from the poor to rich. In the second situation, relatively
more high-income earners self-select to pay the externality tax, and the transfer from
the rich to poor has a positive impact on redistribution. This result echoes the finding
that Atkinson-Stiglitz theorem breaks down when productivity and preferences are cor-
related (see e.g. Saez 2002, Jacobs and van der Ploeg 2019, Feger and Radulescu 2020,
and Ferey et al. 2023).

4. THE SECOND THEOREM: OPTIMAL TAX SCHEDULE

4.1 A simple reform: a sufficient statistics approach

We next move on to present our main results: how externality taxes and income taxes
should be linked in an unrestricted mechanism. We start by developing a sufficient
statistics for a simple reform that ties together income and externality taxation. To this
end, consider a simple reform increasing the marginal externality tax τ of Theorem 1
for some small interval [n,n + dn].23 This makes the externality tax progressive: all in-
comes y ≥ y(n + dn) face a higher tax rate, and thus higher costs of polluting by small
amount dτ . The simple reform is small and, by the envelope theorem, all direct utility
impacts from changes in behavior vanish, thereby leaving the potential gains to depend
only on the impacts of the reform on tax revenues (that are used for redistribution) and
environmental benefits. The tax revenues change through two channels. First, there is
a behavioral response of earnings to a higher marginal income tax. Second, more will
be collected from those who do not change behavior, that is, high-income individuals
who continue polluting. The joint welfare impact of these two effects together with the
third effect, the environmental benefit, can be expressed with the help of the following
definitions:

ξ1 =
1− Fq|n(τ |n)

1−E[Fq|n(τ |n′)|n′ ≥ n]
, ξ2 =

hq|n′≥n(τ,n)

hq(τ)
, hq|n′≥n(τ,n) =

E[fq|n(τ |n′)|n′ ≥ n]

1−E[Fq|n(τ |n′)|n′ ≥ n]
.

Term ξ1 is the relative share of polluters at n compared to the average share for n′ ≥ n. We
have ξ1 > 1 if high-income earners above the cut-off, n′ ≥ n, pollute less on average than
incomes at the cut-off. Term ξ2 measures the behavioral response of emissions as the
mean semi-elasticity among high incomes in comparison to that in the full population,
with ξ2 > 1 for more response among the high-income earners. Also, to save on notation,
ω = 1 is the mean weight in the full population, ω0 = E[ω|q > τ ] is the mean weight of
all polluters, ωn′≥n = E[ω|n′ ≥ n] is the mean weight of all high-income earners, and
ω0
n′≥n = E[ω|n′ ≥ n, q > τ ] is the mean weight of high-income polluters.

23Our simple reform agrees with the common definition given, e.g., in Bierbrauer et al. (2021), although
in our case the benefits of the reform include the impact on the externality.
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PROPOSITION 3. (Sufficient statistics) For the separated-tax policy (T (y), τ) in Theorem 1,
a simple reform marginally increasing externality tax for n′ ≥ n (progressive externality
tax reform) is welfare-improving if:

(ωn′≥n − ω0
n′≥n)− (ω− ω0)︸ ︷︷ ︸

(i)

+
(
ξ2 − 1

)
(ω0 − 1)︸ ︷︷ ︸

(ii)

+
(
ξ1 − 1

)
(ωn′≥n − 1)︸ ︷︷ ︸
(iii)

> 0.

A marginal decrease in the externality tax for n′ ≥ n (regressive externality tax reform)
is welfare-improving if the condition holds with less-than inequality (<). For a constant
carbon tax to be welfare optimal, the condition must hold with equality for all n.

The three terms comprise three distinct reasons for a progressive (regressive) reform.
Term (i) captures an intuitive social preference for caring more about low-income pol-
luters’ cost burdens than those of the high-income polluters. Formally, the term is pos-
itive if weights satisfy a decreasing differences condition: the gap in weights between
the polluters and the rest declines in income. This condition is satisfied, for example, if
polluters are assigned higher weights than non-polluters at low income levels but lower
weights than non-polluters at high income levels. This preference alone leads to opti-
mality of a progressive reform if n and q are not correlated (i.e., if ξ1 = ξ2 = 1).

Term (ii) isolates the reason linked to the environmental gain. When ω0 > 1, the op-
timal tax τ from Theorem 1 is below the welfare-weighted Pigouvian level Bω , and the
size of this deviation depends on the behavioral response of emissions to the tax in the
full population. The reform allows the designer to look at this behavioral response sep-
arately for the sub-population of high-income earners. If this response is bigger than in
the full population, ξ2 > 1, a progressive reform would correct the tax upwards, towards
Bw , to reduce the deviation. Analogously, if the optimal tax τ from Theorem 1 exceeds
Bw , the same behavioral response, ξ2 > 1, would justify a regressive reform.

Finally, term (iii) links to the earnings distortion. The optimal income tax T (y) sched-
ule in (12) trades off tax distortions at n against the redistribution benefits for the entire
mass n′ ≥ n. The simple tax reform creates a similar tradeoff, but only for those who
pollute. When ξ1 < 1 there is a small mass of polluters at n compared to the mass for
which the distributional benefits occur. As ωn′≥n < 1 by Assumption 1, there is a prefer-
ence for vertical redistribution and this would favor a progressive externality tax reform.
Likewise, ξ1 > 1 would support a regressive reform.

4.2 Pigouvian income tax schedule

The main theorem characterizes the welfare-optimal tax schedule in “ABC+D” format
in which D stands for the modification of ABC due to the externality. The tax schedule
decentralizes the optimal allocation

(
y0(n), y1(n), q(n)

)
n∈[n,n]

for the welfare objective

given in equation (3′). The Pigouvian income tax schedule is T (y) + τ(y) in which only
the polluters pay the income-dependent externality tax τ(y), defining the effective ex-
ternality payment for type n as

τn(n) = T (y0(n)) + τ(y0(n))− T (y1(n)).
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To simplify notation, let ω0
n = E[ω|n, q > q(n)] be the welfare weight of polluters at n, and

define ω1
n similarly for non-polluters.

THEOREM 2. (Pigouvian income tax schedule) A welfare-optimal allocation maximizing
objective (3) exists. For all n ∈ [n,n] such that y0 and y1 are strictly increasing, the optimal
allocation can be decentralized by tax schedules T (y) and τ(y) satisfying

T ′(y0) + τ ′(y0)

1− T ′(y0)− τ ′(y0)
=

(
1 +

1

ϵ

) E[(1− ω0
n′)(1− Fq|n(q|n′)) + (Bω − τn)fq|n(q|n′)|n′ ≥ n]

n(1− Fq|n(q|n))hn(n)
(14)

T ′(y1)

1− T ′(y1)
=

(
1 +

1

ϵ

) E[(1− ω1
n′)Fq|n(q|n′)−

(
Bω − τn

)
fq|n(q|n′)|n′ ≥ n]

nFq|n(q|n)hn(n)
(15)

in which τn = τn(n′).

The optimal tax schedules can be derived by showing that no small tax reform at
any n can improve welfare, as detailed in the Appendix (the full proof using optimal-
control methods is in the online appendix). Again, as for Proposition 3, three distinct ef-
fects arise: any small reform impacts tax revenues through earnings responses, taxes rich
polluters and redistributes to all individuals, and generates environmental benefits. We
unpack the substantial meaning of the optimal tax schedules in stages. The first result
shows that, quite remarkably, Proposition 1 generalizes to the welfare-optimal Pigouvian
income tax:

PROPOSITION 4. The results from Propositions 1-2 for the constant externality tax extend
to the optimal tax system given by formulas (14) and (15) in Theorem 2: the propositions
continue to hold with τ replaced by τ(y) for all y.

The externality tax schedule lies below or above the welfare-weighted Pigouvian price
Bω , depending only on the primitive vertical and horizontal equity assumptions in 1
and 2 and the joint distribution of n and cost q. When ability n and cost q are indepen-
dent, a general horizontal equity concern of Assumption 2 dictates if τ = τ(y) is below
or above Bω , as in Proposition 1. The same conclusion holds if there is no taste for ver-
tical income redistribution (failure of Assumption 1). In contrast, the second determi-
nant of the deviation from Bω is related purely to the vertical redistribution motive, as
in Proposition 2. Deviations from Bω allow screening individuals’ ability types through
their consumption behaviour for better outcomes for vertical equity. The externality tax
is distorted to fall below Bω at every ability level when lower incomes are associated
with higher costs of reductions in a stochastic dominance sense, and conversely for the
reversed association of costs and abilities.

The second result states that if the optimal externality tax is progressive (regressive),
then the base income tax is less (more) progressive than the stand-alone income tax
schedule:
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PROPOSITION 5. Let T and τ denote the optimal income and externality tax given by
formulas (14) and (15) in Theorem 2. Let T̂ denote the optimal stand-alone income tax
schedule in Theorem 1. Then:

(a) For any n ∈ [n,n], if τ ′(y0(n))≥ 0 then T ′(y1(n))≤ T̂ ′(y(n)).

(b) For any n ∈ [n,n], if τ ′(y0(n))≤ 0 then T ′(y1(n))≥ T̂ ′(y(n)).

Conditioning the externality tax on income allows utilizing the correlation of cost q be-
tween n and ω for gains in both equity and efficiency. Proposition 5 highlights that a
progressive externality tax (τ ′(y)> 0) is counter-balanced by decreased progressivity of
the base income tax, and, conversely, a similar counter-balance in the opposite direc-
tion occurs in the case of a regressive externality tax (τ ′(y) < 0). The Pigouvian income
tax strives to respect the vertical equity preference, which is the primitive preference be-
hind the stand-alone income tax schedule T̂ (y). We can see this precisely by merging the
income tax schedules from Theorems 1 and 2, giving

(1−Fq|n(q̄(n)|n))
T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
+Fq|n(q̄(n)|n))

T ′(y1(n))

1− T ′(y1(n))
=

T̂ ′(y(n))

1− T̂ ′(y(n))
.

The new income tax schedules are thus equal to the standalone schedule on average.
What then determines if the externality tax schedule should be progressive or regres-

sive? The sufficient statistics result in Proposition 3 provided hints of the determinants,
but a similar result for the welfare-optimal income tax schedule requires two additional
assumptions. The first assumption makes use of the following definition:

η(n, q) =
fq|n(q|n)

Fq|n(q|n)(1− Fq|n(q|n))
.

Intuitively, η measures the change of the pools of polluters and non-polluters due to a
marginal increase in q; it is the change in the “odds ratio” familiar from logistic regres-
sions.24

ASSUMPTION 3. (Bω − q)η(n, q) is non-increasing in q for all n ∈ [n,n], q ∈R+.

The assumption is satisfied, for example, for all Bω > 0 when q follows an exponential or
a logistic distribution.25 More generally, the assumption is satisfied by any cost distribu-
tion where the derivative of η(n, q) with respect to q is close enough to zero.

24Drop conditioning on n for the sake of illustration and consider a logistic regression model with a
constant tax τ predicting the behavioral response of emissions reductions Fq(τ) = (1 + e−(β0+β1τ))−1.
We would obtain by differentiating that it holds for the estimated parameters that β1 = η(τ).

25For exponential distribution, Fq|n(q|n) = 1−e−λ(n)q , the derivative of (Bω−q)η(n, q) w.r.t. q is always

negative as eλ(n)q > 1 + λ(n)q for all λ(n), q > 0. For logistic distribution, Fq|n(q|n) = (1 + e
− q−µ(n)

s(n) )−1

we have η(n, q) = 1/s(n) and therefore the derivative of (Bω − q)η(n, q) w.r.t. q is -1/s(n). Notice that
an exponential distribution of q is supported on a semi-infinite interval while according to our baseline
assumptions, the distribution of q is supported on the whole real line.
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The next assumption is on the joint distribution of welfare weight ω and cost q.
As before, weights ω0

n and ω1
n are the mean weights of polluters and non-polluters, re-

spectively, at given n, but to make the cut-off defining the two groups explicit, we write
ω0
n(q̃) = E[ω|n, q′ > q̃], and similarly for ω1

n(q̃) = E[ω|n, q′ ≤ q̃] for some arbitrary cut-off q̃.

ASSUMPTION 4. ω0
n(q̃)− ω1

n(q̃) is non-decreasing in q̃ for all n ∈ [n,n], q̃ ∈R+.

Slightly simplifying, the assumption states that at a given ability level n, increasing the
externality payment should not decrease the difference between the mean weight of pol-
luters and that of non-polluters. That is, raising the externality tax increases the concern
for those who pay the tax relative to those who do not.

From the sufficient statistics result, Proposition 3, we know that the preference for
caring more about the cost burdens of low-income polluters than those of the high-
income polluters is enough for a progressive reform without any “behavioral” consider-
ations. The next proposition captures the same idea for the Pigouvian income tax sched-
ule.

PROPOSITION 6. Consider an optimal tax system given by formulas (14) and (15) in The-
orem 2. Suppose Assumptions 3-4 hold and n⊥⊥ q. Then

(a) If ω0
n(q̃)−ω1

n(q̃) is strictly decreasing in n for all n ∈ [n,n], q̃ ∈R+, then τ ′(y)≥ 0 for
all y.

