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Abstract 
 
Recent empirical studies document that the distribution of earnings changes displays substantial 
deviations from lognormality: in particular, earnings changes are negatively skewed with 
extremely high kurtosis (long and thick tails), and these non-Gaussian features vary substantially 
both over the life cycle and with the earnings level of individuals. Furthermore, earnings changes 
display nonlinear (asymmetric) mean reversion. In this paper, we embed a very rich “benchmark 
earnings process” that captures these non-Gaussian and nonlinear features into a lifecycle 
consumption-saving model and study its implications for consumption dynamics, consumption 
insurance, and welfare. We show four main results. First, the benchmark process essentially 
matches the empirical lifetime earnings inequality—a first-order proxy for consumption 
inequality—whereas the canonical Gaussian (persistent-plus-transitory) process understates it by 
a factor of five to ten. Second, the welfare cost of idiosyncratic risk implied by the benchmark 
process is between two-to-four times higher than the canonical Gaussian one. Third, the standard 
method in the literature for measuring the pass-through of income shocks to consumption—can 
significantly overstate the degree of consumption smoothing possible under non-Gaussian shocks. 
Fourth, the marginal propensity to consume out of transitory income (e.g., from a stimulus check) 
is higher under non-Gaussian earnings risk. 
JEL-Codes: E240, J240, J310. 
Keywords: idiosyncratic earnings risk, higher-order earnings risk, non-Gaussian shocks, 
incomplete markets models, consumption insurance. 
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1 Introduction

This paper studies the implications of non-Gaussian earnings risk for consumption dy-
namics, consumption insurance, and welfare. A growing number of studies have shown that
the most salient features of earnings dynamics cannot be captured by a linear (ARMA(p,q))
process with Gaussian innovations. In particular, these studies have documented several
important deviations from log-normality and significant heterogeneity in earnings dynam-
ics across workers. Among these, three features are especially worth highlighting.1

First, the distribution of earnings shocks is not symmetric but instead displays strong
negative skewness, and it is not bell-shaped but instead displays extremely high kurtosis.
The negative skewness implies that workers are more likely to experience very large neg-
ative changes in their earnings (“disaster shocks”) compared to very large positive shocks
(big “upside surprises”). The high excess kurtosis implies that in a given year, most indi-
viduals experience very small changes in earnings relative to overall dispersion, while a few
experience extremely large shocks. We refer to these non-Gaussian properties as “higher-
order risk.” Second, and just as important, there is substantial heterogeneity in these
non-Gaussian properties of earnings shocks both over the life cycle and across the earn-
ings distribution. In particular, older and/or higher-income workers experience smaller but
more leptokurtic and more negatively skewed earnings shocks.2 Third, earnings shocks dis-
play important nonlinearities in the form of “asymmetric” mean reversion: for high-income
workers, positive earnings shocks are fairly transitory, whereas negative shocks are very
long-lasting. The opposite is true for low-income individuals: positive shocks are much
more persistent for them than negative shocks are. Furthermore, persistence also depends
on the size of shocks.

Given the central importance of earnings risk in shaping individuals’ economic behavior
when markets are incomplete, we revisit some key questions about individual consumption-
savings behavior in light of these new findings. To this end, we solve and simulate a rich life-
cycle consumption-savings model that allows for heterogeneous, nonlinear, non-Gaussian
earnings risk and study its implications for consumption dynamics, partial consumption
insurance, and the welfare costs of idiosyncratic earnings risk.

1See, e.g., Arellano, Blundell and Bonhomme (2017a) and Guvenen, Karahan, Ozkan and Song (2021)
for the US data, and the November 2022 special issue of Quantitative Economics on Global Income
Dynamics for evidence on 12 additional countries. Guvenen, Pistaferri and Violante (2022b) summarizes
the evidence documented in these articles and show that the significant deviations from lognormality
documented for the United States are also observed in these 12 countries.

2We use the terms “earnings” and (labor) “income” interchangeably throughout the paper.
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The income process we use is the benchmark model in Guvenen, Karahan, Ozkan and
Song (2021) (hereafter, GKOS), which is a very rich stochastic process with 21 parameters
and estimated by targeting more than 2000 moments that capture a wide range of nonlinear
and non-Gaussian features of earnings dynamics. The model fits the features described
above (as well as many others not mentioned above) quite well. This stochastic process
features (i) an AR(1) process with normal mixture innovations; (ii) a (potentially full-year)
non-employment shock with scarring effects whose incidence varies by age and income level;
(iii) a purely transitory shock, and (iv) a heterogeneous income profiles (hereafter, HIP)
component. Although the process has many parameters, all dynamics are captured through
only one state variable, the same as in the canonical persistent-plus-transitory earnings
dynamics model that has been the workhorse in the incomplete markets literature. The
nonlinear and non-Gaussian features make discretization methods for the income process
inaccurate for some key moments, so we solve the lifecycle model with the full process
estimated by GKOS, with shocks drawn from continuous distributions.

We embed this earnings process into a lifecycle consumption-savings model with stochas-
tic lifetimes, retirement, borrowing constraints, and intergenerational persistence of labor
earnings, among others. We model several mechanisms that can provide partial consump-
tion insurance and smoothing in the form of accidental and warm-glow bequests that are
inherited by newborn offspring, progressive labor income taxation, a redistributive retire-
ment pension that mimics the US Social Security system, and a minimum consumption
floor. This rich set of smoothing opportunities reduces the volatility of individual con-
sumption substantially relative to earnings and is therefore important for the soundness of
our quantitative analysis. We then solve the same lifecycle model with the canonical Gaus-
sian (persistent-plus-transitory) earnings process, which is widely used in the literature.
Comparing the implications of the two models, we reach four main conclusions.

First, as a prelude to our analysis of consumption dynamics, we compare the distri-
butions of lifetime earnings generated by the benchmark (non-Gaussian) earnings process
and the canonical Gaussian process (Table IV). This comparison provides a useful start-
ing point because with full insurance (complete markets) and identical preferences, the
distribution of consumption would mirror the distribution of lifetime earnings (Friedman,
1957). While this is a simplified benchmark, it provides a first look at the differences
across individuals in their lifetime resources. We find that the canonical earnings process
understates the overall lifetime earnings inequality measured by the 90th-to-10th percentile
ratio (P90-P10) by a factor of 5 (a ratio of almost 15 in the data versus 2.8), whereas the
benchmark process essentially matches it (a ratio of 16). The gap is even larger at the
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top, with the canonical Gaussian process understating the P99-P10 ratio by a factor of 10
(a ratio of 44 in the data versus 4.3), whereas the benchmark process generates it almost
exactly (41). We should note that GKOS do not discuss the benchmark process’s ability
to match the lifetime earnings inequality; thus, this comparison is new to this paper.

The second and most novel contribution of our paper is to quantify the welfare costs
of an idiosyncratic earnings risk implied by each earnings process. With a relative risk
aversion of 2, we find that the average individual is willing to pay 8.5% of her consumption
at every date and state to eliminate idiosyncratic earnings fluctuations generated by the
canonical Gaussian process. The analogous welfare cost is almost four times higher, at
33.2%, for earnings fluctuations generated by the non-Gaussian benchmark process from
GKOS. In this comparison, we chose the parameters for the canonical Gaussian process
to reflect typical estimates in previous studies so that the resulting comparison is directly
relevant for a large number of studies that are calibrated using those estimates. However,
those parameters understate the variance of earnings fluctuations in the data targeted by
GKOS. So, as an alternative, we recalculate the welfare cost of a Gaussian process that is
estimated to match the same moments as in GKOS, which brings up the welfare cost to
16.8%. Although much higher, this value is still half the welfare cost of the non-Gaussian
benchmark process. Furthermore, the welfare cost is significantly more heterogeneous
across the income distribution under the benchmark process, for example, ranging from
7.3% to 18.3% for different groups at age 45 compared with a range of 2.5% to 3.6% for
the canonical Gaussian process.

Among the different components of the benchmark process, the persistent AR(1) com-
ponent with normal mixture shocks is responsible for almost 2/3 of the welfare cost (down
to 11.4% without AR(1) from 33.2%). The non-employment shock with scarring effects
is also very costly, accounting for 1/3 of the welfare cost (22.3%). On the other side,
some of the smoothing opportunities built into the model turn out to be very effective:
the welfare cost would have been 46.9% without the progressive tax system and 42.2% if
the borrowing limit was reduced by half. Similarly, the welfare cost drops to 20.2% if the
minimum income floor is raised to $10,000 from about $3,000 in the baseline calibration.
Overall, these results show that idiosyncratic earnings shocks are very costly for individual
welfare, and accurately modeling their nonlinear and non-Gaussian features is essential for
properly measuring their welfare costs.

Third, we link the estimated welfare costs of earnings fluctuations to measures of the
insurability of idiosyncratic shocks through the “partial insurance” coefficient (Blundell
et al. (2008), Kaplan and Violante (2010), and others). Although related, the two con-
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cepts are somewhat different: the partial insurance coefficient measures the proportion of a
typical shock that is transmitted to consumption without reference to the size of the shock,
whereas the welfare cost measure incorporates both the size and nature of the underly-
ing fluctuations in addition to their insurability. When the partial insurance coefficients
are estimated using the standard moment conditions in the literature, the insurability of
persistent shocks appear to be almost twice as high under the benchmark process rela-
tive to a Gaussian process (62% vs 32% insured). We show that this moment condition
does not isolate persistent shocks under the benchmark process, thereby overstating the
extent of partial insurance. We also show that within-cohort consumption inequality over
the life cycle increases significantly more—consistent with the high welfare costs noted
above—and reveals less insurability of shocks under the benchmark process. Furthermore,
the benchmark process implies a left-skewed and leptokurtic distribution of consumption
growth, which has some support from the data (e.g., Constantinides and Ghosh (2017),
Toda and Walsh (2015), and Rodriguez Mora et al. (2022)).

Fourth and finally, we compare the implications for the marginal propensity to consume
(MPC) out of various types of earnings shocks. Specifically, the MPC out of a $500 stimulus
check is substantially higher under the non-Gaussian benchmark process: it is about 10%
at the 20th percentile of the cash-on-hand distribution versus 4% under the Gaussian
process; and it is 7.5% at the median cash-on-hand versus again 4% for the Gaussian
process. Furthermore, even though the MPC declines relatively slowly with cash-on-hand
for the benchmark process, it is almost completely flat under the Gaussian process. We
also investigate the MPCs out of persistent and transitory earnings shocks (which scale
with the level of earnings unlike the stimulus check).

A potential limitation of our analysis is that we focus on individuals as our unit of
analysis—so as to be consistent with the earnings process we use, which is estimated on
individual earnings—which leaves out potential consumption insurance within the house-
hold. It is not clear how important this choice is for our results because the empirical
evidence on the effectiveness and extent of spousal insurance is mixed, with some studies
finding little or no effect against income shocks (e.g., Hayashi et al. (1996) and Busch
et al. (2022)), while others find non-negligible effects (Blundell et al. (2016); Halvorsen
et al. (2023); Pruitt and Turner (2020)). As a simple check, we report some key moments
of earnings dynamics, which are quite similar for individuals and households using data
from the Panel Study of Income Dynamics (PSID). De Nardi, Fella, Knoef, Paz-Pardo and
Van Ooijen (2021) also reach the same conclusion using administrative earnings data from
Netherlands.
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Literature Review

Although a vast literature that starts with Lucas Lucas (1987) has attempted to mea-
sure the welfare costs of aggregate fluctuations, there is little previous work on the welfare
costs of idiosyncratic earnings shocks. A recent exception is Constantinides (2021) who
separates idiosyncratic and aggregate shocks and finds large welfare costs of the former.
The paper takes a clever approach that utilizes an exchange economy model with a no-trade
equilibrium (extending Constantinides and Duffie (1996)) whose parameters are estimated
by fitting asset prices and cross-sectional moments of household consumption growth. One
challenge is that the consumption data used from the Consumer Expenditure Survey is ob-
served for only five quarters, whereas the model only has permanent shocks. This requires
assuming that the quarterly consumption changes in the data are completely permanent,
when in fact these short-term variations are likely to contain a large transitory compo-
nent due to measurement error, which can introduce an upward bias the estimated welfare
costs. There are also some studies that brought idiosyncratic shocks into the welfare costs
of business cycles by allowing aggregate and idiosyncratic shocks to be correlated (see, e.g.,
Storesletten et al. (2001); Krebs (2003); Krusell et al. (2009), among others). Our paper
differs from these studies by modeling a very rich earnings process with non-Gaussian fea-
tures and allowing several consumption-smoothing mechanisms and measuring the costs
of idiosyncratic risk in this setting.

