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CESifo Working Paper No. 11153 

Synthesis of Evidence Yields High Social Cost of 
Carbon Due to Structural Model Variation and 

Uncertainties 

Abstract 

Estimating the cost to society from a ton of CO2 - termed the social cost of carbon (SCC) - requires 
connecting a model of the climate system with a representation of the economic and social effects 
of changes in climate, and the aggregation of diverse, uncertain impacts across both time and 
space. Increasingly a growing literature has examined the effect of fundamental structural 
elements of the models supporting SCC calculations. This work has accumulated in piecemeal 
fashion, leaving their relative importance unclear. Here we perform a comprehensive synthesis of 
the evidence on the SCC, combining 1823 estimates of the SCC from 147 studies with a survey 
of authors of these studies. The distribution of published 2020 SCC values is wide and 
substantially right-skewed, showing evidence of a heavy right tail (truncated mean of $132). 
Analysis of variance reveals important roles for the inclusion of persistent damages, 
representation of the Earth system, and distributional weighting. However, our survey reveals that 
experts believe the literature is biased downwards due to an under-sampling of structural model 
variations and biases in damage-function and discount-rate. To address this imbalance, we train a 
random forest model on variation in the literature and use it to generate a synthetic SCC 
distribution that more closely matches expert assessments of appropriate model structure and 
discounting. This synthetic distribution has a mean of $284 per ton CO2, respectively, for a 2020 
pulse year (5%–95% range: $32–$874), higher than all official government estimates, including 
a 2023 update from the U.S. EPA. 
JEL-Codes: Q540. 
Keywords: social cost of carbon. 
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1 Introduction

Anthropogenic climate change affects the welfare of people around the world, and will continue to do

so for centuries into the future. Because these costs are largely not incorporated into energy, land-use,

and other economic decisions, climate change has been termed “the greatest and widest-ranging market

failure ever seen” [1, p. i]. Incorporating climate costs into the prices of economic activities that emit

greenhouse gases, either directly through carbon pricing or indirectly through emission-regulation or

subsidies of cleaner alternatives, is essential for averting the worst climate outcomes. Quantifying these

costs is extremely challenging as it involves projecting and valuing the effects of climate change in all

countries and sectors far into the future, an exercise that is rife with uncertainties and contestation.

The external costs of carbon dioxide (CO2) emissions are summarized by the ‘social cost of carbon’

(SCC): the present value of all future impacts from an additional metric ton of CO2 emissions. The

SCC is key for understanding the benefits of emissions-reduction policies and is used for climate and

energy policy analysis in the United States, Europe, and numerous other countries and sub-national

jurisdictions around the world as well as by companies and other institutions [2, 3]. Integrated assess-

ment models (IAMs) commonly used to calculate the SCC have been criticized on various grounds,

including inaccurate climate and carbon-cycle modeling, ignoring irreversibilities and tipping points in

the climate system, failing to adequately model uncertainty or the potential for catastrophic outcomes,

and relying on dated science in the representation of climate impacts [4–8].

The continuing importance of the SCC as a tool for climate policy analysis [2] and recognition of failings

in IAMs currently used to calculate it has led to a surge of research seeking to improve, expand, and

update the estimates. Major strands of this literature include: improving modeling of Earth system

dynamics [9–12]; disentangling preferences over risk and time using more complex utility functions

[13–15]; representing tipping points and associated uncertainties in damages [16–19]; addressing model

uncertainty, ambiguity, and learning of new information [20–24]; allowing climate damages to affect

the growth rate rather than just the level of economic output[11, 25–27]; calibrating aggregate climate

damages on recent economic and scientific evidence [11, 20, 25, 28, 29]; modeling the distribution of

climate damages and incorporating inequality aversion [30–32]; and allowing for climate damages to

non-market goods, such as natural systems or cultural heritage, which are imperfectly substitutable

with market-traded goods [33–36]. (Section S3 contains more detailed discussion and examples of

different elements of model structures used to calculate the SCC discussed in this paper).

Although this literature is now substantial, it has accumulated piecemeal. The vast majority of papers

make one or two structural adjustments to a simpler IAM and report how these alter SCC values,

often with an exploration of associated parametric uncertainty. The collective implications of the full
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suite of issues addressed by this literature have not been assessed. Previous syntheses have quantified

the distribution of SCC estimates and explored a limited set of covariates, such as publication year

and discounting [37, 38], as well as the possible role of publication bias [39]. Previous modeling studies

have made multiple simultaneous changes to individual IAMs [12, 40], or have undertaken systematic

IAM inter-comparisons and evaluations [41, 42], albeit focusing on a limited number of IAMs with

comparable model structures. Previous expert surveys have either imposed very specific structure or

none at all [43–45], or have focused on carbon prices [46]. Thus, prior studies only illuminate the role

of a subset of mechanisms and structural models.

This paper provides the most comprehensive assessment to date of SCC estimates, including how

elements of model structure shape the SCC. It builds on two complementary approaches. First, we

perform an analysis of SCC values published in the peer-reviewed literature between 2000 and 2020.

After reviewing over 2800 abstracts, we identified 1823 estimates (or distributions of estimates) pub-

lished in 147 studies. We recorded SCC estimates and, where reported, the distribution of parametric

uncertainty, along with 31 covariates capturing details of the estimate itself (e.g., SCC year, discount-

ing scheme, and socio-economic and emissions scenarios), important elements of model structure (e.g.,

growth-rate damages, distributional weighting, and representation of the utility function), and sources

of parametric variation (e.g., distributions over productivity growth, climate sensitivity, discount rates

and damage-function parameters). Second, to help place the literature distribution in a broader con-

text, we conduct an expert survey of the authors of the SCC papers in our analysis. We elicit expert

estimates of both the distribution of published SCC values in the peer-reviewed literature and their

best estimate of the SCC distribution, all things considered. We also ask experts to break down the

wedge between these two SCC estimates into component parts, generating information on what experts

perceive as potentially missing from on underrepresented in the literature. Furthermore, we elicit ex-

perts’ views on the degree to which various model structures as currently implemented in the literature

improve SCC estimates, using this quality assessment to inform our final synthetic SCC estimate.

Our study therefore contains two complementary data-generating processes: a meta-analysis, which

collects much richer data on published SCC estimates and their determinants than in previous studies,

and an expert survey. We combine these lines of evidence to produce a synthetic SCC distribution

using a random forest model trained on variation in the literature but sampled to more closely match

experts’ assessment of model structure and discounting parameters. The resulting SCC distribution

essentially amounts to a structured re-weighting of published SCC estimates to better match expert-

elicited model structure and discounting, emphasizing features identified by the random forest model

as most important in driving variance in the SCC distribution. Additional details on the literature
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review, coding of values, data cleaning and processing, expert survey, construction of the synthetic

SCC are provided in Section S2.

2 The SCC Distribution

The systematic review of the literature yields 1823 SCC estimates (or distributions) from 147 studies

(full references given in Section S4). Many studies report multiple SCC estimates. For each of the

1823 estimates, we collect information on the central SCC estimate, emission pulse year, discounting,

damage function, economic and emissions scenario, model structure, and distribution resulting from

parametric uncertainty (where reported, specifically 832 of the 1823 estimates). Section S1 provides

descriptive statistics and summary information on these estimates.

To characterize the distribution of SCC values appearing in the published literature, we sample from

the dataset using a hierarchical sampling scheme. We draw 10 million SCC values sampling uniformly

from the 147 studies in the dataset, then sample uniformly from the set of estimates within each

paper (i.e. unique SCC year-discounting-scenario-model structure combinations), and finally from the

parametric uncertainty of each estimate, if applicable. Alternate sampling schemes that account for

non-independence between papers using sets of shared authors, or for different quality of studies using

a normalized citation-based weighting, give quantitatively similar distributions (Table S4).

Figure 1 shows the distribution of SCC values reported in the literature, both across all estimates (top

row) and split based on characteristics of the estimates and studies. The Figure gives the distribution

of SCCs for pulse years between 2010 and 2030, which we use as the 2020-SCC equivalent sample from

the literature. The variation in SCC values is substantial and asymmetric, exhibiting a long right tail,

and a mean value ($132 per tCO2 after truncating the upper and lower 0.1% of values) that is several

times times higher than the median ($39). Statistical tests show evidence for a heavy tail in the SCC

distribution [8], echoing Anthoff and Tol [47], with a slope of the mean excess function greater than 1

and α values between 1 and 2, indicative of a distribution with infinite variance but finite mean (see

Table S5 in the SI).

Figure 1 also shows how the 2020 SCC distribution differs based on particular characteristics of the

estimate. The second panel shows variation across model structure, relative to a set of reference

estimates with similar structure to the original DICE model (versions up to 2016). These suggest

important roles for the representation of the Earth system, the persistence of damages to the economy

via impacts on the growth rate, and limited substitutability between aspects of climate damages and

consumption goods in the utility function. The third panel shows the well-documented sensitivity
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Figure 1: Distribution of the 2020 SCC from the published literature (2020 $ per ton CO2).
Distribution and top boxplot show the distribution of all 2010-2030 SCC values (which we treat as
the 2020-equivalent sample) from the published literature (equal weighting of all 147 papers). Other
boxplots show subsets of the 2010-2030 distribution split by characteristics of published estimates,
specifically model structure, discount rate, publication year, damage function, and paper type. The
reference distribution refers to SCC estimates coded as not having structural changes, similar to the
DICE model (versions up to 2016). Boxplots show the median (line), inter-quartile range (box), 5-
95% range (solid line) and 2.5-97.5% range (dashed lines). Dots show the mean after trimming the
upper and lower 0.1% of each distribution. Numbers for each plot show the number of papers and, in
parentheses, the number of estimates included in each boxplot.
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to discounting assumptions, with estimates using less than a 2.5% discount rate producing an SCC

distribution with median and mean values twice those obtained using higher discount rates ($231 per

ton CO2 vs $107 for the truncated mean, $78 vs $37 for the median). The fourth panel documents a

shift towards higher SCC values in papers published in the second half of our sample period, a finding

similar to that reported previously [38].

The final panel in Figure 1 shows estimates disaggregated by whether the primary goal of the paper was

one of empirical improvement (e.g., more accurately representing Earth system dynamics or improving

damage function estimation), integration of new elements into SCC models (e.g., integrating model

ambiguity, inequality aversion, or Epstein-Zin utility), or sensitivity analysis (e.g., SCC variation with

alternate damage functions or discount rates). It shows fairly similar distributions across the three

paper types, but with slightly higher SCC values in papers introducing empirical improvements.

2.1 Drivers of Variance in SCC Estimates

Figure 1 documents wide variation in published SCC estimates. The large set of covariates we record

allows us to investigate how many different features of SCC modeling—including structural model

features, parametric uncertainty, and other model covariates—affect SCC values. While Figure 1 shows

distributions under different univariate splits of the data, multivariate analysis can better identify the

effects of particular model structures and parameter values. Figure 2a shows estimated effects of

structural model characteristics on SCC values after controlling for other aspects of model structure,

SCC year, emissions and socio-economic scenarios, and discount rate. We plot relative changes in

the SCC attributable to individual elements of model structure, relying on the fact that many papers

report modeling results both with and without model changes in order to highlight relative effects.

These are recorded explicitly in our data collection process and form the basis of the results shown in

the figure.

Figure 2a shows large increases in the SCC (on the order of 50%) due to a number of structural model

elements, specifically improvements to the representation of the Earth system, inclusion of impact

tipping points, and elements of damages such as limited substitutability with consumption goods and

persistent effects on economic output. Inclusion of distributional weights (typically used to represent

aversion to inequality) has the largest effect on relative SCC values, on average more than doubling

estimates, reflecting the regressive nature of climate-change impacts, [48, 49]. Allowing for learning

over time (typically about equilibrium climate sensitivity or the damage function) tends to decrease

the SCC. This is consistent with theoretical models showing that the additional emissions allowed by

laxer climate policy can provide a more informative signal about uncertain parameters and lead to
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Figure 2: Drivers of variance in published SCC estimates. a) Effects of structural model
characteristics on log SCC, controlling for other aspects of model structure, SCC year, emissions and
socio-economic scenarios, and discount rate. b) ANOVA decomposition of the variance of logged SCC
estimates in the literature, based on a regression of the full distribution of logged SCC estimates on the
full set of covariates describing discounting, model structure, and inclusion of parametric uncertainty,
as well as paper fixed-effects.

better future climate policy [24]. Additional regression models using other types of variation in the

data are reported in Section S.2.1.9 and Figure S9.

Figure 2b shows results of an ANOVA decomposition of the SCC variance in the full distribution,

after controlling for individual papers’ mean values through the inclusion of paper fixed effects. Fig-

ure 2b shows that the single largest driver of the variance is discounting, followed by model and model

uncertainty (i.e., this groups together the identity of the IAM, e.g., DICE, FUND, or PAGE, with

the model uncertainty/ambiguity structural model effects), persistent/growth damages, and the Earth

system representation (i.e., transient climate response, carbon cycle parametrization, equilibrium cli-

mate sensitivity, and structure of the Earth system model component). Note that the overall share of

the variance explained by discounting and damage-function parameters (i.e., damage function, adap-

tation rates, and the income elasticity of damages) is only 35%, with most of the remainder relating

to structural model choices and model uncertainty.
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3 Placing the SCC Literature in Context Through Expert Sur-

veys

Figure 1 shows the distribution of 2020 SCC values published in the scientific literature between 2000

and 2020. Although it provides a useful reference point to characterize SCC values across the full

set of published studies, this distribution lacks a clear interpretation. The literature distribution may

be influenced by factors such as researcher interest, model availability and tractability, and path-

dependency in choices of certain model parameters such as those in the discount rate and damage

function, issues discussed in more detail in S.2.2.3. Therefore, we complement the literature survey

described in Section 2 with a survey of expert views on the SCC literature, placing this distribution

and the set of model structures and parameters that determine it into a larger context. We distributed

a survey to the population of 176 authors of SCC estimates in our literature review in May 2022, from

which we received 68 partial and 48 full responses. Section S.2.2 provides further details on survey

design, distribution, and analysis.

Figure 3a provides evidence that survey respondents perceive a substantial downward bias in the pub-

lished literature. More than four fifths of experts (82.8%) report best-estimate SCC values (considering

all drivers of the SCC and relevant uncertainties) that are higher than their estimates of the existing

literature distribution (9.1% believe the two values are roughly equal, and the same number believe the

literature is over-estimating the SCC). On average across complete responses, experts’ best-estimate

2020 SCC ($142 per ton CO2) is more than double their literature estimate of $60.

Experts’ mean literature estimate is substantially below the mean from our literature analysis of $132,

and about 50% larger than our literature median of $39 (Figure 1). A number of reasons could

account for why experts underestimate the mean SCC in the literature, including the exclusion of

papers published prior to 2000 from our literature survey (which may report lower values [38]), the

prominence of focal SCC estimates around $50 for instance from official US government guidance at

the time of the survey [51], or experts being unfamiliar with some of the papers contributing to the

long right tail of the SCC distribution that have a substantial effect on the mean value (see Section

S.2.1.6 for further discussion).

