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Abstract 

The leading strategy for analyzing unstructured data uses two steps. First, latent variables of 
economic interest are estimated with an upstream information retrieval model. Second, the 
estimates are treated as “data” in a downstream econometric model. We establish theoretical 
arguments for why this two-step strategy leads to biased inference in empirically plausible 
settings. More constructively, we propose a one-step strategy for valid inference that uses the 
upstream and downstream models jointly. The one-step strategy (i) substantially reduces bias in 
simulations; (ii) has quantitatively important effects in a leading application using CEO time-use 
data; and (iii) can be readily adapted by applied researchers. 
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1 Introduction

The amount of unstructured data is growing rapidly and empirical work in economics is

increasingly using it. The leading example of such data is text (Gentzkow et al. 2019a,

Ash and Hansen 2023), but others include surveys, images, and audio recordings. In eco-

nomics, unstructured data is primarily used to measure variables of interest that aren’t

observed in conventional quantitative data sources. Examples abound: Baker et al. (2016)

measure economic policy uncertainty with newspaper text; Hoberg and Phillips (2016)

infer firms’ latent industries with corporate filings; Hansen et al. (2018) construct mea-

sures of policy deliberation from Federal Open Market Committee (FOMC) transcripts;

Magnolfi et al. (2022) use survey data to measure product differentiation; Compiani

et al. (2023) measure substitutability between products using Amazon text and image

data; Gorodnichenko et al. (2023) measure tone-of-voice from audio recordings of FOMC

press conferences; Gabaix et al. (2023) impute firm characteristics from investor holdings

data; Einav et al. (2022) infer patients’ health status from surveys; Vafa et al. (2023)

construct a measure of labor market experience based on CVs. These derived measures

are rarely an end in themselves. Rather, the goal is to study how the latent variables they

measure interact with the economic environment. As such, they are typically plugged-in

to downstream econometric models whose parameters are the main object of study. In

practice, the upstream information retrieval (IR) model used to extract measurements

from unstructured data and the downstream econometric model are almost always taken

as wholly separate: the output of the upstream model is treated as observed “data” in

the downstream model. We call this the two-step strategy.

While clearly a pragmatic initial approach, the two-step strategy has largely unknown

statistical properties. On one hand, ignoring the upstream estimation step in downstream

inference suggests a generated regressor problem (Pagan 1984). On the other, results in

the time-series literature suggest plugging-in estimated latent variables need not lead

to inference problems (Stock and Watson 2002, Bernanke et al. 2005, Bai and Ng 2006).

More generally, characterizing the statistical guarantees—or lack thereof—of the two-step

strategy is an important step in establishing a more mature understanding of reliable

inference methods for unstructured data, an area that is still in its infancy.

Our first contribution is to provide theoretical arguments for why the dominant two-

step strategy leads to biased inference on regression parameters in empirically plausible

settings. We consider a set of n observations of quantitative and unstructured data. As

many unstructured datasets can be represented as high-dimensional categorical data, we

treat each unstructured observation as a high-dimensional vector of feature counts.1 We

1For example, one of the simplest representations of text is the bag-of-words model. Each document is
represented as a vector of integer counts over the unique vocabulary terms in the corpus. Even relatively
small corpora contain thousands of unique dimensions.
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allow the amount of unstructured data to vary across observations, letting Ci denote

the amount of unstructured data for observation i. The relative magnitudes of n versus

moments of Ci play a key role in our analysis. We next specify a statistical model with

three parts: a distribution over the feature-count vectors; a low-dimensional, latent vari-

able representation for each such distribution; and a regression of an observed outcome

variable onto the latent variables.2 The two-step strategy (i) estimates the latent vari-

ables from the observed feature counts, then (ii) regresses the outcome variable on these

estimates. Our primary theoretical question is: under what conditions do the estimated

coefficients and standard errors from (ii) allow for valid inference?

The basic problem is measurement error: the regressors in step (ii) contain estimated

rather than true latent variables. As is well known, measurement error leads to inconsis-

tent estimates and distorted standard errors, both of which are present as the number of

observations n grows with a fixed amount of unstructured data per observation. Because

both the sample size and the amount of unstructured data per observation are typically

large in applications, we allow n and the distribution of Ci to evolve together so that

sampling error and measurement error are both relevant for inference.3 Our main finding

is that, whenever
√
n × E

[
1
Ci

]
tends to a constant κ > 0, the estimator is consistent

but there is a bias present in the asymptotic distribution of the regression coefficients.

Larger values of κ give relatively greater importance to measurement error, and hence

a larger bias. However, the asymptotic variance is the same as that from regression

onto the true latent variables and the usual OLS standard errors are consistent. Hence,

treating the estimated latent variables as observed data in the regression does not distort

the width of confidence intervals, but centers them away from the truth. This contrasts

with the generated regressor literature, which emphasizes the variance distortion arising

from plugging-in estimates as data.4 Only when κ = 0, so that sampling error dominates

measurement error asymptotically, does the two-step strategy allow for valid inference.

Of course, κ describes limiting behavior and cannot be used to directly compute

the magnitude of the bias in a given finite dataset. But our theory provides insights

into when this bias is potentially problematic. Take, for example, job postings data as

recorded by Lightcast (formerly Burning Glass), which has been used in dozens of papers.

In 2022, there were 45 million individual job postings in the United States, with an

2This model is the basis for a large empirical literature. Examples include Nimczik (2017), Hansen
et al. (2018), Mueller and Rauh (2018), Larsen and Thorsrud (2019), Bandiera et al. (2020), Thorsrud
(2020), Bybee et al. (2020), Adams et al. (2021), Draca and Schwarz (2021), Olivella et al. (2021), Ash
et al. (2022), and Munro and Ng (2022).

3Our use of sequences of DGPs to better approximate the finite-sample behavior of estimators is
similar in spirit to the weak instrument literature (Staiger and Stock 1997), earlier work on measurement
error (Chesher 1991), unit root testing (Phillips 1987), and large n, T panels (Hahn and Kuersteiner 2002).

4In the classic generated regressor problem (Pagan 1984) there is a common finite-dimensional pa-
rameter estimated in the first stage whereas here all n latent covariates are estimated.
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average inverse posting length of 0.003. The empirical analogue of κ is
√
45, 000, 000 ×

0.003 ≈ 20, suggesting that measurement error may be distorting inference. Another

example is the popular Nielsen Homescan database, where the empirical analogue of κ

is approximately 4. A second insight is that the magnitude of the bias arises from the

average inverse amount of unstructured data per observation. So, if a dataset has a

long tail of observations with little data, a bias can arise even if there is a substantial

amount of undstructured data per observation on average. Again taking the Lightcast

data, the average document size is 575. If one used 1/575 in place of E
[
C−1

i

]
to compute

the analogue of κ, 20 would fall to below 12, highlighting the role of tail behavior in

driving measurement error bias. There are other cases, such as US patent data, where

the empirical analogue of κ takes a smaller value around 1 because each observation

has a relatively large amount of unstructured data. Because the exact magnitude of the

problem is hard to assess in any given setting, it is important to develop robust inference

methods that correctly account for measurement error.