(b) If ω0
n(q̃)−ω1

n(q̃) is strictly increasing in n for all n ∈ [n,n], q̃ ∈R+, then τ ′(y)≤ 0 for
all y.

Independence n⊥⊥ q rules out the behavioral considerations, that is, progressivity is not
due to pollution responding differently to taxation across incomes. For a positive gap
ω0
n(q̃)− ω1

n(q̃) > 0, the effect captured by condition (a) in Proposition 6 is about seeing
the pools of polluters and non-polluters less and less different when incomes increase,
which calls for a higher, less distorted tax for the rich. The same logic applies when the
externality tax is regressive but now “less distortion for the rich” means a lower tax for
them.26

The next proposition isolates efficiency reasons for progressive externality taxation
due to behavior. To do this, it rules out the variation that is key in Proposition 6, that is,
the variation in horizontal equity motive across income levels.

PROPOSITION 7. Consider an optimal tax system given by formulas (14) and (15) in The-
orem 2. Suppose Assumptions 3-4 hold and that ω0

n(q̃) − ω1
n(q̃) is invariant in n for all

n ∈ [n,n], q̃ ∈R+. Consider:

(a) horizontal equity Assumption 2a holds (a’) horizontal equity Assumption 2b
holds

26A supermodularity condition of type “if q′ > q, then E[ω|n, q′]− E[ω|n, q] decreases in n” is sufficient
(but not necessary) for the condition to be satisfied in the proposition when n and q are independent.
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(b) η(n, q) is strictly increasing in n (b’) η(n, q) is strictly decreasing in n.

If (a)-(b) or (a’)-(b’), then it holds for the optimal tax that τ ′(y) > 0 in some interval. If
(a’)-(b) or (a)-(b’), then τ ′(y)< 0 in some interval.

For the intuition, consider that the pollution of the rich is highly elastic with respect
to the externality tax, a situation of (b).27 Then, provided there is a general horizontal
equity concern so that the welfare weight is increasing in q, situation (a), the tax should
be distorted less from Bω for the rich, leading to a progressive externality tax. This intu-
ition echoes the one given for the sufficient statistics result, but here the result is weaker,
showing only some progressivity.

5. EXTENSIONS AND ROBUSTNESS

In this section, we briefly present extensions and a robustness analysis of the main
model, which is formally detailed in the online appendix.

Continuous choice of emissions. In some applications, pollution reduction is an intensive-
margin rather than extensive-margin choice. We can define a continuous variable
x ∈ [0,1] for the proportion of emissions abated. Accordingly, e = 1 − x represents is
the level of pollution generated by the individual. The results of Theorem 1 can be gen-
eralized to this case, with one important modification: the welfare weight of polluters
E[ω|q > τ ] is replaced by the emissions-weighted welfare-weight of all individuals, E[ωe]

E[e] .
We can also extend the results of the simple reform in Section 4.1 to this case. The con-
dition for the optimal progressive (regressive) reform involves the same three effects,
with the following adjustments in definitions. First, welfare weights are weighted by in-
dividual’s emissions. Second, the relative shares of polluters in ξ1 are replaced by relative
shares of emissions in the respective parts of the population. Third, semi-elasticities of
average emissions replace the semi-elasticities of polluters’ masses in ξ2. In Section 6,
the application to electricity consumption uses the continuous choice version of the
sufficient statistics formula.

Heterogeneous emissions. We can extend the model to cover the case of heterogeneous
emissions among individuals if we assume that each agent chooses x ∈ {0,1} but pol-
lution emissions differ by income and earning ability according to function e(y,n). This
establishes a direct link between pollution externalities and incomes, capturing factors
such as commuting as an input to earning income and other determinants that cause
varying consumption patterns for a given income. We characterize the optimal sepa-
rated tax system, defined as T (·) = T (y) + τe(·). A marginal increase of dτ in the ex-
ternality tax results again in three effects (behavioral, redistributive, environmental). In

27If q is logistically distributed on each ability level, that is, Fq|n(q|n) = (1 + e−(β0(n)+β1(n)q))−1, then
the derivative of η(n, q) w.r.t. n is β′

1(n). If q is exponentially distributed on each ability level, that is,
Fq|n(q|n) = 1−e−λ(n)q , then the sign of the derivative of η(n, q) w.r.t. n is equal to the sign of λ′(n). Hence,
in this case, the assumption about increasingness (decreasingness) of η(n, q) in n is equivalent to the cost
distributions of the lower-income groups hazard-rate dominating the cost distributions of higher-income
groups.
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particular, changing τ affects income not only through labor supply response but also
because of the link between earnings and emissions. The formula in the online appendix
shows that the externality tax is pushed downwards from the welfare-weighted Pigou-
vian level Bω if the polluters’ emissions-weighted welfare weight exceeds the average
welfare weight in the population, and more so if the externality action is not very respon-
sive and the individuals at the margin of making the externality action do not generate
much emissions. Furthermore, if ey > 0, then increasing the externality tax distorts labor
market incentives.

Alternative social welfare specifications. Exogenous welfare weights can be linked to a
utilitarian social welfare function by considering objective

E[Ω(u(θ))] (1’)

in which Ω is an increasing and concave function of agent’s utility (1). For a given policy,
the average social marginal welfare weight of individuals with ability n and cost q is then
E
[
ω|n, q

]
= E

[
Ω′(u(θ))/λ

∣∣n, q] where λ is the shadow price of the budget constraint.28

To analyze the connection between the social preferences represented by Ω and our as-
sumptions on weights ω, suppose now for simplicity that b is invariant across individuals
and that we generate the weight for each individual from Ω. Under the classical assump-
tion that the policy maker has aversion to utility differences (Ω′′ < 0), the weights gener-
ated by Ω would satisfy the vertical equality concern of Assumption 1 and the horizon-
tal equality concern of Assumption 2a: polluters would always receive a higher weight
than non-polluters under these assumptions. The online appendix demonstrates that
Assumption 4 can be reconciled with welfare as represented by Ω, showing that relatively
broad social objectives can be consistently presented by welfare weights; however, see
also Sher (2023).

General cost-of-earnings function. The iso-elastic class for the cost of earning income,
k(y,n) = ϵ

1+ϵ (
y
n )

1+ϵ
ϵ , is useful for exposition. It satisfies kyn(y,n)< 0 which is the require-

ment that must be placed on any general k(y,n) to guarantee that earnings schedules
y0(n) and y1(n) are non-decreasing in n. To illustrate the earnings choice with a general
k(y,n), consider separated income and externality choices, as in Theorem 1. For all n
such that income y(n) is strictly increasing in n, the optimal mechanism satisfies

1− ky(y(n), n) +
1− Fn(n)

fn(n)

(
1−E[ω|n≥ n]

)
kyn(y(n), n) = 0. (16)

The iso-elastic form gives kyn =−
(
1+ 1

ϵ

)
1
nky which, when applying T ′(y) = 1−ky , leads

to the formula in Theorem 1. While the same simplicity is lost with general k(y,n), there
is no material impact on Theorem 1 and the results of Proposition 3 hold under the same
conditions. In Theorem 2, the changes can be more substantial because the progression
of income taxes, and thus the incentives to work, are linked to emissions choices. Con-
sequently, the elasticity of earnings and emissions can be interconnected.

28In our main model with welfare weights, the normalization E[ω] = 1 implies λ= 1.
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Tagging. The literature has proposed a taxation based on external, easily observable
factors like height and age, although this approach raises concerns as it goes against the
principle of treating individuals equally when it comes to attributes they cannot con-
trol (Akerlof, 1978, Cremer et al., 2010). Such tags are rarely applied in real-life income
tax regimes, but “quasi-tags” are used in relation to climate policies: for example, the
Canadian Climate Action rebates revenue by family size and the place of residence.29

Following earlier literature, consider a model in which each individual belonging
to one of two groups, i ∈ {A,B}. The policy problem can then be split into two parts:
first, we may derive the optimal tax system for each group for a given group-specific
budget constraint, and then we can optimize the group-specific budgets so that the ag-
gregate budget constraint is met. If the groups differ in their expected welfare weights,
it is welfare-improving to transfer money from the group with a lower welfare weight
to the other group. Transferring money from group A to group B improves welfare if
EA[ω] > EB [ω]. This condition holds, for instance, if the welfare weight is a function of
ability n and cost q only, the distribution of ability n is the same in the two groups, As-
sumption 2a for horizontal equity holds, and the distribution of costs conditional on n

in group A first-order stochastically dominates the distribution in group B. If, instead,
Assumption 2b holds, the direction of the transfer changes. Even if the groups do not dif-
fer in their expected welfare weights, the welfare-maximizing tax system may treat the
two groups differently. In a such a case, the optimal separated externality tax in group
i=A,B is set at

τ i =Bω +
Ei[ω]−Ei[ω|q > τ ]

hiq(τ)
,

intuitively depending on the concern for polluters relative to the behavioral response.

Public investments. Both private and public choices can reduce externalities. In this
case, the sum of actions is x= E[x(θ)] + z, in which z is the public investment with cost
c(z) to be funded with taxes. This leads to the adjusted budget constraint

E[t(θ)] = c(z), (4′)

and the optimal public investment is characterized by

c′(z) = E[ωb].

This implies that the Samuelson rule can be modified to include welfare-weighted ben-
efits, which is the only aspect where inequality considerations lead to deviations from
the standard Samuelson rule.30 In contrast, the implementation of policies on private
choices are strongly influenced by inequality considerations, as previously discussed.

29Family size and the place of residence are quasi-tags in the sense that they have been shown to be
responsive to financial incentives (Milligan, 2005, Kennan and Walker, 2011).

30For an extensive survey on the Samuelson rule literature, see Kreiner and Verdelin (2012).
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FIGURE 1. Finnish registry data on vehicles and electricity.

Note: All data by households’ disposable income quintile. Figure shows (a) the share of electric vehicles (EVs) for new
transactions in q1-q3 of 2023 (N = 44,360 transactions), (b) electricity consumption for October 2022 - January 2023 for
Finnish households (N = 2,530,334 households), (c) the semi-elasticity of the number of non-EVs by households, taken
from the literature (Halse et al., 2024), (d) the semi-elasticity of electricity consumption by income group estimated based on
the Finnish registry data (N = 2,530,334 households).

6. TWO APPLICATIONS: VEHICLE CHOICE AND ELECTRICITY CONSUMPTION

This section demonstrates how our theory can be linked to data. We focus on external-
ities created by carbon emissions in two key sectors, transportation and electricity. The
two applications use Finnish individual-level administrative data on incomes, pollution
measures, and financial burdens to test income-dependence of externality pricing us-
ing Proposition 3. The sufficient statistics in the proposition requires: (i) social welfare
weights of polluters and non-polluters, (ii) the semi-elasticity of emission reduction by
income group, and (iii) emissions by income groups. Importantly, to analyze a small re-
form, we do not need the elasticity of earnings or the marginal externality damages as-
suming that the schedule to be reformed is the optimal separated schedule (see Propo-
sition 3).

The data, divided into five quintiles based on households’ disposable income, is
summarized in Figure 1. Further details on the quantification are in Appendix B.

Income, consumption, and welfare weights. The unit of observation is a household, i.
We observe disposable income yi for each household. The data also includes the kilo-
meters driven and electricity consumption, which allows us to calculate the expenditure
in electricity or gasoline, ∆i. The net-of-cost income for each household can be calcu-
lated as Ii = yi −∆i. Every agent has n and q which lead to income and consumption
decisions, and therefore we denote Ii by I(n, q).

We propose a simple and transparent approach to generating an illustrative population-
level distribution for welfare weights, based on a constant relative risk aversion (CRRA)
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welfare function with parameter σ measuring the degree of inequality aversion:

E[ω|n, q] = I(n, q)−σ

E[I(n, q)−σ]
. (17)

The denominator ensures that the normalization E[ω] = 1 holds. We thus generate the
weights at observations prior to potential changes in incomes and burdens, and assume
that changes are so small that weights can be taken as exogenous. Equation (17) is a
modified version of the formula proposed in draft for U.S. circular A-4 which advo-
cates calculating distributional weights using CRRA-utility function with σ = 1.4 (White
house, 2023). This calculation of weights represents value judgments (of circular A-4),
but lessons that we draw from the applications are not sensitive to the precise quantifi-
cation of inequality aversion.31

Application I: vehicle choice. We use data for all new car transactions in Finland for
calendar year 2023, quarters q1-q3. Households in the market for new cars make a dis-
crete choice between electric vehicles (EVs) and vehicles with an internal combustion
engine, including plug-in hybrids (non-EVs). EVs receive different tax treatments than
non-EVs, most importantly they avoid pollution from gasoline and diesel fuels and the
related expenditures.32 The share of EVs by income quintile is shown in Figure 1a. As
has been found in other settings (e.g., Bigler and Radulescu, 2022, Halse et al., 2024),
the top earners tend to buy most EVs. We get the semi-elasticity of pollution reduction
by income quantile from an external source; this hazard rate is from Halse et al. (2024).
Figure 1c shows that higher income groups have a higher semi-elasticity.