Figure 3b shows how experts decompose the perceived downward bias in the literature into constituent

elements (individual responses documenting significant heterogeneity in both the wedge magnitude

and decomposition are shown in Figure S19). Damage-function and discounting parameters make up

around a third of the $82 wedge between the experts’ estimates. Around two thirds of the SCC wedge

is driven by structural model choices, particularly limited substitutability of non-market goods (13%),
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Figure 3: Expert survey on SCC values, model structure, and discounting. a) Expert
assessment of the mean SCC value in the literature and their best estimate of the mean of the SCC
distribution, accounting for any systematic biases or over- or under-representation of different model
elements in the published literature. Grey lines connect estimates from the same respondent. Data
shown for 48 experts providing a quantitative breakdown of the wedge between literature and best-
estimate SCCs. Mean values for all 68 experts are $66 for the literature and $160 for the best-estimate.
b) Experts’ attribution of the difference between their estimated mean literature SCC value and the
full or comprehensive SCC. Results shown averaging over all 48 expert responses, decomposing the
average wedge between $60 per ton CO2 and $142. Values in parentheses show the dollar value
attributed to each element. PRTP = pure rate of time preference; EMUC = elasticity of marginal
utility of consumption. c) Expert evaluation of 9 elements of model structure (blue solid line) with
frequency in the published literature shown for comparison (red dashed line). Expert responses to the
question “To what extent do you agree with the statement: ‘Papers that include X produce better SCC
estimates than those that exclude it’?” (Figure S20) are converted into model inclusion probabilities
using Bayesian hierarchical modeling of expert responses (described in Section S.2.2.6) d) Distribution
of discount rates in an expert assessment by Drupp et al. [50] (blue solid line) compared to the
distribution in the published literature for 2020 SCC values (red dashed line).
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persistent/growth damages (9%), tipping points in the climate system (8%) and in damages (8%),

and distributional weights (6%). Experts also estimate a smaller upward bias in literature estimates

related to an under-representation of technical progress, adaptation and learning, which contribute

negatively to the SCC wedge.

Figures 3c and 3d compare expert assessment of key determinants of the SCC (specifically model

structure and discounting) with their representation in the published literature. Overall, experts are

positive on the 9 variations in model structure investigated. Over 50% of experts agree or strongly

agree that models including these elements are preferred (over a baseline model approximating the

DICE-2016 IAM [52] with a 2020 SCC of around $40 per tCO2) for all elements except aversion to

model uncertainty or ambiguity (Figure S20). The strongest agreement is on improvements to Earth

system modeling, including the integration of climate-system tipping points, and the incorporation

of limited substitutability between market and non-market goods in the utility function, with some

polarization over the issue of whether distributional weighting, as applied in the literature, improves

SCC estimates.

Figure 3c shows these responses converted into a joint probability distribution over model structure

(i.e. inclusion or exclusion of the different structural model elements) using a hierarchical Bayesian

model (described further in Section S.2.2.6). Because of general agreement among experts on the

value of these structural model elements, average probabilities are high, ranging from a mean of 0.58

for ambiguity or model uncertainty to 0.69 for Earth system improvements. Representation of these

model structures in the published literature, however, is far lower, with values ranging from 0.23 (Earth

system modeling) to 0.02 for climate tipping points and model ambiguity.

Figure 3d depicts a similar gap between expert assessment of discount rates (based on a prior expert

survey reported in Drupp et al. [50]) and the distribution in the literature, with economic experts

giving a mean of 2.3% (similar to recommendations by expert philosophers found in a related survey

[53]), more than a percentage point lower than the literature mean of 3.4%. Figures 1 and 2 both

suggest that these discrepancies in model structure and discounting between the published literature

and expert assessment would push published SCCs downward, validating experts’ concerns over a

downward bias in the literature (Figure 3a), and the attribution of this bias (Figure 3b).
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4 The Synthetic SCC Distribution

4.1 Motivation and Approach

In order to address the potential bias in the published literature documented in Figure 3c and d, we

combine information from both the literature analysis and expert assessments to generate a synthetic

SCC distribution that more closely matches expert assessment of discounting and model structure.

This process involves first using the variance across the 1823 published SCC distributions with 31

explanatory variables to train a random forest model, then generating predictions from this model

using distributions over input variables based on expert survey results shown in Figures 3c and d.

This amounts to a re-weighting of the literature to produce an SCC distribution with structure and

discounting characteristics closer to expert assessments (and with other desirable characteristics, such

as recent publication year, inclusion of parametric uncertainty, and inclusion of non-market damages).

The random forest model identifies which set of variables are most important in driving variance across

SCC distributions, and should therefore be targeted for re-weighting.

The random forest model estimates a set of 500 regression trees, each based on the 31 explanatory

variables and a random bootstrap of the 1823 SCC estimates. At each branch in the tree, the algorithm

chooses the variable from of a random sample of 10 of the possible 31 variables that divides the sample

into two groups with the largest variance between them. Our data structure is unusual in that each

of the 1823 observations are a distribution (of which 54% are single-estimate point distributions). We

therefore use an adapted splitting algorithm based on the Anderson-Darling k-Sample test to maximize

distance between the two distributions at each split. Trees with fewer than 7 nodes or very large leaves

are pruned, leaving a final 403 regression trees.

Figure S21 shows the importance of different variables from the fitted random forest. The model

appropriately identifies the SCC pulse year and discount rate as the two most important variables.

Elements of the damage function and the inclusion of persistent growth damages appear as important,

as does the publication year (echoing previous findings from Tol [38]) and parametric uncertainty in

total factor productivity growth (also identified as important in Gillingham et al. [41] and Rennert et

al. [3]). Additional information on the random forest model is detailed in S.2.3.

We query the random forest model with just over 1800 draws from the space of model structures and

discount rates obtained from expert surveys (Figure 3c and d), also including other desirable SCC

characteristics such as inclusion of parametric uncertainty, accounting for non-market damages, and

recent publication year (detailed in S.2.3). Figure 4 illustrates the process for generating a prediction

for a single sample from the input variable space. Each tree identifies the set of published SCC
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estimates with characteristics corresponding to the sample’s, for the set of variables chosen as splits

along the path for that regression tree. The subset of published estimates for each of the 403 regression

trees (the ”leaves” in Figure 4) then forms the random forest’s prediction for the sample. The set of

published estimates contributing to this prediction will not perfectly match all characteristics of the

input. For instance, some variables may not appear as splits on a given tree’s path, meaning the

leaf does not condition on that variable at all. Some model structures combining multiple elements

are either very sparse in the literature or are not represented at all (see Figure S4). In these cases,

random forest estimates will average over available relevant model structures, but cannot extrapolate

interaction effects between combinations of model structures not currently represented in the published

literature. However, the set of published estimates contributing to the random forest prediction will

match more closely with the input sample than the literature as a whole and will match most closely

on the variables with the largest effect on the SCC, since these variables will appear as splits in the

regression trees more frequently.
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4.2 The 2020 Synthetic SCC Distribution

Figure 5a gives the 2020 synthetic SCC. The distribution has a median value of $185 per ton CO2,

an inter-quartile range of $97-369 and a mean of $283, after truncating the upper and lower 0.1%

of the distribution. For comparison, Figure 5a also shows two sets of SCC estimates from the US

government—values from the 2021 Interagency Working Group on the Social Cost of Greenhouse

Gases (IWG) [51] and a 2023 analysis by the Environmental Protection Agency (EPA) [54] as well

as official SCC estimates by the German Environment Agency (German EPA). The near-complete

separation between the IWG distribution and our synthetic SCC is striking: the 75th percentile of the

IWG distribution ($52 per ton CO2) corresponds to the 10th percentile of the synthetic distribution.

The EPA distribution has a much closer overlap with the synthetic SCC distribution, with a median

value of $157 per ton CO2 reasonably similar to the synthetic median of $185. Compared to the IWG

values, the EPA analysis integrates a number of modeling improvements that make it more similar

to the set of inputs into the synthetic SCC, including improved representation of the Earth system,

discount rates closer to the expert assessment in Drupp et al. [50], and a fuller inclusion of parametric

uncertainties in economic growth, climate damages, and Earth system dynamics. However, the two

distributions still differ substantially at higher SCC values: the synthetic distribution places 27%

probability on SCC values over $350 per ton CO2, compared with only 17% for the EPA distribution.

This could be attributable to the integration of a wider set of model structures into the synthetic

SCC distribution, particularly allowing for persistent climate damages, the inclusion of tipping points,

distributional weights, and limited substitutability between climate damages and consumption goods

(Figure 1). By contrast, the German EPA [55] applies distributional weighting in the FUND model

and reports two SCC estimates: A lower estimate of $223, located between our median and mean

synthetic SCC, which serves as the main political benchmark, using a pure rate of time preference of

1 percent, and a higher estimate of $777 using a pure rate of time preference of 0 percent, to be used

in sensitivity analyses.

One of the advantages of the random forest model trained on the literature is that it can provide

SCC estimates under a range of alternate specifications. Figure 5b uses this capability to show pre-

dicted SCC distributions under alternate input specifications, decomposing the difference between the

synthetic SCC distribution and random forest predictions designed to match the DICE model [52].

Reassuringly, the random forest estimates using inputs designed to match the DICE model correspond

well to published values from DICE (e.g., $43 per ton CO2 in 2020 US dollars from Nordhaus [52]

compared to an inter-quartile range of $25-$71 in Figure 5b). As expected, the decomposition shows

large effects of the discount rate, as well as important roles for certain elements of model structure
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and parametric uncertainty, particularly the representation of the Earth system, inclusion of persistent

damages via impacts to economic growth, and allowing for uncertainty in damages, TFP growth, and

discount rate parameters.

Figure S22 shows additional distributions generated from the random forest model showing sensitivity

of the synthetic SCC to structural assumptions, discount rate, publication year, pulse year, and damage

function. Of note is the importance of model structure seen in Figure S22b: keeping all else equal,

moving from an SCC with no differences in model structure from the standard DICE model to one

with all 9 elements described in this paper included, increases the median SCC from $124 to $245 per

ton CO2 and the mean from $186 to $367.

5 Discussion and Conclusion

We present the most comprehensive synthesis to date of SCC estimates, as well as their parametric

and structural drivers. Based on 1823 SCC distributions from 147 studies, we document a distribution

over published 2020 SCC values that is both wide (with a 90% confidence range spanning 2 orders

of magnitude) and substantially right-tailed (with a mean value of $132 per ton CO2 more than 4

times the median value of $39). Analysis of variance in published SCC estimates recovers the well-

known importance of discounting and damage-function parameters (explaining about one third of

the variance in published SCC estimates), but also shows a critical role for key elements of model

structure, including the representation of the Earth system, inclusion of persistent climate impacts to

the economy, and specification of the utility function.

Published SCC values are placed in a broader context using a survey of authors of original SCC

estimates in the literature. Experts on average perceive a substantial downward bias in published

SCC values and attribute the majority of that bias to an under-representation of alternate model

structures, as well as discounting and damage parameters. Comparison of expert elicitations with the

published literature validates this assessment, with both higher discount rates and lower representation

of alternate model structures in the published literature compared to expert responses.

Our synthetic SCC distribution partially addresses this concern by effectively re-weighting published

SCC estimates to more closely match expert assessments of model structure and discount rates (as

well as other desirable qualities such as more recent publication years and inclusion of parametric

uncertainties). This procedure is necessarily constrained by the published literature: some combina-

tions of model structure and parameters simply do not exist in the literature and therefore will not

appear in the synthetic SCC distribution. More original modelling studies are required to fill those
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gaps. However, our analysis yielding synthetic SCCs does produce a distribution that is more similar

to expert assessments than the published distribution, and is most similar for those variables identified

in the random forest model as most important in driving SCC variance.

The resulting synthetic SCC is substantially larger than values in the published literature (median

value more than 4.5 times larger, mean more than double). This relative increase (from literature

to synthetic) matches how experts’ average estimates more than double from their literature to best-

estimate mean SCCs. The absolute value of the synthetic SCC (mean of $283) is still substantially

higher than experts’ best-estimate SCC. This is not surprising, given that experts substantially un-

derestimate the mean SCC in the literature. The synthetic and expert best-estimate SCC values can

be rationalized if experts underestimate the absolute value of the mean literature SCC (for reasons

discussed in Section 3), while providing reasonable estimates of the proportional effects of correcting

biases in the published literature. Interpreted this way, concordance between the synthetic and expert

best-estimate SCCs is striking given they are generated from very different processes: both suggest

that correcting biases in published SCC estimates increase mean values by just over a factor of two.

Our synthetic SCC is higher than most official government estimates, including an extensive recent

update by U.S. EPA [54]. Current guidance to agencies from the IWG requires them to “use their

professional judgment to determine which estimates of the SC-GHG reflect the best available evidence,

are most appropriate for particular analytical contexts, and best facilitate sound decision-making.” [56].

Our findings strongly suggest that the 2021 IWG estimates are unlikely to provide a sound basis for

analyses requiring a valuation of climate change damages. They are inconsistent with available evidence

from both the published scientific literature, expert views, and our synthetic SCC that combines key

elements of both.
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S1 Dataset summary

Summary statistics are shown in Table S1, but to provide a taste of the data: the median paper has
two authors and reports 6 estimates; it calculates the SCC of an emission pulse in 2020, using a pure
rate of time preference (PRTP) of 1% and a elasticity of marginal utility of consumption (EMUC) of
1.45 and has a median SCC value of $71 per ton CO2.

The following figures describe other features of the published papers dataset collected as part of the
meta-analysis.