Our paper is also related to two recent papers who compare the degree of insurance
and welfare costs of idiosyncratic income risk under a permanent-plus-transitory standard
Gaussian income process and a non-linear non-Gaussian income process: De Nardi, Fella
and Paz-Pardo (2020) find a larger degree of partial insurance under the non-Gaussian
income process (see our results in 5.1), something we also find in this paper. In contrast,
they find the welfare costs of idiosyncratic income risk to be lower for non-Gaussian risk.
Our analysis differs from theirs in four main ways: (1) the persistence of earnings shocks
in the benchmark process is not solely captured by the AR(1) component but also through
nonemployment (disaster) shocks, which accounts for a third of the welfare costs; (2) they
estimate an earnings process using survey data (the PSID), in which measurement error
possibly attenuates the higher-order moments;3 (3) we compare to a Gaussian process,
with persistent rather than permanent shocks; and (4) we introduce an income floor and
show it is crucial to capture the degree of insurability against negative shocks. Closer to

3For example, the Crow-Siddiqui kurtosis measure in their study is much lower than the GKOS reports
from the SSA data. As we discuss below, skewness is also much less pronounced in the PSID due to possible
measurement error.
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our exercise, Busch and Ludwig (2024) also find higher partial insurance and welfare costs
under non-Gaussian risk, provided a minimum level of risk aversion.4 Our analysis differs
from theirs along channels (1), (2), and (4) described earlier in this paragraph.

Our paper hence also relates to the literature that studies the role of government insur-
ance in smoothing higher-order income risk. Busch et al. (2022) studies the effectiveness of
various government social insurance policies in France, Germany, Sweden, and the United
States for mitigating the procyclical fluctuations in the skewness of earnings risk. In a
different context, De Nardi et al. (2020) studies the optimal policy mix in a world with
higher-order risk and find income-floor policies to be the best at insuring against this kind
of risk, which is precisely the kind of government policy we include in our exercise and find
to be quantitatively very important.

Finally, our paper also contributes to the literatures on the MPC of earnings and
wealth (Johnson et al., 2006; Parker et al., 2013; Kaplan and Violante, 2014) and the
insurability of income shocks (Blundell et al., 2008; Kaplan and Violante, 2010; Guvenen
and Smith, 2014; Blundell et al., 2012) by studying the ramifications of non-Gaussian
earnings risk, which has not been considered by these studies. A few notable exceptions
are as follows: Wang, Wang and Yang (2016) build a tractable buffer-stock model to
study the extent of consumption smoothing with large discrete income jumps and find
larger marginal propensity to consume (MPC) than these models usually imply under
Gaussian risk—similar to our finding. Recently, Commault (2022) also incorporates the
GKOS benchmark process into a Bewley model but calibrates it to match the net liquid
wealth (which implies less wealth in the economy relative to our calibration) and finds
larger MPCs against negative transitory income shocks. Our analysis complements these
papers by embedding a very general non-Gaussian, non-linear stochastic process into a
rich life-cycle model and analyzing a range of properties of consumption dynamics. Ghosh
and Theloudis (2023) estimate the extent of partial insurance against non-Gaussian shocks
using a higher-order log-approximation of optimal consumption decision. They find that
the pass-through is larger for negative permanent shocks. Busch and Ludwig (2024) find,
exactly like us, that the MPC out of permanent (transitory) shocks is lower (higher) when
income risk is non-Gaussian due to a stronger precautionary savings motive. In our paper,
we further show this is driven by the lowest decile of the wealth distribution.

4A relative risk aversion above 1 is enough to yield higher welfare costs under higher-order risk.
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2 Model

The main focus of our analysis is on the implications of non-Gaussian earnings risk for
consumption behavior and the welfare costs that such risk entails. However, as economists,
much of our intuition about how individuals evaluate risk comes from the famous Arrow-
Pratt thought experiment, which implicitly relies on a thin-tailed and symmetric distribu-
tion (such as a Gaussian) to model uncertainty. So, before we delve into our full-blown
quantitative model, we begin by showing in a stylized example how allowing for skewness
and thick tails (kurtosis) affects the risk premium demanded by individuals.

2.1 Risk Premium with Higher-order Risk

Let us reconsider the Arrow-Pratt thought experiment that confronts a decision maker
with a choice between consuming the outcome of a risky bet, c×(1+δ̃), versus the expected
payoff of the bet minus a risk premium, c × (1 − π). The question is: how much is the
premium, π, that makes the decision maker indifferent between the two options:

U(c× (1− π)) = E
[
U(c× (1+ δ̃))

]
? (1)

The usual derivation proceeds by taking a first-order Taylor approximation to the left-
hand side and a second-order approximation to the right-hand side. Why do we stop at
second order? Because of two implicit assumptions: (i) that the skewness of the distribution
of δ̃ is not too far from zero, so the third-order term may not be too important, and (ii)
the distribution is sufficiently thin tailed (no excess kurtosis) that realizations of δ̃ far from
zero have very low probability, so the fourth-order term may not be too important. In light
of the recent empirical evidence discussed above that income shocks have nonzero skewness
and excess kurtosis, let us see what happens when we take a fourth-order approximation
to the right hand side:

u(c) − u ′(c)cπ ≈ E
(
u(c) + u ′(c)cδ̃+

u ′′(c)

2
c2δ̃2 +

u ′′′(c)

6
c3δ̃3 +

u ′′′′(c)

24
c4δ̃4

)
π ≈ E

(
1

2

u ′′(c)

u ′(c)
cδ̃2 +

u ′′′(c)

6u ′(c)
c2δ̃3 +

u ′′′′(c)

24u ′(c)
c3δ̃4

)
.

Furthermore, let u(c) = (c1−γ/(1− γ)) take the CRRA form and rearrange the terms
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Table I – Exact Solution to the Risk Premium in Equation (1)

Risk Premium (π)

Gambles: δ̃Gaussian δ̃Non-Gaussian

Mean 0.0 0.0
Standard Deviation 0.10 0.10
Skewness 0.0 –2.0
Excess Kurtosis 0.0 27.0

Risk premium 4.9% 22.2%

Note: The first column shows the risk premium under the assumption that the bet has a Gaussian distribution. The second
column shows it for a Non-Gaussian distribution whose parameters are taken from Guvenen et al. (2021) for a 45-year-old
male at the 90th percentile of the income distribution. The standard deviation of 0.1 is about 1/5 of its empirical counterpart
(0.51), which implicitly assumes that 80% of the income shock has been insured and is not passed through to consumption.

to get:

π∗ ≈ γ︸︷︷︸×σ2δ2
variance aversion

−
(γ+ 1)γ

6
× σ3δ︸ ︷︷ ︸

neg. skew aversion

× sδ +
(γ+ 2)(γ+ 1)γ

24
× σ4δ︸ ︷︷ ︸

kurtosis aversion

× kδ (2)

where sδ and kδ denote, respectively, the skewness and the kurtosis coefficients (3rd and
4th standardized moments). The first term on the right-hand side is traditionally called
the risk premium, and γ is called the relative risk aversion parameter. However, this
expanded expression shows that γ only captures the aversion to variance, whereas the risk
premium also depends on the aversion to negative skewness (second term) and aversion
to kurtosis (third term). These latter terms have two counteracting effects determining
their importance. On the one hand, they depend on higher powers of γ, which is typically
greater than one; on the other hand, they feature higher powers of σδ, which is smaller than
one. Therefore, the impact of these terms on the risk premium depends on the empirical
values of γ, σδ, sδ, and kδ. Notice that the sign of the skew aversion term is negative,
indicating that a negatively skewed distribution requires a higher premium, and vice versa
for a positively skewed distribution.

Table I shows an illustrative example for a relatively high γ = 10 and a bet with a
standard deviation of σδ = 0.10 under two different assumptions. In one case, the bet is
assumed to be Gaussian, so it has zero skewness and no excess kurtosis. In the second case,
the bet is non-Gaussian with its skewness (–2) and excess kurtosis (27), set to equal that
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for a 45-year-old male US worker in the 90th percentile of the US earnings distribution
(from GKOS). We should note that in the US data, the standard deviation of one-year
earnings growth for the just-mentioned worker is not 0.10—in fact, it is above 0.50. So, to
be conservative, the assumption in this example is that 80% of the idiosyncratic income
risk has been insured, and the individual’s consumption is only subject to the remaining
20% of the risk in her earnings.

As seen in Table I, the risk premium under the non-Gaussian risk is 22.2%, more than
four times the premium under Gaussian risk (4.9%).5 The amplification is especially strong
when risk aversion is higher, as could be predicted from the appearance of higher-order
polynomials in γ in the formula for (2). In the rest of the paper, we will show that the
much higher risk premium demanded by individuals to bear non-Gaussian risk will carry
over to a properly calibrated dynamic life cycle model with borrowing and saving, as well
as government insurance and transfers.

2.2 A Life-Cycle Consumption-Savings Model

We consider a life cycle consumption-savings model with income uncertainty, retire-
ment, stochastic lifetimes, and imperfect altruism. Individuals face an age-dependent
probability of death every period, and the conditional survival probability from age t to
t+ 1 is denoted with δt. Individuals can (potentially) work for the first TW years of their
life, retire at age TW + 1, and die with certainty by age t > T . An individual who dies
is replaced with an offspring, who inherits her parent’s positive assets after paying a flat
estate tax. Parents derive utility from leaving a bequest according to a warm-glow bequest
function:

ϕ(b) = ϕ1

(b+ ϕ2)
1−γ

1− γ

as in De Nardi and Yang (2016). This is a flexible functional form that allows us to model
bequests either as a necessity or luxury good depending on parameterization.

Individuals have CRRA preferences over consumption and therefore supply labor in-
elastically. Individuals can borrow or save using a risk-free asset with gross return R, where
borrowing is subject to an age-dependent, worker-type-specific limit, denoted by Ak

t , de-
scribed further below. The type of a worker is given by his fixed type, Υk, in the earnings

5The values reported here are computed exactly from equation ((1)) using numerical integration, so it
does not rely on the approximation in ((2)).
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equation described later below. The dynamic programming problem of an individual is

Vi
t

(
ai
t, z

i
t;Υ

k
)
=

(
cit
)1−γ

1− γ
+ β

[
(1− δt)Et

(
Vi
t+1

(
ai
t+1, z

i
t+1;Υ

k
))

+ δt
ϕ1

(
bit+1 + ϕ2

)
1−γ

(1− γ)

]
s.t.

cit + a
i
t+1 = a

i
tR+ Ydisp,i

t , ∀t, (3)

Ydisp,i
t = λmax

{
Y, Ỹi

t

}1−τ

, t = 1, . . . , TW , (4)

Ydisp,i
t = λ

(
Ỹk
R(z

i
TW

)
)1−τ

, t = TW + 1, . . . , T ,

ai
t+1 ⩾ A

k
t , ∀t, (5)

and equations (7) to (13), (6)

where δT+1 ≡ 1, β is the time discount factor, and γ governs risk aversion. The budget
constraint is given as in equation (3) where cit and ai

t denote consumption and asset hold-
ings, respectively, and Ydisp,i

t is disposable income, which differs from gross income, Ỹi
t, in

two ways. First, the government provides social insurance by guaranteeing a minimum
level of income, Y, to all individuals—more on this in a moment. Second, the government
imposes a progressive tax on after-transfer income. Following Benabou (2000) and Heath-
cote, Storesletten and Violante (2014), we take this tax function to have a power form,
with exponent 1− τ.