From the population-vehicle data, we produce the distributions of weights sepa-
rately for polluters and non-polluters, and the three terms entering the sufficient statis-
tics formula (Proposition 3). The results are in Table 1. The mean weight in the popu-
lation is, by definition, equal to 1.33 From the first row, we observe a decline in mean
weight as we move towards higher income quintiles. In the second row, the average
weight of polluters is higher than the overall population mean, which follows from the
fact that individuals with lower incomes are more likely to purchase more polluting ve-
hicles. The higher mean weight of polluters readily gives our first result from Theorem 1
on setting the optimal tax level: the fuel tax should be lower than in the absence of dis-
tributional concerns to reduce a transfer from low-income to high-income individuals.

We further observe that the difference in mean weights declines when condition-
ing on a higher income quantile, turning the “decreasing-differences” term (i) in Table

31Alternative strategies to calculate welfare weights would be to elicit social preferences held by indi-
viduals by surveys (Saez and Stantcheva, 2016) or experiments (Capozza and Srinivasan, 2023), or use the
“inverse optimal-tax method” in which weights are calculated from existing or proposed policies (Jacobs
et al., 2017, Hendren, 2020).

32In our model, τ can capture both different tax treatment of new car purchases (car taxes or EV subsi-
dies) and difference treatment of use costs. Finland has a CO2-based car taxation (see Stitzing, 2016) and a
CO2 component in its gasoline taxation of 62 euros/tCO2 (government proposal HE 36/2023). The effective
CO2 price for all gasoline taxes is roughly 250 euros/tCO2 (OECD, 2021).

33The population in this illustration is the universe of new car buyers in 2023.

https://www.whitehouse.gov/wp-content/uploads/2023/04/DraftCircularA-4.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/04/DraftCircularA-4.pdf
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TABLE 1. Simple tax reform for vehicles

Income quintile
All 2 3 4 5

Average weight ωn′≥n 1 0.876 0.791 0.695 0.583
Average polluter weight ω0

n′≥n 1.077 0.943 0.848 0.746 0.632

Quantity at n′ ≥ n 1− E[Fq|n(τ |n′)|n′ ≥ n)] 0.689 0.687 0.681 0.667 0.652
Quantity at n′ = n 1− Fq|n(τ |n) 0.741 0.745 0.743 0.695 0.652
Semi-elasticity at n′ > n hq|n′≥n(τ,n) 0.010 0.010 0.012 0.015 0.017

Term (i) (ωn′≥n − ω0
n′≥n)− (ω− ω0) 0 0.010 0.020 0.027 0.028

Term (ii)
(
ξ2 − 1

)
(ω0 − 1) 0 -0.001 0.0016 0.033 0.047

Term (iii)
(
ξ1 − 1

)
(ωn′≥n − 1) 0 -0.011 -0.019 -0.013 0

Terms (i)+(ii)+(iii) Net effect 0 -0.001 0.017 0.048 0.750

Note: The first row: mean welfare weight for all car buyers from any income quintile i = 1, ..,5 and larger than i. The
second row: mean weight for all non-EV buyers from income quintile i and larger. The third row: share of non-EV buyers from
income quintile i and larger. The fourth row: share of non-EV buyers from income quintile i. The fifth row: semi-elasticity is
the hazard rate for emissions in group i and above. Terms (i)-(iii) refer to the same terms presented in Proposition 3. In term
(ii) we use ξ2 = hq|n′≥n(τ,n)/hq(τ). In term (iii) we use ξ1 = (1− Fq|n(τ |n))/(1− E[Fq|n(τ |n′)|n′ ≥ n]).

1 positive. This term intuitively captures the idea that as incomes increase, the policy-
maker is less concerned about the cost burdens to polluters, which has implications for
the optimality of a constant tax. Positive term (i) supports the optimality of a progressive
reform due to redistribution.

Term (ii) illustrates the role of behavioral elasticities in the sufficient statistics test.
We know from the deduced welfare weights that the tax is set below the efficient level
due to redistribution considerations. The semi-elasticity of pollution reductions, while
small, is increasing in income. Combined, the two observations mean that the efficiency
loss from the distorted tax is higher at higher incomes, supporting again a progressive
reform. Term (ii) is bigger at higher income quintiles, so its effect is stronger at higher
quintiles.

The sign of term (iii) is also intuitive. Term ωn′≥n − 1 is non-positive because the
weight does not separate polluters and the rest but conditions only on income. The be-
havioral earnings response, ξ1, is captured by the relative sizes of polluter populations
of the reform quintile and those above the quintile, obtained by dividing the number in
line four by that in three. When the relative size of the population is large in this sense
at incomes for which the reform is considered, the reform distorts earnings more than
what is the redistributive gain. In fact, term (iii) would support a regressive reform for
this reason. Taken together, the three terms support implementing a progressive reform,
with the size of the joint effect increasing in the income quintile.

Application II: electricity consumption. We follow the same procedure for quantifying
a tax policy on electricity consumption.34 The data contains household’s contract type

34As part of the EU Emissions Trading System, emissions from electricity generation face a market price,
with a pass-through rate to the electricity wholesale price close to one; see Fabra and Reguant (2014) and
Liski and Vehviläinen (2020).
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TABLE 2. Simple tax reform for electricity

Income quintile
All 2 3 4 5

Average weight ωn′≥n 1 0.679 0.505 0.397 0.294
Average polluter weight ω0

n′≥n 0.652 0.497 0.389 0.316 0.243

Quantity at n′ ≥ n (kWh) 1− E[Fq|n(τ |n′)|n′ ≥ n)] 374 416 454 490 542
Quantity at n′ = n (kWh) 1− Fq|n(τ |n) 208 310 382 437 542
Semi-elasticity at n′ > n h̄q|n′≥n(τ,n) 0.249 0.284 0.312 0.324 0.309

Term (i) (ωn′≥n − ω0
n′≥n)− (ω− ω0) 0 -0.166 -0.232 -0.267 -0.297

Term (ii)
(
ξ2 − 1

)
(ω0 − 1) 0 -0.049 -0.088 -0.104 -0.083

Term (iii)
(
ξ1 − 1

)
(ωn′≥n − 1) 0 0.082 0.079 0.065 0

Terms (i)+(ii)+(iii) Net effect 0 -0.133 -0.241 -0.306 -0.380

Note: The first row: mean welfare weight for all households from any income quintile i = 1, ..,5 and larger than i. The
second row: consumption-weighted welfare weight for households from income quintile i or above. The third row: the amount
of consumption (in kWh, September 2022) of households from income quintile i or above. The fourth row: consumption (in
kWh, September 2022) but for income quintile i. Semi-elasticity is the percentage change of demand. The value presented
is the mean semi-elasticity for individuals in group i or above derived from Appendix Table B.3. In Term (ii) we use ξ2 =

hq|n′≥n(τ,n)/hq(τ) where semi-elasticity is defined as hq and hq|n′≥n(τ,n) ≡ −E
[ ∂e
∂τ |n′ ≥ n

]
/E

[
e|n′ ≥ n

]
. In Term

(iii) we use ξ1 = E[e|n]/E[e|n′ ≥ n].

which, based on public contract prices, allows us to determine for each household a
monthly electricity expenditure. Figure 1b shows that high-income households con-
sume more electricity. We estimate the semi-elasticity of electricity consumption by in-
come group. Our empirical design exploits variation in household-level exposure to the
unanticipated price shock in 2022, resulting from Russia limiting its energy supplies to
Europe. We identify semi-elasticities by a difference-in-differences approach, exploiting
variation in electricity contract durations.35 The estimated semi-elasticities are shown
in Figure 1.

The results are in Table 2. In a sharp contrast to the vehicle case, polluters now re-
ceive a considerably lower mean weight than the non-polluters in the full population.36

On reflection, electricity consumption correlates strongly with income, implying a neg-
ative association between pollution and welfare weights. This observation implies that
the tax level should be elevated for a transfer from the wealthier to the poorer (Theorem
1).

Unlike for vehicles, term (i) is now negative and declining in income. This supports
a regressive reform that sets a lower tax to individuals with incomes above the reform
cutoff, with a logic coming from Proposition 3: the corrective tax should be distorted less
when the gap between mean weights of polluters and non-polluters declines in income.
This is precisely what happens when incomes increase in Table 2.

35The mean contract price for fixed-term contracts lasting throughout the crises was 0.065 Eur/kWh.
Contracts that ended in November 2022 faced a higher price in December, on average 0.38 Eur/kWh. The
contracts that expired were signed one year or two years before the crises.

36Welfare weights are from equation (17) but household-level weights are multiplied by emissions, fol-
lowing Section 5, to account for a continuous consumption choice. Emissions are assumed to be propor-
tional to consumption.
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The estimated semi-elasticity of emissions follows the same pattern as for the vehi-
cles, that is, the estimate increases in income, except for the last quintile. This time term
(ii) is negative, due to low relative weights given to polluters, and therefore it supports
a regressive reform. The reasoning is the same as for vehicles, except now the tax is el-
evated above the efficient level thereby calling for less elevation at high incomes as the
efficiency distortion increases in income.

Last, term (iii) goes against terms (i)-(ii) and supports a progressive reform. The rel-
ative quantity of pollution is small at lower incomes supporting a progressive tax for in-
come redistribution. However, the effect is small and the net effect is negative, meaning
that the sufficient statistics test is in favor a regressive reform.

7. CONCLUDING REMARKS

Corrective policies, such as the pricing of climate externalities, are increasingly condi-
tioned on income. What are the general principles guiding the design of such income-
dependent policies? Policy makers often have intentions that are good, but the out-
comes are not, neither in terms of efficiency nor on distributional grounds (e.g., Boren-
stein and Davis 2016). Economists have not offered clear principles to help policy mak-
ers. To fill this gap, we set out to develop a theory framework that brings together
economists’ call for efficiency and, on the other hand, policy makers’ broad distribu-
tional concerns. The approach treats income inequality and issues like energy poverty
as distinct factors influencing the policy design. We further assume that policy makers
do not have individual-level information about who needs support; there is only general
data on how needs are associated with characteristics in the population.

The main results imply that proposals to gain support for climate polices by return-
ing carbon tax revenues back to citizens as a uniform per capita sum are ineffective
in solving the critical efficiency-equity tradeoffs.37 Such rebates and associated carbon
taxes should not be isolated from incentives to work and from transfers linked to income
taxation. The problem calls for a comprehensive tax reform leading to joint determina-
tion of marginal tax rates for earnings and emissions, both depending on individual’s
income levels.

Entities beyond governments, such as corporations, may also face the challenge of
“fair pricing”. Corporate policies may impose restrictions on the extent to which compa-
nies can leverage consumer data for price discrimination, aiming to ensure equal treat-
ment of customers or to prioritize the welfare of specific consumer groups. The stan-
dard model of price discrimination does not weigh consumer surplus (Rochet and Stole
2003, Dubé and Misra 2023), which however seems necessary if broader objectives for
pricing are included. The methodology proposed in this paper could offer insights for
incorporating these broader objectives into pricing strategies.

37In “Economists’ Statement on Carbon Dividends”, more than 3,600 economists, among them 28 Nobel
Laureates, propose that equity concerns should be addressed equal lump-sum rebates of the tax revenues
to citizens. The statement is originally published in The Wall Street Journal, 2019.

https://clcouncil.org/economists-statement/
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APPENDIX A: PROOFS

A.1 Theorem 1

PROOF. The assumption in the theorem is that the cutoff q is the same for all n ∈ [n,n],
and earnings y depend only on ability n and thus y0(n) = y1(n) =: y(n). Under these
assumptions, the social welfare expression from the text becomes

E[ωu(θ)] = E
[
y(n)− k(y(n), n) + (E[ωb]− q)1q≤q + (ω− 1)R(n, q)

]
, (3′′)

with the rents term taking the form

R(n, q) =
[
−
∫ n

n
kn(y(s), s)ds

]
+
[
q− q

]
1q≤q. (6′)

Integrate the first square bracket on the RHS by parts to rewrite the last term in E[ωu(θ)]
as

E(ω− 1)R(n, q) = (1−E[ω|n′ ≥ n])
1− Fn(n)

fn(n)
kn(y(n), n) +E

[
(ω− 1)(q− q)1q≤q

]
. (A.1)

We observe that the part of welfare depending on y is

E
[
y(n)− k(y(n), n) + (1−E[w|n′ ≥ n])

1− Fn(n)

fn(n)
kn(y(n), n)

]
. (A.2)

For each n, E[ω|n′ ≥ n] is exogenous and earnings can be characterized point-wise
through the first-order condition

1− ky(y(n), n) +
(
1−E[ω|n′ ≥ n]

)1− Fn(n)

fn(n)
kny(y(n), n) = 0. (A.3)

If term
(
1 − E[ω|n′ ≥ n]

)1−Fn(n)
fn(n)

kny(y(n), n) is strictly increasing in n, the solution for
y(n) solving eq. (A.3) is unique and strictly increasing in n. Moreover, the iso-elastic form
gives kyn = −

(
1 + 1

ϵ

)
1
nky which, when applying T ′(y) = 1− ky , leads to the formula in

Theorem 1.
Turn now to the part of the welfare that depends on the choice of q:

E
[
(E[ωb]− q)1q≤q + (ω− 1)(q− q)1q≤q

]
. (A.4)

For a finite q > 0 the optimality condition is

(E[ωb]− q)fq(q) + (E
[
ω|q ≤ q

]
− 1)Fq(q) = 0

which can also be written as

(E[ωb]− q)fq(q) + (1−E
[
ω|q > q

]
)(1− Fq(q)) = 0

which, after rearranging, gives

q = E[ωb] + (1−E
[
ω|q > q

]
)
1− Fq(q)

fq(q)
=Bω +

1−E
[
ω|q > q

]
hq(q)

. (A.5)

Replacing q = τ gives the formula for the externality tax in the theorem.
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A.2 Theorem 2

PROOF. We derive here the optimal tax schedules of Theorem 2 by considering a simple
tax reform. In the Online Appendix, the theorem is proved using optimal-control theory.
To derive formula (14), consider a reform that increases the externality tax above income
y0(n) by dτ by increasing τ ′(y) marginally in a small band [y0(n), y0(n + dn)]. Such a
reform should not change welfare around the optimal tax schedule.