(a) Distribution of publication years (b) Distribution of SCC pulse years
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Figure S1: Distribution of (a) publication years and (b) SCC pulse years in the dataset. The distribu-
tion of publication years is per publication, while the distribution of SCC pulse years is per estimate
since a publication may have multiple estimates.
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Unique values
N unique

Papers 1823 147
Estimates 1823 1360
Authors 1823 231
Emissions Scenario 1813 88
Socio-Economic Scenario 1702 63
Damage Function Info. 1142 91
Characteristics of Model Structure and SCC Values

N present
Backstop Price? 1823 19
Other Market Failure? 1823 50
Declining Discounting? 1823 72
Market Only Damages 1823 53
Carbon Cycle 1823 359
Climate Model 1823 382
Climate Tipping Points 1823 50
Damages Tipping Points 1823 168
Persistent Damages 1823 122
Epstein-Zin 1823 77
Model Ambiguity 1823 42
Limited-Substitutability 1823 60
Inequality Aversion 1823 117
Learning 1823 108
Alternative ethics 1823 16

Uncertainty assumptions
N present

Parametric sources of uncertainty
TFP Growth 1823 120
Population Growth 1823 55
Emissions Growth 1823 70
Transient Climate Response 1823 74
Carbon Cycle 1823 95
Equilibrium Climate Sensitivity 1823 464
Tipping Point Magnitude 1823 130
Damage Function 1823 368
Adaptation Rates 1823 41
Income Elasticity 1823 82
Constant Discount Rate 1823 4
EMUC 1823 61
PRTP 1823 43
Risk Aversion (EZ Utility) 1823 7

Uncertainty information
Extreme limits 1823 348
Tails (≥ 95%) 1823 261
Central uncertainty (< 95%) 1823 276

Summary values
N mean median min max

Authors per paper 1823 2.61 2.00 1.00 9.00
Estimates per paper 1823 12.40 6.00 1.00 249.00
SCC Year 1820 2039.62 2020.00 1995.00 2300.00
Central Value ($ per ton CO2) 1701 252.21 71.25 -23.79 75287.61
Reported Base Model SCC (if applicable) 837 107.00 43.74 -1.98 15063.81
Constant Discount Rate (%) 493 2.92 3.00 0.00 10.00
PRTP 1298 1.01 1.00 -1.10 5.00
EMUC 1234 1.41 1.45 0.00 5.00
RRA 78 6.84 9.50 0.00 10.00
IES 76 1.26 1.50 0.50 2.00
Tail uncertainty level 363 91.19 95.00 50.00 99.90

Table S1: Summary statistics of the SCC dataset. The Unique values table list the number of unique
values given for categorical attributes of the estimates. The Structural assumptions and Uncertainty
assumptions list the number of estimates for which the structural model element or source of un-
certainty, respectively, was included. The Summary values table describes numeric columns in the
database.
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Figure S4: Number of estimates with each pair of structural changes. Numbers along the diagonal
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S2 Methods

S.2.1 Meta-analysis

S.2.1.1 Abstract Search

SCC values for use in the meta-analysis were identified from a systematic search of Web of Science,
EconLit and Scopus databases. Criteria for the search were peer-reviewed papers published from 2000
to 2020 and containing one of the following search terms:

social cost of carbon, social cost of CO2, social cost of greenhouse gases, social cost of GHG, optimal
climate policy, optimal carbon price, optimal CO2 price, optimal carbon tax

The search was conducted at the end of September 2020 and so included papers published by that
end point. After removing duplicate entries, the search returned 2839 papers. These were further
screened by a team of research assistants who read through the abstracts to determine whether the
paper was likely to report an original, global social cost of carbon estimate. RAs were instructed to err
on the side of keeping papers in the sample if in doubt to avoid dropping relevant papers. 1110 of the
2472 papers initially identified as not containing an original SCC value were re-evaluated by a second
RA, an exercise that produced 98% agreement with the original coding. A further 478 abstracts were
re-evaluated a third time by a different RA with 99% agreement with the second round of coding.

After the initial abstract review, 295 papers remained that potentially contained original SCC esti-
mates. These were read by members of the author team and SCC values with details of modelling,
preference parameters and uncertainty ranges were coded in an initial round of data collection. The
author team identified 139 papers producing original SCC estimates of the 295. A further 8 papers
meeting the inclusion criteria were identified at this stage and were also included, bringing the total
number of papers included in the analysis to 147. References for these papers are givin in full in
Section S4.

S.2.1.2 Data Collection and Coding

A challenge of attempting to analyze and compare variation in reported SCC across multiple papers
is the variety of scenarios, model structures, and parameter values used in different papers. Authors
also take different approaches in presenting results and in sampling and investigating uncertainties. A
data coding template was developed to extract data on SCC and modeling covariates in a consistent,
flexible, and parsimonious way to allow for comparison of values across papers.

The template developed iteratively during the initial round of paper review by the author team. Once
all papers had been coded once, 18 papers were coded for a second time by a different person and
SCC distributions compared. Using experience from the initial coding and comparing discrepancies
and ambiguities arising from the re-coding exercise, we developed a finalized code book describing how
SCC values and model covariates should be recorded from papers. All papers were re-read and coded
using this finalized code book.

The coding process adopted (given in full as an addition to this Supplement) allows for recording
unique SCC values from papers for particular years, discounting assumptions, socio-economic and
emissions scenarios, damage functions, and model structure. If the paper reports effects of parametric
variation on the SCC, this is also recorded (as distribution quantiles or min and max values) along
with the nature of the parametric variation reported in the paper. The final round of coding produced
1823 unique SCC values (or distributions) arising from the 147 papers.

S.2.1.3 Data Cleaning and Standardization

Following the systematic collection of raw data from the papers, we undertook a series of steps to make
values comparable across papers. Firstly, SCC dollar values were adjusted to 2020 dollars using the
GDP Implicit Price Deflator from the St Louis Fed (1) . If a paper did not report the dollar year of the
SCC, we first attempted to infer a dollar year based on that used by the baseline model modified or
re-calibrated in that paper (e.g DICE2016 or FUND3.9). If this was also unavailable then we assumed
a dollar year of 5 years prior to the publication date.
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A second important standardization involved imputing comparable discount rates across all values.
Approximately 30% of our entries use a constant discount rate to calculate the SCC. The vast majority
of the remainder use Ramsey discounting, which depends on two preference parameters (the pure rate
of time preference and the elasticity of marginal utility of consumption) and the consumption growth
rate. To infer an effective discount rate for SCC values using the Ramsey rule, we merge in information
on the consumption growth rate for the relevant time-period under the socio-economic scenario used
in the paper. Consumption growth rates from 2020 to 2200 (if available) were identified for multiple
different integrated assessment models (10 versions of DICE, RICE 2010, 13 versions of FUND, the
SSP scenarios and the older SRES scenarios). After merging in the per-capita consumption growth
rate, we calculate the effective discount rate for that SCC value using the Ramsey rule given the
reported preference parameters. If we are unable to match a consumption growth rate to a particular
SCC value, we impute an estimate based on the average consumption growth rate across all scenarios
for that SCC year.

S.2.1.4 Distribution Fitting

We record quantiles of the probability distribution for each SCC value, to the extent that this infor-
mation is provided by the underlying papers. The full set of quantiles recorded across paper consist
of 0.1%, 1%, 2.5%, 5%, 10%, 17%, 25%, 50%, 75%, 83%, 90%, 95%, 97.5%, 99%, 99.9%. Where SCC
sensitivity to non-probabilistic parameter changes are reported, we record the minimum and maximum
of these. The number of SCC observations reporting each of these quantiles is shown in Table S2.

Quantile Count Percent
Min 309 17%
0.1th 3 0.2%
1th 4 0.2%
2.5th 4 0.2%
5th 224 12.3%
10th 23 1.3%
17th 72 3.9%
25th 21 1.2%
50th 377 20.7%
75th 21 1.2%
83rd 72 3.9%
90th 29 1.6%
95th 257 14.1%
97.5th 4 0.2%
99th 36 2%
99.9th 7 0.4%
Max 324 17.8%

Table S2: The quantiles recorded across SCC distributions. The number of SCCs with information
on each quantile is shown in the Count column, and this as a percent of all SCCs is shown in the
Percent column. The Min and Max entries are recorded when sensitivity tests are described with
no probabilistic information, while the remaining are used when recording probabilistic analyses (e.g.
confidence intervals).

Depending on the available quantiles, we fit different probability distribution functions. The following
conditions are applied to each observation:

1. If only the central value is given, the SCC is treated as deterministic.

2. If only the minimum and maximum are given with the central value, a triangular distribution
over the provided values is used.

3. If other quantiles are given along with a minimum (maximum), the distribution is bottom-coded
(top-coded) to this value.

4. If a 0.1% or 99.9% value is given, the distribution is truncated to these values.
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5. If a central value (mean or median) and one other (non-truncating) quantile is given, the distri-
bution is assumed to be Gaussian.

6. If a central value (mean or median) and two other (non-truncating) quantiles are given, the
distribution is assumed to be either a Skew normal or a exponentially modified normal, whichever
produces a better fit to the quantiles.

7. Otherwise, the distribution is assumed to be a mixture of up to k - 2 Gaussians, where k is the
number of fitting values (quantiles and the mean SCC value).

8. If cases 2 - 6 are used, an alternative model consisting of a piecewise uniform distribution with
weights from the spans between quantiles is tried as an alternative, and the best-fitting distri-
bution is returned. We also fit a left and right tail extending beyond the most extreme reported
quantiles, selecting either a Gaussian, triangular, or exponential distribution based on which best
fits the quantiles reported above (right) or below (left) the mean.

In cases where no analytical solution exists to the parameters of the distribution, we evaluate the fit
of a potential distribution as

RMSE =

√
(µ− µ̂)

2
+
∑
k

(ak − âk)
2

where µ is the reported central value, µ̂ is the distribution mean, ak is the kth reported quantile, and
âk is the corresponding estimated quantile. This is used both to estimate parameters for distributions
and to select the preferred distribution according to the rules above. The distributions selected are
shown in Figure S5 and in Table S3.

0

20

40

60

0.0 0.2 0.4 0.6
RMSE / Central Estimate

co
un

t

Distribution:

mixed gaussian ext−coded

normal

normal trucated ext−coded

piecewise bounded

piecewise exp−tail

piecewise exp−tail ext−coded

piecewise exp−tail trucated

skew−normal

skew−normal ext−coded

Figure S5: Histogram of the continuous distributions used to fit the quantile information. The solutions
are plotted against the degree of miss-fit, described by the ratio of the RMSE to the reported central
SCC value.

S.2.1.5 Sampling

Describing the distribution of SCC values in the literature requires sampling over papers and reported
values. We investigate three different approaches to sample over the set of SCC papers:

1. Equal Paper Weighting: Each paper in the data-set receives equal weighting
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(a) Count of distributions fit to data
Distribution Unbounded Truncated

Delta 1140
Triangle 273
Gaussian 19 1

Skew-Normal 102 2
Piece-wise Uniform 225 61

Total stochastic 683
(b) Count of tails fit to piece-wise distributions

Distribution Left-Tail Right-Tail
Triangle 139 99
Gaussian 88 97

Exponential 3 34
Total piece-wise tails 230 230

Table S3: Information about the distributions fit to the reported SCC information. (a) The general
distribution applied, and whether it is truncated or not. Delta, Triangle, and Gaussian distributions
are applied in particular cases, while Skew-Normal and Piece-wise Uniform distributions are chosen
based on goodness-of-fit. The Total stochastic row excludes Delta distributions. (b) For piece-wise
uniform distributions, the tails fit based on quantile information. In total 230 piece-wise uniform
distributions have tail information, including 5 which are truncated; the remaining 56 are bounded
(uniform to the minimum and maximum).

2. Informational Weighting: Papers more likely to contain more independent estimates are
weighted more heavily than papers likely to have estimates highly correlated with other papers
in the dataset. We operationalize this by calculating a shared co-author index that compares
the average number of co-authors shared between paper i and paper j compared to an estimated
null value based on 250 random draws that fix the number of authors in the sample and the
number of authors on papers, but randomly reshuffles co-authors. Papers with average shared
authorship less than the mean of the null distribution receive full weight while those with higher
values receive lower weights that gradually decline with higher levels of shared authorship across
the 147 papers in the dataset.

3. Citation Weighting: Papers with higher citation counts (based on Google Scholar) are weighted
more heavily. To avoid mechanically placing higher weight on older papers, weighting is based
on the average citations per year since publication

After sampling a paper, using any of the three alternate sampling schemes, we treat all all SCC
observations reported by the paper as equally likely to be sampled. If the sampled SCC observation is
a point estimate, then we draw that value. If it is a distribution (37% of the total) then we sample a
single draw from the fitted distribution.

Table S4 gives quantiles from the three alternate sampling schemes and shows relatively small dif-
ferences across the distributions at the median and lower half of the distribution. But the co-author
weighted and citation-weighted sampling schemes have substantially more probability mass in the up-
per tails, particularly the citation-weighted distribution. For simplicity, analysis and discussion in the
paper focuses on the distribution using equal paper weighting.

S.2.1.6 Sensitivity Analysis

Figure S6 shows the change in the mean SCC value for the full literature distribution after iteratively
dropping each paper in the dataset, for the 15 papers with the largest effect. By far the highest-
leverage paper is Nordhaus (2), largely because this paper includes a value of over $70,000 per ton
CO2 under a “super-low” discounting scheme with a constant 0.1% discount rate (Table J-1 in that
paper). Dropping this paper reduces the mean 2020 SCC by $136. Only two other papers (3,4) change
the mean SCC by more than $10 and one (5) changes it by between $5 and $10. The remaining 143
papers affect the mean SCC value by less than $5 each. Because of the extreme effect of a single
supplementary value, we drop this most extreme value from Nordhaus (2) in all subsequent analysis,
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Quantile Equal-Weighting Co-Author Weighted Citation Weighted
0.01 -4.7 -3.2 -18.4
0.025 0.1 1.2 0.2
0.05 2.3 4.4 3.1
0.1 6.5 9.1 6.9
0.25 17.7 22.8 17.8
0.5 45.8 56.1 51.5
0.75 127.9 153.9 177.3
0.9 292.4 354.8 596.5
0.95 622.7 662.0 1046.2
0.975 959.3 1046.2 1524.1
0.99 1509.8 1669.5 3199.5

Table S4: Quantiles of the full SCC distribution using alternate weighting schemes to sample papers.
Results in the main text sample uniformly from all papers (Equal-Weighting). Here we compare
quantiles from this distribution with alternate weighting schemes. Co-Author Weighted down-weights
papers that share large numbers of co-authors with other papers in the dataset on the basis that the
information content of these papers may be not fully independent. Citation Weighted weights the
sampling of papers based on citation counts, normalized by the number of years since publication.
The central 5% - 75% of the distributions are very similar, but citation weighting in particular results
in more probability mass on SCC values above $200 per ton CO2.

including all results reported in the main text. To reduce sensitivity of findings to extreme outliers we
report truncated means that drop the upper and lower 0.1% of the distribution for all literature and
synthetic SCC distributions and report median values in addition to the mean throughout the paper.

S.2.1.7 Tail Behavior

One of the most notable features of Figure 1 is the long right tail, extending well above $500 per
ton of CO2. The question of the role that low probability but very bad outcomes (i.e., the “right
tail” of climate damages) should play in driving climate policy has been written about extensively.
In developing his “dismal theorem”, Weitzman described the potentially high sensitivity of expected
climate damages to behavior in the far tail of the distribution (6,7). In extreme cases, the presence of
fat tails may lead to unlimited downside exposure and a distribution with an infinite mean. Even in
less extreme cases, substantial probability mass in the tails may cause the expected value to be highly
sensitive to necessarily subjective judgements regarding the probability of very bad outcomes (7).

Previous work in the literature has shown evidence for a long-right tail in climate damages. Anthoff
and Tol (8) for example, looking only at parametric uncertainty included in the FUND model, find
evidence for fat tails as the mean of the distribution continues to increase with the number of Monte
Carlo runs. Other work looking at parametric uncertainty across multiple variables and several IAMs
also typically shows a right tail on the SCC distribution (9, 10). Recently, Anthoff and Tol (11)
examined evidence for fat tails in both the parametric distribution of DICE, PAGE and FUND, as
well as across published estimates of the SCC, again finding support for fat tails in the FUND model
but only mixed evidence in the other models and in the meta-analysis.