Our second contribution is to propose such an inference method: directly use the

model’s joint distribution over unstructured data, latent variables, and numeric outcomes

to perform maximum likelihood estimation. We refer to this as the one-step strategy.

While implementing the one-step strategy is straightforward theoretically, it presents

a major computational challenge due to the large number of observation-specific latent

variables that must be integrated out. To address this, we use Hamiltonian Monte Carlo

(HMC; MacKay 2003, Neal 2012), a Markov Chain Monte Carlo algorithm that uses in-

formation on the gradient of a distribution to sample from it. Implementation is greatly

simplified with the use of modern probabilistic programming languages: one simply spec-

ifies the likelihood in code, which is then “automatically” compiled to perform sampling.

This paradigm is useful for applied researchers because it allows one to focus on model

development without the need to re-write the estimation and inference algorithms each

time the model is changed. To this end, we use the NumPyro package (Bingham et al.

2018, Phan et al. 2019), which requires only a few lines of code to implement and is well

suited to handling models with a large number of latent variables.5

Third, we compare the performance of the two-step and one-step strategies in an

applied setting. To this end, we introduce the Supervised Topic Model with Covariates

(STMC) which combines elements of existing models (Blei et al. 2003, Roberts et al.

2014, Ahrens et al. 2021) but is, to the best of our knowledge, a new statistical model

of unstructured data. The model reduces the dimensionality of feature-count vectors

by projecting them onto a set of latent factors (or topics), as in Probabilistic Latent

5Previous papers that have performed inference using the joint likelihood approach with unstructured
data include Gentzkow et al. (2019b), Ruiz et al. (2020), and Munro and Ng (2022). These typically
require extensive code to estimate, which makes adapting the model difficult for non-specialists.

3



Semantic Analysis (Hofmann 1999) and Latent Dirichlet Allocation (Blei et al. 2003).

The dependence of outcome variables on latent factor loadings and observed covariates is

captured by a downstream regression model. Additionally, the factor loadings can depend

on a potentially different set of covariates via the upstream model. All components are

woven together by a joint likelihood. Specifying the model in code takes fewer than 25

lines, illustrating how one can perform automatic inference in a new setting that would

previously have required a bespoke and complex codebase.

Many important research questions can be addressed with STMC. Suppose each un-

structured observation is a monetary policy speech. One latent topic might have an in-

terpretation as price rises, so its loadings represent how much each speech discusses price

rises. A first research question, which can be addressed with the downstream model,

might ask how speakers’ attention to price rises is related to their policy actions. A sec-

ond research question might ask how policymakers’ backgrounds relate to the attention

they devote to price rises. That question can be addressed with the upstream model.

In simulated data, we show that the two-step strategy produces estimates that exhibit

a bias which is increasing in κ. Moreover, two-step confidence interval widths are similar

to those obtained using the true latent variables as covariates. Both of these findings

reinforce the main predictions of our theory. By contrast, the one-step strategy produces

estimates that appear unbiased and confidence intervals that have both the correct width

and the correct centering.

Next, we revisit the empirical application from Bandiera et al. (2020) which uses the

two-step strategy to first estimate latent CEO behaviors from a CEO time-use survey,

then explains firm performance using the estimated behaviors. The one-step strategy

substantively changes estimates compared to the two-step strategy. For instance, the

estimated effect of having an MBA degree on behavior more than doubles when using

the one-step instead of two-step strategy. To further test our theory, we next reduce the

amount of unstructured data per observation and again deploy both inference strategies.

This increases measurement error in latent behavior, and hence should increase the bias

of the two-step strategy. Since the one-step strategy is always unbiased (asymptotically),

one should observe larger differences in estimates, which is what we find. The estimated

impact of behavior on firm performance, equivalent for both methods in the original data,

is now half as large under the two-step strategy. Moreover, under the two-step strategy,

the estimated effects of CEO characteristics on behavior reduce by a factor of three.

The settings we consider have an upstream unsupervised learning problem where

unstructured data is used to recover latent variables of interest. A parallel set of recent

papers considers the upstream generation of regressors via supervised learning (Fong and

Tyler 2021, Allon et al. 2023, Egami et al. 2023, Zhang et al. 2023). These papers rely on

the strong assumption that the latent variable is observed with no error for a subset of
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observations. Their proposed solution uses the correctly labeled subset of data to build

IV/GMM estimators. In our baseline setting, in common with much of the economics

literature, all latent variables remain unobserved, but our framework could be extended

easily to incorporate noisy labels.

Gentzkow et al. (2019b) highlights measurement error in the estimation of group

differences in observed speech. This error emerges when the number of observed draws

per group (analogous to Ci in our setting) is small relative to the number of possible

vocabulary terms. To examine this situation, we extend our baseline model to consider

regressions on text-derived similarity measures. Analogously to Gentzkow et al. (2019b)

and our baseline setting, there is no bias when average inverse document size grows

sufficiently fast with the sample size n. But when it doesn’t, so that measurement error

is also relevant asymptotically, a bias again emerges.

Our overall message is that the dominant approach for using unstructured data in

empirical work in economics may suffer from measurement error which biases inference.

We illustrate this formally with theoretical arguments in an empirically relevant albeit re-

strictive setting, but the take-away applies much more broadly. On a more positive note,

a solution exists that is easy to implement and computationally feasible. We therefore

see the one-step strategy as a robust and widely applicable starting point for empirical

analysis. For instance, an emerging line of research uses text-derived sentiment indices as

inputs into forecasting models with a vector autoregressive or dynamic factor structure.

Straightforward extensions of our theoretical arguments can be used to show how error

in the indices will bias coefficient estimates and limit the effectiveness of these forecasting

methods. More constructively, the one-step strategy can be used to enhance the perfor-

mance of these forecasting methods. Likewise, the industrial organization literature is

increasingly using embedded representations of firms and products to characterize market

behavior and demand with structural models. Our one-step strategy can be used to mit-

igate bias introduced by measurement error in the embeddings in these. Going forward,

it is important to establish for which specific IR methods and econometric models does

measurement error most severely affect inference. More generally, our belief is that infer-

ence problems arising from the analysis of unstructured data should be better recognized

and taken more seriously in order to fully harness its potential value.