The reform has three effects. The first effect is the earnings response: around n, pol-
luters face a more progressive tax schedule and consequently decrease their earnings
and pay less taxes. Let dτ ′(y) denote the change in marginal tax τ ′(y) in [y0(n), y0(n +

dn)], and let dy := y0(n + dn) − y0(n). We have dτ = dydτ ′(y) = dndy0

dn dτ ′(y) = dn

(−kny(y
0(n),n)

kyy(y0(n),n)
)dτ ′(y), in which the last equation follows from the implicit function theo-

rem applied to the agent’s first-order condition 1−ky(y
0(n), n)−T ′(y0(n))− τ ′(y0(n)) =

0. The change in the marginal tax in the small band is thus dτ ′(y) = −dτ 1
dn

kyy(y
0(n),n)

kny(y0(n),n)

and the associated change in earnings is −dτ 1
dn

kyy(y
0(n),n)

kny(y0(n),n)
· dy0

dτ ′(y) = dτ 1
dn

1
kny(y0(n),n)

in which the last equation uses again implicit differentiation of the first-order condi-
tion for the agent. The change in tax revenue equals the change in earnings times the
marginal tax: dτ 1

dn
1

kny(y0(n),n)
(T ′(y0)+τ ′(y0)) = −dτ 1

dn
n

(1+ 1
ϵ )ky(y0(n),n)

(T ′(y0)+τ ′(y0))

= −dτ 1
dn

n

(1+ 1
ϵ )

T ′(y0)+τ ′(y0)
1−T ′(y0)−τ ′(y0)

, and when we multiply by the mass (1−Fq|n(q|n))fn(n)dn
of agents affected, we obtain the total earnings-response effect:

− dτ(1− Fq|n(q̄|n))fn(n)
n

1 +
1

ϵ

T ′(y0) + τ ′(y0)

1− T ′(y0)− τ ′(y0))
, (A.6)

The second effect is a redistributive effect, as the reform mechanically redistributes
from rich polluters to all individuals:

dτE[(1− ω0
n′)(1− Fq|n(q̄|n′))|n′ ≥ n](1− Fn(n)). (A.7)

The third effect is an externality effect which arises because some rich polluters stop
polluting. The utilities of these individuals are unchanged, but the externality action
produces marginal net benefits Bω − τn per individual through aggregate externality
benefit and tax revenue changes. Multiplying by the mass of affected individuals, this
becomes

dτE[(Bω − τn)fq|n(q|n′)|n′ ≥ n](1− Fn(n)). (A.8)

Around the optimal tax schedule, the three effects should cancel out. Hence, by set-
ting the sum of equations (A.6), (A.7) and (A.8) to zero, we obtain optimal tax formula
(14).

Tax formula (15) can be derived analogously by considering a small reform that in-
creases the tax burden of rich, clean individuals.
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APPENDIX B: DETAILS ON THE EMPIRICAL APPLICATIONS

This section provides details of the empirical applications. Both applications make use
of the confidential, pseudonymized individual-level data that is achieved through Statis-
tics Finland Fiona remote access system. The data includes information about house-
holds’ incomes, which we divide into five income quintiles based on households’ dispos-
able income. The income groups are created by first dividing the household’s income by
the consumption units of the household (i.e., equivalent incomes), and then households
are divided into five equal groups.

B.1 Details on vehicles, owners, kilometers, and taxes

The data comes from the Statistics Finland’s 2021 FOLK longitudinal dataset38 which is
linked to the 2023 vehicle register from TRAFICOM (Finnish transportation and com-
munications authority). The vehicle register contains odometer readings from vehicle
inspections for the entire fleet; the individual linked to the kilometers must be deduced
from ownership spells. For about 75 % the mileage of the vehicles in 2016 is obtained
directly from the mileage readings at the inspection, as the ownership has not changed.
For 9 % of individuals, data from previous or following years have been used to construct
a full year of kilometers. For the remaining 16 %, the kilometers have been estimated by
prediction method based on observable characteristics of the individual. We use 2016
kilometers obtained this way for each car user in the subsequent analysis; this construc-
tion of kilometers builds on Ahonen (2023).

TRAFICOM vehicle registry contains technical information on cars, including the
fuel type and efficiency. This data is used to transform kilometers for each vehicle-user
pair to fuel consumption and, further, to total fuel expenditures using the tax inclusive
prices. Fuel price data is from Statistics Finland. We use average annual fuel price in the
expenditure calculation. We obtain the variables describing the person and the house-
hold, such as income data and other socio-economic characteristics, from the FOLK
data. Transaction data on new cars is obtained directly from the register of vehicles, as
new registrations in TRAFICOM data. Table B.1 provides key descriptive statistics of the
vehicle data set; share of EVs in transactions in Fig. 1.

Semi-elasticities of EV adoption from previous literature. We get the semi-elasticity of
pollution reduction by income quantile from an external source. Halse et al. (2024) esti-
mate the effect of road pricing on electric vehicle adoption. Our assumption is that road
pricing has a similar effect on EV adoption that other policies that make driving more
expensive, including carbon pricing. We use data from their Figure A.9 (right panel) to
get the quintile-level elasticities with respect to the number of internal combustion en-
gine vehicle (ICEVs) for couples (the elasticities for the five income quintiles are: 1st:
-0.0088, 2nd: -0.0028, 3rd: -0.0066, 4nd: -0.0107 and 5th: -0.0137). These numbers tell
the impact of a one-euro increase in daily road tolls (or other road use fees) on the num-
ber of ICEVs. We convert these numbers into quasi-elasticities by using the mean road

38This is the most recent available Folk dataset.

https://aineistokatalogi.fi/catalog/studies/a6946178-3c4d-432e-b4bd-7b32b80932af
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TABLE B.1. Descriptive statistics: vehicles

Variable N Mean Sd p10 p90

Car fleet
annual fuel exp. (EUR/year) 2,152,443 1569 1593 397 2912
daily kilometers 2,152,443 46 41 11 86
consumption (liter/100 km) 2,152,443 7.2 1.79 5.1 9.3
Disposable income (EUR/year) 2,152,443 27,684 15,609 13,100 43,400
Transaction data 2023, q1-q3
annual fuel exp. (EUR/year) 44,360 1789 1707 634 3143
daily kilometers 44,360 57 44 20 101
consumption (liter/100 km) 44,360 6.6 1.8 4.7 9
Disposable income (EUR/year) 44,360 37,981 21,834 18,300 63,000

Note: Data from the Statistics Finland’s 2021 FOLK longitudinal dataset which is linked to the 2023 vehicle register from
TRAFICOM (Finnish transportation and communications authority). Annual fuel expenditure, kilometers, and consumption
for each car owner are based on 2016 kilometers (vehicle register) and final fuel prices (Statistic Finland). Disposable income
of a car owner is net of taxes and transfers. Transaction data 2023 is from quarters 1-3, new car purchases. Variable definitions
are the same as for the car fleet but the sample restricted to new car buyers. Share of EVs in transactions is depicted in Fig. 1.

toll for couples: 9.49 NOK or 0.826 euros. This gives the semi-elasticities that we report
in the data.

We can compare these results to those using Swiss data presented by Bigler and Rad-
ulescu (2022). Their changes in adoption probabilities for a vehicle tax feebate shows the
same pattern for adoption of an ICEV across income quartiles (1st quartile: -.0434, 2nd
quartile: -.0433, 3rd quartile: -.0424, 4nd quartile: -.0709). The highest income group
is the most elastic, but the effect is monotonic for the other income groups. Note that
our quantification uses the relative differences between income groups (Parameter ξ2 is
Proposition 3), and not their absolute values.

B.2 Electricity use

We use electricity consumption data for Finnish households from September 2022 to
January 2023. The data is from Fingrid Datahub, a centralized information exchange sys-
tem for the electricity retail market. It includes monthly electricity consumption for all
households in Finland. The dataset also includes basic information about contract type
(start date, end date and whether the contract is fixed-price). We connect consumption
per electricity meter to a dwelling unit, or household for shorthand, based on the social
security number of the individual who initiated the contract. Of the 3.2 million obser-
vations in the electricity consumption data, about 115,000 cannot be connected to any
dwelling units. We find no electricity contract for about 296,000 households in the pop-
ulation register, for instance, a landlord may have procured the electricity contract on
behalf of the tenant. Additionally, the data does not include electricity contracts in the
autonomous region of Aland. We drop households with income less than 5000 euros per
year and electricity consumption over 50 percent of disposable income as outliers. A
more detailed description of the dataset is found in Ahlvik et al. (2023).

The household-level contract price is not available in the data. Instead of actual
prices, we use the mean electricity price per contract type at the time of the contract
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TABLE B.2. Descriptive statistics: Electricity use

N Mean Sd p10 p90

Electricity consumption (kWh)
September 2022 2,530,334 367.8 408.9 61.6 881.0
October 2022 2,536,155 435.5 487.1 65.5 1077.9
November 2022 2,536,947 542.0 634.5 46.9 1412.9
December 2022 2,536,992 708.4 859.0 46.8 1916.2
January 2023 2,538,713 668.8 807.8 9 68.0 1796.3

Household-level data
Disposable income (Eur/year) 2,530,334 41848.8 54.863 13993.2 74919.5
Household size 2,501,503 2.100 1.263 1 4

Note: Data from the Statistics Finland’s 2020 FOLK longitudinal dataset which is linked to Fingrid Datahub -consumption
data based on the person whose name the contract was on. Electricity consumption data is observed monthly and summed
over all properties owned by a household. Disposable-income is per household and net of taxes and transfers. Household size
is the number of people living in the household.

start date.39 The background data of households comes from Statistics Finland admin-
istrative data. The main variable of interest is disposable income, which consists of wage
income, entrepreneurial income, property income, and received income transfers, mi-
nus taxes and tax-like payments paid.

Estimating semi-elasticities of electricity consumption. We empirically identify the
semi-elasticities by a difference-in-differences approach. Our unit of observation is a
household, defined as a combination of individual-id of the person paying the bill and
a metering point. We compare electricity consumption of same households between
October vs. December, and compare households whose fixed-term contract ended in
November to those who had a fixed-term contract throughout the crisis.40 The assump-
tion is that households could not anticipate the 2022 energy crisis when signing their
electricity contracts. The contracts that expired were signed one year or two years ear-
lier.

We define treatment for households whose fixed-term contract ends in November,
and use households whose contract ends after the crisis as a control group. We estimate
the following OLS regression:

log(Qit) = βPriceit + γi + γrt + ϵit (B.1)

where Qit is the electricity use of household i in month t= {October, December}. Priceit
is the average contract price for fixed-term contracts (0.065 Eur/kWh). Contracts that
end in November face a higher price in December (0.38 Eur/kWh). In the equation we
introduce fixed effects to control for unobservable factors on household- and region-by-
month level. In the equation, γi is the household-fixed effect capturing e.g. the size of the
apartment or heating technology, and γrt is a region-by-month-fixed effect capturing

39The data is from the Finnish energy authority https://energiavirasto.fi/sahkon-hintatilastot
40We have monthly consumption data, and therefore the impact of contracts ending in November is

visible in December.

https://energiavirasto.fi/sahkon-hintatilastot
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TABLE B.3. The impact of electricity prices on consumption

Treatment Placebo
(1) (2)

Panel A: Average treatment effect

ATT
-0.2420
(0.0068)

-0.0202
(0.0070)

N 2,252,016 2,246,030

Panel B: Treatment effect by income group

1st quintile
-0.1094
(0.0167)

-0.0237
(0.0177)

2nd quintile
-0.2004
(0.0147)

-0.0005
(0.0154)

3rd quintile
-0.2884
(0.0146)

-0.0180
(0.0144)

4th quintile
-0.3386
(0.0152)

-0.0569
(0.0146)

5th quintile
-0.3085
(0.0145)

-0.0332
(0.0146)

N 2,252,016 2,246,030

Fixed effects
Month-province
Individual-meter

Month-province
Individual-meter

Note: The table presents OLS coefficients (β) with log of electricity consumption as the dependent variable. The data is for
October and December of year 2022. The treatment variable is the price-level, taking value 0.38 Eur/kWh in December for the
treatment group and 0.0065 Eur/kWh for other observations. Column 1 the treatment group is households whose contracts
ended in November 2022, during the energy crisis. Column 2 is a "placebo” treatment for households whose contract ended in
January 2023, after the crisis. Fixed effects (FE) and controls included as indicated in the bottom rows. Robust standard errors
in parentheses clustered on household level.

e.g. local differences in temperature or energy savings campaigns. We define a region to
be one of the 19 provinces (maakunta) of Finland.