The presence of fat tails in a distribution can be tested using the mean excess function (MEF) – the
mean of the distribution conditional on being above some threshold (12–14). If the mean above the
threshold is increasing faster than the threshold itself – then it indicates the presence of a fat tail.
The slope of the mean excess function can be used to find the value of the shape parameter for the
Generalized Pareto Distribution (GPD) that best fits the distribution (12), and the tail index (α)
of the distribution. A tail index greater than 2 indicates a thin-tailed distribution, 1 < α < 2 is a
thick tailed distribution with finite mean but infinite variance, while α < 1 is a fat tailed distribution
with infinite mean and variance. Table S5 shows estimates of the tail index using multiple threshold
quantiles for the estimation. Regardless of how we weight observations or set a minimum threshold for
inclusion in the sample, we consistently find mean excess function slopes greater than 1, and α values
between 1 and 2. This is indicative of a fat-tailed distribution with infinite variance but finite mean.
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Figure S6: 15 Papers with Largest Effect on Mean 2020 SCC, Calculated as the Change in Mean SCC
Value after Dropping the Paper from the Distribution
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Table S5: Estimates of the Mean Excess Function slope, the Generalized Pareto Distribution shape parameter, and tail index.

(1) (2) (3) (4) (5) (6) (7) (8)

MEF Slope 1.731*** 1.661*** 1.315*** 1.477*** 2.856*** 2.746*** 2.624*** 1.477***
(0.085) (0.043) (0.022) (0.006) (0.094) (0.060) (0.035) (0.006)

Num.Obs. 67 135 338 1316 67 135 338 1316
Minimum Threshold Percentile 95 90 75 0 95 90 75 0
Observational Weights Num. Obs. Num. Obs. Num. Obs. Num. Obs. 1/Num. Obs. 1/Num. Obs. 1/Num. Obs. 1/Num. Obs.
GPD Shape Parameter 0.63 0.62 0.57 0.6 0.74 0.73 0.72 0.6
Estimated Tail Index 1.58 1.6 1.76 1.68 1.35 1.36 1.38 1.68

* p < 0.1, ** p < 0.05, *** p < 0.01

Note:
Standard errors are robust to heteroskedasticity. All estimates are from a sample that excludes Nordhaus (2019). Columns 1-4 weight observations of the mean
excess by the number of SCC observations used to compute it. Columns 5-8 weight observations with the inverse.
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S.2.1.8 Damage function based SCCs

For 46% of the SCC observations, we are able to construct a simple functional representation of the
underlying damage relationships. These consist of 13 versions of DICE damage functions across 241
estimates, 7 versions of FUND across 83 estimates, 2 versions of the Howard & Sterner function across
261 estimates, 5 estimates using PAGE damages, 68 estimates using Weitzman damages, 11 estimates
using Dietz & Stern damages, and 168 estimates where another explicit functional form was used. A
heat map of these various damages is shown in Figure S7.

Figure S7: Damages projected across temperatures, shown as a heat map of the occurance of the given
damages across studies. Illustrative common damage functions shown as curves.

The SCCs that result from these damage functions are dependent upon not only the structural features
of interest in this paper, but also the climate and socioeconomic scenario, discounting, and baseline
assumptions.

As a simple proxy for damages, we generate a damage function based SCC under identical conditions,
only varying the damage function. This is done by simulating temperatures under DICE 2013 for
a baseline RCP 8.5 scenario and an additional emissions pulse in 2020. Damages are calculated as
fractional losses of GDP in each year and totaled under a 3% discount rate. These total damages are
translated into dollars per ton assuming a constant global GDP of $84.54 trillion.

Figure S8 shows the damage function based SCC compared to reported SCCs (shown here as just
the central values). Reported SCCs show a spread around each damage function based SCC, based
on the range of model structures and parameters associated with particular damage functions in the
literature. However, damage function based SCCs increase steadily with reported SCCs, on average.
A regression explaining reported central SCC as a function of SCC year, discount rate, and damage
function based SCC achieves an R2 of 0.52.
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Figure S8: Calculated damage function based SCC values, compared to reported central values, for
each estimate for which we can calculate a damage function based SCC. Dots are colored by the class
of damage function used, where ‘Explicit’ refers to an explicitly described functional form rather than
a standard damage function. The black line shows has unit slope, and a regression line is shown in
blue.

S.2.1.9 Multi-Variate Regression

Figure 1 shows hows the 2020 SCC distribution changes with different univariate splits of the under-
lying estimates. This figure suggests that certain characteristics of SCC estimates contribute more
significantly to variance in SCC values than others. However, multi-variate analysis that controls si-
multaneously for all variables with an influence on SCC values is required to credibly identify effects
of particular structural and parametric model elements on SCC values. This section reports results
from multivariate regression models using 3 sources of variation in the underlying dataset.

1. Full Variation (No Fixed Effects) The first model identifies the effects of different modeling
decisions using the full variation across the whole SCC distribution. The estimating equation is
(betas omitted for clarity):

log(SCCidp) = Y eard+Y ear2d+DiscountRated+DiscountRate2d+Strucd+Paramd+Otherd+
ϵidp

Where the dependent variable is the log of an SCC draw i, from distribution d, from paper p.
(Using logs requires dropping the 2% of the distribution below $0.) Strucd is set of nine indicator
variables describing the model structure of the estimate. Paramd is a set of indicator variables
describing whether the estimate is drawn from a distribution containing parametric variation in
one of 14 possible parameters. Otherd contains an additional six binary variables describing
the estimate, such as whether it is a backstop price, and whether it is derived from versions of
the DICE, PAGE or FUND models. Finally, the specification includes quadratic controls for the
SCC year and discount rate. Residuals are clustered at the distribution level (i.e. allowing for
correlation in the error term for draws from the same distribution of parametric uncertainty).

2. Within-Paper Variation (Paper Fixed Effects) The second approach adds fixed-effects by
paper. The specification is the same as above, except for the addition of paper fixed-effects that
control for all average differences between papers. Model parameters are then estimated off of
variation reported within a single paper. For instance, a single paper might report the SCC
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under alternate discount rates and under different model structures.

3. Base SCC Comparison The final multi-variate comparison uses variation between central
SCC values and a standard model comparison point, which we term a ”base SCC”. (Results
from this regresesion are also shown in Figure 2a.) Many papers run a standard version of an
IAM, make some modification and report the effect of that modification on the SCC. Since the
base SCC values are not original estimates, we record them specifically as comparison points,
not separate observations of the SCC. The ’Base SCC Comparison’ regression specifically uses
variation between the base SCC values and other central SCC values that are comparable except
for specific elements of model structure..

The equation for this estimate is (betas omitted for clarity):

log(SCCtrs) = Struc+Other+ θtrs + ϵtrs

Where the dependent variable is the log of the SCC for a ton emitted in year t, calculated using
discount rate r, using scenario s, using both original and base SCC values. Struc and Other
are defined as above. θtrs is a fixed-effect for each unique combination of SCC year, discount
rate, and scenarios. This means that parameters are only estimated off of variation coming from
differences in model structure (or a limited set of other variables that might affect the SCC),
conditioning on these other SCC determinants. Note that because we do not have data on
parametric variation in the base SCC values from most papers, this regression uses only reported
central values, not the full distribution including parametric uncertainty.

Note that the different variation used in these three approaches is distinct and, correspondingly, that
the interpretation of the coefficients shown in Figure S9 is different for each model. For example, the
effects of incorporating tipping points in the damage function are positive for the Base SCC comparison
and the Paper Fixed Effects models, but are slightly negative in the Full Variation model. This can
be rationalized if the set of papers that allow for tipping points in the damage function tend to, on
average, incorporate them into a base model that produces an SCC on the low end of the full set in
the data. This means that, on average, SCC from models with this structural model modification
are lower than average (i.e. a negative coefficient in the Full Variation model), but the effect of this
change, relative to a model that is the same except for this change, is an increase in the SCC (i.e.
positive coefficients in the Paper Fixed Effects and Base SCC Comparison models).
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Figure S9: Multivariate analysis of variation in published SCC estimates. (a) Regression
coefficients for three different multivariate regressions with 95% confidence intervals. The top panel is
for our set of 9 structural model choices, the middle panel is for parametric variation, and the bottom
panel is for other changes such as the base model. In all cases the dependent variable is logged SCC
(in $ per ton CO2). Models also include non-linear controls for SCC year, except for the Base SCC
model which controls for SCC year explicitly using fixed-effects. Reported coefficients may be missing
if the variable is collinear with the fixed effects. Base SCC results are also shown in Figure 2a.

15



S.2.1.10 Analysis of variance

The analysis of variance determines the portion of the total variance attributable to each predictor.
For this analysis, we use Paper Fixed-Effects regression discussed in Section S.2.1.9, except that we
drop the SCC year quadratic and subset the data to just SCC years from 2010 to 2030 (inclusive).
The estimates for each predictor are reported in Table S6.

Source of variation Estimate LOO Range Bag Range
Earth System 5.05 5.24 [5 - 7] 7.75 [0 - 41]
Climate Tipping Points 0.56 0.58 [0 - 1] 1.24 [0 - 4]
Tipping Point Size 0.06 0.07 [0 - 0] 1.42 [0 - 3]
Growth Damages 12.29 12.9 [12 - 17] 23.45 [5 - 80]
Epstein Zin 0.71 0.77 [1 - 1] 3.39 [0 - 24]
Ambiguity 0.01 0.02 [0 - 0] 0.53 [0 - 1]
Limited-Substitutability 4.53 4.66 [4 - 6] 4.95 [0 - 31]
Inequality Aversion 2.68 2.73 [2 - 4] 2.23 [0 - 9]
Learning 5.49 5.75 [5 - 7] 14.07 [6 - 84]
TFP Growth 2.57 2.74 [2 - 4] 9.76 [1 - 53]
Pop Growth 0.16 0.24 [0 - 1] 6.58 [0 - 36]
Emissions Growth 2.76 2.82 [2 - 4] 1.55 [0 - 5]
Trans. Climate Resp. 0.28 0.3 [0 - 0] 1.18 [0 - 4]
Carbon Cycle (Param) 0.2 0.23 [0 - 1] 0.55 [0 - 3]
Eqm. Climate Sens. 1.7 1.73 [1 - 3] 1.17 [0 - 4]
Damages Tipping Points 0.07 0.07 [0 - 0] 1.68 [0 - 9]
Damage Function 4.52 4.88 [4 - 7] 12.07 [1 - 49]
Adaptation Rates 0.91 1.03 [1 - 2] 7.61 [1 - 43]
Income Elasticity 0.42 0.47 [0 - 1] 4.59 [0 - 15]
Const. Discount Rate 0.59 0.75 [0 - 2] 7.49 [0 - 45]
EMUC 3.47 3.67 [3 - 5] 9.64 [2 - 45]
PRTP 0 0.06 [0 - 1] 5.26 [0 - 46]
Risk Aversion 0.16 0.15 [0 - 0] 0.99 [0 - 6]
Model group 23.59 23.87 [21 - 27] 27 [13 - 69]
Other Market Failure 1.45 1.52 [1 - 2] 1.72 [0 - 7]
Damage-based SCC 0.44 0.56 [0 - 2] 2.82 [0 - 16]
Discount Rate 25.32 25.77 [24 - 29] 37.78 [23 - 80]

Table S6: Analysis of variance (ANOVA) results corresponding to the paper fixed-effects regression
in Figure S9. All entries are percentages of explained variance, excluding variance from paper fixed
effects. The Estimate column reports the percent of explained variance across all included variables, as
shown in the figure. The leave one out (LOO) Range reports the central estimate and range of variances
calculated when each individual predictor is dropped, and the Bag Range reports central estimate and
range of variances calculated when a random subset of these predictors is selected. Ranges are 95%
ranges.

When reporting variances in the bar chart in the main text (Figure 2b), parametric and structural
predictors are combined. Specifically, Trans. Climate Resp., Carbon Cycle (Param), Eqm. Climate
Sens., and Earth System are reported as “Earth System”; Damages Tipping Points and Tipping Point
Size are reported as “Damages Tipping Points” (but not labeled in the figure); Epstein Zin and
Risk Aversion are reported as “Epstein-Zin”; Model group (an indicator of DICE, FUND, PAGE, or
other) and Ambiguity are reported as “Model & Model Uncertainty”; TFP Growth, Pop Growth, and
Emissions Growth are reported as “Socioeconomic Uncertainty”; Const. Discount Rate and a quadratic
in (effective) Discount Rate are reported as “Discounting”; and the Damage-based SCC, Damage
Function, Adaptation Rates, and Income Elasticity are reported as “Damage Function Parameters”.

Figure 2b does not show the residual variance or the variance attributable to paper-specific fixed-
effects. These account for 30.8% and 37.3% of variance, respectively. The observations in the ANOVA
regression are draws from the SCC distributions, so the residual variance is a combination of non-
linearities and the uncertainty in the SCC estimates. When the ANOVA is performed on the SCC
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central values for each estimate, the residual variance is 23.8%, implying that cross-estimate uncer-
tainty or non-linearities are more important than within-estimate uncertainty in explaining the residual
variance.
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S.2.2 Expert survey

We invited all authors of SCC estimates included in our meta-analysis, and for whom we could obtain
a workable e-mail address, to participate in the expert survey. In the e-mail introduction (see text in
annex to this supplement), we explained that the goal of the survey is to elicit experts’ views on the
SCC, uncertainty about its value, and how various structural model modifications affect the SCC. We
communicated that results will be published without identifying any individual participant, and that
we had obtained approval from the research ethics review board at UC Davis and approval from the
social science research deanery and social science research laboratory at the University of Hamburg.
We sent invitations to the effective population of 176 SCC authors on May 22, 2022, and closed the
survey on July 07, 2022. 72 of the invited SCC authors participated, of which 68 provided quantitative
responses and 48 responded non-anonymously, with response rates of 41%, 39% and 28%, respectively,
which compares very well with similar expert surveys (15–18).

S.2.2.1 Survey design

The survey contains four questions with sub-questions and was conducted online via platform SoSci
Survey (screenshots with all survey details are provided in Figures S10 to S18). The first question
elicits estimates of the distribution of the SCC in the literature for the year 2020 (the central value
and the 2.5 and 9.75 percentiles), akin to a prediction study as in the experimental literature (19),
and the distribution of their best estimate of the 2020 SCC, “all things considered”. In the second
question, we elicit experts’ estimates of how different model structures represented in the literature
affect SCC estimates and whether and to what extent these model extension–as currently reflected in
the literature–provide improved SCC estimates. In the third question, we elicit experts views on what
drives any difference (or “wedge”) between the two SCC estimates they provided in the first question.
Finally, in the fourth question, we asked for expert’s views on the most important steps for improving
estimates of the SCC going forward with an open ended qualitative response option.
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Figure S10: Screenshot of the Preamble.
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Figure S11: Screenshot of Question 1.
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Figure S12: Screenshot of Question 2, Part 1.
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Figure S13: Screenshot of Question 2, Part 2.

22



Figure S14: Screenshot of Question 2, Part 3.

Figure S15: Screenshot of Interim Question in case the mean estimates for the SCC from Q1 were not
answered (completely).
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Figure S16: Screenshot of Question 3, Part 1.
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Figure S17: Screenshot of Question 3, Part 2.
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Figure S18: Screenshot of Question 4 and Ending.
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S.2.2.2 Survey response cleaning

We took the following steps to clean the response data, indicated by row values #XXX, for final
analysis. Row values of 1000 and beyond relate to response received via e-mail. Specifically, we

• removed one duplicate response, which was a subset (#698, retained #699)

• changed 2.5 and 9.75 percentiles for a single case in which they were entered reversely (#718)

• disregarded responses to Q3 of respondents who did not move any of the cursors.