Furthermore, retirees receive pension income, Ỹk
R(z

i
TW

), specified to mimic the U.S. So-
cial Security Administration’s OASDI system’s “primary insurance amount (PIA),” which
is the benefit a person would receive if she begins receiving retirement benefits at the
normal retirement age. The retirement pension is a function of the average lifetime earn-
ings below Social Security maximum taxable earnings. To avoid introducing another state
variable (i.e., lifetime earnings), we approximate lifetime earnings by the persistent com-
ponent of a worker’s earnings in the last year of the working life, ziTW

. In particular, for
each worker type k, we regress the simulated average earnings on worker’s ziTW

with an
intercept, which we then use to approximate worker’s lifetime earnings, LEk(ziTW

). The
following equation specifies the pension system as a function of LEk(ziTW

):
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Ỹk
R(z

i
TW

) =


0.9LEk(ziTW

)
LEk(ziTW

)

AE
< 0.23

0.2LEk(ziTW
) + 0.32(LEk(ziTW

) − 0.23AE) 0.23 <
LEk(ziTW

)

AE
< 1.38

0.57AE+ 0.15(LEk(ziTW
) − 1.38AE)

LEk(ziTW
)

AE
> 1.38

for t = TW + 1, ...T , where AE is the average earnings in the economy.

2.3 Specifications of Earnings Processes

The specification of the benchmark non-Gaussian and nonlinear earnings process follows
Guvenen, Karahan, Ozkan and Song (2021) (hereafter, GKOS) and has the following
components: (i) an AR(1) process (zit) with innovations drawn from a mixture of normals;
(ii) a nonemployment shock whose incidence probability (piν(t, zt)) can vary with age or zt
or both, and whose duration (νit) is exponentially distributed; (iii) a heterogeneous income
profiles component (HIP); and (iv) an i.i.d. normal-mixture transitory shock (εit):

Level of earnings: Ỹi
t = (1− νit)e

(g(t)+αi+θit+zit+εi
t) (7)

Persistent component: zit = ρz
i
t−1 + η

i
t, (8)

Innovations to AR(1): ηit ∼

N(µη,1,ση,1) with prob. pz

N(µη,2,ση,2) with prob. 1− pz
(9)

Initial condition of zit: zi0 ∼ N(0,σz0) (10)

Transitory shock: εit ∼

N(µε,1,σε,1) with prob. pε

N(µε,2,σε,2) with prob. 1− pε
(11)

Nonemployment duration: νit ∼

0 with prob. 1− pν(t, z
i
t)

min {1, Fexp (φ)} with prob. pν(t, zit)
(12)

Prob of Nonemp. shock: piν(t, zt) =
eξ

i
t

1+ eξ
i
t

, where ξit ≡ a+ bt+ czit + dz
i
tt. (13)

In equation (7), g(t) is a quadratic polynomial—where t = (age− 24) /10 is a normal-
ized age—that captures the lifecycle profile of earnings common to all individuals. The
random vector

(
αi, θi

)
determines ex ante heterogeneity in the level and growth rate of

earnings and is drawn from a multivariate normal distribution with zero mean and covari-
ance matrix Σα. As we describe in Section 3, we will also allow

(
αi, θi

)
to be correlated
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across generations to capture the positive intergenerational correlation in earnings observed
in the US data.

The innovations, ηit, to the AR(1) component are drawn from a mixture of two nor-
mals. An individual draws a shock from N(µη,1,ση,1) with probability pz and otherwise
from N(µη,2,ση,2). Without loss of generality, we normalize η to have zero mean (i.e.,
µη,1pz + µη,2(1 − pz) = 0) and assume µη,1 < 0 (without loss of generality) for identifi-
cation. Heterogeneity in the initial value of zt is captured by zi0 ∼ N(0,σz0). Transitory
shocks, εit, are also drawn from a mixture of two normals (eq. 11), with analogous iden-
tifying assumptions (zero mean and µε,1 < 0). Solving a dynamic programming problem
with normal mixture shocks requires modest adjustments to the computational methods
commonly used with Gaussian shocks.6

The last component of the earnings process is a nonemployment shock (eq. 12) that is
intended to primarily capture movements in the extensive margin. Specifically, a worker is
hit with a nonemployment shock with probability pν whose duration νt > 0 is drawn from
an exponential distribution, Fexp with mean 1/φ, and is truncated at 1 (corresponding to
full-year nonemployment with zero annual income). This shock differs from zt and εt by
scaling the level of annual income—not its logarithm—which allows the process to capture
the sizable fraction of workers who transition into and out of long-term nonemployment ev-
ery year.7 Furthermore, the nonemployment incidence pν depends on age t and zt through
the logistic function shown in equation 13. The dependence of pν on zt—which GKOS
refer to as “state dependence”—turns out to be especially important as it induces persis-
tence in nonemployment from one year to the next (despite νt itself being independent
over time).

Although this process has many parameters, all dynamics are captured through a single
state variable (zit), which makes it relatively straightforward to embed it into a dynamic
programming problem. We construct a two-dimensional discrete grid over continuous
ex-ante type variables

(
αi, θi

)
, where each grid point corresponds to a worker type Υk.

Therefore, some aspects of an individual’s problem depends on his (discrete) ex ante type

6The main change is that the expectation on the right hand side of the Bellman equation becomes the
weighted sum of two integrals (e.g., with weights pz and 1− pz), each using the density of the respective
Gaussian distribution that makes up the mixture. These integrals are most conveniently computed using
continuous integration methods (e.g. based on Gaussian quadrature, etc.) rather than discretizing the
shock spaces, which is difficult because the optimal location of grid points needs to be different for each
Gaussian component.

7It takes a –350 log point shock to zt or εt for a worker earning $50,000 to drop below Ymin. Generating
such large shocks with sufficiently high frequency to match worker exit rates makes it challenging to
simultaneously match the high frequency of smaller shocks.
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Table II – Parameters Calibrated outside of the Model

Parameter Value

Curvature of utility function γ 020
Retirement (model) age TW 036.0
Maximum (model) age T 060.0
Borrowing limit tightness ψ 0.58
Tax progressivity τ 0.185
Tax level parameter λ See Table VI
Risk free rate R− 1 3%
Intergen. corr. labor fixed effect ρα 0.5

Notes: In addition to these parameters, survival probabilities, δt, are taken from Bell and Miller (2002) (omitted from the
table). We recalibrate λ for each income process to generate an average tax rate of 20%. See Table VI.

k, whereas others—including the dynamics of income—are drawn from continuous distri-
butions that are also fully individual specific. This problem can be solved using standard
numerical techniques; see computational Appendix A.

3 Model Parameterization

3.1 Demographics, Preferences, and Smoothing Opportunities

Households enter the labor market at age 25, retire at 60 (TW = 36), and die with
certainty by 85 (T = 60). We set the coefficient of relative risk aversion, γ, to 2 but also
consider a value of 5 in the robustness analysis. The net interest rate, R−1 is set to 3%. For
the bequest function, we follow De Nardi and Yang (2016) and calibrate the parameters, ϕ1

and ϕ2, to match a bequest–wealth ratio of 0.88% (Gale and Scholz (1994)) and the 90th
percentile of bequest distribution normalized by income (4.53) (Hurd and Smith (2002)).

For the borrowing limit, we follow Guvenen and Smith (2014) and assume that banks
use a potentially higher interest rate to discount households’ future labor income during
working years (to account for income uncertainty) in calculating the borrowing limit, but
simply apply the risk-free rate for discounting retirement income, according to this formula:

Ak
t ≡ Y

[
R−t∑
j=1

(
ψ

R
)j +ψR−t+1

T−t∑
j=R−t+1

(
1

R

)j
]
, (14)
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where ψ ∈ [0, 1] measures the tightness of the borrowing limit. When ψ = 0, no borrowing
is allowed against future labor income; when ψ = 1, households can borrow up to the
natural limit. An appealing feature of the formulation in (14) is that for different values
of ψ ∈ (0, 1), it can generate a pattern of a borrowing limit that increases, decreases, or is
U-shaped over the life cycle.8

In our baseline calibration, we set ψ = 0.58 which is Guvenen and Smith (2014)’s
benchmark estimate, but we also experiment with lower values of ψ as well as with a
more standard ad hoc borrowing limit later. Given these parameter values, β is calibrated
to generate a wealth/income ratio of 4.9 Although values lower than this can also be
justified on empirical grounds (and have often been used in the literature), a lower ratio
implies less wealth available for smoothing income shocks and hence larger welfare costs
of idiosyncratic risk. Therefore, a value of 4 represents a more conservative choice for the
purposes of this paper.

To sum up, among the model parameters, four of them—β, λ,ϕ1,and ϕ2—are calibrated
inside the model, so their values are different for each income process we consider. The
values are reported below in Table VI.

The income floor, Y, is a key parameter as it limits the severity of large negative shocks
to income. Guner et al. (2022) provide a comprehensive evaluation of the US welfare
system and provide estimates of the magnitude of welfare assistance programs for different
demographic groups. Their estimates for total government non-medical transfers for a
married household with no children is 6.55% of mean household income. The same figure
is similar for a single male with no children, at 6.84%. Therefore, regardless of which
interpretation one adopts for the appropriate unit of analysis for the lifecycle model that
we analyze in this paper, we set the income floor, Y, to 6.75% of the average earnings, which
seems like a reasonable, middle-ground estimate. Given the importance of this parameter
for our results, below we will also report results for an income floor of $10,000, which
corresponds to 22% of average earnings (which is $45,000 in 2010 dollars in our sample).10

8Because our model features a nonzero borrowing limit and stochastic survival, households may die
with outstanding debt. For simplicity, we assume that both borrowing and saving interest rates are equal
to the risk-free rate. However, in a robustness check, we modify the borrowing rate to incorporate the
probability of death in addition to the risk-free rate and find very similar results.

9This value is based on the Flow of Funds Z1 tables. The total wealth-to-income ratio is defined to
be total asset holdings in the population relative to the sum of total before-tax labor income and capital
income.

10In an earlier paper, Hubbard et al. (1995) estimate the total value of various government programs
(food stamps, AFDC, housing subsidies, etc.) for a female-headed family with two children and no outside
earnings and assets. They obtain a value of about $7,000 in 1984 dollars. Using the OECD equivalence
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Table III – Parameters of Stochastic Processes for Earnings

Stochastic Process Canonical Gaussian Gaussian+ Benchmark-R Benchmark

(1) (2) (3) (4)
Parameters

σα 0.12 0.42 0.472 0.300
σθ × 10 — — — 0.196
corrαθ — — — 0.768
ρ 0.980 0.980 0.991 0.959
pz — — 17.6% 40.7%
µη,1 — — –0.524 –0.085
ση,1 0.11 0.19 0.113 0.364
ση,2 — — 0.046 0.069
σz0 0.278 0.001 0.450 0.714
φ — — 0.016 0.0001
pε — — 4.4% 13.0%
µε,1 0.134 0.271
σε,1 0.30 0.49 0.762 0.285
σε,2 0.055 0.037

Notes: The table reports the parameter values of the earnings processes used to calibrate the lifecycle model. The parameter
estimates for the Canonical Gaussian model (column 1) are taken from Karahan and Ozkan (2013); the estimates for the
remaining three columns are taken from Guvenen et al. (2021).