The main results are shown in column (1), Panel A of Table B.3. We find an av-
erage treatment effect of -0.2420: a 10 c/kWh increase in electricity price would re-
duce consumption by 2.42%. Column (2), Panel A of Table B.3 presents a variation,
where we define a Placebo-treatment such that variable Priceit jumps to a higher price
(0.38 Eur/kWh) for households whose contracts end in January 2023. This treatment is
"Placebo” in the sense, that these household had no real change in their electricity price
through the study period (October to December), and we expect to find no effect in their
consumption. Table B.3 shows that the effect on this group is small.

We are mainly interested in the heterogeneous treatment effect by income quintile,
which we estimate by:

log(Qit) =

5∑
q=1

βqPriceit ×Quintilei + γi + γrt + ϵit (B.2)

where Quintilei is an indicator taking value one if the household i’s income is in a given
quantile bracket (note that household-level fixed effects γi also capture Quintilei).
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The main results are shown in Panel B of Table B.3. We find a decrease for all income
quintiles, but the effect is mainly driven by higher income quintiles. For the lowest in-
come quintile, a 10 c/kWh increase in electricity price would reduce consumption by
1.09%. The elasticity is highest for fourth quintile, for which a 10 c/kWh increase in elec-
tricity price reduces consumption by 3.39%. We find no similar effects for the Placebo-
group whose contract ends in January, as shown by column (2), Panel B of Table B.3.
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APPENDIX C: SUPPLEMENTARY ONLINE MATERIAL

C.1 Optimal-control approach to Theorem 2

PROOF. We solve the allocation problem in two stages. First, we characterize the optimal
allocation when the aggregate externality x is taken as a given constraint. Second, we
optimize with respect to x. The tax schedules are then defined by the optimal allocation.

We use definitions v̂0(n) := y0(n)−k(y0(n), n)−t0(n) and v̂1(n) := y1(n)−k(y1(n), n)−
t1(n) where t0(n) and t1(n) are transfers associated with actions x= 0 and x= 1, respec-
tively. We also use notation ω(n, q) := E[ω|n, q]. Notice that q(n) = v̂1(n)− v̂0(n).

The objective function isE[ωu(θ)] = E[ω
(
v1(n)−q+bx

)
1q≤q(n)+ω

(
v0(n)+bx

)
1q>q(n)],

or E[ωu(θ)] = E[ωb]x + E[(ωv̂1(n) − q)1q≤q(n) + ωv̂0(n)1q>q(n)]. Using Bω = E[ωb] for
the aggregate externality benefit and holding Bωx as given, we can write the objective
E[ωu(θ)] in integral form as∫ n

n

(
Bωx+

∫
q≤v̂1(n)−v̂0(n)

ω(n, q)(v̂1(n)− q)fq|n(q|n)dq

+

∫
q≥v̂1(n)−v̂0(n)

ω(n, q)v̂0(n)fq|n(q|n)dq

)
fn(n)dn

=

∫ n

n
a0(n)dn (C.1)

where we define the function inside the integral as a0(n).
The incentive constraints are

v̂0′(n) =−kn(y
0(n), n) (C.2)

v̂1′(n) =−kn(y
1(n), n). (C.3)

The budget constraint is∫ n

n

((
y0(n)− k(y0(n), n)− v̂0(n)

)
(1− Fq|n(v̂

1(n)− v̂0(n)|n))

+
(
y1(n)− k(y1(n), n)− v̂1(n)

)
Fq|n(v̂

1(n)− v̂0(n)|n)

)
fn(n)dn= 0

=⇒
∫ n

n
a1(n)dn= 0 (C.4)

where we define the function inside the integral as a1(n). The constraint on the aggre-
gate externality x is ∫ n

n

(
Fq|n(v̂

1(n)− v̂0(n)|n)− x

)
fn(n)dn= 0
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=⇒
∫ n

n
a2(n)dn= 0. (C.5)

where we define the function inside the integral as a2(n).
We apply optimal control theory to solve the problem with the objective in (C.1) and

the constraints in (C.2)-(C.5). Lemma C.2 shows that there exists a solution to this opti-
mization problem. The optimal policy can then be characterized by the the Pontryagin’s
maximum principle. Define the Hamiltonian

H(v̂0(n), v̂1(n), y0(n), y1(n), µ0(n), µ1(n), n)

= a0(n)− µ0(n)kn(y
0(n), n)− µ1(n)kn(y

1(n), n) (C.6)

and the associated Lagrangian

L(n,λ, γ) =H(n) + λ

∫ n

n
a1(n)dn+ γ

∫ n

n
a2(n)dn. (C.7)

We denoted the multipliers associated with constraints (C.2), (C.3), (C.4) and (C.5) by
µ0(n), µ1(n), λ and γ, respectively (the bunching constraints are left out because Theo-
rem 2 characterizes allocations only for n at which the monotonicity constraints do not
bind, i.e., (y0, y1) are strictly increasing in n). From E[ω] = 1 it follows that λ = 1. Max-
imizing Hamiltonian H with respect to controls (y0, y1) gives the following necessary
conditions for an interior solution:

− µ0(n)kny(y
0(n), n) + (1− ky(y

0(n), n))(1− Fq|n(q(n)|n)))fn(n) = 0 (C.8)

− µ1(n)kny(y
1(n), n) + (1− ky(y

1(n), n))Fq|n(q(n)|n)fn(n) = 0. (C.9)

Write (C.8) as µ0(n)
1−Fq|n(q(n)|n)

=
1−ky(y

0(n),n)
kny(y0(n),n)

fn(n), in which the right-hand side is in-

creasing in y0 given the functional form of k, and hence y0(n) satisfying the condition is
the global maximizer of the Hamiltonian. Following similar reasoning, we conclude that
y1(n) satisfying (C.9) is the global maximizer.

Using notation ω0
n = E[ω|n, q > q(n)] and ω1

n = E[ω|n, q ≤ q(n)], the maximum princi-
ple implies that the co-states must satisfy:

−µ′
0(n) =

(
(ω0

n−1)(1−Fq|n(q(n)|n))+(t0(n)− t1(n))fq|n(q(n)|n)−γfq|n(q(n)|n)
)
fn(n)

(C.10)

− µ′
1(n) =

(
(ω1

n − 1)Fq|n(q(n)|n)− (t0(n)− t1(n))fq|n(q(n)|n) + γfq|n(q(n)|n)
)
fn(n)

(C.11)
with transversality conditions µ0(n) = µ1(n) = µ0(n) = µ1(n) = 0.

Integrating equations (C.10) and (C.11) from n to n and using the transversality con-
ditions µ0(n) = µ1(n) = 0 as well as notation τn(n) = t0(n)− t1(n), it follows that

µ0(n) =

∫ n

n

(
(ω0

n′ − λ)(1− Fq|n(q(n
′)|n′))− (γ − τn(n′))fq|n(q(n

′)|n′)
)
fn(n

′)dn (C.12)
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µ1(n) =

∫ n

n

(
(ω1

n′ − λ)Fq|n(q(n
′)|n′) + (γ − τn(n′))fq|n(q(n

′)|n′)
)
fn(n

′)dn (C.13)

We then plug equations (C.12) and (C.13) into the necessary conditions equations (C.8)
and (C.9) to obtain

1− ky(y
0(n), n) =

kny(y
0(n), n)

fn(n)(1− Fq|n(q(n)|n))

∫ n

n

(
(ω0

n′ − 1)(1− Fq|n(q(n
′)|n′))

−(γ − τn(n′))fq|n(q(n
′)|n′)

)
fn(n

′)dn′ (C.14)

and

1− ky(y
1(n), n) =

kny(y
1(n), n)

fn(n)Fq|n(q(n)|n)

∫ n

n

(
(ω1

n′ − 1)Fq|n(q(n
′)|n′)

+(γ − τn(n′))fq|n(q(n
′)|n′)

)
fn(n

′)dn′. (C.15)

Given the iso-elastic class for k(y,n), we have

kny(y
i(n), n) =−

(
1 +

1

ϵ

)
1

n
ky(y

i(n), n), i= 0,1. (C.16)

By using (C.16) in (C.1) and (C.1), it follows that

1− ky(y
0(n), n)

ky(y
0(n), n)

=

(
1 +

1

ϵ

) E[(1− ω0
n′(1− Fq|n(q(n

′)|n′)) + (γ − τn(n′))fq|n(q(n
′)|n′)|n′ ≥ n]

n(1− Fq|n(q(n)|n))hn(n)
(C.17)

1− ky(y
1(n), n)

ky(y
1(n), n)

=

(
1 +

1

ϵ

) E[(1− ω1
n′Fq|n(q(n

′)|n′)− (γ + τn(n′))fq|n(q(n
′)|n′)|n′ ≥ n]

nFq|n(q(n)|n)hn(n)
(C.18)

In the second step, we optimize with respect to the aggregate externality x. From the
social welfare function in (C.1), the marginal benefit from an increase in x is E[ωb] =
Bω . Hence, in the optimal solution, the aggregate externality x is selected so that the
shadow cost γ of the aggregate externality constraint (C.5) equals Bω . By plugging γ =

Bω and using individual optimality conditions (9) and (10) in equations (C.1) and (C.1),
we obtain the optimal tax formulas of Theorem 2.

Note that by the transversality conditions, ky(y0(n), n) = 1 and ky(y
1(n), n) = 1 for

n ∈ {n,n} so we have no distortion at the bottom and the top:

T ′(y) = τ ′(y) = 0 for y ∈ {yi(n), yi(n)}, i= {0,1}. (C.19)

From this it also follows that y0(n) = y1(n) and y0(n) = y1(n).
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C.2 Proposition 1

PROOF. Part (a): Assume first independence n⊥⊥ q. Assumption 2a implies that

E[ω|q > τ,n= n′]> E[ω|n= n′] (C.20)

for all n′ ∈ [n,n]. Then we can take expectation on both sides of the inequality to be able
to write it as

En′∼Fn
[E[ω|q > τ,n= n′]]> En′∼Fn

[E[ω|n= n′]].

By independence, Fq(τ) = Fq|n(τ |n′) for all n′ ∈ [n,n]. Hence we can write the inequality
as

En′∼Fn
[E[ω|q > τ,n= n′](1− Fq|n(τ |n′))]

1− Fq(τ)
> En′∼Fn

[E[ω|n= n′]],

or simplifying, E[ω|q > τ ]> 1. From Theorem 1, the result τ < Bω follows.
Now drop the independence assumption but assume E[ω|n] = 1 for all n ∈ [n,n]. We

may take inequality (C.20) and multiply both sides by (1− Fq|n(τ |n′)) to write that

E[ω|q > τ,n= n′](1− Fq|n(τ |n′))> E[ω|n= n′](1− Fq|n(τ |n′))

is true for all n′ ∈ [n,n]. Then plug in E[ω|n= n′] = 1, take expectation on both sides and
divide by 1− Fq(τ) to write the inequality as

En′∼Fn
[E[ω|q > τ,n= n′](1− Fq|n(τ |n′))]

1− Fq(τ)
> 1

or simplifying, E[ω|q > τ ]> 1. From Theorem 1, the result τ < Bω follows.
Part (b): This part of the proposition can be shown by reversing inequality (C.20) and
following similar steps.

C.3 Proposition 2

PROOF. Part (a): Assumption 1 holds. Then under the FOSD assumption, both E[ω|n=

n′] and (1 − Fq|n(τ |n = n′)) increase in n′, hence En′∼Fn
[E[ω|n = n′](1 − Fq|n(τ |n′))] ≥

En′∼Fn
[E[ω|n= n′]]En′∼Fn

[1−Fq|n(τ |n′)]. Divide both sides by 1−Fq(τ) and simplify to
write the inequality as E[ω|q > τ ]≥ 1. Apply Theorem 1, and the result follows.
Part (b): This can be proved analogously.

C.4 Proposition 3

PROOF. We develop three effects of the simple reform.
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First, the tax increase is phased in over the income bracket [y∗(n), y∗(n + dn)], in-
creasing the effective marginal income tax of polluters in the bracket (but not else-
where). Thus, these individuals face a stand-alone simple income tax reform, which re-
duces tax revenue through earnings response by41

−dτfn(n)
n

1 +
1

ϵ

T ′(y∗(n))

1− T ′(y∗(n))
(1− Fq|n(τ |n)).

Since T is the optimal stand-alone income tax, by Theorem 1, this is equal to

− dτ(1−E[ω|n′ ≥ n])(1− Fn(n))(1− Fq|n(τ |n)) (C.21)

which gives the redistributive gain (or loss) from the change in tax revenues due to the
behavioral response.