• disregarded responses to Q3 in one case that only provided an all-things-considered SCC but no
literature value and where the weights did not add up (#682)

• disregarded responses to Q3 in one case where weights did not add up and respondent ticked
“Do not answer this question.” (#626)

• disregarded responses to Q3 in one case where weights did not add up, appeared extremely
strange and the respondent was anonymous so that it was not possible to follow-up.

• re-weighted weights in Q3 to add up for one respondent (#599) whose weights did not add up
and who ticked “Rescale my weights such that they add up.” in the survey

• added additional response categories, such as explained non-responses for authors who had retired
in the meantime

• corrected SCC values of one expert (#576) based on e-mail communication following-up on a
comment in the survey (see below) that the respondent had missed the option to go back within
the survey to adjust the SCC estimates for equity weighting.

• de-anonymized one expert after the respondent had identified themselves and their response
bilaterally (#750)

• added qualitative responses to Q4 from four experts who responded via e-mail, and a quantitative
response to the SCC wedge for one respondent (#1000).
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S.2.2.3 Publication bias discussion

Figure 1 shows the distribution of SCCs published in peer-reviewed journals over the 2000-2020 period.
It is important that this is not interpreted as a standard meta-analysis. In the classic meta-analysis,
multiple studies have produced empirical measurements of the same quantity, which can be combined
to give lower-variance estimates of the quantity of interest. The SCC estimates we bring together here
are fundamentally distinct in that they are not observational measurements of an empirical quantity,
but primarily results of model simulations. The variation in Figure 1 reflects not uncertainty related to
statistical sampling (as in a classic meta-analysis), but epistemological uncertainty in model parameters
and structure. The distribution should be thought of as an integration over this uncertainty as reflected
in the published literature over the last 20 years.

This interpretation does raise the question of how different the distribution would be if it also included
unpublished SCC estimates (or those published but not in peer-reviewed journals). The question of
publication bias arises repeatedly in the context of standard meta-analyses, where it typically refers
to missing evidence of small effect sizes due to a lack of incentives to publish null effects. It is not
clear whether similar asymmetric publication incentives operate around SCC values and, if so, in what
direction they would shift the distribution. On the one hand, there is some evidence of a conservatism in
scientific publishing, such that one might expect an anchoring around previously published estimates
and therefore a narrower distribution in the published literature compared to unpublished model
results (20, 21). On the other hand, others might suggest that extreme SCC values (either very high
or very low) might be more noteworthy and so be more likely to proceed to publication, implying
a wider distribution in the published literature. Existing studies show evidence in both directions,
with Havranek et al. (22) finding substantively lower average SCC values in peer-reviewed published
journals than those published in other outlets while a review by Tol (23) finds the opposite.

Our expert survey was designed to fill key knowledge gaps on the SCC that the meta-analysis alone
cannot answer: the role of publication bias and insights on key drivers of the SCC and next steps for
improving its estimation. The standard concern regarding publication bias is that due to researcher
and editorial incentives, leading to file drawer problems or questionable to fraudulent research practices
(e.g. p-hacking, data fabrication), estimates of a true effect size is represented in a biased form in the
literature. Standard approaches are to examine z-scores of irregularities in p-values for experimental
studies that aim to investigate some true effect size. Yet, these are not directly applicable to our setting,
as many individual SCC papers do not have the goal of producing the best estimate of the SCC. These
papers are comparative in nature and explore the effect of some variation in plausible parameters or
some extension of the IAM structure to investigate how this affects the SCC. Oftentimes, they do so
starting from a well-established, conventional baseline, such as the latest DICE model, and consider
only one or a few extensions. Thus, these studies will—by design—provide a ‘biased’ estimate of what
the study authors may themselves consider an appropriate estimate of the “true” SCC.1

Previous work has investigated publication bias by comparing peer-reviewed and non peer-reviewed
work on the SCC (22). Yet, for the reasons detailed above, comparing published and unpublished
papers trying to estimate the SCC does not provide the most useful benchmark for detecting publication
bias. We therefore investigate the role of publication bias by means of the expert survey. Specifically,
any differences between an expert’s literature and best-estimate SCC values serves as an indication of
publication bias.

As illustrated in Figure 3a (for the subset of experts that also anwered the question on the SCC wedge
breakdown), our data suggests that experts believe the peer-reviewed literature exhibits a substantial
and significant downward bias (t-test, t=6.063, two-sided P<0.000). This is also apparent given the
substantial rightward shift in the ”true” distribution—one that asked experts to account for all things
they deemed missing or imbalanced in the published literature—compared to the estimated literature
distribution in Figure 1. Indeed, we find that 82.82% of experts think the central SCC in the literature
to be biased downwards as compared to its true value, 9.09% think that it is represented correctly in
the literature and 9.09% think the SCC to be biased upwards in the literature.

1There may be an incentive—akin to p-hacking in the empirical literature—for such comparative studies, as the
chance that they get published well may increase if the paper reports a strong effect of introducing a certain structural
model modifications. The magnitudes of structural model modifications may thus be overestimated in the literature.
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Figure S19: Individual estimates of the central 2020 SCC in the literature and the central “true” 2020
SCC value “all things considered”.

S.2.2.4 Non-response and strategic response bias analysis

We conduct a number of non-response and strategic response bias checks (15, 16). To investigate
non-response bias, we compare non-anonymous respondents with the rest of the population of authors
along observable characteristics such as their continental location, gender and year of PhD, number
of publications in SCOPUS and their h-index. We complement this with data from our meta-analysis
on the median 2020 SCC in their published papers (using 2010-2030 pulse years as the effective 2020
sample), the median discount rate employed in their SCC papers, as well as the proportion of their
SCC estimates that contain one of the major structural model modifications, and the proportion
of their SCC estimates that we classified as ‘framework expansion’ or as ‘empirical improvement’.
Overall, we find that identified respondents (nir = 48) exhibit very similar characteristics as the
anonymous part of the population sample (nnon−ir = 128), which contains the anonymous respondents
(nar = 27). We find no significant differences across groups in terms of being located in North-
America (t-test, t=0.970, two-sided P=0.334), Europe (t-test, t=-1.476, two-sided P=0.142), Asia
(t-test, t=0.522, two-sided P=0.602) or Oceania (t-test, t=0.598, two-sided P=0.550), being classified
as ‘male’ (nir = 44, nnon−ir = 109; χ2(1)=1.303; P=0.339), year of PhD award (t-test, t= -0.4799,
two-sided P=0.632), number of publications (t-test, t=0.701, two-sided P=0.484) and h-index (t-
test, t=0.570, two-sided P=0.0.569. We also find no significant differences in terms of their discount
rates employed (t-test, t=-1.461, two-sided P=0.146) and their 2020 SCC estimates (t-test, t=-0.189,
two-sided P=0.851). Ientified respondents have published more frequently on what we classified as
‘empirical improvement’ (t-test, t=-2.432, two-sided P=0.016), they do not exhibit a higher proportion
of having published a ‘framework expansion’ (t-test, t=-0.384, two-sided P=0.702), nor on any of the
sub-classifications, such as on climate or damage tipping points (t-test, t=0.615, two-sided P=0.975; t-
test, t=-1.461, two-sided P=0.540), earth system model updates (t-test, t=-1.281, two-sided P=0.202),
alternative utility function specifications, e.g. using Epstein-Zin (t-test, t=-1.281, two-sided P=0.885),
or alternative ethical approaches (t-test, t=0.283, two-sided P=0.778). This null finding is noteworthy
as having mentioned some of these in the initial e-mail invitation might have induced experts who have
published more on these to be more likely to respond to the survey.

To investigate strategic response bias, we compare responses by anonymous and identified respondents.
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We find no significant difference in views on the central “true” SCC all things considered (t-test, t=-
0.991, two-sided P=0.325), and the upper and lower percentile ranges are almost identical (two-sided
P=0.898 and P=0.949). While anonymous respondents estimate a much lower central 2020 SCC in
the literature (t-test, t=-2.497, two-sided P=0.015), the upper and lower SCC literature range esti-
mates do not differ (two-sided P=0.420 and P=0.241). Both groups also do not differ in whether
their best-estimate SCC is higher than their literature estimate (nar = 25, nir = 41; χ2(1)=0.916;
P=0.339), or in the magnitude of their SCC wedges (t-test; t=-0.486, two-sided P=0.628). Further,
we do not find any differences in their views on whether any of the different model structures rep-
resent an improved estimate of the SCC (t-tests, lowest P=0.140, for persistent growth effects), and
anonymous respondents are also not more likely to provide comments on any of the questions (lowest
χ2(1)=0.012 is P=0.358 for Q3). Yet, anonymous respondents put considerably more weight on ‘other
drivers’ in question 3 (t-test, t=-3.027, two-sided P=0.004), and less weight on pure time discounting
(t-test, t=1.731, two-sided P=0.090). Whereas anonymous respondents are not more likely to provide
comments on model structures in Q2 or on next steps for improving the SCC (nar = 27, nir = 48;
χ2(1)=0.012; P=0.913). While responses of the anonymous sample are different along some dimen-
sions, we do not detect a clear signal of efforts to strategically distort the survey results, particularly
because the best-estimate, comprehensive SCC does not differ across samples. Differences appear to
rather stem from different views on the SCC in the literature and on the role of pure time preference
in driving the SCC wedge. To be inclusive of the whole range of reasonable views, we thus retain
anonymous responses as part of our main analysis. We repeat the strategic response bias analysis by
splitting the sample at the median into early and late respondents. The general hypothesis is that
respondents who want to strategically affect the results may respond earlier. We find no significant
differences along all those dimensions reported on above, except that early respondents are more likely
to provide comments on next steps for improving the SCC (nearly = 33, nlate = 33; χ2(1)= 7.174;
P=0.007).

S.2.2.5 Additional analyses of the merged dataset

Among the identified respondents, a higher 2020 SCC median in an expert’s own publications is highly
significantly associated with estimating a higher SCC in the literature (β=0.05, t33=4.50, P <0.000),
and weakly significantly associated with a higher best-estimate SCC estimate (β=0.12, t33=1.75,
P=0.089).

We do not find significant differences in literature or best SCC estimates across continents (but those
by experts from Asia tend to be lower and those by experts from Europe tend to be higher).

We find a strongly significant gender effect: The few female experts estimate a significantly higher
SCC value in the literature (t-test, t=4.269, two-sided P<0.001) and also a “true” SCC value that is
more than twice as high as the corresponding estimate by male experts, with $288 versus $130 (t-test,
t= 3.80, two-sided P<0.001), and a higher SCC-wedge (t-test, t= 2.74, two-sided P=0.009).

We next relate the proportion of an expert’s included papers published on specific model structures
and whether they are more likely to agree or strongly agree that “papers in the current literature
that incorporate this structural change produce a better estimate of the SCC than papers that ex-
clude it” (Q2). We do not find this to be the case for any of the extensions. However, we find that
having published a higher share of papers on some specific extensions—persistent growth damages
(β=14.01, t40=2.13, P=0.040), Epstein-Zin preferences (β=22.73, t40=6.63, P <0.000), and distribu-
tional weights (β=27.34, t40=2.87, P=0.007)—is associated with assigning more weight to these model
structures as drivers of the central SCC-wedge.

S.2.2.6 Survey Assessment of Alternate Model Structure

Experts were asked to rate their agreement with the statement “papers including X produce a better
SCC than those excluding it?” on a five point scale (Strongly Disagree, Disagree, Neutral, Agree,
Strongly Agree) for 9 elements of model structure. Responses to these questions, for 53 experts that
provided answers to this question are shown in Figure S20.

We apply a Bayesian hierarchical model to convert responses to this question into a multivariate
probability distribution that can be used to sample the random forest model. The model makes the
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Figure S20: Distribution of views from the expert survey asking respondents for their assessments of
the SCC papers with varying model structure.

following assumptions:

• Each expert has a belief about the likelihood that including a given structural model element is
beneficial. This belief is uncertain, and represents a distribution over probabilities.

• The response categories– “Strongly Disagree”, “Disagree”, “Neither Agree nor Disagree”, “Agree”
and “Strongly Agree”– represent a discretization of this probability space. To choose one cate-
gory, an expert will take a random draw from their belief distribution.

• Each expert has a consistent ordered scheme for mapping probability values to categories. Also,
they accurately report their beliefs.

• We can usefully talk about the “common belief” across experts. This is a (hyper-)distribution,
from which each expert’s beliefs are drawn. It is possible to partially pool the beliefs across the
experts to generate an estimate of this common belief.

This represents a kind of meta-analysis, which allows us to simultaneously generate an estimate of the
common beliefs about structural model elements, and expert beliefs that are consistent with these.
If the expert beliefs are estimated to be very uncertain, a high level of pooling will be used since all
estimates will be consistent with a common value. If expert beliefs are certain and not alike, little
pooling will be used and the estimate of the common belief will be uncertain.

We use the following Bayesian model to implement these ideas. Let the central logit value of the belief
of expert j on question k be

θjk ∼ N (µk, τk)

The actual reported level is a categorical variable drawn from an ordered logistic:

ljk ∼ OrderedLogistic(hθjk, hc⃗j)

where h is a global parameter that determines the spread around the central value (that is, how likely
it is for an expert to report a category higher or lower than their central belief).

The categorical divisions are deviations from a naive partitioning of the probability space into 5 equal
regions, represented by

cj ∼ N ([logit(0.2), logit(0.4), logit(0.6), logit(0.8), logit(1.0)], σ)

where σ determines the variation between expert understandings of the categories.
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We further impose weakly informative priors that h ∼ Exponential(0.001) and τk ∼ Cauchy(0, 1).