Finally, the curvature parameter τ, which controls the progressivity of the tax system,
is set to 0.185, following Heathcote et al. (2014), and λ is calibrated such that average
after-tax, after-transfer income over the working life is 80% of average before-tax, before-
transfer labor income. Last but not least, flat estate tax is calibrated as 40% on positive
inheritances. Table II summarizes the parameter values set exogenously outside the model.

3.2 Idiosyncratic Earnings Processes

We consider four specifications for the earnings process, shown in Table III. The first one
(column 1) is the most widely used process in the literature, which features an individual
fixed effect, a persistent shock (AR(1)), and a transitory shock (yit = αi + zit + ε

i
t, using

the notation above), with all Gaussian innovations. We will refer to this as the “canonical
Gaussian” process. We take the parameter values for this process from Karahan and Ozkan

scale for one adult plus two children, this comes to $6,400 per adult person in 2010 dollars.
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(2013) (hereafter KO), reported in column (1) of Table III.11 As we will see below, however,
this process fails to match some key features of the data, such as the (very high) level of
lifetime income inequality, which are important for our analysis. Therefore, we consider a
second process that keeps the same specification as the canonical one but targets a broader
set of data moments used to estimate the benchmark process, except for the distribution
of lifetime employment rates. This process has been estimated by GKOS, from whom we
borrow the parameter values from. We call this the “Gaussian+” process (column 2 of
Table III).

GKOS estimate the canonical process by also matching the distribution of lifetime
employment rates, but the estimates of key parameters for this process are extremely large
(column (1) of GKOS’s Table IV). To match the large fraction of persistently nonemployed
individuals, the estimation requires a large variance of fixed effects. However, this process
does not offer a good fit to the data in most of the other dimensions (Guvenen et al.
(2021)). Therefore, we report the parameters of this process and its welfare costs in Table
D.2 under column Gaussian++ in Appendix C.

The next two specifications are slightly different versions of the full specification de-
scribed in Section 2.3. The main difference is that one version restricts the heterogeneity
in earnings growth rates by setting θi ≡ 0 for all i in (7), whereas the other one does
not.12 We refer to these as the Benchmark-R (-R for restricted, column 3 of Table III) and
Benchmark (column 4) processes, respectively.13

Intergenerational Correlation of Labor Productivity. Finally, a well-documented
empirical fact in the US data is that parents’ and children’s labor earnings are positively
correlated, with an estimated correlation around 0.5 (see, e.g., Halvorsen et al. (2022);
Haider and Solon (2006) and the references therein). We capture this correlation by mod-
eling

(
αi, θi

)
as imperfectly transmitted from parent to children according to an AR(1)

process: [
αi

child

θichild

]
= ρα

[
αi

child

θichild

]
+
√

(1− ρ2α)Σα

[
εαi

εθi

]
, (15)

and set ρα = 0.5. The innovations (εαi
, εθi

) are drawn from standard normal distributions
and Σα denotes the covariance matrix for

(
αi, θi

)
, as we define in Section 2.3.

11Although these parameter values are fairly representative of values typically used in the literature,
Table D.2 shows results under different sets of parameter values estimated in other papers.

12The former version corresponds what is also called a “restricted income profiles” or RIP process
whereas the latter corresponds to a “heterogenous income profiles” or HIP process (e.g., Guvenen (2009)).

13The parameter values are taken from columns (5) and (6) of GKOS’s Table IV.
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Individual vs. Household Earnings Dynamics

A potential concern is that GKOS estimate their income process using earnings data for
men, which leaves out the spousal labor income as a potential insurance within the house-
hold. Given the lack of household links in the data used to estimate our benchmark process,
here we use the PSID data to discuss whether the moments of individual (before-tax and
transfer) earnings changes—which GKOS use in their estimation—differ significantly from
those for households. To compute these moments, we use the recent biennial waves of the
PSID (1999-2017). These contain more detailed information on consumption expenditures,
whose moments we will discuss in section 5.1. We include all households whose head is
between ages 25 and 65, regardless of the gender. Appendix B contains the details of the
data construction and sample selection.14

In Table D.4 we include a comparison of moments of individual and household earn-
ings changes. The first three columns report the statistics at different ages for individual
earnings; the next three columns report the same statistics for household earnings using
a sample of individuals who could be single or married. The last three columns further
restrict the sample to only married couples. Importantly, adding both head and spousal
income does not diminish the importance of higher-order risk. Second- to fourth-order stan-
dardized moments as well as their percentile-based counterparts are very similar across all
three samples and all income measures of different age groups. The similarities are particu-
larly striking for the volatility, but also for Kelley Skewness and Crow-Siddiqui Kurtosis.15

Even for the most restricted sample, married couples, household earnings changes display
similar non-Gaussian features (e.g., left skewness for those above 40 and excess kurtosis
for all).16 We conclude that while our process is posed on individual earnings before taxes
and transfers, it captures the household earnings dynamics well too. Section 5.1 discusses
the distribution of consumption growth for the same sample from the PSID.

14We do not adjust household income or consumption by household size. Given the focus on log-
changes and that household structure is quite stable for our age sample the equivalisation does not make
a substantial difference.

15This point is also apparent in Figure 8 in De Nardi, Fella, Knoef, Paz-Pardo and Van Ooijen (2021),
which shows the second to fourth moments of individual male labor income, household labor income, and
household after-tax-and-transfer income for different ages and income percentiles. Like in our sample of
the PSID, the standard deviation and Kelley Skewness of labor earnings changes are remarkably similar
across individuals and households. Some differences arise in Crow-Siddiqui kurtosis in the lowest deciles
of the income distribution, but mostly for households whose head is above 55.

16Notice that the skewness measures from the PSID are less pronounced compared to those from the
administrative data, possibly due to added noise in the PSID to the extent that measurement error is
symmetric. In addition, changes in the PSID are biennial, which can smooth out earnings changes.
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3.3 Implications for Non-Employment Risk

Before delving into the implications of each earnings process for consumption and
welfare, we first examine their implications for nonemployment risk and lifetime earnings
inequality, which are both intimately related to lifetime welfare.17

Starting with full-year non-employment risk, Figure 1 shows significant heterogeneity
across workers in the data: the fraction of individuals who are non-employed next year
increases sharply as earnings fall below the median of the recent earnings distribution
(see also Ozkan et al. (2023)).18 The benchmark and benchmark-R processes capture this
highly nonlinear relationship quite well, especially for the bottom 90% of the earnings
distribution.19 In contrast, both versions of the Gaussian process generate almost no full-
year non-employment, so the graph is completely flat, except for a little blip at the very
low end of the recent earnings distribution. Because full-year non-employment spells cause
substantial earnings losses today and in the future, the inability of Gaussian processes to
capture this extensive margin is a crucial shortcoming of these specifications for welfare
analyses of earnings risk.

3.4 Implications for Lifetime Earnings Inequality

We next ask how much lifetime earnings inequality is generated by each earnings pro-
cess. This is of interest for two reasons. First, lifetime earnings inequality is intimately
related to consumption inequality we study in the next section, so getting a sense about
the former helps us anticipate some of the upcoming results. Second, it is not common
to target lifetime earnings inequality as a moment when earnings processes are estimated
in the literature, and this is also true for the four processes used in this paper. So, as a
validation step, it is useful to check the extent to which each earnings process generates a
plausible level of lifetime inequality compared to what we see in the data.

17As shown by GKOS, the benchmark process fits a wide range of empirical moments of individual
earnings dynamics for US workers, including the levels of the higher-order moments (skewness and kurtosis)
of earnings growth, their variation with age and with recent earnings levels; the impulse responses of
earnings (i.e., their mean reversion patterns) and their variation by recent earnings levels as well as with
the size and sign of the earnings shocks; and finally, the heterogeneity in the lifecycle earnings growth rates
by lifetime earnings levels, among others. In interest of space, we do not reproduce those results here and
just focus on two features of the data not discussed in detail in GKOS.

18“Full-year non-employed” is defined in GKOS as an individual whose annual earnings is below a
threshold that corresponds to the pay for one quarter of half-time work (260 hours total) at the legal
minimum wage in that year, Ȳt. For example, in 2010, this amount corresponded to $1,885.

19It is worth noting that the Benchmark-R process matches the data even better than the benchmark
process for the bottom 70 percent of the population.
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Figure 1 – Full-Year Nonemployment in t by Ȳt−1
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Notes: This figure shows the nonemployment risk between t and t+1 conditional on recent earnings computed as the average
earnings between t− 1 and t− 5. Our sample includes individuals who have income above the minimum threshold Ȳt in t
− 1 and in at least two more years between t − 5 and t − 2.

Table IV reports various measures of dispersion for lifetime earnings. The statistics
for the US data in the first column are taken from Guvenen et al. (2022a), who calculate
lifetime earnings as the sum of annual earnings between ages 25 and 55 without discounting.
They report the statistics for the sample of individuals who make at least $50,000 in lifetime
earnings in 2012 dollars (therefore including individuals with zero earnings in some years).
The canonical Gaussian process severely understates lifetime inequality for all measures
considered. For example, the standard deviation of log lifetime earnings is 0.4 compared
with 1.3 in the data, the 90th- to 10th-percentile ratio (P90-P10) is only 2.8 compared
with 14.9 in the data. The gap is even larger at the top, with a P99-P10 ratio that is an
order of magnitude smaller than in the data (4.3 vs. 43.8).

In contrast, the benchmark process generates a much more plausible distribution of
lifetime earnings, with the standard deviation of log measure slightly lower than in the data
and the P90-P10 ratio close to its empirical counterpart (16.1 vs. 14.9). The benchmark
process also does well at the very top, generating a P99-P10 ratio of 40.9 compared with
43.8 in the data. The only notable discrepancy from the data is that the benchmark
process somewhat overstates the inequality above the median (P90-P50 ratio of 3.6 vs 2.5
in the data) and understates the inequality below the median (P50-P10 ratio of 4.5 vs
6.1 in the data). Overall, however, the benchmark process is much more closely aligned
with the distribution of lifetime earnings seen in the US data compared with the canonical
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Table IV – Lifetime Earnings Inequality: US Data vs. Canonical and Benchmark Earn-
ings Processes

Inequality measure: US Data Canonical Gaussian Benchmark

Std dev of log 1.32 0.40 1.08
P90/P10 14.88 2.77 16.12
P90/P50 2.46 1.68 3.56
P50/P10 6.05 1.67 4.53
P99/P10 43.82 4.31 40.85

Notes: The statistics for the US data in the first column are taken from the online appendix F of Guvenen et al. (2022a),
who compute them from the US Social Security Administration’s Master Earnings File of individual earnings histories for
the US population between 1978 and 2013. For comparability, we compute lifetime earnings in the model the same way as
done in that paper, by summing annual earnings between ages 25 and 55 without discounting for the sample of individuals
who earn at least $50,000 in labor income between those ages.

Table V – Lifetime Earnings Inequality: Decomposing the Benchmark Income Processes

Decomposing Lifetime Inequality Generated by the Benchmark Process

Benchmark No fixed initial No initial No nonemp. No persist. No transit.
heterogeneity heterogeneity shocks shocks shocks

σα,σθ ≡ 0 σα,σθ,σz0
≡ 0 νt ≡ 0 zt ≡ 0 εt ≡ 0

Std dev log 1.07 0.91 0.82 0.90 0.81 1.07
ln(90/10) 16.12 9.97 7.77 10.38 8.17 16.12
ln(90/50) 3.56 2.44 2.16 3.25 2.64 3.56
ln(50/10) 4.53 4.14 3.60 3.19 3.10 4.53
ln(99/10) 40.85 19.30 14.30 26.31 12.81 40.85

This table reports various inequality measures for lifetime income when each component of the benchmark earnings process
indicated in the column header is turned off (one at a time). In the next-to-last column where we turn off persistent shocks,
we set zt ≡ 0 in equation (7) but not in (13) so that the nonemployment probability is unaffected by this change.