Second, tax revenues change because more will be collected from those who do not
change behavior, that is, high-income individuals who continue polluting. This higher
revenue leads to the following redistributive gain:

dτ
(
1−E[ω|n′ ≥ n, q > τ ]

)(
1− Fn(n)

)(
1−E[Fq|n(τ |n′)|n′ ≥ n]

)
. (C.22)

Third, the reform produces environmental benefits, measured as marginal net bene-
fits Bω − τ per individual which, when multiplied by the total increase in reductions
dτE[fq|n(τ |n′)|n′ ≥ n](1− Fn(n)), gives the total environmental gain. Once again we ap-
ply Theorem 1 to re-express the total environmental gain:

− dτ
1−E[ω|q > τ ]

hq(τ)
E[fq|n(τ |n′)|n′ ≥ n](1− Fn(n)). (C.23)

A progressive externality tax reform, setting higher externality tax for high-income in-
dividuals, is welfare-improving at n, if the net effect of the three effects given in eqs.
(C.21)-(C.23) is positive:

dτ
(
− (1−E[ω|n′ ≥ n])(1− Fn(n))(1− Fq|n(τ |n))

+
(
1−E[ω|n′ ≥ n, q > τ ]

)(
1− Fn(n)

)(
1−E[Fq|n(τ |n′)|n′ ≥ n]

)
− 1−E[ω|q > τ ]

hq(τ)
E[fq|n(τ |n′)|n′ ≥ n](1− Fn(n))

)
> 0.

41The behavioral earnings response can be derived in the following way. Let dτ ′(y) denote the change
in the marginal tax in [y∗(n), y∗(n + dn)]. For given dτ , we have dτ = dydτ ′(y) = dndy∗

dn
dτ ′(y) =

dn(−kny(y
∗(n),n)

kyy(y∗(n),n)
)dτ ′(y) in which the last equation follows from the implicit function theorem ap-

plied to the agent’s first-order condition 1 − ky(y(n), n) − T ′(y(n)) = 0. The change in the marginal

tax in [y∗(n), y∗(n + dn)] is thus dτ ′(y∗) = −dτ 1
dn

kyy(y
∗(n),n)

kny(y∗(n),n)
and the associated change in earn-

ings is −dτ 1
dn

kyy(y
∗(n),n)

kny(y∗(n),n)
· dy∗

dτ ′(y∗) = dτ 1
dn

1
kny(y∗(n),n)

in which the last equation uses again im-

plicit differentiation of the first-order condition for the agent. The change in tax revenue equals the
change in earnings times the marginal tax: dτ 1

dn
1

kny(y∗(n),n)
T ′(y∗) = −dτ 1

dn
n

(1+ 1
ϵ )ky(y∗(n),n)

T ′(y∗) =

−dτ 1
dn

n

(1+ 1
ϵ )

T ′(y∗)
1−T ′(y∗) , and when we multiply by the mass (1− Fq|n(τ |n))fn(n)dn of agents affected, we

obtain the formula for the effect.
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For a regressive externality tax reform, the inequality is reversed. Moreover, for a con-

stant externality tax to be optimal, the condition must be met with equality for all n.

Divide both sides by 1− Fn(n), dτ and 1−E[Fq|n(τ,n
′)|n′ ≥ n] to write:

−(1−E[ω|n′ ≥ n])
1− Fq|n(τ |n)

1−E[Fq|n(τ |n′)|n′ ≥ n]

+(1−E[ω|n′ ≥ n, q > τ)])− (1−E[ω|q > τ)])
hq|n′≥n(τ,n)

hq(τ)
> 0

where we defined the hazard-rate for high ability types as hq|n′≥n(τ,n) =
E[fq|n(τ |n′)|n′≥n]

1−E[Fq|n(τ |n′)|n′≥n] .

Use definitions ξ1 =
1−Fq|n(τ |n)

1−E[Fq|n(τ |n′)|n′≥n] and ξ2 =
hq|n′≥n(τ,n)

hq(τ)
and the normalization

E[ω] = 1 to write:

ξ1E[ω|n′ ≥ n] + ξ2E[ω|q > τ ]− (ξ1 + ξ2 − 1)E[ω]−E[ω|n′ ≥ n, q > τ ]> 0 (C.24)

Now use definitions ω = 1, ω0 = E[ω|q > τ ], ωn′≥n = E[ω|n′ ≥ n], and ω0
n′≥n = E[ω|n′ ≥

n, q > τ ]. Restructure the terms in (C.24) to write the condition as in Proposition 3.

C.5 Proposition 4

PROOF. Let n∗ ∈ argmaxn∈[n,n] τ(y
0(n)) denote the ability level with the highest exter-

nality price τ in a tax schedule given by the formulas in Theorem 2. This implies that

at n = n∗, we have τ ′(y0(n∗)) = 0 and τ ′′(y0(n∗)) ≤ 0.42 This is clear if the maximum

is attained in interior point n∗ ∈ (n,n) but also true at corner points n∗ ∈ {n,n} as the

marginal tax rates are zero there, see equation (C.19).

Based on Lemma C.4,

(
ω0
n∗ − ω1

n∗ − (Bω − τn)
fq|n(q̄|n∗)

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)

)
fn(n

∗)

+

∂Fq|n(q̄|n∗)

∂n
n∗hn(n

∗)

1 +
1

ϵ

T ′(y1(n∗))

1− T ′(y1(n∗))

1

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)
≤ 0

(C.25)

We first prove the analogue of Proposition 1(a) for the optimal tax system of Theorem

2, so assume n⊥⊥ q or E[ω|n] is invariant in n. Then the term on the left-hand side of the

42Theorem 2 characterizes the optimal tax schedules without bunching. In this case state variables v̂0(n)
and v̂1(n) and controls y0 and y1 are differentiable (see the proof of Theorem 2 in Appendix A.2), from
which it follows that T and τ are twice differentiable.
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inequality sign on the second row of (C.25) is 0,43 so

ω0
n∗ − ω1

n∗ ≤ (Bω − τn)
fq|n(q̄|n∗)

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)
(C.26)

where under Assumption 2a, ω0
n∗ − ω1

n∗ > 0, so the right-hand side of (C.26) must
also be positive, and therefore τn(n∗) < Bω . As y0(n∗) = y1(n∗), τn(n∗) = τ(y0(n∗)),
so τ(y0(n∗)) < Bω . Since τ achieves its greatest value at y0(n∗), we then know that
τ(y0(n))<Bω for all n ∈ [n,n].

We then prove the analogue of Proposition 2(a) for the optimal tax system of Theo-
rem 2, so assume E[ω|n, q] is invariant in q. Then ω0

n∗ − ω1
n∗ = 0 so we can write (C.25)

as

∂Fq|n(q̄|n∗)

∂n
n∗hn(n

∗)

1 +
1

ϵ

T ′(y1(n∗))

1− T ′(y1(n∗))

1

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)

≤ (Bω − τn)
fq|n(q̄|n∗)

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)

Under the assumption that n′ > n′′ implies Fq|n(q|n′) ≥ Fq|n(q|n′′) for all n′, n′′ ∈ [n,n],

we have
∂Fq|n(q̄|n∗)

∂n ≥ 0, so the sign of the term on the left-hand side of (C.5) is non-
negative.44 For the inequality in (C.5) to hold, τn(n∗)≤Bω must be true so consequently
τ(y0(n∗))<Bω . As τ achieves its greatest value at y0(n∗), we then know that τ(y0(n))≤
Bω for all n ∈ [n,n].

43If n ⊥⊥ q then
∂Fq|n(q̄|n∗)

∂n
= 0, so if E[ω|n] is invariant in n then, as τ ′(y0(n∗)) = 0 and y0(n∗) =

y1(n∗), we have

T ′(y1(n∗))

1− T ′(y1(n∗))
= Fq|n(q̄|n∗)

T ′(y1(n∗))

1− T ′(y1(n∗))
+ (1− Fq|n(q̄|n∗))

T ′(y0(n∗)) + τ ′(y0(n∗))

1− T ′(y0(n∗))− τ ′(y0(n∗))

=

(
1 +

1

ϵ

)(
1− E[ω|n′ ≥ n]

)1− Fn(n)

fn(n)n

= 0

where Theorem 2 is used for the second equality and the third equality follows from E[ω|n] = 1 for all n.
44This is true since T ′(y1(n∗))

1−T ′(y1(n∗))
≥ 0, as we can prove: As τ ′(y0(n∗)) = 0 and y0(n∗) = y1(n∗),

T ′(y1(n∗))

1− T ′(y1(n∗))
= Fq|n(q̄|n∗)

T ′(y1(n∗))

1− T ′(y1(n∗))
+ (1− Fq|n(q̄|n∗))

T ′(y0(n∗)) + τ ′(y0(n∗))

1− T ′(y0(n∗))− τ ′(y0(n∗))

=

(
1 +

1

ϵ

)(
1− E[ω|n′ ≥ n]

)1− Fn(n)

fn(n)n

≥ 0

where Theorem 2 is used for the second equality and the weak inequality follows since E[ω|n = n′] is by
assumption non-increasing in n′.
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To prove the analogues of Propositions 1(b) and 2(b) for the optimal tax system of
Theorem 2, we take n∗ ∈ argminn∈[n,n] τ(y

0(n)), in which case the inequalities in (C.25),
(C.26) and (C.5) are reversed. Then under Assumption 2b, (C.26) implies that τ(y0(n))>
Bω for all n ∈ [n,n]. Under the assumption that n′ > n′′ implies Fq|n(q|n′) ≤ Fq|n(q|n′′)

for all n′, n′′ ∈ [n,n], (C.5) implies that τ(y0(n))≥Bω for all n ∈ [n,n].

C.6 Proposition 5

PROOF. To prove part (a) of the proposition, suppose that for some n ∈ [n,n], τ ′(y0(n))≥
0 but by contradiction T ′(y1(n))> T̂ ′(y(n)). By Lemma C.3,

T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
≥ T ′(y1(n))

1− T ′(y1(n))
>

T̂ ′(y(n))

1− T̂ ′(y(n))

and hence

(1− Fq|n(q̄(n)|n))
T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
+ Fq|n(q̄(n)|n))

T ′(y1(n))

1− T ′(y1(n))

>
T̂ ′(y(n))

1− T̂ ′(y(n))

(C.27)

Use the optimal tax formulas from Theorem 2 to write inequality (C.27) as

(
1 +

1

ϵ

)
1−E[ω|n′ ≥ n]

nhn(n)
>

T̂ ′(y(n))

1− T̂ ′(y(n))
(C.28)

But since T̂ is the optimal stand-alone income tax schedule, by Theorem 1 we know(
1 +

1

ϵ

)
1−E[ω|n′ ≥ n]

nhn(n)
=

T̂ ′(y(n))

1− T̂ ′(y(n))

so we obtained a contradiction.
Part (b) can be proved by reversing the inequalities.

C.7 Proposition 6

PROOF. Consider an optimal tax system given by formulas (14) and (15) in Theorem 2
and suppose that Assumptions 3-4 hold and n ⊥⊥ q. We will first prove part (a) of the
proposition. To do that, suppose that ω0

n(q̃)− ω1
n(q̃) is strictly decreasing in n for all n ∈

[n,n], q̃ ∈ R+ but by contradiction it is not true that τ ′(y) ≥ 0 for all y. Then there must
be an interval (na, nb) such that τ ′(y)< 0 for all y ∈ (y0(na), y

0(nb)) and τ ′(y0(n)) = 0 at
n ∈ {na, nb}, so that τ ′′(y0(na))≤ 0 and τ ′′(y0(nb))≥ 0.45 Then, by Lemma C.4 (and since

45When it is not true that τ ′(y) ≥ 0 for all y, there must be a non-degenerate interval where τ ′(y) < 0

since τ ′ is continuous; in fact τ(y) is twice differentiable, see footnote 42. An interval such that τ ′(y) = 0 at
the end points always exists since τ ′(y) = 0 for y ∈ {y0(n), y0(n)}, see equation (C.19).
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n⊥⊥ q),

ω0
n − ω1

n − (Bω − τn)
fq|n(q̄|n)

(1− Fq|n(q̄|n))Fq|n(q̄|n)

is non-positive at n= na and non-negative at n= nb. This implies, using notation τa :=

τ(y0(na)) and τb := τ(y0(nb)) and assumption n⊥⊥ q:

ω0
na

(τa)− ω1
na

(τa)≤
(
Bω − τa

) fq(τa)

(1− Fq(τa))Fq(τa)
(C.29)

ω0
nb
(τb)− ω1

nb
(τb)≥

(
Bω − τb

) fq(τb)

(1− Fq(τb))Fq(τb)
(C.30)

Notice that

ω0
na

(τa)− ω1
na

(τa)>ω0
nb
(τa)− ω1

nb
(τa)

≥ω0
nb
(τb)− ω1

nb
(τb)

(C.31)

where the first inequality follows from the assumption that ω0
n(q̃)− ω1

n(q̃) is strictly de-
creasing in n and the second inequality follows from Assumption 4 and τa > τb.

Combine (C.29), (C.30) and (C.31) to obtain

(
Bω − τa

) fq(τa)

(1− Fq(τa))Fq(τa)
>
(
Bω − τb

) fq(τb)

(1− Fq(τb))Fq(τb)

This implies together with Assumption 3 that τa < τb which is a contradiction. This
proves part (a) of the proposition.