The rest of the paper proceeds as follows. Section 2 provides a simple setting in

which the inference problems associated with the two-step strategy emerge. Section 3

further develops these arguments and presents our main theoretical results. Section 4

discusses instead the one-step strategy, associated computational tools, and introduces

the Supervised Topic Model with Covariates. Section 5 presents simulation and empirical

results comparing the two strategies. Section 6 concludes.
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2 Motivating Example

This section presents a stylized model to illustrate clearly how the standard two-step

strategy leads to biased inference in both the downstream and upstream models. The

main take-aways from the stylized model are borne out in our empirical application.

2.1 Stylized Model

The stylized model is loosely based on the seminal work of Baker et al. (2016), which

develops text-based measures of economic policy uncertainty (EPU) and investigates the

relationship between EPU indices and economic outcomes. Suppose we are interested in

the effect of θi (policy uncertainty in month i) on Yi (employment or investment, say, in

month i+ 1). We are primarily concerned with inference on γ1 in the regression model

Yi = γ0 + γ1θi + εi. (1)

Policy uncertainty itself is a nebulous concept that is difficult to precisely define let alone

observe. The key innovation of Baker et al. (2016) is to construct EPU indices based on

monthly counts of articles in ten newspapers containing certain terms, then convert to

index form. Their EPU index is then introduced as a covariate in regressions and VARs.

But it’s arguably the case that their measure, while a strong signal of policy uncertainty,

is not numerically the same as policy uncertainty. For instance, one could change the set

of newspapers surveyed and obtain a quantitatively different (but related) measure. We

therefore adopt the specification

Xi ∼ Binomial(Ci, θi), (2)

where Xi is the number of counts observed out of a sample of size Ci and θi is the rate at

which counts are expected. In the terminology of Baker et al. (2016), Xi is the number

of articles containing certain key terms in month i, Ci is the total number of articles

that month, and θi is policy uncertainty that month. The variables Xi, Yi, and Ci are

observed but θi is not. One can estimate θi using θ̂i = Xi/Ci, which is what Baker et al.

(2016) do to construct their policy uncertainty measure.6

To facilitate the theoretical derivations below, let E[εi|θi, Xi, Ci] = 0 and Var(θi) > 0,

so the OLS estimator of γ1 would be consistent if θi were observed, and E[ε2i ] < ∞. To

simplify derivations, we also assume (i) Yi and (Xi, Ci) are independent conditional on θi,

and (ii) Ci and θi are independent. These assumptions, which are credible in the context

of Baker et al. (2016), are made primarily for convenience and can be relaxed. We assume

6See p. 1599 of Baker et al. (2016).
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the data are a random sample (Xi, Yi, Ci)
n
i=1. Our analysis and findings extend easily to

time-series data, though we stick to the IID case to simplify presentation.

2.2 Two-Step Strategy

In the context of this example, the usual two-step strategy would regress Yi on θ̂i and

perform standard OLS inference for γ1. This approach overlooks the fact that θ̂i is a

noisy estimate of θi. Failing to account for this measurement error problem may lead to

biased estimates and inference.

Let γ̂1 denote the OLS estimator of γ1 from regressing of Yi on θ̂i. By standard OLS

algebra, as the sample size n → ∞ we have

γ̂1 →p γ1
Cov(θi, θ̂i)

Var(θ̂i)

= γ1
Var(θi)

Var(θi) + E
[
C−1

i

]
E [θi(1− θi)]

,

because E[θ̂i|θi, Ci] = θi and Var(θ̂i) = Var(θi) + E[C−1
i ]E[θi(1 − θi)] by the law of total

variance and independence of Ci and θi. Evidently, there is an attenuation bias caused

by measurement error in θ̂i which makes γ̂1 inconsistent. .

The key determinant of bias is the average reciprocal amount of unstructured data

per observation E
[
C−1

i

]
. If the amount of unstructured data per observation is large so

that E[C−1
i ] is small, we have

plim(γ̂1) ≈ γ1 − E
[
1

Ci

]
E [θi(1− θi)]

Var(θi)
γ1

because (1 + x)−1 ≈ 1− x for small x. Hence, the bias is of the order of E
[
C−1

i

]
.

In many empirical settings, both measurement error and sampling error may play

important roles. To shed light on the behavior of γ̂1 in this scenario, we consider a

sequence of populations indexed by the sample size n. The distribution of (Yi, Xi, θi)

conditional on Ci is fixed but the distribution of Ci is changing with n so that

√
n× E

[
1

Ci

]
→ κ ∈ [0,∞). (3)

This should not be interpreted literally as the data-generating process. Rather, it is a

thought experiment to provide insights about how γ̂1 behaves when both measurement

and sampling error are present. The parameter κ controls the relative importance of

measurement error and sampling error: κ = 0 means sampling error swamps measurement

error, while larger κ gives relatively greater importance to measurement error.
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Proposition 1. Consider the sequence of populations just described. Then

√
n(γ̂1 − γ1) →d N

(
−κ γ1

E[θi(1− θi)]

Var(θi)
,
E[ε2i (θi − E[θi])2]

Var(θi)2

)
.

Proposition 1 shows that two-step inference is valid when κ = 0. In this case, mea-

surement error vanishes faster than sampling error and the estimated θ̂i can be treated

as if they are the true θi.

However, Proposition 1 also shows that two-step inference is invalid when κ > 0. In

this case, γ̂1 is consistent and its asymptotic variance is the same as if Yi were regressed

on the true θi, but the center of the asymptotic distribution is shifted due to the effect of

measurement error. Confidence intervals based on standard OLS inference will therefore

have approximately correct width but incorrect centering, meaning that their coverage

rates will be below nominal coverage.7

2.3 Upstream Inference

So far we have focused on the “downstream” regression model. Other research questions

might involve inference in an “upstream” model linking variation in θi (policy uncertainty)

to variation in an observed covariate Zi (legislative gridlock, say). In that context, θi or

some transformation of θi is the dependent variable in a regression on Zi. Because θi is

not observed, the two-step strategy would replace θi with θ̂i in the regression. As before,

the two-step strategy causes a measurement error problem, but now one that affects the

dependent variable rather than the independent variable. As the measurement error θ̂i−θi

is uncorrelated with Zi, there would be no bias if θ̂i were regressed on Zi. But there can

be a bias if a nonlinear transformation of θ̂i is used as the dependent variable.

To illustrate this, consider the following setup. Because θi is supported on [0, 1] it is

natural to transform it to have support R using the log-odds ratio (or similar). Suppose

we are concerned with inference on ϕ1 in the regression model

log

(
θi

1− θi

)
= ϕ0 + ϕ1Zi + ui.

We again assume E[ui|Zi] = 0 so that OLS would be unbiased if the true θi were observed.