Gaussian process, which understates lifetime inequality up to an order of magnitude.

A natural question to ask is how much each component of the benchmark process con-
tributes to lifetime inequality. Table V provides the answer: Each column (after the first)
shuts down one component of the benchmark process at a time and reports the resulting
lifetime inequality. There are several takeaways. First, with the exception of transitory
shocks (last column), all components contribute nontrivially to lifetime inequality. Sec-
ond, initial conditions and persistent shocks have the largest impact on overall lifetime
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Figure 2 – Before- and After-tax Average Income
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inequality (first two rows) and top-end inequality (last row). For example, shutting down
the former ((σα,σθ,σz0

)≡ 0) lowers the P90-P10 ratio from 16.1 to 7.8, and shutting down
the latter (zt ≡ 0) lowers it to 8.2. Similarly, shutting down these components reduces the
P99-P10 ratio to 14.3 and 12.8, respectively, from 40.9 in the full process. Third, nonem-
ployment shocks also have a significant effect on overall inequality (reducing P90-P10 ratio
from 16.1 to 10.38), and most of this effect comes from lowering inequality below the me-
dian, with the P50-P10 ratio falling from 4.5 to 3.2 while inequality above the median
remains less affected (falling slightly from 3.6 to 3.3). The bottom line is that all three
main components of the benchmark process matter for lifetime earnings inequality. In the
next section, we will revisit this question from a slightly different angle and ask how much
each contributes to the welfare costs of idiosyncratic earnings risk.

3.5 Implications for Lifecycle Profiles

Figures 2 and 3 plot the average lifecycle profiles of before-tax and after-tax income,
both in levels (former) and in logs (latter). Notice that the average lifecycle profiles of both
before- and after-tax earnings are quite similar across earnings processes. This is because
we normalize the parameters of the deterministic lifecycle profile across earnings processes
so as to generate the same average earnings (levels) profile from age 25 to 55 (Figure
2). However, the mean and variance profiles of log after-tax, after-transfer earnings look
quite different across earnings processes (Figure 3) because of a Jensen inequality effect.
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Figure 3 – After-tax, After-transfer Log Income
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(b) Variance
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Namely, each process generates different variance profiles of earnings over the life cycle
(e.g., benchmark and Gaussian+ generate a steeper increase in within-cohort inequality
than the canonical Gaussian). Conditional on having the same (levels of) average earnings
profiles, those that generate a higher dispersion mechanically imply a lower log earnings
over the life cycle in Figure 3. So, for example, the benchmark process has the lowest log
earnings profile in Figure 3 but displays the same level as the canonical Gaussian in Figure
2.

4 Welfare Costs of Idiosyncratic Earnings Risk

In this section, we quantify the welfare costs of non-Gaussian idiosyncratic income risk
and compare them to their Gaussian counterpart. Specifically, we ask: What fraction of
consumption at every date and state would an individual in the benchmark model be willing
to give up to live in a hypothetical world with no income uncertainty? This hypothetical
world is defined as one with the income process set to its average value at each age. We
conduct two versions of this experiment. In the first and main exercise, we calculate
the welfare effects for an individual with the average type, αi ≡ 0 (and θi ≡ 0 when
applicable), which abstracts from the uncertainty inherent in drawing different values of
the fixed type and simply focuses on the uncertainty coming from the stochastic evolution
of earnings over the life cycle. We believe that this calculation better captures what we
have in mind by the welfare costs of idiosyncratic earnings risk.
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Table VI – Welfare Costs of Idiosyncratic Earnings Risk

Canonical Gaussian Gaussian+ Benchmark-R Benchmark
(1) (2) (3) (4)

Parameters
β 0.985 0.975 0.963 0.960
λ 1.65 1.73 1.74 1.763
ϕ1 0.648 0.031 1.138 1.473
ϕ2 9.11 8.56 6.74 5.95

Welfare cost
Fluctuations 8.48% 16.79% 36.81% 33.21%
Fluct. + Type 9.20% 24.03% 42.02% 41.51%

Note: The next to last row (“Fluctuations”) reports the risk from idiosyncratic fluctuations for an individual with the average
type: αi = 0 (and θi = 0 for the benchmark process). The last row reports the total risk as viewed from behind the veil of
ignorance—i.e., it includes the additional risk from the uncertainty of drawing αi (and θi for benchmark). The parameter
τ is not included in the table because we keep it fixed at 0.185 in all calibrations.

The second exercise is conducted behind the veil of ignorance, that is, before the in-
dividual learns his type Υk, so it combines the risk of idiosyncratic fluctuations with that
of drawing an undesirable type (low αi). Because this is a well-understood experiment,
we relegate the equations to Appendix A. In most of our discussions, we will focus on
the first measure of welfare and refer to the latter only when relevant. We also compare
the welfare costs of idiosyncratic risk across different income processes. Each time, we
recalibrate the model (the parameters shown in Table VI) to match the wealth-to-income
ratio, the distribution of bequests, and the average taxes paid in the economy.

In the benchmark model (Table VI, column 4), the individual is willing to give up about
33% of consumption at every date and state, which indicates very large welfare costs of
idiosyncratic income fluctuations. The first column reports the corresponding number for
the canonical Gaussian model, which is 8.5%, or a quarter of the welfare cost for the
benchmark model. Column 2 shows that the Gaussian+ process generates about twice
the welfare cost compared with the canonical model (16.8% vs 8.5%), which is not very
surprising considering that the standard deviation of its persistent shocks are almost twice
as high as the canonical model (standard deviation of 0.19 vs 0.11—see Table III).20

20Recall that we also consider a canonical process that can match the distribution of employment rates
in Table D.2 under column Gaussian++. It should not be surprising that for this process the welfare
cost behind the veil of ignorance is extremely high at 52% (because of its extremely large variance of
fixed effects). Despite its large transitory and nonstationary persistent shocks, the welfare effects for an
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Recall that the benchmark process includes a HIP component in addition to higher-
order risk. To isolate from the effects of the former and focus on the more novel latter
component, we present in Table VI column (3) the welfare cost of the benchmark-R process
(θi ≡ 0), which is even somewhat higher than the benchmark process at 36.8% The reason
for the higher welfare cost can be seen from the parameter estimates in Table III. Without
the flexibility of the HIP component, the Benchmark-R process estimates a persistence
parameter close to a unit root (ρ = 0.991) significantly higher than in the Benchmark case
(ρ = 0.959), which is harder to self-insure.21 That said, both welfare figures are substantial
and not materially different from each other, showing that the large welfare costs are not
sensitive to whether or not a HIP process is included. (We investigate the welfare costs of
idiosyncratic risk from other widely used income processes in the literature in Table D.2.)

The bottom row of Table VI shows the welfare costs including the type risk (αi and
when relevant θi), which increases the welfare costs across the board but does not change
the substantive conclusions. For example, for the benchmark model the welfare cost behind
the veil of ignorance is 41.5% compared to the 33.2% for an individual with the average
type (αi ≡ 0, θi ≡ 0). However, the average welfare costs reported in the bottom row mask
significant heterogeneity across ex ante types (not reported in the table). For example,
ranking all individual types k by the welfare cost they face in the benchmark model, we find
that the 90th percentile of this distribution is close to 46.5%, whereas the 10th percentile
is 18.5%. The highest welfare costs are associated with types who have high values of
(αi, θi). That is, high-income individuals suffer more from idiosyncratic risk. Although
this may seem surprising at first blush, there is a simple reason for this: these individuals
are less protected by the social safety net, the magnitude of which is too small to make a
difference in their income fluctuations.

Decomposing the Welfare Costs

As we did in the previous section, we seek again to decompose the contribution of each
component of the benchmark process to the welfare costs we found. For this purpose,
we shut down each component of the model one at a time and calculate the welfare cost
again, reported in Table VII. In column (2) we shut down nonemployment shocks by
setting νt ≡ 0, which has a substantial effect on the welfare cost, reducing it from 33.2%

individual with the average type, αi ≡ 0 is less than 19%, which is only roughly half the welfare costs we
find for the benchmark process.

21See Guvenen (2009) for an explanation of why restricting growth rate heterogeneity biases the estimate
of ρ upward. Also, notice that even though ρ = 0.959 and ρ = 0.991 may appear close, they are quite
different: for example, at 20 year horizon, the impact of a shock falls to about 43% under the former but
still keeps about 83% of its initial impact under the latter.
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Table VII – Decomposing Welfare Costs

Benchmark νt ≡ 0 zt ≡ 0 εt ≡ 0 No Tax 0.5× Y Y = $10K

(1) (2) (3) (4) (5) (6) (7)

Welfare costs

Fluctuations 33.21% 22.25% 11.44% 32.68% 46.86% 42.24% 20.17%
Fluct. + Type 41.51% 33.64% 23.17% 41.34% 56.83% 49.93% 29.67%

Notes: The first row (“Fluctuations”) reports the welfare cost of risk from idiosyncratic fluctuations for an individual with
the average type, i.e., αi ≡ 0 (and θi ≡ 0 for the benchmark process). The second row (“Fluct. + Type”) reports the welfare
cost of “total risk” as viewed from behind the veil of ignorance, by including the risk from αi draw (and θi for benchmark).

to 22.3%. Recall that nonemployment shocks have an induced persistence through their
dependence on z. To quantify the role of this persistence, we eliminate the dependence
of the probability function, pν, on zt, allowing it to vary only by age. This change has
two effects: one, because zt is very persistent, eliminating the dependence on them makes
nonemployment shocks completely transitory; and two, nonemployment ceases to vary
with the income level and hits all workers of a given age with the same probability of the
worker with zt = 0. Interestingly, the welfare costs in this case are quite close to the
case if we were to eliminate nonemployment shocks completely, suggesting that most of
the welfare costs of nonemployment shocks are due to their persistence and concentration
among already low-income individuals.

In Column (3), we shut down persistent shocks so that they do not directly affect in-
come. Yet, as noted earlier, they still govern the probability of nonemployment shocks in
the background. This has an even larger effect compared to eliminating nonemployment
shocks (in Column (2)), reducing the welfare cost to 11.4%—almost a third of its bench-
mark value. Finally, column 4 shows that shutting down the transitory shock also has a
trivial effect on the welfare costs—reducing it to 32.7% from 32.9%.

In the next three columns, we examine the effects of two sources of insurance embedded
in the model on mitigating the effects of idiosyncratic shocks. First, in column (5), we
eliminate the tax system (setting τ = 0 and λ = 1). This raises the welfare cost to 46.9%,
highlighting the important role played by progressive taxation in smoothing idiosyncratic
risk. Next, in column (6), we reduce the guaranteed minimum income level by half (from
6.75% of average earnings to 3.375%), and in column (7), we increase it to $10,000 (22% of
average earnings). The welfare costs change from 32.9% to 42.2% and 20.2% when income
floor is reduced and increased, respectively. Interestingly, the welfare cost rises only by
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a little in the Gaussian model when the income floor is reduced by half. The reason for
this asymmetry is that in the benchmark model, individuals occasionally receive very large
negative shocks (including full-year nonemployment shocks) and therefore benefit from the
insurance provided by the income floor, which is less of a case in the Gaussian model, where
tail shocks are much less likely. Therefore, weakening the safety net is more costly when
the true income process is as in the benchmark model.