The result of this analysis is shown in Figure 3c. Some questions show a higher degree of agreement
(e.g., ambiguity/model uncertainty) than others (e.g., distributional weighting). Summary statistics
and parameter values are shown in Table S7.

mean se mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
Ambiguity µ 0.35 0.00 0.10 0.15 0.28 0.35 0.42 0.56 5881.72 1.00

Earth System µ 0.79 0.00 0.12 0.56 0.71 0.79 0.87 1.05 4277.46 1.00
Epstein-Zin µ 0.40 0.00 0.12 0.16 0.32 0.40 0.48 0.63 4430.73 1.00
Inequality µ 0.48 0.00 0.14 0.21 0.39 0.49 0.58 0.76 3132.52 1.00
Learning µ 0.34 0.00 0.10 0.15 0.27 0.34 0.41 0.54 7069.27 1.00

Limited Sub. µ 0.77 0.00 0.11 0.56 0.70 0.77 0.85 1.00 5690.99 1.00
Persistence µ 0.42 0.00 0.10 0.22 0.34 0.41 0.49 0.62 5665.33 1.00

TPs: Climate µ 0.73 0.00 0.13 0.47 0.64 0.73 0.81 0.98 4692.44 1.00
TPs: Damages µ 0.49 0.00 0.12 0.25 0.41 0.49 0.58 0.74 4303.60 1.00

Ambiguity τ 0.19 0.01 0.14 0.01 0.08 0.17 0.28 0.51 609.14 1.00
Earth System τ 0.44 0.01 0.19 0.04 0.31 0.45 0.57 0.81 503.55 1.01
Epstein-Zin τ 0.39 0.01 0.19 0.03 0.25 0.39 0.52 0.76 443.44 1.01
Inequality τ 0.68 0.01 0.19 0.25 0.58 0.69 0.80 1.04 249.03 1.02
Learning τ 0.21 0.01 0.14 0.01 0.10 0.20 0.31 0.51 577.08 1.01

Limited Sub. τ 0.29 0.01 0.18 0.02 0.15 0.28 0.42 0.65 598.69 1.01
Persistence τ 0.22 0.01 0.16 0.01 0.09 0.20 0.33 0.56 506.57 1.00

TPs: Climate τ 0.48 0.01 0.22 0.04 0.33 0.49 0.64 0.90 364.83 1.01
TPs: Damages τ 0.49 0.01 0.20 0.07 0.36 0.51 0.63 0.86 430.27 1.01

h 3.22 0.05 0.54 2.57 2.89 3.12 3.40 4.60 130.10 1.03
σ 0.36 0.00 0.04 0.29 0.34 0.36 0.39 0.45 799.47 1.00

Table S7: Posterior distribution statistics for common parameters, computed by Stan, using 4 chains,
each with iter=2000; warmup=1000. n eff is a measure of the effective number of MCMC draws of the
posterior distribution that were achieved. Rhat is a measure of convergence, where full convergence
produces a value of 1.0.
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S.2.2.7 Qualitative comments

Below we report qualitative comments received in the online survey or via e-mail, not edited except
in cases where this is necessary to preserve anonymity. Numbers refer to individual experts by row
values (#XXX). Row values of 1000 and beyond relate to response received via e-mail.

Comments on Question 2: Structural drivers of the SCC in the literature

#553 Persistent effects are still under debate about how to integrate them in IAM. Current implemen-
tations are not satisfying.

#558 My responses to b are all else equal - I would have preferred this to say the same model or paper
with or without a specific feature.

#562 Uncertainty would not alter SCC that much. Exceptions would include uncertainty about the
damage function related to tippiing points or uncertainty about how rapid the temperature
increases I believe.

#569 For most of these I put ”Neither agree or disagree” not because I don’t think they are important
to develop further, but because I don’t think the evidence base is quite there yet or because I
think there are a set of difficult ethical assumptions inherent in making these changes that I’m
not sure are better than the current assumptions.

#572 most of my responses are very impressionistic based on recollections of a partial and idiosyncratic
reading of the literature. would have to conduct a more systematic review to have any confidence
in my answers. but i assume what you want here are impressions

#576 When producing my own distribution in the previous page, I really focused on damages and
discount rate holding structure constant. However, I would note that some of these parameter
changes do not impact the social cost of carbon as much in my opinion, but instead the optimal
tax. This is particularly true for learning by doing, as learning by doing can substantially impact
the optimal tax, though I think it will have a limited effect on the most likely climate scenario.

#598 In simple models, a lot depends on how the damage function is calibrated. A simple damage
function could also include damage on capital, tipping points, non-market goods, etc. In models
with learning on damages, I assume that the model without learning does monte-carlo, does not
have the option to change the plan when information is discovered and has therefore a much
larger risk premium.

#623 I don’t think ”tipping points” as advanced by Lenton, Schellnhuber, etc are physically justified
by the available science. I think the main thing missing in terms of losses associated with CC
is a reasonable representation of the on-going costs of extreme events. These have been mostly
neglected in the development of DICE-like IAMs. I think lots of ideas around equity-weighting in
SCC estimations start to lose contact with political reality quite fast. I’m not exactly sure how
to bound ”structural changes” so I down-weighted the potential effects. These could be higher,
given some possible interpretations.

#628 it is hard to distangle the impacts of uncertainty and learning in the questions. Generallyu I
would think that uncertainty (for example in ECS, tipping points etc) increases SCC, but with
that uncerrtainty eventual learning of the issue at hand (eg ECS) reduces the SCCncreases

#633 Each of these questions merits a proper meta survey paper so my answers are highly noisy and
should not be taken too serious at all

#645 Some of the statements were ambiguous, like ’Structural changes to the temperature response to
emissions’, ’tipping points in the damage function’ or ’persistent effects of temperature change on
output’. It was very hard to evaluate what these actually mean, what their inclusion means (i.e.
how are they included in a model) and thus what impact they could have on the SCC. Model
uncertainty and ambiguity are very important concepts in this context. But are they something
that we can objectively judge and quantify in the SCC? Or are they rather points that we
should recurrently remind ourselves and reflect upon. Yes, there are mathematical theories that
allow one to incorporate second-order probabilities and the aversion to ambiguity. But does that
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really capture all the ambiguity there is, or do these theories just convey ’artificial crispness’ (as
Weitzman described this) that is not truly the thing we are after?

#659 Re some of the above topics I am aware of only one study, in others not even one. So difficult to
come up with my guesstimate.

#660 Why did you leave out CO2 fertilization effects? That’s one of the big differences among IAMs
and SCC estimates. I took the ”structural changes to temperature response” to mean the Equi-
librium Climate Sensititivity parameter. This is one of the big uncertainties in climate modeling
not only among models but between model-based and empirical estimates. The term ”tipping
points” is overly vague. The proper term is ”bifurcations”. If they exist they are properties
of the climate system, they are not induced by forcings. The literature ”incorporating tipping
points” gives a sense of looking for ways to make a simulation model crash and generate a dra-
matically larger SCC, without explaining how such a bifurcation could have existed throughout
the present and previous interglacials without causing similar crashes even during much warmer
periods. This genre looks to me to lead to higher SCC’s of lower scientific quality. Adding
growth impacts from temperature and precip changes in principle should increase the quality of
the empirical estimate but in practice the results are very uncertain and of indeterminate sign.
So they look to me like better quality but no change to the mean or median estimate. I don’t
have any familiarity with the techniques for incorporating aversion to ambiguity, Epstein-Zin
preferences or constrained substitutability.

#687 On inequality, it depends on what you mean by inequality. Current estimates show convergence
of incomes so this would increase the discount rate and reduce SCC. If you add in the inequality
of the impacts of climate change,, which are borne by the poor, then this could well increase the
SCC. If you then introduce catastrophic effects to the poor, you will have dismal theorem type
effects which could be really important welfare wise. None of this nuance can be captured by the
questions. On the climate science questions: whether updating the energy balance model will
increase or decreas the SCC, I am afraid that I have not read so many papers on this topic, so i
do not have a good basis for giving answers here. On tipping points, this is a dificult question.
We know so little about how likely they are to occur and how bad tipping points will be in terms
of economic damages that it is a difficul tcall to say that an estimate of the SCC for policy
purposes is better for their inclusion. What is required is a presentation of the range of what
is known, coupled with some decision / welfare theoretical approach to assess what the welfare
maximisng approach is when faced with such dramatic uncertainties (a la Barro, Weitzman etc.).
recent work by Dietz et al (2021) tends to indicate that tipping points will be trivial in terms of
impact on GDP due to physial factors (e.g. feedbacks) but also economic factors (discounting,
damage function and the fact that an optimal path will reduce the risks considerably) . So,
difficult to say whether I think they should inform THE SCC,but they should inform the range
of possibilities that are presented to policy makers for sure. the above comments are written
rather quickly. I think they make sense. Happy to clarify ex post if need be.

#738 I found it really hard to answer these questions. First of all because I do not think there is a true
SCC. The SCC depends on valye laden assumptions such as the discount rate, how to value the
loss of a statistical life in poor countries, how to value risk, and how to value nature... hence,
there can be no true answer here. Furthermore - how a change in the model will affect the SCC
depends of course on how the change was implemented and how that structural phenomena was
implemented before... so for some of these questions I was uncertain about how to ask. ,

#749 The only truly realistic change is including uncertainty in the scc rather than speaking of a
distirbution of scc, and that change will raise the scc

#752 I find this page of questions somewhat ambiguous as the answer usually depends on the details
of what is considered ”structural change”. Depending on these details in many if not most cases
the answer to ”part a” can change the sign and the answer to ”part b” can change from Agree
to Disagree. I decided in each case what I guessed you might be after, and I did not represent
the literature per se but that part of the literature corresponding to my guess of what you might
be after. E.g. growth change: even the DICE model has a pass through of the damages on
the capital stock (so yes, agree, important), but I assumed you are likely after assuming direct
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damages on the growth rate rather than output or capital stock (then answer is, no, disagree
that it improves the estimates conditional on current knowledge). There are similar ambiguities
in most questions.

Comments on Question 3: Drivers of the SCC wedge.
“If you put some weight on “Other drivers”, please briefly detail which other driver or
drivers you have considered, ideally with an indication of the relative magnitude?”

#576 I did not consider equity weights in my $200. If I considered equity, then I would have multipled
my estimate by 2.5 coming to an estimate of $500. I put 5% on the elasticity of marginal utility
of consumption and Epstein Zinn preferences each, as these are really a joint decision in my
opinion. I think though that market rates have declines, which further supports these differing
parameter values underlying an extended Ramsey equation.

#617 Difficult for me to answer. My main thinking and own contribution have concerned the tail
probabilities.

#626 hard to grasp this question I am afraid

#641 Shares with sliders?

#650 Generally, nonconstant discounting and monetizing more sources of damages should lead to
a higher SCC. Adaptation and more granular (geographically) treatment of damages should
decrease the SCC.

#660 Other drivers: I include endogenous adaptation here (I wasn’t sure if that’s what you meant by
allowing for learning). Updating the earth system module: I take this to mean updating the ECS
parameter to empirically-constrained ranges Adjusting the climate damage function: I include
incorporation of CO2 fertilization and global greening effects here.

#679 Measurability problem in climate damage functions: SCC considers only measurable/marketable
damages. F.e. costs of ”wildlife extinction” not considered/not measurable in terms of GDP/welfare
loss.

#687 I didn’t say other but, my responses are based on the fact that one does not need too much in the
way of other changes to get to the SCC that I would prefer. Many of the other points above are
important, but not necessary to explain the difference. there may be some discrepancy between
these responses and the previous responses, but i am explaining here the primary deerminants
of the gap in terms of my original position on the SCC which rested on the above aspects.

#697 Impact on sentient animals

#738 Of course - this is tricky to answer... so please see my answers as rough estimates. For instance
- changes in the damage function, could be done by change ion the parameters or by adding
tipping points. It is not trivial to disentangle these.. the same with the discount rate and eta vs
rho

#742 I will need to go back and do the first question. I think it would be better to have one think
through the components first, no?

Question 4: Comments on next steps in improving the SCC.
“What do you think are the most important steps for improving estimates of the SCC
going forward?”

#553 Understanding the impact of damage persistence and the interplay with adaptation.

#558 better incorporation of the latest science in the earth system modeling; ability to more ade-
quately capture tipping points, including economic ones such as collapse of maritme food sources
and massive migration better modeling of how economic systems and prices will adjust; better
modeling of uncertainty

#562 SCC fully considering the effect of learning on multiple uncertain features at the same time
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#567 Transparency about modelling choices and their effects on the SCC; improving climate damage
estimations; explicity taking into account nature’s values and relative price changes; societal
discussions and refelctions about intergenerational equity and fairness

#569 Exploring tipping points, better characterizing damage functions, improving exploration of dif-
ferent ethical frameworks.

#572 improved evidence base for calibration of damage function parameters. i.e., more empirical
studies of the influence of climate changes on economic performance and well-being.

#579 macro-economic modeling to understand pathways by which climate change might haver persis-
tent effects on the economy

#598 Combine risk and non-marketed goods, a more dynamic damage function (warming speed matters
and temperature may affect tfp growth) It is not widely known that in most models the risk
premium is actually low (increasing the risk aversion parameter from 2 to 6 increases the SCC
by a mere 5 to 10% even when there are tipping points in the model). I find that puzzling, but
it might also simply be true. Requires further research though.

#608 Better representation of the natural cycles of heat, emissions, and ecological processes (e.g.,
tipping points, methane emissions from thawing permafrost, etc.) Identification of permanent
asset damages by climate change

#620 Better damage estimates, especially better treatment of adaptation and extreme weather

#641 less theory, more empirics an end to climate determinism inclusion of the large literature on the
links between vulnerability and development inclusion of the large literature on the valuation of
health and nature young economists should learn how to use search engine and read the literature,
including papers that are more than 5 years old

#644 Invistigate and incorporate individual’s perference towards climate change, at present, we only
consider the economists’/politicians’ perferences.

#650 Quantifying and monetizing more sources of damages (e.g. impacts to marine resources). Ulti-
mately, modeling the climate system with tipping points and feedback is likely to have a larger
impact but my sense is that omitted damage sectors are the lower hanging fruit.

#659 Identifying the best studies and focusing mean statistics on these (i.e. removing clearly incom-
plete or biased studies, as they contaminate the statistics. The topic is too important to leave it
to statistics. Informed judgement is important too.

#660 Spend less time dreaming up implausible ”tipping point” catastrophes and more time quantifying
aerial CO2 fertilization effects, agricultural adaptation strategies and global greening impacts.
Also, the authors who look for growth/TFP impacts make glib associations with extreme weather,
without citing any data or IPCC assessments on the subject. The links to changes in extreme
weather are weak and of ambiguous sign. It doesn’t provide a credible rationale for expecting
TFP changes due to warming. The use of RCP8.5 and related SSP’s should be stopped. It’s
a ridiculous storyline. Authors who use it are clearly putting their finger on the scale to get a
dramatic result and a splashy headline but it is a waste of the reader’s time. There’s been very
little attention paid to Tiebout sorting, but it seems to me it should result in people relocating
themselves closer to their privately-optimal temperatures.

#669 Need better process-based models.

#673 Estimates of limited substitutability of non-marked goods Estimates of the persistence of damages
on market and non-market sectors with adaptation Robustness analyses with regard to alternative
approaches to intergenerational equity and efficiency

#679 Inclusion of additional ”damage types” in climate damage functions

#683 Dissagregation. A single number is too abstract to be useful for policy making.

#687 Damages. value of environment/relative prices, One thing that is missing from all of this is the
handling of catastrophic risk and risk in general. Issues related to the climate beta, the insurance

36



properties of climate mitigation and so on.

#693 better understanding of climate damages, both the aggregate across time for different climate
futures, but also the spatial and socio-economic distribution of damages

#697 Including climate impacts on sentient animals

#708 Better understanding and measuring the pathways through which changes in climate affect the
economy (e.g. not just TFP level hits calibrated to reduced form estimates).

#710 ethics, uncertainties-, distribution- and related preferences

#718 Better and more comprehensive modeling of cliamte damages. Better assesment of risks and
ambiguities associated with cliamte change.

#738 Damage function

#739 A better estimation of damages, as well as of possibilities and costs of adaptation

#749 I believe we should better try to model the limits of our knowledge

#750 distinguishing between growth and level effects, accounting for non-market damages, damages
functions that reflect climate impacts adequately

#752 Getting the valuation of climate (and ecosystems) over an extended future right/or more right
in our simplistic economic valuation functions.

Additional feedback

#562 Look forward to the result very much!