Because θi is latent, one could instead regress the empirical log odds ratio

log

(
θ̂i

1− θ̂i

)
7It follows from the general treatment in Section 3 that Eicker–Huber–White standard errors com-

puted from θ̂i instead of θi are consistent.
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on Zi. Let ϕ̂1 denote the corresponding OLS estimator. To understand the forces at

play, we study the behavior of ϕ̂1 in a sequence of populations where the distribution of

(Xi, Yi, Zi, θi) conditional on Ci is fixed but the distribution of Ci varies with n so that

(3) holds. Like before, to facilitate derivations we assume (Xi, Ci) and Zi are independent

conditional on θi, and Ci and (θi, Zi) are independent.

Proposition 2. Suppose that Assumption 3 in Appendix A holds. Then

√
n(ϕ̂1 − ϕ1) →d N

κ
Cov

(
2θi−1

2θi(1−θi)
, Zi

)
Var(Zi)

,
E [u2

i (Zi − E[Zi])
2]

Var(Zi)2

 .

Proposition 2 shows that two-step inference in the upstream model is valid when

κ = 0 but invalid when κ > 0. In the latter case, confidence intervals based on standard

OLS inference will again have approximately correct width but incorrect centering, and

will therefore have coverage below nominal coverage. The degree to which standard OLS

confidence intervals under-cover depends partly on the size of Cov( 2θi−1
2θi(1−θi)

, Zi). Because

the function x 7→ 2x−1
2x(x−1)

diverges to ±∞ as x approaches 0 and 1, this covariance can be

very large when the distribution of θi puts mass near zero and/or one. Thus, first-order

bias can be large even when κ is small provided θi has sufficient mass in its tails.

3 Full Analysis of the Two-Step Strategy

One limiting feature of the stylized model in the previous section is that the observed

data are not high-dimensional. In this section, we allow each unstructured observation

to lie in a high-dimensional space, which requires some dimensionality reduction prior to

regression analysis. We first describe the statistical framework linking unstructured data

and the downstream regression model. We then analyze the two-step strategy and show

why it leads to biased inference in empirically plausible settings.

3.1 Statistical Framework

We begin by specifying a statistical model that, broadly speaking, has two parts. The

first computes low-dimensional numerical representations of the unstructured data. The

second introduces these numerical representations as covariates, potentially along with

other quantitative data, into a linear regression model. There is a wide array of methods

for dimensionality reduction used in the literature. We focus on factor modeling, which,

in the context of high-dimensional discrete data, is also called topic modeling. We make

this choice for two reasons. First, topic models have a well-defined statistical structure

which facilitates theoretical analysis. Second, there is a large empirical literature which
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uses topic models as part of the two-step strategy, most commonly using textual data.

Examples include Hansen et al. (2018), Mueller and Rauh (2018), Larsen and Thorsrud

(2019), Thorsrud (2020), Bybee et al. (2020), Adams et al. (2021), and Ash et al. (2022).

However, the use of topic models is not limited to textual data. For example, Bandiera

et al. (2020), Draca and Schwarz (2021), and Munro and Ng (2022) use topic models

to analyze survey data. Meanwhile, Nimczik (2017) and Olivella et al. (2021) use topic

models for network-structured data.

3.1.1 Model

Many types of unstructured data are high-dimensional and discrete. We therefore let

each unstructured observation i be described by xi = (xi,v)
V
v=1, a V -dimensional vector of

count variables. The value xi,v is the number of times a feature v appears in observation

i. For example, in the bag-of-words model V is the number of unique terms in a textual

corpus, typically in the thousands, and xi,v is the count of term v in document i.

The first part of the model generates a K-dimensional representation θi of xi, where

K ≪ V . The second part introduces these low-dimensional representations as covariates,

potentially along with other quantitative data qi, into a linear regression model:

Yi = γ
T (Sθi) +α

Tqi + εi, E [εi|θi,qi] = 0, (4)

where S is a H × K selection matrix which is chosen by the researcher. Each row

of S selects a component of θi to be included in the regression. In most applications in

economics and finance, γ is the key parameter of interest. In other applications, however,

α is the focus and Sθi plays the role of a text-derived control variable.

The model we consider for the unstructured data is widely used in practice and

tractable enough that we can develop clean characterizations for the two-step strategy.

As xi is a vector of counts, it is without loss of generality to model it as Multinomial.

We impose some structure on the count probabilities for interpretability. The model is

based on Probabilistic Latent Semantic Analysis (Hofmann 1999), a widely used factor

model for discrete data, and its close cousin Latent Dirichlet Allocation (Blei et al. 2003,

LDA).

There are K separate distributions over the V features denoted β1, . . . ,βK where

each βk lies in the (V − 1)-dimensional simplex. The distributions are called topics in

text applications. More generally, they represent common factors from which individual

observations are built. We collect the factors into a K×V row-stochastic matrix B where

BT = [β1, . . . ,βK ]. Each observation i is characterized by the latent vector θi which lies

in the (K− 1)-dimensional simplex. Its elements θi,k represent the weight attached to βk

in generating xi. Hence, the count probabilities for observation i are pi =
∑K

k=1 βkθi,k.
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Note thatB is a matrix of common parameters whereas θi is an observation-specific latent

random vector. Putting these elements together, the distribution of xi can be written as

xi|(Ci,θi) ∼ Multinomial(Ci,B
Tθi), (5)

where Ci =
∑V

v=1 xi,v is the count of all features in observation i—a measure of the

amount of unstructured data for observation i—and the count probabilities pi have the

factor structure pi = BTθi. This model nests as a special case a pure multinomial

model where K = V , B = I, and θi = pi. The quantity Ci determines the degree of

precision with which we can infer θi from xi. The interplay between Ci and the number

of observations n plays an important role in our theory.

Example: Monetary Policy Speeches. Suppose each unstructured observation is

a monetary policy speech. One distribution βk might put high weight on words like

‘inflation’, ‘prices’, and ‘cpi’, so βk would have an interpretation as price rises. The cor-

responding θi,k represents how much speech i discusses price rises. One research question

might ask how attention paid to price rises, along with other economic conditions cap-

tured by other topics and numeric data, affects policy actions. This could be captured by

the γ coefficients in (4) where Yi is the policy action of speaker i, S selects the price rises

topic weight from θi and discards irrelevant topics (e.g., words used in generic conver-

sation), and qi measures quantitative information like market forecasts for growth and

inflation at the time the speech was made.

The main point beyond this specific example is that many research questions that seek to

map variation across high-dimensional count observations as captured by a topic model

into variation in some numeric variable will involve inference on γ.