Part (b) of the proposition is proved analogously, by reversing the inequalities.

C.8 Proposition 7

PROOF. Consider an optimal tax system given by formulas (14) and (15) in Theorem
2. Suppose that Assumptions 3-4 hold and that ω0

n(q̃) − ω1
n(q̃) is invariant in n for all

n ∈ [n,n], q̃ ∈R+.
We will first show that if assumptions (a)-(b) or (a’)-(b’) in the proposition hold then

τ ′(y)> 0 in some interval. To do that, suppose that (a)-(b) or (a’)-(b’) hold but by contra-
diction τ ′ ≤ 0 everywhere. This implies that τ ≥ τ where we use notation τ := τ(y0(n))

and τ := τ(y0(n)). By equation (C.19), τ ′(y0(n)) = 0 at n= n and n= n and τ ′′(y0(n))≤ 0

and τ ′′(y0(n))≥ 0.46 By Lemma C.4 and since T ′(y0(n)) = 0 at n= n and n= n, we have

ω0
n(τ)− ω1

n(τ)≤ η(n, τ)(Bω − τ) (C.32)

ω0
n(τ)− ω1

n(τ)≥ η(n, τ)(Bω − τ). (C.33)

46Recall that τ is twice differentiable, see footnote 42.
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By assumption, ω0
n(q̃)− ω1

n(q̃) is invariant in n and non-decreasing in q̃ (Assumption 4),
so we have

ω0
n(τ)− ω1

n(τ) = ω0
n(τ)− ω1

n(τ)≥ ω0
n(τ)− ω1

n(τ)

Use this with inequalities (C.32) and (C.33) to obtain

η(n, τ)(Bω − τ)≤ η(n, τ)(Bω − τ). (C.34)

Assumption 3 together with τ ≥ τ implies

η(n, τ)(Bω − τ)≥ η(n, τ)(Bω − τ) (C.35)

η(n, τ)(Bω − τ)≤ η(n, τ)(Bω − τ). (C.36)

Then, combining (C.34) and (C.35) gives

η(n, τ)(Bω − τ)≤ η(n, τ)(Bω − τ) (C.37)

and combining (C.34) and (C.36) gives

η(n, τ)(Bω − τ)≥ η(n, τ)(Bω − τ) (C.38)

If assumption (a) (i.e. horizontal equity Assumption 2a) holds then ω0
n(τ)− ω1

n(τ)>

0, which together with (C.32) implies Bω − τ > 0, which together with (C.37) implies

η(n, τ)≤ η(n, τ) (C.39)

so assumption (b) (that η(n, q) is strictly increasing in n) cannot hold simultaneously
with (a).

If assumption (a’) (i.e. horizontal equity Assumption 2b) holds then ω0
n(τ)−ω1

n(τ)<

0, which together with (C.33) implies Bω − τ < 0, which together with (C.38) implies

η(n, τ)≤ η(n, τ) (C.40)

so assumption (b’) (that η(n, q) is strictly decreasing in n) cannot hold simultaneously
with (a’).

Hence we obtained a contradiction, proving that if (a)-(b) or (a’)-(b’), then it holds
for the optimal tax that τ ′(y)> 0 in some interval.

Analogously, we can prove that if (a’)-(b) or (a)-(b’), then τ ′(y)< 0 in some interval.

C.9 Lemma C.1

LEMMA C.1. For any budget feasible, incentive-compatible mechanismM = (x, y, t)(n, q, b),
there is another budget feasible, incentive compatible mechanism M̂ = (x̂, ŷ, t̂)(n, q) that
does not depend on b and gives at least as high social welfare as original mechanism M .
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PROOF. Take any direct, budget-balanced incentive-compatible mechanism M :=

(x, y, t)(θ) that may condition the allocation on the whole type (n, q, b). By incentive
compatibility

u(θ;y(θ), x(θ), t(θ), x) =max
θ′

u(θ;y(θ′), x(θ′), t(θ′), x)

=⇒ v(n, q;y(θ), x(θ), t(θ)) =max
θ′

v(n, q;y(θ′), x(θ′), t(θ′))

(where v(n, q;y,x, t) = u(n, q, b;y,x, t, x) − bx denotes again the private part of the util-
ity) so value v(n, q; (y,x, t)(n, q, b)) is invariant with respect to b although allocation
(y,x, t)(n, q, b) could depend on b in mechanism M .

Now given mechanism M = (x, y, t)(θ) choose for every (n, q) some b̂(n, q) so
that x(n, q, b̂(n, q))Bω + t(n, q, b̂(n, q)) ≥ E[x(n, q, b)Bω + t(n, q, b)|n, q]. Define also t =

Eθ[t(n, q, b̂(n, q)) − t(n, q, b)]. Now we are ready to propose a new mechanism that does
not condition on benefit b. The new mechanism is defined as M̂ = (x̂, ŷ, t̂)(n, q) =

(x(n, q, b̂(n, q)), y(n, q, b̂(n, q)), t(n, q, b̂(n, q))+ t). In words, mechanism M̂ gives each (n, q)

the same allocation and transfer it gives to (n, q, b̂(n, q)) in mechanism M and then re-
distributes any excess revenue (positive or negative) equally among all agents.

By incentive compatibility of mechanism M ,

v(n, q; (y,x, t)(n, q, b̂(n, q)) ∈ argmax
n′,q′

v(n, q; (y,x, t)(n′, q′, b̂(n′, q′))

for all n, q, which implies

v(n, q; (ŷ, x̂, t̂)(n, q, b)) ∈ argmax
n′,q′,b′

v(n, q; (ŷ, x̂, t̂)(n′, q′, b′))

for all n, q, b, so mechanism M̂ is incentive compatible. Budget balance of mechanism
M̂ also follows straight-forwardly from budget balance of mechanism M .

Now denote the social welfare resulting from mechanism M by W (M), then the so-
cial welfare resulting from mechanism M̂ is

W (M̂) =W (M) + t+BωEθ[x̂(n, q)− x(n, q, b)]

=W (M) +Eθ[t(n, q, b̂(n, q)) +Bωx(n, q, b̂(n, q))− t(n, q, b)−Bωx(n, q, b)]

The expected value on the second line is non-negative since by the definition of b̂,
t(n, q, b̂(n, q)) + Bωx(n, q, b̂(n, q)) ≥ E[x(n, q, b)Bω + t(n, q, b)|n, q] for all (n, q). Hence,
mechanism M̂ results in welfare that is at least equal with welfare resulting from mech-
anism M .

C.10 Lemma C.2

LEMMA C.2. There exists a solution to the control problem defined by objective (C.1) and
constraints (C.2)-(C.5).
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PROOF. The existence follows by Filippov-Cesari Theorem (e.g., Theorem 8, page 132,
Seierstad and Sydsæter, 1987). This type of theorem requires that the control set is well
defined. We can take yi ∈ [0, Y ], i= 0,1, for finite bound Y > 0, defined by 1− ky(Y,n) =

0, for example. The theorem also requires that functions a0, a1, a2 are sufficiently regular.
In our case, they are continuously differentiable and bounded, which guarantees the
required regularity. The final requirement is that a set defined by

N(v̂, n,λ, γ) = {(a0 + λa1 + γa2 + κ,−kn(y
0, n),−kn(y

1, n)) : κ≤ 0, y ∈ [0, Y ]× [0, Y ]}
(C.41)

is convex in which v̂ = (v̂0, v̂1), y = (y0, y1). Thus, N holds the states v̂, type n, λ, and γ as
given and defines the set by variations in controls and scalar κ. Note that in a0+λa1+γa2
only a1 depends on y. We rewrite the set in terms of variables

z = (z0, z1) = (−kn(y
0, n),−kn(y

1, n)) =

 1

n

(
y0

n

) 1+ϵ
ϵ

,
1

n

(
y1

n

) 1+ϵ
ϵ


instead of (y0, y1) to obtain

N(v̂, n,λ, γ)

=
{
(a0 + λâ1 + γa2 + κ, z0, z1) : κ≤ 0, z ∈

[
0,

1

n

(
Y

n

) 1+ϵ
ϵ ]

×
[
0,

1

n

(
Y

n

) 1+ϵ
ϵ ]}

(C.42)

where

â1 =

((
n

1+2ϵ
1+ϵ (z0)

ϵ
1+ϵ − n

ϵ

1 + ϵ
z0 − v̂0(n)

)
(1− Fq|n(v̂

1(n)− v̂0(n)|n))

+
(
n

1+2ϵ
1+ϵ (z1)

ϵ
1+ϵ − n

ϵ

1 + ϵ
z1 − v̂1(n)

)
Fq|n(v̂

1(n)− v̂0(n)|n)

)
fn(n) (C.43)

Since a0 + λâ1 + γa2 + κ is a concave function of (z0, z1) for all z0, z1 ≥ 0, we can easily
see from (C.10) that set N is convex.

C.11 Lemma C.3

LEMMA C.3. Consider a tax system given by formulas (14) and (15) in Theorem 2. Take
any n ∈ [n,n]. Then

τ ′(y0(n))≥ 0 =⇒ T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
− T ′(y1(n))

1− T ′(y1(n))
≥ 0

τ ′(y0(n))≤ 0 =⇒ T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
− T ′(y1(n))

1− T ′(y1(n))
≤ 0
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PROOF. Take any n ∈ [n,n] such that τ ′(y0(n)) ≥ 0. As y0(n) = y1(n) and y0(n) = y1(n)

and y0 and y1 are continuous and non-decreasing functions on [n,n], there must exist
n′ ∈ [n,n] such that y1(n′) = y0(n). Choose n′ so that y1(n′) = y0(n).

As τ ′(y0(n))≥ 0, we have T ′(y0(n)) + τ ′(y0(n))≥ T ′(y0(n)), implying

T ′(y0(n)) + τ ′(y0(n))≥ T ′(y1(n′)) (C.44)

The agents’ optimality conditions give

1− ky(y
0(n), n)− T ′(y0(n))− τ ′(y0(n)) = 0 (C.45)

1− ky(y
1(n′), n′)− T ′(y1(n′)) = 0 (C.46)

Use (C.44), (C.45), (C.46) and y1(n′) = y0(n) to obtain

ky(y
0(n), n)≤ ky(y

0(n), n′) (C.47)

Since kny(y
0(n′′), n′′) < 0 for all n′′ ∈ [n,n], inequality (C.47) implies n′ < n. Since y1 is

increasing, then y1(n′) ≤ y1(n), so y0(n) ≤ y1(n). This implies (again using an agent’s
optimality condition) T ′(y0(n))+τ ′(y0(n))≥ T ′(y1(n)). Since 0≤ T ′(y0(n))+τ ′(y0(n))<

1 and 0≤ T ′(y1(n))< 1, this implies

τ ′(y0(n))≥ 0 =⇒ T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
− T ′(y1(n))

1− T ′(y1(n))
≥ 0

The second part of the lemma can be proved analogously.

C.12 Lemma C.4

LEMMA C.4. Consider a tax system given by formulas (14) and (15) in Theorem 2. If
τ ′(y0(n∗)) = 0 and τ ′′(y0(n∗))≤ 0, then(

ω0
n∗ − ω1

n∗ − (Bω − τn)
fq|n(q̄|n∗)

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)

)
fn(n

∗)

+

∂Fq|n(q̄|n∗)

∂n
n∗hn(n

∗)

1 +
1

ϵ

T ′(y1(n∗))

1− T ′(y1(n∗))

1

(1− Fq|n(q̄|n∗))Fq|n(q̄|n∗)
≤ 0

(C.48)

If τ ′(y0(n∗)) = 0 and τ ′′(y0(n∗))≥ 0, then the inequality sign in (C.48) is reversed.

PROOF. Consider a tax system given by formulas (14) and (15) in Theorem 2. Suppose
τ ′(y0(n∗)) = 0. We will first prove that

We will first prove that the derivative of

T ′(y0(n)) + τ ′(y0(n))

1− T ′(y0(n))− τ ′(y0(n))
− T ′(y1(n))

1− T ′(y1(n))
(C.49)
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with respect to n at n = n∗ is non-positive if τ ′′(y0(n∗)) ≤ 0 and non-negative if
τ ′′(y0(n∗))≥ 0.