#569 This is a really interesting survey!

#570 Bottom line – huge uncertainty over the SCC.

#572 Good luck with your study! This was not an easy survey to complete. I’ve tried to give you
responses that are at least better than just noise : )

#576 This is an interesting survey, though, in some ways, I would have liked a slightly different set
up. I wonder if the structural questions should have been upfront to debias individuals. By
considering a variety of factors first, you may have better prevented anchoring. If I were to
factored in equity weights for example, I think that my response would be very different. In
particular, I would have given a range of $50 to $10,000 with a central estimate of $500. Most of
the other considerations were factoring into thinking about the appropriate damage function and
discount rate, except for substitutability. If I factored this in completely, I would probably have
increased by SCC estimates between 50% to 100% even more. In fact, seeing everything laid out
in your table about structural assumptions, made me realized how downward biased that I really
think that SCC may be despite frequently thinking about the topic.

#592 Good luck with the study. I hesitated to put my name for a moment because i was embarassed
if i wrote something contradictory or stupid. But i felt there is a value to being transparent for
you. I should say though that answering seriously i should have spent an hour or two. Many
of the issues are complex and some questions perhaps could be interpreted in different ways. I
am however - as is common every evening, rushed to get through emails and decided to do the
questionnaire quickly in 10 minutes and without going back over questions or consulting any
document - just straight from the top of my head. I look forward to seing what will come of it
and maybe discussing at some point.

#608 It was rather a hard task. I couldn’t provide confident numbers myself, but you may still find
some patterns from the data when combined with the others’ responses.

#620 This is quite possibly the best survey I have ever filled in.

#623 Interesting survey - I’d like to hear the results.

#644 Thanks for your invitation! I think this survey is really useful in terms of gathering ideas.
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#687 Tough survey. I am not confident in some of the answers since my reading of the literature is
partial and my personal views on the SCC are heavily influenced by my papers and the few
papers that I have been influenced by.

#710 It feels VERY wrong to answer this ”off the cuff” without thinking longer about it. But some
answer is better than no answer (...?). I want to ”object” against the framing, at least a little.
There is no such thing as an SCC ”estimate”. We project future marginal damages, at best. And
we cannot even do that without several value judgments. To call the SCC an ”estimate” may
increase its political influence but masks what it is. And makes it vulnerable - you can always
critisize any projected value or distribution based on the welfare function parameter choices or
structural- or heroic assumptions of any specific model. That’s why I really do not like that we
use the same terminology as for say a neat RCT estimate of the impact of policy X on behavior
Y. Anyway, that was my little pet peeve there. Good luck with the project. PS: Now I’ll try to
google the actual distribution and bite myself if I am very off ;-)

#738 Good luck with this. Sometimes it was difficult to give a clear cut answer...

#749 One note: I answered your questions as if you were asking for the mean via ”central value”.
Median would be quite different.

#752 I found parts 1 and 3 quite useful. I am afraid that I found part 2 too ambiguous to be mean-
ingfully interpreted.

#1000 I believe the literature has overestimated the SCC. My reasons are the following. Economists
are quick to dismiss the benefits of CO2 fertilization. Economists tend to also dismiss future
adaptation. Many economists do not realize tipping points are already part of traditional damage
estimates. Some economists are reaching for damages that are likely to be small in the labor
market, with conflict, from migration, and ecosystem change. Finally, my colleagues are a little
confused about the endogeneity of the SCC. If society adopts a high SCC, there will be a lot of
mitigation. This will lower the SCC. They should not be calculating an SCC based on Business
as Usual unless they believe the SCC will have and should have no effect on policy.

#1001 Thanks for sending me the survey. Honestly, I feel I cannot respond. Sorry for that. Actually,
I am now more convinced that the SCC is not helping us and that the cost-benefit analysis of
climate change has caused more confusion to the decision-makers that benefit. When Nordhaus
obtained the Nobel prize in 2018 the committee included a figure with an ”optimal” stabilization
temperature of 3C..., something that any IPCC report would endorse. With all my respect, I
think the economic methods have been pushed too far in relation to what our data, models and
projections and knowledge can really say and not. I have personally worked with the DICE
model in the past and I know how sensible it is to small variations to few parameters and on the
damage function selected. For that reason, I cannot respond. It can be 10 or it can be 10.000.
I don´t know. I am not trying to deviate you from your plans or to argue on this (I might be
wrong), but as I have received the mail 4 times, I had the necessity to explain to you why I
cannot respond. Of course, I think we need to devote more efforts on putting monetary values
to the damage (present and future) of climate change where we have information and keep on
with the carbon pricing/markets. Also, if we need a reference-value for guiding decision-makers,
I think that the cost of abatement (for example to achieve the Paris Agreement targets) can be
a good reference-point as we have less uncertainty on some key technologies. Of course, this is
my point of view.

#1002 I looked at your survey, but I can’t answer the questions because they are based on the flawed
assumption that the current BAU allocation is efficient, which it is not due to the mispricing of
Greenhouse Gas Emissions. At an inefficient allocation the Social Cost is not well-defined.

#1003 For building a more complex IAM, I think non-linear climate feedback effects and distributional
effects are really important. In the literature on real world impacts of climate change and
extremes, it’s very clear that the majority of the actual impact comes from climate extremes - heat
waves, coastal erosion/inundation and hydrological extremes - which tend to have a non-linear
response to climate forcing and there are the huge uncertainties and potentially catastrophic
scenarios of runaway feedback mechanisms. In proportional terms, climate change clearly affects
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the poor a lot more than the rich. That’s unlikely to change. I know economists and philosophers
go back and forth about the discount rate - what it is and what it should be...but the distributional
effects of damages within generations really matter to real people. And if massive inequality of
consequence is not adequately addressed, it may lead to an increase in political instability and
conflict.

#1007 Thank you for writing. I hope it is ok if I pass on filling in the form. As you probably know, I
am not enthusiastic about using IAMs as the basis for calculating social cost of carbon or indeed
as a basis for public policy in general. A challenge is to change the structures of economies
fundamentally and rapidly. As I have argued, I think we should approach shadow pricing for
carbon in a way which helps directly with that question and thus asking what are the prices that,
when combined with other structural polices, help make this transformation happen. I fear that
the process you are embarking might keep IAMs at centre stage when they really don’t capture
the urgent and major policy questions.

S.2.3 Random Forest Model and Synthetic SCC Distribution

S.2.3.1 Distribution-Based Random Forest Model

We train a random forest model as the basis for our synthetic SCC distribution. The random forest
model has advantages over other statistical modeling approaches such as the multivariate regression
analysis discussed in Section S.2.1.9. In particular, random forests (a form of machine learning) select
both variables and functional forms as part of the model training exercise, allowing them to flexibly
handle non-linearities and variable interactions without them having to be specified ex-ante by the
researcher. This is valuable in this setting where underlying IAMs produce SCC estimates known to
have complex, non-linear relationships with underlying variables.

Our random forest model is trained on published SCC values using 31 predictor variables: 9 binary
variables describing model structure; 14 binary variables representing contributions to any parametric
variation in the distribution; 2 variables capturing the damage function based SCC estimates; and 6
other variables including discount rate, SCC pulse year etc). We use a bespoke random forest algorithm
that respects the unusual structure of our underlying data in which each observation is a probability
distribution over the SCC (with 63% being delta distribution point estimates when no probabilistic
information was reported).

We estimate 500 regression trees, training each using random samples of the dataset and explanatory
variables. Splits in the regression trees are determined by the Anderson-Darling k-Sample Test, with
the goal of maximizing variance between two distributions at each split. We prune trees with fewer
than 7 nodes or large leaves (those that represent > 50 row, and span 0 to $10,000 SCC values), leaving
403 trees. Each leaf (i.e. terminal node) in a tree produces a distribution over SCC values based on the
component observations in that leaf. The random forest takes the mean for each computed quantile
generated by each of the 403 trees to produce a predicted distribution.

Variable importance is calculated by identifying which variables are used in classifying each observation
in the training dataset, translating this into a “probability” of each variable being used across the
training dataset, and taking the average of these probabilities over the forest. The variable importance
plot is shown in Figure S21.

S.2.3.2 Sampling the Synthetic SCC Distribution

The synthetic SCC distribution is generated using a Monte Carlo sampling approach, drawing a vector
of input variables from the expert distribution over model structure (Figure 3c) and discount rates
(Figure 3d based on Drupp and Hansel (15)), as well as a set of constant predictor variables shown
in Table S8. We generate a predicted SCC distribution from the random forest model for each of
the 1 million draws from the input variable space. The final SCC distribution is.....The final result is
a distribution that reflects expert assessments of discount rates and structural model characteristics,
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Figure S21: Variable importance for the random forest model. Variable importance is calculated
based on the expected probability of conditioning on each predictor variable across all 403 retained
regression trees. Variables that are chosen earlier in the regression tree have a higher importance since
all subsequent predictions further down the regression tree are conditioned on them. PRTP = pure
rate of time preference; EMUC = elasticity of marginal utility of consumption.
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variation in the SCC due to structural and parametric uncertainty as reflected in the literature, and
residual parametric variation.

Predictor Variable Value Reasoning
SCC Year 2020 2020 prediction year for comparison to other distributions in the paper
Publication Year 2020 More recent papers are most likely to represent current scientific knowledge
All Parametric Variation 1 Allow for any difference in mean SCC due to parametric uncertainty
Backstop 0 True SCC not backstop technology price
Other Market Failure 0 Capture climate externality and not other market failures

Table S8: Random forest prediction variables. Parametric uncertainty is over 14 variables (namely
TFP growth, population growth, emissions growth, transient climate response, carbon cycle parame-
ters, equilibrium climate sensitivity, tipping point magnitudes, damage function parameters, adapta-
tion rate, income elasticity, discounting parameters (constant discount rate, PRTP, EMUC and Risk
Aversion for some Epstein Zin papers).

To generate the waterfall plot in Figure 5b, we start with a prediction dataset with no structural
modifications, no parametric uncertainty, no backstop price, non-declining discounting at 4.6%, market
and non-market damages, no other market failures, and damages resampled from the different versions
of the DICE damage function appearing in our literature survey. Then we sequentially adjust to this
prediction dataset with each of the following modifications: (1) discount rates drawn from (15) and
addition of declining discounting; (2) damages resampled from the whole training dataset; (3) each
structural change; and (4) each form of parametric uncertainty. Because of interactions between these
model elements, the order of operations matters for interpreting the decomposition. To ensure that
each bar is independently interpretable, Figure 5b shows results averaging over 30 random orderings,
while ensuring that parametric uncertainty is only applied after any necessary structural changes.

S.2.3.3 Synthetic SCC Sensitivity Analysis

Figure S22 shows sensitivity of the synthetic SCC distribution on various dimensions. Each plot
shows the full snythetic SCC distribution (leftmost bar) and alternatve distributions varying a single
dimensions, namely discount rate, model structure, publication year, and damage function. Additional
quantiles and means for the synthetic SCC distribution and all sensitivity analyses is given in S9.

2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th Mean
Synthetic SCC 14 32 52 97 185 369 636 874 1155 284
No Structural Changes 5 21 35 65 124 243 423 596 731 186
All Structural Changes 13 39 66 128 245 486 820 1138 1469 367
1% Discount Rate 24 49 73 123 223 420 705 937 1197 322
2% Discount Rate 29 47 66 106 188 353 587 789 1045 273
5% Discount Rate 5 18 30 63 135 302 575 828 1170 241
Publication in 2000 10 25 44 90 164 331 582 843 1125 260
Publication in 2010 8 26 46 93 171 347 608 889 1171 272
Publication in 2020 14 32 52 97 185 369 634 874 1153 284
DICE Damages 10 27 43 83 161 340 631 898 1195 269
FUND Damages 9 26 42 80 159 348 667 937 1256 276
Howard & Sterner Damages 19 41 66 120 218 403 652 877 1150 308
PAGE Damages 11 29 46 86 164 337 600 849 1125 263

Table S9: Percentile information and means of the synthetic SCC distribution and sensitivity analyses
shown in S22. All in 2020 US dollars per ton CO2.
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a) b)

c) d)

Figure S22: Sensitivity of the synthetic SCC to alternate input assumptions. Output dis-
tributions from the random forest based on input distributions used in the synthetic SCC (Figure
5, leftmost column in each plot) and alternate distributions that systematically vary one component.
a) Discount rate parameter; b) Model structure, c) Publication year; and d) Damage function (H&S
corresponds to Howard and Sterner (24)). Bars show distribution means, points the median, and error
bars the inter-quartile range.

S3 Description of structural model modifications

In this section we describe each of the nine structural moedling elements discussed in the paper, their
relevance to the SCC, and provide example references.

S.3.1 Ambiguity / Model Uncertainty

Climate policy grapples with many kinds and sources of uncertainty, and in many cases there is no
agreed-upon quantitative distribution to describe that uncertainty. When multiple possible distribu-
tions are available, this problem is referred to as model ambiguity, and solutions typically assume that
agents make pessimistic assumptions across the range of possibilities. A standard implementation of
model ambiguity would follow a minimax approach, minimizing the welfare loss under the worst set of
assumptions.

Higher values of the SCC represent larger losses in welfare for any emissions scenario, so model am-
biguity selects higher values of the SCC across any range of possible values. Model ambiguity can
also be included when selecting the optimal emission pathway. In this case, model ambiguity results
in more cautionary decision-making, lower emissions, and a resulting lower SCC. In this context, the
particular role of model ambiguity and the definition of the scenario (exogenous or optimal) is central.

Example Citations: (25,26)

S.3.2 Earth System

Studies in this class make changes to the structure of the carbon cycle or warming modules relative to
the simple 2-3 box carbon-cycle model and simple radiative-balance model used in versions of DICE,
FUND and PAGE up to 2016. These modules map carbon dioxide emissions into atmospheric con-
centrations and atmospheric concentrations into climatic changes (principally temperature increases),
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respectively. Some models might add carbon-cycle feedbacks or might collapse the process into a sin-
gle functional relationship between cumulative emissions and temperature, following evidence in more
recent climate science (27).

The Earth system representation matters for the SCC because it determines how much temperatures,
and where relevant other climatic variables, respond to CO2 emissions.

Example Citations: (28,29)

S.3.3 Epstein-Zin Preferences

Epstein-Zin utility functions disentangle risk across time and states of nature, introducing both a richer
set of preferences and the need to solve models recursively. While these types of utility functions have
become standard in financial economics over the past 2-3 decades, they are relatively new in climate-
economy models. Models that incorporate Epstein-Zin preferences are either computationally involved
empirical calibration exercises or highly stylized, attempting to tease out the importance of individual
parameters in a set of sensitivity analyses.

Epstein-Zin preferences matter for the SCC, as they ensure that higher risk aversion does not lead
to higher discount rates, which in turn lead to lower SCCs. The greater the uncertainties and risk
aversion, the greater is the impact of switching to Epstein-Zin preferences on the SCC.

Example Citations: (30,31)

S.3.4 Distributional Weighting

The same monetary loss results in a greater welfare loss in poorer regions than it does in richer regions
under commonly-assumed concave utility functions. Climate change is also projected to affect income
groups differently. For instance, poorer regions are often in warmer areas and are expected to have
some of the greatest climate impacts.