3.1.2 Data and Maintained Assumptions

The data are a random sample (Yi,qi,xi, Ci)
n
i=1 satisfying (4) and (5). To simplify deriva-

tions, we further assume that Ci is independent of (θi,qi, Yi), and that (qi, Yi) and xi are

independent conditional on (Ci,θi). We also assume that B is identified. That is, there is

a unique decomposition P = BTΘ with P = [p1, . . . ,pn] collecting the vectors of count

probabilities across observations and Θ = [θ1, . . . ,θn] collecting the topic weights across

observations. Identification is commonly achieved in text applications by assuming the

existence of anchor words that are known to appear in some topics but not others. We

assume identifiability because our objective is to analyze the consequences of the two-step

inference approach in a transparent way. Adding partial identification will significantly

complicate the analysis but may be an interesting extension in future research.
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3.2 Theory for the Two-Step Strategy

The standard two-step strategy can be summarized as follows:

(i) Estimates θ̂i of θi are computed from the unstructured observations, e.g. by LDA.

(ii) Yi is regressed on Sθ̂i and qi. Inference is performed treating the θ̂i as if they are

regular numeric data.

Evidently there is a measurement error problem: the estimates θ̂i are noisy proxies for

the true θi appearing in the regression model (4). But Step (ii) overlooks this problem

and treats the first-stage estimates θ̂i as regular numeric data. This raises the possibility

that OLS estimates may be biased due to measurement error introduced in Step (i).

Moreover, conventional standard errors are typically reported. But these do not account

for any additional variation introduced by using θ̂i instead of θi.

We now analyze the two-step strategy and show how it can lead to biased estimates

and inference. Let

ξi =

[
Sθi

qi

]
, ξ̂i =

[
Sθ̂i

qi

]
.

The OLS estimator of ψ = [γ,α]T in the two-step strategy is given by

ψ̂ =

(
1

n

n∑
i=1

ξ̂i ξ̂
T
i

)−1(
1

n

n∑
i=1

ξ̂iYi

)
. (6)

3.2.1 Fixed Population

We first consider the large-sample properties of ψ̂ where the number of observations

becomes large (n → ∞) but the distribution of (Yi,qi,xi, Ci)
n
i=1 is held fixed. This

asymptotic framework mimics many empirical designs where there is a relatively small

amount of unstructured data per observation but a large number of observations.

There are many different ways of estimating B and θi in (5). For instance, one could

use LDA (Blei et al. 2003) or more recent methods developed by Bing et al. (2020), Wu

et al. (2023), Ke and Wang (2022), and many others. As our objective is to focus on the

consequences of the two-step strategy, we abstract from algorithmic-specific details and

instead impose mild conditions on the estimators B̂ of B and θ̂1, . . . , θ̂n of θ1, . . . ,θn.

Let p̂i = xi/Ci, i = 1, . . . , n. Let →p denote convergence in probability as n → ∞.

Assumption 1. (i) B has full rank.

(ii) B̂ →p B.

(iii) max1≤i≤n ∥θ̂i − (B̂B̂T )−1B̂p̂i∥ →p 0.
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(iv) E [∥qi∥2] < ∞ and E
[
ξiξ

T
i

]
has full rank.

Assumption 1(i) says that there are no fewer than K topics. This is a weak restriction,

as K is typically much smaller than V in applications. Assumption 1(ii) says that B̂ is

consistent for the topic weights B. This is a mild condition satisfied by many estimators

for topic models. Assumption 1(iii) imposes some structure on the estimators θ̂i. This

condition is not vacuous: we have θi = (BBT )−1Bpi (by Assumption 1(i)) so, given any

consistent estimator B̂ of B, one could estimate θi simply by setting θ̂i = (B̂B̂T )−1B̂p̂i.

In that case, max1≤i≤n ∥θ̂i − (B̂B̂T )−1B̂p̂i∥ = 0. Assumption 1(i)-(iii) holds trivially for

the pure multinomial model because B̂ = B = I and p̂i = θ̂i. Finally, Assumption 1(iv)

imposes a standard moment condition on the numeric regressors qi and ensures that these

are not perfectly collinear with the included latent variables Sθi.

Our first main result shows that ψ̂ is inconsistent when the amount of unstructured

data per observation is small relative to the sample size. Let diag(v) denote a diagonal

matrix whose diagonal elements are the elements of the vector v. Let QB = (BBT )−1B

and let 0 denote a conformable matrix of zeros.

Theorem 1. Suppose that Assumption 1 holds. Then

ψ̂ →p

(
E
[
ξiξ

T
i

]
+

[
E
[

1
Ci

]
S
(
QB diag(BTE[θi])QT

B − E
[
θiθ

T
i

])
ST 0

0 0

])−1

E
[
ξiξ

T
i

]
ψ .

In particular,

plim(ψ̂) ≈ ψ − E
[
1

Ci

]
b

for E
[
C−1

i

]
small, where

b = E
[
ξiξ

T
i

]−1

[
S
(
QB diag(BTE[θi])QT

B − E
[
θiθ

T
i

])
STγ

0

]
.

Theorem 1 shows that ψ̂ is inconsistent due to the measurement error in θ̂i. The

reason is that each θ̂i has a measurement error that doesn’t disappear when the number

of observations n becomes large. As a consequence, ψ̂ is asymptotically biased.

More constructively, Theorem 1 shows that bias is proportional to the average in-

verse amount of unstructured data per observation, E
[
C−1

i

]
. Because this is an inverse

relationship, increasing the amount of unstructured data for observations with small Ci

will reduce bias by more than if the additional data was collected for the observations

with large Ci. Consequently, the across-observation distribution of Ci matters beyond its

mean. In particular, bias may be large if most observations have large Ci but a small

mass have small Ci.
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3.2.2 Sequence of Populations

We now consider a sequence of populations where the amount of unstructured data per

observation becomes larger as the sample size n increases. This asymptotic framework

is designed to shed light on how ψ̂ behaves in empirically realistic settings where there

are a relatively large number of observations and there is a large amount of unstructured

data per observation. In this scenario, the measurement errors across observations are

small but their cumulative effect may not be ignorable relative to sampling error.

Formally, we consider a sequence of populations indexed by sample size n. In each

population, we keep the distribution of (xi, Yi,θi,qi) conditional on Ci fixed and as de-

scribed in Section 3.1. However, we let the marginal distribution of Ci change with the

sample size n to allow the amount of unstructured data per observation to become large

as the sample size n increases. Specifically, we consider a framework in which

√
n× E

[
1

Ci

]
→ κ ∈ [0,∞) (7)

as n → ∞. The quantity κ plays a key role in the following analysis. Loosely speaking,

κ represents the relative magnitudes of sampling error and measurement error.