To do that, note that (C.49) is equal to

1− ky(y
0(n), n)

ky(y
0(n))

−
1− ky(y

1(n), n)

ky(y
1(n))

(C.50)

for all n by equations (9) and (10).
Differentiate (C.50) with respect to n to obtain[

− kyy(y
0(n), n)

∂y0

∂n
− kyn(y

0(n), n)
)
ky(y

0(n))

−
(
kyy(y

0(n))
∂y0

∂n
+ kyn(y

0(n), n)
)
(1− ky(y

0(n), n))
] 1

ky(y
0(n))2

−[(
− kyy(y

1(n), n)
∂y1

∂n
− kyn(y

1(n), n)
)
ky(y

1(n))

−
(
kyy(y

1(n))
∂y1

∂n
+ kyn(y

1(n), n)
)
(1− ky(y

1(n), n))
] 1

ky(y
1(n))2

(C.51)

Since y0(n∗) = y1(n∗), expression (C.12) evaluated at n∗ is equal to(∂y1
∂n

− ∂y0

∂n

)
kyy(y

0(n∗), n∗)

ky(y
0(n∗))2

. (C.52)

By differentiating agents’ optimality conditions (9) and (10) with respect to n we can
show that

∂y1

∂n
=

−kyn(y
1(n), n))

kyy(y
1(n)) + T ′′(y1(n))

(C.53)

∂y0

∂n
=

−kyn(y
0(n), n))

kyy(y
0(n)) + T ′′(y0(n)) + τ ′′(y0(n))

(C.54)

Since ∂yi

∂n ≥ 0 for i ∈ {0,1} and kyn < 0, the denominators of (C.53) and (C.54) are posi-
tive, and then for n= n∗, we obtain

τ ′′(y0(n∗))≤ 0 =⇒ ∂y1

∂n
− ∂y0

∂n
≤ 0 at n= n∗,

τ ′′(y0(n∗))≥ 0 =⇒ ∂y1

∂n
− ∂y0

∂n
≥ 0 at n= n∗.

since y0(n∗) = y1(n∗),
Then, since kyy > 0, (C.52) is non-positive if τ ′′(y0(n∗)) ≤ 0 and non-negative if

τ ′′(y0(n∗))≥ 0.
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Using the optimal tax formulas of Theorem 2, this implies that the derivative of(
1 +

1

ϵ

) E[(1− ω0
n′)(1− Fq|n(q̄|n′)) + (Bω − τn)fq|n(q̄|n′)|n′ ≥ n]

(1− Fq|n(q̄|n))

−
(
1 +

1

ϵ

) E[(1− ω1
n′)Fq|n(q̄|n′)−

(
Bω − τn

)
fq|n(q̄|n′)|n′ ≥ n]

Fq|n(q̄|n)

(C.55)

with respect to n is non-positive at n = n∗ if τ ′′(y0(n∗)) ≤ 0 and non-negative if
τ ′′(y0(n∗)) ≥ 0, while the value of (C.55) at n = n∗ is 0. Differentiate (C.55) with respect
to n at n= n∗, using q′(n∗) = v̂1′(n∗)− v̂0′(n∗) = 0, to obtain the result of the lemma.

C.13 Extensions and robustness analysis

C.13.1 Continuous pollution choices In some applications, pollution reduction is an
intensive-margin rather than extensive-margin choice. We consider now a continuous
choice x ∈ [0,1], reflecting the share of emissions abated, and denote by e= 1−x the pol-
lution created by the individual. The cost of abating share x is s(x, q) with sx, sxx, sxq >

0, limx→0 sx(x, q) = 0, limx→1 sx(x, q) = ∞. Given type (n, q, b), choices (y,x), transfer t,
and aggregate externality x, the agent’s payoff is then

y− k(y,n)− s(x, q) + bx− t.

The results of Theorem 1 can be generalized to cover continuous pollution decisions.
Consider a stand-alone income tax and a constant externality tax in emissions, t(y,x) =
T (y)+τe, and the impacts of a marginal increase in τ . The resulting increase in emission

reductions creates surplus (Bω − τ)E
[
∂x
∂τ

]
, while the mechanical redistributive effect is

E[(1− ω)e]. For an optimal finite τ > 0, the sum of these effects is zero, which gives us
the formula

τ =Bω +
1− ω0

e

hq
(C.56)

where ω0
e =

E[ωe]
E[e] denotes the emission-weighted welfare weights and hq =−E[∂e/∂τ ]

E[e] =
E[∂x/∂τ ]

E[e] is the semi-elasticity of emissions with respect to externality prices. Equation
(C.56) shows that Theorem 1 generalizes to continuous choice – we only replace, first,
the welfare weight of polluters E[ω|q > τ ] with the emissions-weighted welfare-weight of
all individuals, ω0

e , and, second, hazard rate hq(τ) with the semi-elasticity of emission
reduction hq(τ) which aggregates responses over all types.

We can also extend the results of the simple reform in Section 4.1. The reform in-
creases the externality tax by dτ for those with labor ability greater than n by increasing
τ ′(y) in band y ∈ [y(n), y(n + dn)]. The reform has three effects. First, there is an earn-

ings response at n, which amounts to −dτ n
1+ 1

ϵ

T ′(y(n))
1−T ′(y(n))E[e|n]fn(n). Second, the trans-

fer creates a distributional effect dτE[
(
1−ω

)
e|n′ ≥ n](1−Fn(n)) by raising more tax rev-

enue from high-polluting high-income individuals. Third, emission reduction creates
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benefits dτ
(
Bω − τ

)
E
[
∂x
∂τ |n

′ ≥ n
]
(1− Fn(n)). The small tax reform is welfare-increasing

if the sum of the three terms is positive:

(
1 +

1

ϵ

)E[(1− ω)e+ (Bω − τ)
∂x

∂τ
|n′ ≥ n

]
nhn(n)

>
T ′(y(n))

1− T ′(y(n))
E
[
e|n
]

If we evaluate the expression at the optimal constant τ , given by (C.56), and use the
optimal stand-alone income tax, still given by (12), we arrive at the condition in Propo-
sition 3, with the following changes. First, the polluters’ welfare weights ω0 and ω0

n′≥n
are replaced by emissions-weighted welfare weights. Second, the average emissions of
type n relative to the average emissions of those above n, E[e|n]

E[e|n′≥n] , replaces the share of
polluters at n relative to the share of polluters above n. Third, semi-elasticities of average
emissions hq and hq|n′≥n(τ,n)≡−E

[
∂e
∂τ |n

′ ≥ n
]
/E
[
e|n′ ≥ n

]
replace the semi-elasticities

of polluters’ masses. With these changes of definitions, the results on the optimality of
progressive or regressive reforms continue to hold.47

C.13.2 Heterogenous emissions We can extend the model to cover heterogeneous
emissions by individuals if we assume each agent chooses x ∈ {0,1} but pollution emis-
sions differ by income and earning ability according to function e(y,n). We consider only
the optimal separated tax system T (·) = T (y) + τe(y,n). A marginal increase of dτ in the
externality tax results again in three effects (behavioral, redistributive, environmental).
We develop next the formulas for the three effects and the optimal linear externality tax
that balances these effects.

The behavioral labor market effect through the change in earnings reads in total as

dτE
[dy
dτ

(
T ′(y0) + ey(y

0, n)(τ −Bω)
)
(1− Fq|n(q|n))

]
in which dy

dτ is determined by ey . If emissions increase in income, raising externality tax
effectively makes the tax schedule of polluters more progressive, worsening polluters’
labor market incentives.

There is a mechanical redistributive effect: making polluters pay more taxes redis-
tributes from them to everyone, and this effect is

dτE[e(y,n)(1− ω0
n)(1− Fq|n(q|n))].

There is a direct environmental gain: for polluters at each ability level n, the external-
ity price increases by dτe(y(n), n) and hence incentivizes mass dτe(y(n), n)f(q|n) to cut
emissions, affecting social welfare through decreased emissions taxes and total exter-
nality. Aggregated over all ability levels, this effect is

dτE[fq|n(q|n)e(y,n)](Bω − τ).

47However, extension to the general two-dimensional mechanism with continuous choices is not
straightforward. Unlike in in our discrete-choice model, it is difficult to know what incentive compatibility
constraints bind, see Rochet and Stole (2003). A fully optimal mechanism is outside the scope of this paper,
but we conjecture that it also involves T (y, e) that is nonlinear in e to screen agents in their q-dimension.
For recent advances in multidimensional mechanism design and their application to income taxation, see
Spiritus et al. (2022) and Golosov and Krasikov (2023).
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The optimal linear externality tax then balances the three effects and can be written as

τ =

E[fq|n(q|n)e(y,n)]Bω +E[
(
e(y,n)(1− ω0

n) +
dy

dτ

(
T ′(y)− ey(y,n)B

ω
))
(1− Fq|n(q̂|n))]

E[fq|n(q|n)e(y,n)−
dy

dτ
ey(y,n)(1− Fq|n(q|n)]

(C.57)

and if ey = 0, this simplifies to

τ =Bω +
ê

e

1− ω̂0

ĥq

where e denotes the average emissions of polluters, ω̂0 ≡ E[ω0
ne(y,n)(1−Fq|n(q|n)]

E[e(y,n)(1−Fq|n(q|n))]
is pol-

luters’ emissions-weighted welfare weight, ê ≡ E[fq|n(q|n)e(y,n)]
E[fq|n(q|n)]

denotes the average

emissions at the cutting margin and ĥq ≡
E[fq|n(q|n)]

E[1−Fq|n(q|n)]
is the hazard rate of the cost dis-

tribution. This formula indicates that the externality tax is pushed downwards from the
welfare-weighted Pigouvian level Bω if the polluters’ emissions-weighted welfare weight
exceeds the average welfare weight in the population, and more so if the externality ac-
tion is not very responsive and the individuals at the margin of making the externality
action do not generate much emissions. Furthermore, if we drop the assumption ey = 0,
equation (C.13.2) shows that new terms emerge: if ey > 0, then increasing the externality
tax distorts labor market incentives.

C.13.3 Alternative social welfare specifications Consider a utilitarian social welfare
function

E[Ω(u(θ))] (1”)

in which Ω is an increasing and concave function of agent’s utility (1). For a given pol-
icy, the average social marginal welfare weight of individuals with ability n and cost q is
E
[
ω|n, q

]
= E

[
Ω′(u(θ))/λ

∣∣n, q] where λ is the shadow price of the budget constraint. Sup-
pose further that b is invariant across individuals and that we generate the weight for
each individual from Ω. Under the classical assumption that the policy maker has aver-
sion to utility differences (Ω′′ < 0), the weights generated by Ω would satisfy the vertical
equality concern of Assumption 1 and the horizontal equality concern of Assumption
2a: polluters would always receive a higher weight than non-polluters under these as-
sumptions.

Assumption 4 in the main analysis defines the difference in weighing polluters vis-
à-vis non-polluters as ω0

n(q̃) − ω1
n(q̃) for a given cut-off q̃ for emission reduction costs.

Consider a linear externality tax at τ = q̃ and assume independently distributed n and q.
Does the within-income-group concern for horizontal inequality increase or decrease in
n under this tax policy? The answer depends on the third derivative Ω′′′, often associated
with “prudence” of a decision-maker. If Ω′′′ > 0, the horizontal concern decreases in n,
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while if Ω′′′ < 0, the horizontal concern increases in n.48 For the social welfare represen-
tation, the third derivative is therefore an important determinant of whether externality
taxes should be progressive or regressive (Proposition 6). For the constant relative risk

aversion (CRRA) welfare function Ω(u) = u1−η

1−η , we have Ω′′′ > 0. This holds also for a
welfare function that is approximately Rawlsian in the CRRA class corresponding to a
limit in which inequality aversion becomes very large (η →∞). In sum, we observe that
welfare weights consistent with a social welfare function can capture relatively broad
preferences.

In our baseline model, q can be interpreted as a difference between benefits from
consumption generating and not generating the externality. Alternatively, these benefits
(denote by v1 and v0, respectively) could be explicit parts of the individual’s type and we
could write the payoff function, for example, as y−k(y,n)+v0(1−x)+v1x+x− t. How-
ever, we can denote q ≡ v0−v1 to write the payoff as y−k(y,n)+v0−qx+bx− t and then
eliminate additive term v0 to end up with payoff formula (1) as the term does not inter-
act with allocation and hence the elimination does not affect the optimal policy given
our baseline social welfare specification. However, this elimination is consequential un-
der the social welfare specification in (1”). It should be noted that the baseline social
welfare specification can more flexibly capture different kinds of horizontal and vertical
preferences. Under the welfare function presented in this Section, the two preferences
cannot be separated from each other (see, e.g., Auerbach and Hassett, 2002).

C.13.4 General cost-of-effort function To illustrate the earnings choice with a general
k(y,n), consider separated income and externality choices, as in Theorem 1. There is
no material impact on Theorem 1 and the results of Proposition 3 hold under the same
conditions. The environmental gain is still captured by formula (C.23), the redistributive
gain is still captured by formula (C.22), but the behavioral effect (C.21) takes now the
form

dτfn(n)
1

kny(y(n), n)
T ′(y(n))(1− Fq|n(τ,n))

=−dτ(1−E[ω|n′ ≥ n])(1− Fn(n))(1− Fq|n(τ |n)) (C.21′)

where we use formula (16). Combining the effects shows that the insights regarding the
tax level and the simple reform are robust to the functional form assumptions. Following
similar steps, the formulas of Theorem 2 for the optimal taxes can be derived in the case
of general k(y,n).

C.13.5 Tagging In the main text.

C.13.6 Public investments In the main text.

48Taking τ as given and denoting ũ(n) = y(n)−k(y(n), n)+bx−T (y(n)), we can write ω0
n(τ)−ω1

n(τ) =

(Ω′(ũ(n)− τ)− E[Ω′(ũ(n)− q)|n, q < τ ])/λ which is positive when Ω′′ < 0, and decreases (increases) in n

if Ω′′′ > 0 (Ω′′′ < 0) given that ũ(n) increases in n and n⊥⊥ q.
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