Robustness Analysis

To investigate the sensitivity of these results, we consider several alternative assump-
tions in Table D.3. In row (1), we replace the baseline borrowing constraint with a limit
that is a constant 20% of average earnings over the life cycle. In row (2), we keep our base-
line borrowing constraint but make is 50% tighter. Making the borrowing limit tighter for
workers increases the welfare costs by a modest amount, from 32.9% to 34.9%. We also
find similar very small effects of a tighter borrowing limit on welfare costs for the canonical
Gaussian process. Thus, we conclude that our results are robust to the generosity of the
borrowing limit. In row (3), we remove the warm-glow bequest motive and recalibrate the
model, which turns out to have a minimal effect on welfare costs as well.

In row (4) of Table D.3, we raise relative risk aversion to σ = 5 for the canonical
Gaussian and the benchmark income processes, respectively. Not surprisingly, a higher
risk aversion implies a significantly higher welfare costs for both processes. Interestingly,
the increase is larger for the canonical Gaussian process, for which it more than doubles
from 8.5% in column (1) of Table VI to 19.7% here. The rise is also significant but smaller
in percentage terms for the benchmark process, going from 33.2% in the benchmark model
to 44.9%.22 This result confirms our intuition we revealed using equation 2. In particular,
the higher the risk aversion, the larger the risk premium against the non-Gaussian risk
compared to the Gaussian risk.

4.1 Heterogeneity in Welfare Costs of Idiosyncratic Risk

The average welfare costs reported in Table VI mask significant heterogeneity across
different types of households. Next, we discuss the between-group heterogeneity in the
welfare costs of idiosyncratic risk. Specifically, we investigate how different age and income
groups are affected by income risk. For this purpose, we calculate the fraction of lifetime
consumption each group would be willing to give up to avoid income risk and instead

22Notice, however, that the welfare costs behind the veil of ignorance in the bottom row show a larger
increase for benchmark process to 61.2 (from 41.6% in column 4 of Table VI).
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Table VIII – Heterogeneity in Welfare Costs

Welfare Cost with Average Assets For Each Group

⩽P25 P45–P55 P70–P80 P90–P95 P95–P100

Age Canonical Gaussian Process

25 6.23% 6.30% 6.32% 6.36% 6.56%
35 5.60% 5.02% 4.98% 4.91% 5.34%
45 3.61% 2.77% 2.78% 2.52% 2.86%
55 1.18% 0.70% 0.71% 0.64% 0.71%

Age Benchmark Process

25 25.13% 24.63% 26.46% 26.45% 27.61%
35 26.15% 16.58% 18.76% 18.39% 19.81%
45 18.27% 7.25% 9.04% 8.72% 11.41%
55 6.01% 1.50% 1.85% 1.48% 3.13%

Notes: This table shows the fraction of lifetime consumption households in each cell would be willing to give up to avoid
income risk and instead receive a constant stream of income equal to the group’s average earnings at all ages going forward.

receive a constant stream of income equal to the group’s average earnings at all ages.
Furthermore, to focus on the role of idiosyncratic risk individuals face going forward, we
assume that each individual starts with a level of assets equal to the average asset holdings
of their respective group. We also compare the benchmark process with the canonical
Gaussian process. Table VIII summarizes our results.

First, the welfare costs systematically decrease by age for all income groups in both
specifications. This is not surprising given that the ratio of risky human wealth relative
to financial wealth—the safe asset in our model—declines by age (Huggett and Kaplan
(2016)). Furthermore, labor earnings become less risky as individuals approach retirement,
after which they receive a steady pension income. The specific functional form we use for
the borrowing limit (equation 14), which is estimated from data by Guvenen and Smith
(2014), also allows for a more generous borrowing limit for middle-age workers.

Next, looking at heterogeneity by income-group, we first observe that for the youngest
workers there is relatively little variation in welfare costs of income risk over the income
distribution, and relative differences grow over the working life. For example, at age 25 the
welfare costs of the benchmark process vary only very little, from 26.5% to 27.6%, across
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the income distribution. In contrast, among 55-year-olds, the bottom income quartile
workers are willing to give up, as a fraction of their lifetime consumption, more than three
times as much (6.01%) as those in the upper-middle income group (1.85%). We also find
that there is relatively little variation in welfare costs of the canonical Gaussian process
among the youngest workers.

Second, and interestingly, welfare costs are not monotone over the income distribution
but broadly exhibit a U-shaped pattern. For example, among 45-year-olds, the welfare
cost of the benchmark process declines from 18.3% for the bottom quartile workers to
7.25% for those around the median, and then it increases to 11.4% for the workers in the
top 5% of the earnings distribution. This pattern can be explained by a combination of
different factors. On the one hand, lower-income workers face larger idiosyncratic risk
because of their higher nonemployment risk (see Figure 1), and they have less assets to
insure themselves. On the other hand, they are also more protected by the social safety
net, the magnitude of which is too small to make a difference in income fluctuations of
high-income workers. As a result of these opposing forces, the highest welfare costs are
associated with those who have the highest and, especially, lowest incomes. As for the
canonical Gaussian, the increase in welfare cost is less pronounced in the high end of the
income distribution.

5 Consumption Dynamics, Insurance, and MPC

In this section, we study three questions that can be included under the broad umbrella
of the response of consumption to earnings changes under a non-Gaussian process. In par-
ticular, we ask: (i) How accurate is the standard approach to measuring partial insurance
when shocks are non-Gaussian? (ii) How effective is self-insurance in Bewley-Aiyagari
models in response to non-Gaussian risk? and (iii) How does the marginal propensity to
consume (MPC) with respect to transitory (e.g., a one-time stimulus check) and persistent
earnings shocks differ under different earnings processes? We study the first two questions
in the following subsection.

5.1 Measuring the Insurability of Income Shocks

The transmission rate of earnings shocks to consumption has received significant atten-
tion in the literature, because it is used to measure the extent of partial insurance—that
is, insurance above and beyond self-insurance (see, e.g., Blundell et al. (2008), Primiceri
and van Rens (2009), and Kaplan and Violante (2010)). In an important paper, Blundell
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Table IX – Measures of Insurability of Shocks

BPP Insurance Coefficients

Model: Canonical Gaussian Benchmark

Age: 30 40 50 30 40 50

Permanent 0.34 0.32 0.56 0.50 0.62 0.72

Transitory 0.95 0.95 0.95 0.90 0.89 0.90

True Insurance Coefficients for Persistent Shocks

Model: Canonical Gaussian Benchmark

Age: 30 40 50 30 40 50

Positive (+) 0.46 0.48 0.60 0.44 0.47 0.57
Negative (−) 0.47 0.50 0.62 0.54 0.60 0.71

Notes: The top panel reports the BPP partial insurance coefficients estimated using equations (16) and
(17) following Blundell et al. (2008). The bottom panel reports what we call the “true” partial insur-
ance coefficients in the model with respect to persistent shocks using equation (18). A coefficient of 1
(alternatively, 0) indicates no (full) consumption insurance.

et al. (2008) (hereafter BPP) proposed using two simple moment conditions to estimate
the insurance coefficients in response to permanent shocks (η) and transitory shocks (ε),
respectively. The formulas for the BPP insurance coefficients are:

ϕη = 1−
cov(∆cit,y

disp,i
t+1 − ydisp,i

t−2 )

cov(∆ydisp,i
t ,ydisp,i

t+1 − ydisp,i
t−2 )

(16)

for permanent shocks and

ϕε = 1−
cov(∆cit,∆y

disp,i
t+1 )

cov(∆ydisp,i
t ,∆ydisp,i

t+1 )
(17)

for transitory shocks. The insurance coefficients range from 0 to 1, where 0 means no partial
insurance above self-insurance (or full transmission) and 1 means perfect consumption
insurance (no transmission). Here, we consider the following experiment. Suppose we give
a panel dataset of income and consumption simulated from the benchmark model to an
econometrician and ask her to estimate the insurance coefficients using BPP’s moments.
What would the econometrician conclude about the extent of the insurability of income
shocks?
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The top panel of Table IX reports the results at different ages. When the true data-
generating process is the benchmark model, the BPP procedure estimates that 62% of
permanent shocks are insured and the remaining 38% is transmitted to consumption at age
40. The corresponding insurance coefficient for the Gaussian process is much lower—almost
half—at 32% (so 68% transmitted). Taken at face value, these findings would indicate that
persistent income shocks in the benchmark model are more insurable relative to those in
the Gaussian model, which seems surprising given that both the long tails and the negative
skewness of the benchmark process would be expected to be harder (at least, not easier) to
insure such shocks. To understand this result, note that equations (16) and (17) are derived
under the assumption that the earnings process is given by the persistent-plus-transitory
process such as the canonical Gaussian model, but unlike the benchmark process. The
discrepancy could happen if the benchmark process features less persistent shocks (which
is partly true, at least judging crudely based on the value of ρ—0.98 vs. 0.959—and
the presence of the more transitory non-employment shock process) or if the benchmark
lifecycle model features more insurance opportunities relative to the Gaussian model (which
is not true—they both have self-insurance plus an income floor only).

To avoid these problems, a more direct measure of the partial insurance coefficient
with respect to persistent shocks can be obtained from simulated data by directly looking
at the covariation between consumption growth and the innovation, ηt, to the persistent
component, zt. Using this covariation, we can also go one step further and measure what we
call the “true” partial insurance coefficient with respect to positive and negative innovations
separately using this equation:

χηinsur. = 1−
cov(∆cit,ηt | ηt > 0)

var(ηt | ηt > 0)
. (18)

The bottom panel of Table IX reports the true coefficients for both processes, which
reveal two results. First, under the Gaussian process, the insurance against positive and
negative persistent shocks are similar, whereas under the benchmark process, negative
shocks are better insured than positive shocks. Second, the insurability of positive per-
sistent shocks are very similar between the two processes, whereas negative shocks are
slightly more insurable under the benchmark process. This asymmetry is because the typ-
ical negative shock in the benchmark process is drawn from a thicker tail (due to both
the negative skewness and excess kurtosis) and therefore reduces the earnings to a level at
which the guaranteed minimum income threshold kicks in to smooth those shocks.

To complement this analysis, we consider another way to quantify the degree of partial
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insurance commonly used in the literature— by studying how within-cohort consumption
inequality evolves over the life cycle. The idea is that if shocks are easily insurable (because
either they are not persistent or the economy features rich smoothing opportunities) then
consumption inequality should not rise much with age. To investigate this, Figure 4 plots
the cross-sectional variance of log consumption in the benchmark and Gaussian models.
In the former, consumption inequality rises by about 45 log points from age 25 to age
60, which is about four times as large as the rise in the Gaussian model (about 12 log
points). Therefore, this second way of looking at the degree of partial insurance leads to
the opposite conclusion: shocks in the benchmark model are less insurable, which causes
consumption inequality to rise more than in the Gaussian model. This latter evidence is
also more consistent with the higher welfare costs of idiosyncratic shocks that we found
for the benchmark model relative to the Gaussian model above. That said, this result
depends somewhat on the availability of public insurance. In the presence of a more
generous income floor (i.e., Y = $10, 000), consumption inequality rises by around 30 log
points in the benchmark model, which is still much higher than in the canonical Gaussian
model.

Recall that the benchmark process generates a steeper increase in within-cohort, after-
tax, after-transfer income inequality than the canonical Gaussian specification even with
a $10, 000 income floor (see Figure 3). The total effect of earnings shocks on consumption
responses also depends on the size of shocks, which depends on the shape of the distribution
it is drawn from. The benchmark process with its long tails and left skewness can produce
shocks that generate a larger income inequality and stronger total consumption response.

Taken together, we conclude from these two pieces of evidence that once we move be-
yond Gaussian shocks and linear models, extra care is needed to properly measure the
extent of insurability of shocks. Nonlinear dynamics and higher-order moments generate
interesting new patterns. For example, why does the transmission parameters indicate a
low rate of transmission in the benchmark model? An important reason is that the par-
tial insurance coefficient measures the average response of consumption growth to income
shocks. But it is plausible to expect that the consumption response varies by the sign
of the shock, by its size (Beraja and Zorzi, 2024), and by many of its other properties
established in the previous sections. So, the average response coefficient could provide an
incomplete picture of the transmission of income shocks to consumption.