The case κ = 0 corresponds to a setting in which the amount of unstructured data per

observation is of much larger order than sample size. Consequently, measurement error

is of smaller order than sampling error. In this case, our theory implies that the two-step

strategy leads to valid inference. That is, the measurement error in θ̂i can effectively be

ignored and standard inference can proceed treating the θ̂i as if they are the true θi.

The case κ ∈ (0,∞) is the critical case in which there is a large, but not overwhelming,

amount of unstructured data per observation. This case mimics many empirically realistic

designs where measurement error and sampling error are both small but non-negligible.

We show in this case that ψ̂ is consistent but standard two-step inference is invalid. In

particular, the asymptotic distribution of ψ̂ has the correct variance but its center is

shifted due to measurement error bias. Consequently, confidence intervals based on the

usual two-step strategy have the correct width but incorrect centering, and therefore have

a coverage rate that is smaller than nominal coverage.8

In what follows, notions of convergence in probability and distribution should be

understood as holding along this sequence of populations satisfying (7).

Assumption 2. (i) B has full rank.

(ii)
√
n(B̂−B) →p 0.

8The case κ = +∞ corresponds to a setting where measurement error is of larger order than sampling
error. Here ψ̂ is consistent provided E[C−1

i ] → 0 but two-step inference is invalid because bias is of larger
order than sampling uncertainty. In that case, the coverage rates of standard OLS confidence intervals
asymptote to zero as the sample size n becomes large.
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(iii)
√
nmax1≤i≤n ∥θ̂i − (B̂B̂T )−1B̂p̂i∥ →p 0.

(iv) E [∥qi∥4] < ∞ and E
[
ξiξ

T
i

]
has full rank.

(v) E [ε4i ] < ∞.

(vi) Ci ≳ (log n)1+ϵ almost surely for some ϵ > 0.

Assumption 2(i) is the same as Assumption 1(i). Assumption 2(ii)-(iii) strengthens

Assumption 1(ii)-(iii) to require convergence at a faster-than-root-n rate. We believe As-

sumption 2(ii) is broadly satisfied in view of known convergence rates for estimators ofB.9

Assumption 2(iii) is made to simplify derivations but is not vacuous: given any estimator

B̂, one could set θ̂i = (B̂B̂T )−1B̂p̂i, in which case
√
nmax1≤i≤n ∥θ̂i− (B̂B̂T )−1B̂p̂i∥ = 0.

As before, Assumption 2(i)-(iii) holds trivially for the pure multinomial model because

B̂ = B = I and p̂i = θ̂i. Assumptions 2(iv) and 2(v) are standard. Assumption 2(vi) is

made to simplify technical derivations and can be relaxed. It implies that Ci is supported

on [c(log n)1+ϵ,∞) for some c, ϵ > 0. This is weaker than the conventional assumption

that all Ci grow at the same rate C (Bing et al. 2020, Wu et al. 2023, Ke and Wang 2022)

which, in view of (7), would imply that Ci is supported on [cn1/2,∞) for some c > 0.

This condition is only used to establish consistency of standard errors.

Our second main result shows that ψ̂ is consistent, derives its asymptotic distribution,

and establishes consistency of standard errors. Recall the definition of b from Theorem 1.

Let ε̂i = Yi − ξ̂Ti ψ̂.

Theorem 2. Suppose that Assumption 2 holds. Then

√
n(ψ̂ −ψ) →d N

(
κb, E

[
ξiξ

T
i

]−1 E
[
ε2i ξiξ

T
i

]
E
[
ξiξ

T
i

]−1
)
, (8)

and(
1

n

n∑
i=1

ξ̂i ξ̂
T
i

)−1(
1

n

n∑
i=1

ε̂2i ξ̂i ξ̂
T
i

)(
1

n

n∑
i=1

ξ̂i ξ̂
T
i

)−1

→p E
[
ξiξ

T
i

]−1 E
[
ε2i ξiξ

T
i

]
E
[
ξiξ

T
i

]−1
. (9)

Theorem 2 shows that two-step inference is valid when κ = 0. In this case, we have

√
n(ψ̂ −ψ) →d N

(
0,E

[
ξiξ

T
i

]−1 E
[
ε2i ξiξ

T
i

]
E
[
ξiξ

T
i

]−1
)
.

Here ψ̂ has the same asymptotic distribution as the (infeasible) OLS estimator obtained

by regressing Yi on the true latent θi. Moreover, Eicker–Huber–White standard errors

9Bing et al. (2020), Wu et al. (2023), and Ke and Wang (2022) derive finite-sample guarantees for

different estimators B̂ of B. Each of their results implies the corresponding estimator B̂ converges at
the optimal rate (nC)−1/2 (up to log terms) where, for simplicity, the Ci are all of the same order C.

Hence, all estimators B̂ converge faster than n−1/2 when C grows with n, as we have here by (7).
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computed using θ̂i are consistent. The reason is that κ = 0 corresponds to a scenario

where measurement error is of smaller order than sampling error. Hence, measurement

error can effectively be ignored when performing inference on ψ.

At an abstract level, this case is analogous to asymptotic theory for factor-augmented

regressions. In that setting, latent factors Ft at each date are imputed from a vector

of N predictor variables xt, then the estimated factors F̂t are treated as covariates in a

regression model. Bai and Ng (2006) show that treating the estimated factors F̂t as if

they are the true latent factors Ft leads to valid inference provided
√
T/N → 0, where T

is the time-series dimension and N is the cross-sectional dimension. Their Ft is analogous

to our θi, their T is analogous to our n, and their 1/N is analogous to our E[C−1
i ]. Hence,

their condition
√
T/N → 0 is analogous to κ = 0.

An important insight developed in Theorem 2 is that κ = 0 is in fact necessary

for the validity of two-step inference. If κ > 0, then the asymptotic distribution of ψ̂

has the correct variance (which is consistently estimated by the Eicker–Huber–White

estimator computed using θ̂i) but its center is shifted away from the origin to κb due to

measurement error bias.10 Consequently, confidence intervals have the correct width but

incorrect centering, and therefore have coverage below their nominal coverage. The bias,

and hence the degree to which confidence intervals under-cover, is increasing in κ. It is

worth noting that measurement error in θ̂i will bias inference not just for γ but also for

α whenever Sθi and qi are correlated. The implication is that, even when unstructured

data is used to create controls variables (see Avivi (2024) for a recent example), the

two-step strategy can bias inference.

3.3 Extensions and Complements

We close this section discussing how our findings extend to other estimation problems

and frameworks.