Distributional weighting, namely applying weights to dollar-valued impacts to different income groups,
is typically used to operationalize inequality aversion. This can capture the higher welfare effect of
income losses to poorer people and / or policy preferences that prioritize the well-being of the worst
off. If poorer regions are exposed to greater climate impacts, then accounting for inequality aversion
can produce large increases in the SCC.

Example Citations: (32,33)

S.3.5 Learning

Models that incorporate learning allow the distribution over one or more unknown parameters to evolve
over time, typically through a Bayesian update, as data generated by the relationship governed by the
unknown parameter are observed over time. Some of the learning models are myopic in that the social
planner in the model does not anticipate future learning. Other learning models are forward-looking
where the social planner anticipates future learning and adjusts policy accounting for how it affects
learning and subsequent welfare. A plurality of the papers in the literature have focused on learning
about the equilibrium climate sensitivity – which can be learned from observations of temperature and
levels of greenhouse gases – while other papers have included learning about damages, climatic and
damage tipping points, and other aspects of the climate economy.

Learning matters for the SCC because as policymakers refine distributions over unknown parameters,
they are better able to match climate policy to the true state of the system which will affect the
SCC. Learning typically reduces the SCC because of active learning motives where additional carbon
emissions magnify the signal of the unknown parameter relative to background noise, allowing for
faster learning. Theoretically, learning’s effect is a priori ambiguous and depends on nonlinearities and
stock effects in the climate-economy.

Example Citations: (34,35)
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S.3.6 Limited Substitutability

These models explicitly allow for limited substitutability by disaggregating a comprehensive consump-
tion good or a comprehensive capital stock into more detailed component parts. For instance, these
model changes feature non-market environmental goods as a direct source of utility and allow for
various degrees of substitutability with standard produced consumption goods. These models also
typically disaggregate the effects of climate damages on both market and non-market goods.

As standard IAMs, like the DICE model, implicitly feature some degree of limited substitutability
(Drupp and Hänsel 2021), the effect of explicitly introducing limited substitutability on the SCC is
ambiguous. When the degree of substitutability between consumption and environmental goods is
lower than in standard models, these model structures can substantially increase the SCC.

Example Citations: (36,37)

S.3.7 Persistent / Growth Damages

Models that allow for persistent or growth damages introduce pathways for transient changes in tem-
perature to have permanent effects on output. This is usually modeled as temperature affecting the
growth rate of factor productivity or increasing the depreciation rate of capital stocks.

Accounting for persistent impacts of temperature generally increases the SCC. If temperature has
persistent effects, then a temperature shock today affects output today and in future years. Conditional
on a particular instantaneous damage function, this will increase total damages and the SCC.

Example Citations: (4,38)

S.3.8 Tipping Points: Climate

Climate tipping points/elements have been defined as “subsystems of the Earth system that are at
least subcontinental in scale and can be switched – under certain circumstances – into a qualitatively
different state by small perturbations” (Lenton et al., 2008). Examples include the permafrost carbon
feedback, melting of the Antarctic and Greenland Ice Sheets, and a slowdown of the Atlantic Merid-
ional Overturning Circulation (AMOC). Some models include a representation of the key underlying
geophysical relationships that govern the tipping point, while others simulate climate tipping points
in a stylized way.

Climate tipping points are diverse in nature and affect the SCC in different ways. Some are positive
feedbacks in the climate system that increase the temperature response to CO2 emissions, for example
the permafrost carbon feedback. Ice sheet melting increases sea levels and thereby increases coastal
adaptation costs and residual costs/damages. Large-scale circulation changes such as AMOC slowdown
may primarily change the distribution of impacts across countries and this may affect the overall SCC
depending on the incomes of the countries most affected.

Example Citations: (2,34)

S.3.9 Tipping Points: Damages

Models that incorporate damage tipping points allow for economic output to be irreversibly reduced,
potentially stochastically, if a particular climate threshold is crossed. Damage tipping points are
stylized ways of capturing sudden non-linarities in impacts that could be associated either with abrupt
climate system changes (the climate tipping points described above) or thresholds in socio-economic
impacts from those changes (e.g. large-scale dislocations such as war or mass migrations). These
models incorporate a new state variable that captures the extent of tipping and the probability of this
state variable progressing (capturing further advances in tipping and greater damage) depends on the
state of the climate system and random shocks.

Damage tipping points matter for the SCC because crossing a tipping threshold irreversibly moves
us into a higher-damage world. This tends to increase the SCC because the value of the next ton of
carbon must now account for the probability that the tipping threshold is crossed and the subsequent
permanent increase in damages (though the SCC then drops once the tipping point is crossed).
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Example Citations: (31,36)
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3. Excludes reporting SCC estimates calculated using a model presented in a previous
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SCC from the modified model should be reported as a new central value, but the value
from the standard run should not. (Instead it can be recorded as a “Base Model” value) -
this avoids over-counting estimates from models that are re-used by multiple papers

4. Excludes estimates of an “optimal carbon tax” where the primary focus of the paper is
modeling market failures other than climate change damages. Optimal carbon tax values
that account for market failures other than climate change can be included, but should
be flagged in Column M.

5. Excludes estimates of the social cost of methane, N2O or other greenhouse gases /
radiatively active species

6. Includes values reported as supplementary analysis in appendix tables

Note that not all values in a paper will necessarily be explicitly coded in the spreadsheet. In
some cases, reported variation in the SCC due to parametric variation will be “collapsed” into
min-max values and reported as a range in the “SCC Distribution” section. Variation other than
that due to SCC year, emissions scenario, discounting scheme, damage function, base /
calibration model, or model structure should mostly be reported within a single row.

Bibliographic and Base Model Info

Column A: Unique ID number from full abstract list in “Paper Tracking” spreadsheet

Column B: Add Bibtex reference to this document and record Bibtex name here

Columns C-F: Self-Explanatory

Columns G-H: Report any prior model used for calibration purposes or for comparison. Use
Column G (“Base IAM”) if study reports using a prior model and then adding modifications. Use
Column H (“IAM Calibrated To”) if study reports calibrating an original IAM using a prior model.

Column I: Categorize the type of SCC study into one of four types:

1. Empirical Improvement: These are studies where the clear goal of the analysis is to
improve representation of the climate system, climate damages, or otherwise better align
IAM model results with pre-existing scientific or economic findings. Examples might
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include improved representation of climate change (e.g. SLR dynamics) or incorporation
of econometric damage estimates.

2. Framework Expansion: These are studies where they are adding to or extending the
analytical IAM framework, with a view to better representing relevant factors driving
climate change costs, but without as strong a tie to a particular empirical literature.
Examples could include EZ utility papers, inequality aversion, learning, new discounting
frameworks, multi-good utility papers.

3. Sensitivity Analysis: These are studies with a stated intention of only examining the
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empirically preferred.
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reporting “standard” models (e.g. paper reporting the DICE 2013 update and results)
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that could be coded differently (i.e. some framework expansion and some empirical
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section of the sheet.

Column L: Backstop Price? - Enter a 1 if the value recorded in Column K is a backstop price
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Column M: Other Market Failure? - Enter a short description of other market failures included in
the value in Column K, if that value is an optimal carbon tax that includes market failures other
than climate change damages. Examples could include “R&DExternality” or
“LimitedRedistribution”.

Column N: Dollar year of SCC - record SCC dollar year if reported.

Column O: Emissions Scenario - record emissions or radiative forcing scenario used for SCC
estimate in the row. Examples include:

● Optimal - SCC along the optimal emissions path
● BAU - SCC along the BAU emissions path
● Some radiative forcing scenario (e.g. RCP 7) or socio-economic scenario with
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this emissions trajectory (i.e. no mitigation)

● Some temperature or CO2 concentration threshold (e.g. 1.5 degree, 450 ppm) or other
implicit emissions constraint (e.g. some risk level). For these cases, enter using the
formulation “Constraint - <SPECIFIC CONSTRAINT>” e.g. “Constraint - 2degrees” or
“Constraint - 400ppm”. This will help us identify these cases later on in the coding.

-> Only record variation in *emissions* scenario in this column, not variation across other model
parameters

Column P: Socio-Economic Scenario - record socio-economic scenario used for SCC estimates
in this row. This will particularly be used for determining the consumption growth rate for
calculating the Ramsey discount rate. Possible entries include:

● If population and GDP or TFP growth rates are unchanged from the underlying base or
calibration model, record the model name here, e.g. “DICE 2007”

● Record standard socio-economic scenarios e.g. SSP2 or A2
● If per-capita consumption growth rate is specified in the paper, record that here (e.g. 2%

per year)

Column Q: Reported Base Model SCC - if available, record a Base Model SCC value that is
“comparable” to the Central SCC value in the sense of sharing the same 1) discounting
assumptions and 2) emissions scenario and 3) SCC year.

Discounting Parameters and Damage Function

Column R: If a constant discount rate (i.e. rather than the Ramsey formula) is used, record the
% value here (i.e. 1.5 instead of 0.015 or 1.5%). If a declining discount rate is used, record the
initial value here.

Column S: Record Pure Rate of Time Preference. If a declining PRTP is used, record the initial
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Column T: If central estimate uses a declining discount rate, add a 1 here. Otherwise leave
blank.

Column U: Record EMUC used in Ramsey formula of Central Estimate

Column V-W: Record parameters of Epstein-Zin preferences, if applicable. Note most papers
report IES = 1 / EMUC. If necessary convert from EMUC to IES.

Column X: Market Only Damages - Enter a 1 if the Central SCC Value is based on damages
that explicitly include only market damages (e.g. calibrated to studies examining variation in
GDP)

Column Y: Damage Function Info - Use this column to record the functional form of the damage
function for models with only one damage function that depends only on temperature and falls
on production (i.e. single region, single sector models). Leave blank if the model is not of this
type (e.g. multi-region models). Information can be recorded in one of three ways:

1. If the damage function is left unchanged from the base or calibration model, re-enter that
model name in here (eg. DICE 2007)

2. If the damage function is a variation commonly referred to by the original authors, enter
the corresponding name here. Possible entries are:

a. Weitzman - corresponding to damage function used in Weitzman (2012, Journal
of Public Economics Theory)

b. HowardSterner - corresponding to base damage function reported in Howard and
Sterner (2017, Environmental and Resource Economics). (Note - some
HowardSterner damage function specifications also include calibration to growth
rate impacts, which can be indicated using “Calibrated” in Column AD)

c. DietzStern - corresponding to damage function in Dietz and Stern (2015, The
Economic Journal)

3. If neither 1 nor 2 apply, directly enter the damage function into the column, using T as
the GMST change from the baseline used in the paper (e.g. 0.0004 * T^3). Any R
expression is permitted. T is assumed to be contemporaneous temperature (i.e. warming
in the same time period as damages occur) unless otherwise indicated, using syntax
T_{t-k}.

Structural Changes

Column Z: Carbon Cycle - Enter a 1 if the values in this row include a structural change in the
Carbon Cycle model, compared to the baseline or calibration model, or compared to DICE if no
baseline or calibration model is reported.

Column AA: Climate Model - Enter a 1 if the values in this row include a structural change in the
Climate Model (i.e. effects on the physical climate system, conditional on greenhouse gas
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concentration, including temperature and sea-level rise), compared to the baseline or calibration
model, or compared to DICE if no baseline or calibration model is reported.

Column AB: Climate Tipping Points - Enter a 1 if the values in this row include climate tipping
points. This means a representation of specific changes in the earth system such as ice-sheet
processes, Amazon dieback, changes to the thermo-haline circulation.

Column AC: Damage Tipping Points - Enter a 1 if the values in this row include a stylized or
abstract representation of tipping points as a change in damages without modeling the
underlying drivers from the climate system (e.g. Cai, Lonztek JPE).

Column AD: Persistent / Growth Damages - Enter a 1 here if the values in this row include
persistent damages, for instance via damages to the capital depreciation rate, TFP growth, or
capital stock. Enter “Calibrated” if the damage function is calibrated to partially account for
persistent damages but they are not represented structurally in the model.

- Note that standard DICE, because of endogenous capital formation, includes some small
persistence in damages. Do NOT enter a 1 here for standard versions of DICE.

Column AE: Epstein Zin Utility - Enter a 1 if the values in this row come from a model using
Epstein-Zin preferences

Column AF: Ambiguity / Model Uncertainty - Enter a 1 if the values in this row explicitly account
for ambiguity or model uncertainty

Column AG: Non-Substitutable Goods - Enter a 1 if the values in this row come from a model
with more than one good in the utility function that are imperfectly substitutable with each other

Column AH: Inequality Aversion - Enter a 1 if the values in this row include inequality aversion.
Enter “Calibrated” if the damage function is calibrated to account for inequality aversion but it is
not represented structurally in the model.

Column AI: Learning - Enter a 1 if the values in this row are from a model explicitly representing
a learning process.

Column AJ: Alternative Ethical Approaches - Enter a 1 if the values in this row are based on a
different ethical approach than discounted utilitarianism.

SCC Distribution

Columns AK to BA

Use these columns to record any reported variation around the Central Value recorded in
Column K of this row. Values recorded in these columns should share the same SCC year,
emissions scenario, and structural changes as the recorded central value. Unless damage
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function parameters and / or discounting parameters are being varied, they should also share
the same damage function and discount rate.

Use “Min” (Column AK) and “Max” (Column BA) to report ranges with the two most extreme
SCC values at the upper and lower end resulting from parameter changes not associated with
probabilities

Use quantile columns to enter any reported quantiles of the distribution. This could come either
from quantiles reported from a Monte Carlo sampling, from reported confidence intervals around
values (e.t. 95% confidence intervals), or from one at a time sensitivity analysis, where the
varying parameters have quantiles associated with them (e.g. varying the climate sensitivity to
+1 or -1 standard deviation).

Note that the recorded distribution must be “well behaved” - i.e. values must be strictly
increasing with quantiles. Otherwise the distribution sampling algorithm will not be able to
interpret the entries.

All units in $ per ton CO2. If necessary, convert from $ per ton C or from values reported in other
currencies, consistent with recording central value.

If central value is a median, also record value in the 50th percentile column (column AS)

Parametric Uncertainty

Use these columns to record parametric variation giving rise to either:

1) Variation recorded in the SCC distribution block. Enter a 1 if variation in this parameter
contributes to the range reported in Columns AJ to BA

OR

2) If no distribution is reported, but the central value recorded in Column K is a central
value from a distribution (without the distribution being reported), then add 1s in the
relevant columns in this section. For example, most PAGE09 values come from Monte
Carlo runs of PAGE that include variation in:

a) Transient climate response
b) Carbon cycle
c) Tipping Point Magnitude
d) Damage Function
e) Adaptation Rates
f) Damage Income Elasticity

6



Additional Information

Column BP: Paper Location - Record where in the paper values in the row come from (e.g page
number, figure, table). Could be multiple locations if central value and parametric variation
ranges come from different places

Column BQ: Flag - Use this to add other informational flags to aid interpretation of values in this
row

Column BR: Notes - Add any other notes here aiding interpretation of the values in this row

● Any additional notes on decisions made in coding a paper or information required to
interpret values can be added in this Google Doc.
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