A natural question that this discussion raises concerns the properties of the entire
distribution of consumption growth rates implied by a model, including its higher-order
moments. We turn to this point next.
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Figure 4 – Within-Cohort Variance of Log Consumption Over the Life Cycle
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Notes: The green line with “+” markers is simulated using the benchmark income process but by raising
the minimum income floor to $10,000.

Higher-Order Moments of Consumption Growth

Table (X) reports the standard deviation, skewness and kurtosis of consumption growth
in the US data (from the PSID), the Gaussian model, and both versions of the benchmark
model. For the empirical distribution, we use a total household consumption measure for
the sample described in Subsection 3.2; see Appendix B for details.

There are several takeaways from Table (X). First, the standard deviation of consump-
tion growth is twice as high in the benchmark model than for the Gaussian specification,
partly reflecting the larger magnitude of shocks in the former. Second, consumption growth
is about three times more volatile in the PSID compared with the benchmark process. Al-
though this may suggest that, despite the large welfare costs we found above, consumption
smoothing may still be a bit too effective in the model relative to the data, it may also
very well be a reflection of the high measurement error found in survey data. The discrep-
ancy may also reflect other shocks not captured in our model (such as marriage, divorce,
children, moving, health, and so on).

Third, consumption growth is negatively skewed in the benchmark model, and much
more so in the Benchmark-R model, but has slightly positive skewness in the Gaus-
sian model. The minimum income floor induces slight positive skewness in both mod-
els—without it, the benchmark model delivers even more negatively skewed consumption
growth. Interestingly, consumption growth becomes less negatively skewed with age, even
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Table X – Cross-Sectional Moments of Consumption Growth in the Model

US Data (PSID) Canonical Gaussian Benchmark-R Benchmark

Age 30 40 50 30 40 50 30 40 50 30 40 50
Coefficient on:

Standard deviation 0.46 0.41 0.40 0.06 0.06 0.05 0.14 0.12 0.09 0.13 0.13 0.11
Kelley skewness 0.01 –0.07 –0.01 0.01 0.02 0.02 –0.64 –0.65 –0.62 –0.19 –0.11 –0.10
Crow-Siddiqui kurtosis 3.69 3.63 3.57 2.97 2.95 2.97 6.00 5.73 6.65 6.30 6.82 7.67

Notes: Table X shows the moments of consumption changes. refers to households income after taxes and transfers. The
statistics are computed from the PSID waves 2005–2021. In the data, age groups are defined including plus and minus three
years.

though income shocks become more negatively skewed, a divergence that seems to be be-
cause precautionary wealth allows better smoothing at older ages. Skewness is only slightly
negative in the PSID, but measurement error may bias it toward zero to the extent that
it is symmetric. Indeed, Constantinides and Ghosh (2017) show that household consump-
tion growth is more robustly negatively skewed in the Consumer Expenditure Survey (CE)
data, which may suffer less from measurement error (at least over shorter horizons) due to
its design that is squarely focused on consumption expenditures.

Finally, consumption growth in the benchmark model has high excess kurtosis, as
measured by the Crow-Siddiqui measure. The Gaussian model delivers almost no excess
kurtosis in consumption growth, with a Crow measure of 2.95–2.97 compared with 2.91 for
a standard Gaussian distribution. The empirical distribution of consumption growth does
have excess kurtosis, ranging between 3.57 and 3.69; however, this is significantly lower
than what is implied by both versions of the non-Gaussian benchmark model.23

Deviations from lognormality of the consumption growth distribution have been studied
in some recent papers. In addition to Constantinides and Ghosh (2017) just noted above,
Toda and Walsh (2015) use CE data to document that the household consumption growth
distribution has long tails in the form of a double-Pareto distribution, consistent with excess
kurtosis in the benchmark model studied here.24 In very recent work, Rodriguez Mora et al.
(2022) make use of millions of transactions from bank records to show that indeed the full
distribution of consumption growth deviates from a normal distribution differently across

23The third and fourth standardized moment measures of skewness and kurtosis—which we do not
report here for brevity—confirm the same finding. Further, Figure C.1 in Appendix B confirms that
the difference in kurtosis in the empirical distribution of consumption growth compared to the Gaussian
reference (3.63 compared to 2.95 at age 40, for example) is indeed significant.

24Separately, Brav et al. (2002) argued that accounting for the skewness of consumption growth distri-
bution helps improve the performance of asset pricing models for explaining the equity premium observed
in the data.
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ages and income groups.

Overall, these results suggest that while the non-Gaussian earnings process provides a
step toward better capturing the properties of the consumption growth distribution in the
data, important discrepancies remain that invite further research on this topic. There are
channels of adjustment missing in this paper that can also help reconcile theory and data
at the tails, such as durable (lumpy) adjustments, as discussed in Beraja and Zorzi (2024).

5.2 The Marginal Propensity to Consume (MPC)

The marginal propensity to consume (MPC) out of earnings (or wealth) is a key ingre-
dient in designing effective fiscal and monetary policies (e.g., Kaplan et al. (2018)). The
substantial concentration of wealth and earnings in the United States and in many modern
economies implies that the effectiveness of such policies can be significantly improved if
they are targeted to certain segments of the population if MPCs vary in a meaningful way
across the population.25 In this section, we investigate the implications of non-Gaussian
earnings risk for the level and distribution of MPCs in the population.

MPC Response to $500 Stimulus Check

We start with a standard exercise and measure the MPC in response to a one-time
$500 stimulus check, similar to the analyses conducted before (e.g., Johnson et al., 2006;
Parker et al., 2013; Kaplan and Violante, 2014). Figure (5) reports the results for different
earnings processes. Starting with the benchmark process, we see that the MPC distribution
is declining with the cash-on-hand level of individuals and does so in a very convex fashion
at low cash-on-hand levels: it falls from about 35% for the bottom 1% group to 15% at
the 10th percentile and to about 7.5% at the 30th percentile. It then falls gradually to 5%
for individuals in the top 1% of the cash-on-hand distribution. The benchmark-R process
shows a similar pattern with a slightly lower level at the low end.

In contrast, the MPC is much lower and very flat under the Gaussian process: it ranges
between 4% and 5% from the 5th percentile all the way up to the top 1 percent group (with
the exception of the very bottom of the distribution). What is also interesting is that rather
than declining with cash-on-hand, it bottoms out around the 40th percentile and increases
slightly thereafter. The pattern is essentially the same, with a slightly higher level at the
low end, for the Gaussian+ process. The figure also plots the MPCs in the benchmark
model when the minimum income floor is raised to $10,000, which significantly lowers the

25See Kaplan and Violante (2022) for a recent review of the extensive recent literature that studies
heterogeneity in MPCs.
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Figure 5 – MPC out of $500 Stimulus Check
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Notes: The figure plots the MPCs in response to a one-time $500 stimulus check.

level of the MPC and flattens its shape across the distribution. Although $10,000 seems
too high relative to the empirical estimate of welfare and social safety net programs we use
in our baseline calibration (taken from Guner et al. (2023)), this result still underscores
the importance of the minimum income floor level used in calibration for the quantitative
conclusions one reaches in models with idiosyncratic earnings risk. This is all the more
true when the non-Gaussian features of earnings dynamics, such as negative skewness and
long tails, are modeled.

MPC Response to 1% Persistent or Transitory Earnings Shocks

The appeal of the stimulus check exercise is that it is informative for actual stimu-
lus policies regularly implemented by governments. But a different type of exercise is also
informative for other contexts: the MPCs in response to a fixed percentage increase in per-
sistent or transitory earnings. The difference of course is that these increases are anchored
to the earnings level of the individual rather than being a fixed dollar amount. These
MPCs would be relevant, for example, for a fixed reduction or increase in the labor income
tax rate that can be permanent or transitory, or for an increase or decrease in inflation,
among others. Analyzing the MPC out of a persistent increase in earnings is also useful
because the persistence of earnings shocks in the benchmark process is not solely captured
by ρ of the AR(1) process but also through the nonemployment shocks (see Guvenen et al.
(2021) for a discussion).

The left panel of Figure 6 plots the MPC out of a 1% transitory earnings shock. The
overall patterns are similar to the stimulus check exercise above, with some notable dif-
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Figure 6 – MPC out of a 1% Earnings Shock
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Notes: The figures plot the MPCs in response to a transitory increase in earnings (ε) (left panel) and
persistent increase (right panel) that is equal to 1% of each individual’s earnings level.

ferences: the MPC is higher for the benchmark process—close to 5% for the median cash-
on-hand individual compared with about 3% for the Gaussian model; it declines with
cash-on-hand levels, albeit at a slower (less convex) fashion than the fixed stimulus pay-
ment; the Gaussian model displays little heterogeneity across earnings levels; and raising
the minimum income floor substantially reduces the MPC in the benchmark model.

There are more interesting differences and similarities in the right panel, which plots
the MPCs in response to a 1% innovation to the persistent component (zt). (Notice that
the likelihood of the nonemployment shock depends on zt, so it rises in response to the
reduction in zt, which our calculations take into account.) In this case, both the level and
shape of the MPC distribution are fairly similar between the Gaussian and benchmark
processes. The MPC at the median cash-on-hand level is about 40% for the benchmark
model and 36% for the Gaussian process. The benchmark-R process has a higher MPC at
44% at the median, owing to the higher estimated ρ for that process. As before, increasing
the minimum income floor to $10,000 reduces the MPC for the benchmark model to less
than 30% at the median.

6 Conclusions

The nature of income risk has important consequences for many economic decisions
and distributional phenomena that involve risk and influence the design of optimal social
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insurance and taxation. Recent contributions to the literature have shown significant non-
linearities and nonnormalities in income dynamics (e.g., Guvenen et al. (2021); Arellano
et al. (2017b)). There is a growing literature incorporating nonlinear, non-Gaussian earn-
ings dynamics into quantitative models. In this paper we have studied how higher-order
income risk can have quite different implications for consumption dynamics, consump-
tion insurance, and welfare compared with the commonly used Gaussian processes. The
overarching finding from our analysis is that the benchmark process implies more severe
income risk—e.g., larger lifetime earnings inequality and welfare costs; negatively skewed
and leptokurtic consumption growth; larger MPCs out of transitory earnings shocks—than
previously modeled through canonical Gaussian processes.

This finding could have implications for a wide range of economic questions where
earnings inequality and earnings risk play a central role. For example, an important point
of our exercise is the crucial role of public insurance mechanisms against (negative) tail
risk in earnings. While an even more generous income floor does not fully insure against
idiosyncratic negative changes, our analysis suggests that this channel is quantitatively
important to dampen the welfare cost of higher-order earnings risk. While we capture
all transfers with an income floor (and progressive taxation), different instruments can be
mapped into our catch-all parameter. For example, in the context of idiosyncratic risk
correlated with aggregate shocks, Busch et al. (2022) find that unemployment insurance
is the public instrument that smoothes variation in higher-order earnings risk the most
across different countries, more than progressive taxation, welfare, pensions, and SSI. Our
result thus has implications for the design of public insurance with varying idiosyncratic
income risk and the potential welfare gains of automatic stabilizers.