3.3.1 VARs

A number of prominent studies including the seminal work of Baker et al. (2016) have

included text-derived measures as variables in vector autoregressions (VARs). These

studies again use a two-step strategy: variables of interest Sθt (policy uncertainty, say)

are first estimated from unstructured data, then their estimates Sθ̂t are plugged into a

VAR as regular data together with other variables qt (interest rate, industrial production

10This is the opposite of a generated regressors problem (Pagan 1984), where the asymptotic variance
is inflated but there is no location shift. With generated regressors there is a common finite-dimensional
parameter estimated in the first stage whereas here all n covariates θ1, . . . ,θn are estimated in the first
stage. See Bai and Ng (2006) for further discussion in the context of factor-augmented regressions.
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unemployment, say). Standard inference on VAR parameters and/or impulse response

functions (IRFs) is performed, again treating the estimates Sθ̂t as regular data.

More formally, consider the VAR

ξt = ψ0 +Ψ1ξt−1 + . . .+Ψpξt−p + εt,

where ξt = (SθTt ,q
T
t )

T . Given data (qt,xt, Ct)
n
t=1, suppose that the θt are estimated for

t = 1, . . . , n, then the VAR parameters ψ = (ψ0,Ψ1, . . . ,Ψp) are estimated by regressing

ξ̂t = (Sθ̂Tt , q
T
t )

T on its lagged values and a constant. Let ψ̂ denote the OLS estimator.

The theory developed above carries over to the VAR setting. Suppose the process

(θ1,q1, C1), (θ2,q2, C2), . . . is strictly stationary and satisfies suitable weak dependence

conditions; each xt depends on (Ct,θt) as in (5) but is independent conditional on (Ct,θt)

of all other variables at all leads and lags; and the εt are martingale differences and satisfy

suitable weak dependence conditions.

Partition the VAR coefficient matrices into blocks corresponding to whether (a) Sθt

or (b) qt is the dependent variable. Under suitable modification of Assumptions 1 and 2,

OLS estimators of block (b) parameters behave essentially as described in Theorems 1

and Theorem 2. That is, they are inconsistent in a fixed-population setting and
√
n-

consistent and asymptotically normal with a location shift proportional to κ in a sequence-

of-populations framework in which

√
nE

[
1

Ct

]
→ κ ∈ [0,∞).

OLS estimators of block (a) parameters have a measurement error Sθ̂t − Sθt in the

dependent variable also. But this measurement error is asymptotically negligible in a

sequence-of-populations framework. As such, OLS estimators of block (a) parameters are
√
n-consistent and asymptotically normal with a location shift proportional to κ. Further,

the asymptotic variance of ψ̂ will be the same as if the VAR was estimated on the true

latent θt and can be consistently estimated even when κ is positive, as in Theorem 2.

These consequences carry over to delta-method inference on functionals of ψ, such as

IRFs. That is, IRF estimators computed from ψ̂ will be
√
n-consistent and asymptotically

normal with a location shift proportional to κ. As such, delta-method confidence intervals

for IRFs using the two-step strategy will have the correct width but incorrect centering,

and will therefore under-cover.

3.3.2 Similarity Measures

So far we have focused on regressions of numeric outcomes on topic weights. However,

numeric outcomes are often regressed on similarity measures formed from term frequen-
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cies or topic weights. In this case, the two-step strategy first estimates similarity from

unstructured data then regresses numerical outcomes on the estimated similarity mea-

sures. We show that this strategy leads to biased inference on regression parameters

unless sampling error dominates measurement error.

Suppose that the data are a random sample (Yi,x1,i,x2,i, C1,i, C2,i)
n
i=1, where

xt,i ∼ Multinomial(Ct,i,pt,i), t = 1, 2.

Each feature count vector xt,i is a noisy signal of the true (latent) frequency pt,i. We are

interested in performing inference on the parameter γ1 in the regression model

Yi = γ0 + γ1 (p1,i · p2,i) + εi. (10)

To give context, consider a setting loosely based on Kelly et al. (2021) in which Yi denotes

citations of patent i after it is filed, x1,i is a vector of feature counts for patent i, and x2,i

is a vector of feature counts of an existing stock of patents at the time patent i was filed.

The counts x1,i and x2,i are noisy signals of the true information contents p1,i and p2,i of

the new patent and existing stock. The dissimilarity between p1,i and p2,i measures the

novelty of patent i. We assume E[εi|p1,i · p2,i] = 0 and Var(p1,i · p2,i) > 0 so that OLS

regression of Yi on p1,i · p2,i would be consistent if p1,i and p2,i were observed.

As p1,i and p2,i are not observed, a pragmatic two-step strategy is to estimate γ1 by

regressing Yi on (p̂1,i · p̂2,i) where

p̂1,i =
x1,i

C1,i

and p̂2,i =
x2,i

C2,i

are the term frequencies. Let γ̂1 denote the OLS estimator. To simplify derivations, we

assume (i) Yi, x1,i, and x2,i are independent conditional on (C1,i, C2,i,p1,i,p2,i), and (ii)

C1,i and C2,i are independent of each other and of (p1,i,p2,i, Yi). Consider a sequence of

populations in which the conditional distribution of Yi, x1,i, x2,i, p1,i, and p2,i conditional

on (C1,i, C2,i) is fixed, and the distribution of (C1,i, C2,i) grows with n so that

√
nE

[
1

Ct,i

]
→ κt ∈ [0,∞) (11)

for t = 1, 2.

Theorem 3. Consider the sequence of populations just described. Then

√
n(γ̂1 − γ1) →d N

(
κ1b1 + κ2b2,

E [ε2i (p1,i · p2,i − E [p1,i · p2,i])
2]

Var(p1,i · p2,i)2

)
,
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where

b1 = −

(
E[pT

2,i(diag(p1,i)− p1,ip
T
1,i)p2,i]

Var(p1,i · p2,i)

)
γ1, b2 = −

(
E[pT

1,i(diag(p2,i)− p2,ip
T
2,i)p1,i]

Var(p1,i · p2,i)

)
γ1.

As with our earlier results, Theorem 3 shows that p̂1,i and p̂2,i can be treated as if

they are the true p1,i and p2,i for inference on γ1 provided the amount of unstructured

data per observation is “large” in the sense that both κ1 = 0 and κ2 = 0. For instance, in

the patent example we would require both the amount of unstructured data per patent

to be large (so that κ1 = 0) and the amount of unstructured data for the existing stock

to be large (so that κ2 = 0). Otherwise, the location of two-step confidence intervals is

shifted towards the origin, which leads to biased inference.

We focused on the simplest case of regression on dot-product similarity between term

frequencies to simplify exposition. But our findings will extend to regression on other

measures including cosine similarity, TF-IDF measures, transforms (e.g., logs) of similar-

ity measures, and similarity measures formed from topic weights.

4 One-Step Strategy

Having shown the bias inherent to the popular two-step approach for unstructured data

analysis, we now develop an alternative one-step approach that allows for valid inference.