Our last finding is that a non-Gaussian earnings risk also implies a stronger consump-
tion response to earnings shocks. The cross-sectional distribution of consumption growth
implied by the benchmark model displays strong higher-order moments, as well as higher
volatility—closer to the distribution of consumption growth from the PSID—than a Gaus-
sian earnings process. Overall, these results suggest that the non-Gaussian earnings pro-
cess provides a step toward better capturing the properties of the consumption growth
distribution in the data. Yet, there are still important discrepancies: incorporating new
channels of consumption adjustment, such as durable (lumpy) adjustments (Beraja and
Zorzi (2024)), or advancing consumption measurement beyond and as a complement to
survey data (Rodriguez Mora et al. (2022)) can help better reconcile the theoretical and
empirical distribution of consumption growth.
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A Details of Consumption Model

A.1 Numerical Solution of the Model

In order to be able to fully capture the features of the rich earnings dynamics we estimated in
this paper, we chose not to discretize the income process when solving the consumption model.
Thus it is worth discussing our numerical solution methodology to solve an otherwise standard
Bewley model. We employ value function iteration to solve for the policy function for the con-
sumption decision and then use the policy function to simulate consumption-savings decisions of
individuals. We now discuss the details below.

A.1.1 Bounds and Grids

For a given
(
αk, θk

)
− type worker, the value function has three continuous variables for each

age t, asset holdings at, and two persistent components, z1,t, z2,t, one or both of which may be
fully transitory. We start simulating the continuous income process which is used in the simulation
of the consumption path of individuals. We take the minimum and maximum values of simulated
persistent components to be the bounds of the z1,t and z2,t spaces. We choose grip points in the
z1,t and z2,t spaces to be equally spaced.26 We have 11 and 61 grid points for z1,t and z2,t spaces,
respectively.

As for the asset space, the borrowing limit is set by equation 14. The upper bound for the
asset spaced is chosen such that in simulations no individual’s asset holdings come close to this
upper bound, At. We choose grids in the at dimension to be polynomial spaced between at = Āk

and at = At, with an explicit point at at = 0. We have 100 grid points for the asset space.

A.1.2 Integration and Interpolation

The value function of a type-k individual with
(
αk, θk

)
is given by:27
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We define the conditional expectation function:
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Then the value function becomes:
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which reduces the interpolation to only along the at+1 dimension, for which we use one-dimensional
spline interpolation.

26Since z1,t and z2,t are in log values polynomially spaced grid points along these dimensions performed
worse.

27The budget constraint and the other equations that properly define the value function are omitted
here for simplicity.
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The conditional expectation, Ṽi,k
t+1
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involves integration over the innovations to both of the persistent components, ηi1,t and ηi2,t
and an non-employment shock, νit. Probability of non-employment shocks is a function of(
zi1,t+1, z

i
2,t+1

)
given by eq. 13. Then for given

(
zi1,t+1, z

i
2,t+1

)
we first take the expectation

over νit. For this purpose, we approximate the non-employment shocks using the Gauss-Laguerre
abscissas and weights which is the quadrature that is used for exponential distribution. In par-
ticular, let
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be the the

Gauss-Laguerre abscissas and weights for the νit, including the case of full employment, xnν+1
ν,t = 0.

Note that the weights depend on
(
zi1,t+1, z

i
2,t+1

)
. Then, we define the conditional expectation

function over non-employment shocks as the following:
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Innovations to the persistent components, η1,t and η2,t are drawn from a mixture of two
normal distributions. Let pz1 and pz2 be probability to draw an innovation from the first nor-
mal distribution for persistent components z1 and z2, respectively. The normal distributions
are approximated using the Gauss-Hermite abscissas and weights. Let

{
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be the Gauss-Hermite abscissas and weights for the innovations from nor-

mal distribution m = 1, 2 to the persistent component j = 1, 2. Then, the conditional expectation
function over the shocks to the persistent components is defined as:
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The above part requires interpolation over
(
zi1,t+1, z

i
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)
for which we use 2-dimensional

nested cubic spline. We use 7 abscissas for innovations to the each of the persistent component.
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A.1.3 Simulating the Consumption Path

The policy function for the consumption decision has three continuous variables, asset hold-
ings, and two persistent components, at, z1,t, z2,t. To interpolate the consumption decision we
employ the 3-dimensional nested cubic spline interpolation. We do not need an additional state
for the non-employment shocks since they are transitory in nature. Namely, we store the con-
sumption decision in the value function iteration step for only the case of full-year non-employed
shocks. In simulating the non-employment shocks less than a year, we just add the difference in
labor earnings due to the shorter non-employment spell to the asset holdings of the individuals,
which can be thought as cash-on-hand. This allows us to interpolate the consumption decision
only over three dimensions, (at, z1,t, z2,t) rather than 4-dimensional interpolation.

A.1.4 Other Computational Details

We use MPI for the parallel programming. In particular, we use one core for each worker
type−k (with a specific

(
αk, θk

)
). The values of

(
αk, θk

)
and the number of individuals to be

simulated for each type k type are determined using the Gauss-Hermite abscissas and weights,
respectively. We have five αk−types, three θk−types. In total, we have 15 ex-ante types of
workers and used 15 cores to compute for 15 different value functions. Once each core finishes
simulating consumption path for its own type of worker, the main core gathers all the simulated
data and compute statistics for the entire economy. It takes 4-5 mins to solve and simulate the
model for a given discount factor.

B Empirical Appendix

B.1 Data and Sample

The PSID is a longitudinal study of a representative sample of U.S. households, including
income and an extensive list of consumption categories from 2005 to 2021 at a biennial frequency.28

For those waves, a new set of questions targeted to understanding spending dynamics allow
us to track consumption on almost all expenditures measured in the cross-sectional Consumer
Expenditure Survey (CEX) Andreski et al. (2014). We focus on a sample of the original SRC
households that participate in the labor market and are between 25 and 65 years old.We further
focus on those households in which the head of household is a male and his labor earnings are at
least $1500 in the given year. This sample is comparable to that in Blundell et al. (2016). We
end up with 29,644 observations, spanning 16 years at biennial frequency. We define household
consumption as the sum of spending in food (at home, away, and delivery), gasoline, health,
transport, utilities, clothing, and recreation.Table C.1 summarizes the characteristics of the sample
and the subcomponents of consumption.

B.2 Cross-Sectional Distribution of Consumption Growth: Den-
sities

28The PSID has been running since 1968, but the expansion to consumption beyond food and housing
only happened in the 1999 wave, with information on 1998 spending for a few consumption categories.In
2005, the PSID finalized the expansion with a comprehensive list of consumption categories.
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(1)
2005-2020

Demographics
Age 43.27
Labor Income, Head 67,008.74
Labor Income, Spouse 29,022.54
Household Gross Labor Income 96,031.28
Household Net Labor Income 76,259.84
Expenditures 17,181.38

Foot at Home 6,712.55
Foot Away from Home 2,806.67
Food dDelivery 182.29
Gasoline 2,729.81
Clothing 1,639.76
Utilities 2,969.63
Telecommunications 2,649.15
Auto Insurance 1,787.80
Parking 70.68
Bus and Train 77.11
Taxi 53.97
Other Transportation 118.18
Home Insurance 747.15
Education 1,992.09
Childcare 870.33
OOP Medical 520.32
Doctor 870.28
Prescription 413.40
Health Insurance 2,560.80
Trips 2,168.39
Other Recreation 1,107.93

N 29,644

Table C.1 – Detailed Summary Statistics
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Figure C.1 – The Distribution of Earnings and Consumption Changes in the Data: Log
Densities

(a) Household Net Labor Earnings (µ = 0.04,σ = 0.53) (b) Household Consumption (µ = 0.01,σ = 0.42)

Notes: Figure C.1 shows the log density income and consumption changes in our sample. Income refers
to households income after taxes and transfers. The sample includes households whose heads are males,
between 25-65, and earnings at least $1500 in a given year from the PSID waves 2005-2021.All distributions
are truncated at -2 and 2, so the extremes include all changes below -2 and above 2.

47



Figure D.1 – Before-tax, Before-transfer Log Income

(a) Mean
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Figure D.2 – Asset profile
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C Additional Figures and Tables
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Figure D.3 – Consumption Insurance-Persistent shocks

(a) True
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Notes: This figure shows the nonemployment risk between t and t + 1 conditional on recent earnings
between t − 1 and t − 5. Benchmark model (left panel) is the non-Gaussian, nonlinear income process.
Gaussian (right panel) is a random walk income process with Gaussian shocks, which is estimated so as
to generate similar inequality to the benchmark process.

Figure D.4 – Consumption Insurance - Transitory shocks
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Notes: This figure shows the nonemployment risk between t and t + 1 conditional on recent earnings
between t − 1 and t − 5. Benchmark model (left panel) is the non-Gaussian, nonlinear income process.
Gaussian (right panel) is a random walk income process with Gaussian shocks, which is estimated so as
to generate similar inequality to the benchmark process.
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Figure D.5 – MPC out of a 1% Shock : Variation By Before-Tax Earnings Percentiles

(a) Transitory shock
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Notes: The figures plot the MPCs in response to a transitory increase in earnings (ε) (left panel) and
persistent increase (right panel) that is equal to 1% of each individual’s earnings level. The difference from
Figure (6) is that here the MPCs are plotted as a function of before-tax/transfer earnings percentiles.

Table D.1 – Heterogeneity in Welfare Costs

Welfare Cost with Cohort Average Assets

⩽P25 P45–P55 P70–P80 P90–P95 P95-P100
Age Canonical Gaussian

25 7.06% 7.03% 7.03% 7.05% 7.26%
35 5.89% 5.43% 5.49% 5.55% 6.17%
45 3.17% 2.90% 3.19% 3.21% 3.99%
55 0.81% 0.72% 0.90% 1.01% 1.45%

Age Benchmark Process
25 27.37% 27.43% 29.40% 28.36% 28.41%
35 25.33% 16.71% 20.75% 20.65% 22.11%
45 11.22% 6.45% 10.39% 11.81% 14.91%
55 2.53% 1.00% 2.19% 2.92% 6.32%

Note: This table is analogous to Table VIII except that we give each individual the average wealth of the
entire cohort at that age rather than the average wealth of the age/income cell she belongs to.
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Table D.3 – Robustness Analysis

Canonical Gaussian Benchmark
(1) (4)

Specification
(1) 20%AE Borr. 8.82% 34.90%
(2) 50%Fancy 8.29% 34.62%
(3) No Beq 8.40% 32.67%
(4) σ = 5 19.70% 44.86%

Note: The next to last row (“Fluctuations”) reports the risk from idiosyncratic fluctuations for an individual with the average
type: αi = 0 (and θi = 0 for the benchmark process). The last row reports the total risk as viewed from behind the veil of
ignorance—i.e., it includes the additional risk from the uncertainty of drawing αi (and θi for benchmark).

Table D.4 – Cross-Sectional Moments of Earnings Growth, Panel Study of Income Dy-
namics

Individual Earnings Household Earnings Household Earnings

All households All households Married households

Age 30 40 50 30 40 50 30 40 50

Standard deviation 0.63 0.53 0.51 0.58 0.50 0.46 0.50 0.46 0.42
Skewness coeff 0.05 –0.42 –0.17 0.14 –0.49 –0.36 0.13 –0.26 –0.47
Kurtosis coeff. 8.72 13.22 13.68 8.61 14.68 15.59 9.48 17.40 18.07
P90-P10 1.22 0.88 0.83 1.17 0.87 0.78 1.03 0.78 0.72

Kelley skewness 0.07 0.03 -0.06 0.08 –0.02 –0.09 0.10 0.04 -0.09
Crow-Siddiqui kurtosis 6.53 7.91 8.32 5.64 6.80 7.15 5.06 6.33 6.37

Notes: Table D.4 shows the moments of 2-year earnings changes. Earnings refers to individual or households labor income
after taxes and transfers. The sample for the first column includes all households including singles with male or female
heads; the sample for the second column is the same but the earnings measure is household earnings in the case of married
couples. The sample for the last column includes married households only. The statistics are computed from the PSID waves
2005–2021. Age groups are defined including plus and minus three years.
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