The starting point is to note that the topic model (5) provides a likelihood for xi con-

ditional on Ci and θi. We next build a joint likelihood for (xi, Yi,θi) by specifying a

parametric distribution for the regression errors in (4). Finally, in the spirit of correlated

random effects estimation in panel data models, we also specify a distribution for the

topic shares θi conditional on covariates gi. The covariates gi (J in total) may or may

not be the same as qi. In practice, one must specify particular distributions to complete

the specification of the likelihood, but for now we keep the discussion general to highlight

the broad applicability of the approach.

Together, these components combine to give a likelihood l(xi, Yi,θi|Ci,gi,qi) for xi,

Yi, and θi conditional on Ci and covariates gi and qi. As θi is latent, we can integrate it

out to obtain a likelihood l(xi, Yi|Ci,gi,qi) depending only on observable variables, which

can then be used for maximum likelihood estimation of model parameters δ, consisting of

B, γ, α, and any other parameters in the regression error and topic share distributions.

However, there are two challenges. First, the integration has no closed-form solution

and so must be performed numerically. Moreover, this numerical integration is high-

dimensional and must be done observation-by-observation. As such, standard likelihood-

based estimation is not computationally feasible. In the remainder of this section, we

discuss how we overcome this challenge and present a specific model—the Supervised
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Topic Model with Covariates—that we use for the empirical results.

4.1 Inference Approach for One-Step Strategy

The inference approach we take, while frequentist, is instead based on Bayesian compu-

tation. The integration step is performed implicitly as part of the sampling procedure.

Similar approaches are taken to deal with latent states in Bayesian estimation of DSGE

models (Herbst and Schorfheide 2016). In this approach, we introduce a prior for the

model parameters δ and treat the latent θi as “parameters” drawn from a distribution

that potentially depends on covariates gi (as discussed above). We sample from the pos-

terior distribution of (δ, (θi)
n
i=1) conditional on the observed data (xi, Yi, Ci,gi,qi)

n
i=1.

The marginal draws for δ represent draws from the posterior distribution for δ based on

the integrated likelihood l(xi, Yi|Ci,gi,qi).

It is important to emphasize that while our approach uses Bayesian computation, one

does in fact perform valid frequentist inference on model parameters δ using this method.

The maximum likelihood estimator δ̂ of δ is asymptotically normal under standard regu-

larity conditions (e.g., Theorem 5.41 of van der Vaart 1998). By the Bernstein–von Mises

Theorem (see Theorem 10.1 of van der Vaart 1998 and discussion), the posterior mean

δ̄ of δ is first-order asymptotically equivalent to the MLE δ̂. Moreover, the posterior

distribution of δ is asymptotically normal with mean δ̄ and variance (when appropriately

scaled with n) equal to the asymptotic variance of the MLE. As such, Bayesian credible

sets for δ—or any of its components such as γ—are valid frequentist confidence sets with

the desired asymptotic coverage. This approach is also efficient for inference on δ and

its components, as it is asymptotically equivalent to likelihood-based inference.

4.1.1 Hamiltonian Monte Carlo

Our problem is to sample from the posterior distribution q(ζ|(xi, Yi, Ci,gi,qi)
n
i=1) where

ζ = (δ, (θi)
n
i=1). To do so, we use Hamiltonian Monte Carlo (HMC), a modern Markov

chain Monte Carlo (MCMC) algorithm that is particularly well-suited to high-dimensional

models.11 MCMC algorithms define a stochastic process, i.e., a Markov chain, whose er-

godic distribution coincides with the posterior distribution one wishes to sample from.

Samples from this Markov chain can be used to form estimates and credible sets/confidence

intervals. Efficient MCMC algorithms have low autocorrelation across samples which im-

proves the accuracy of the resulting estimates.

A popular and simple MCMC method is the Metropolis-Hastings (MH) algorithm.

Note the posterior is proportional to qn(ζ) := q(ζ, (xi, Yi)
n
i=1|(Ci,gi,qi)

n
i=1), which is

11More in-depth overviews of HMC are provided in Neal (2012), Hoffman and Gelman (2014), and
Betancourt (2018). We are not aware of the application of HMC to topic models in the literature.
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formed by multiplying the likelihood by the prior. The MH algorithm generates samples

from the posterior in two steps: (1) propose a new state ζ ′ from the current state ζ using

a pre-specified proposal distribution; then (2) accept the new proposal with a probability

that increases in the ratio qn(ζ
′)/qn(ζ). A challenge in practice is that the proposal

distribution must be chosen carefully to avoid slow convergence. Taking small steps in

a random direction can have a high acceptance probability but also high autocorrelation

across samples and slow convergence. Taking a large step in a random direction can

drastically reduce qn(ζ
′) and hence the acceptance probability.

The HMC algorithm addresses this problem by utilizing the geometry of qn to propose

distant states that nonetheless have high chance of acceptance. This is achieved by

proposing a new state ζ ′ by following Hamiltonian dynamics for a certain number of

steps, starting from the initial state ζ. This process is determined by the curvature of

qn, and so determining the path to follow requires evaluating the gradient of qn with

respect to the parameters ζ. The specific variant of HMC that we use is the No-U-Turn

Sampler (Hoffman and Gelman 2014, NUTS). The intuitive idea of NUTS is to follow the

Hamiltonian dynamics for a random number of steps, and to stop when the path starts

to double back on itself. This is not only more efficient than following the dynamics for a

fixed number of steps, but also avoids the need to specify the number of steps in advance.

4.1.2 Implementation with probabilistic programming

From an implementation perspective, an advantage of HMC is that it is amenable to

probabilistic programming. This allows one to define a data generating process for a

statistical model in computer code, after which sampling is performed “automatically” in

the background by following a generic set of algorithmic procedures adapted to the given

model. In practice, modern probabilistic programming libraries use automatic differenti-

ation to compute the gradients of highly flexible families of densities. Furthermore, the

density and gradient computations are typically parallelizable as they are additive with

respect to the data points.12 This facilitates the use of the same specialized hardware

normally used for machine learning tasks.

NUTS is implemented in many probabilistic programming libraries, the most popular

of which is Stan. For this paper, we instead use NumPyro (Phan et al. 2019), which

utilizes a state-of-the-art automatic differentiation engine Jax (Bradbury et al. 2018)

and allows users to easily deploy these computations to specialized hardware such as

Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs), resulting in a

dramatic improvement in computation time. Furthermore, NumPyro is a Python library,

not a standalone program, which means that it is easy to integrate with other libraries and

12More precisely, the logarithm of qn is additive with respect to the data points, and the gradient of
the logarithm of qn is the sum of the gradients of the log-likelihood and the logarithm of the prior.
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benefits from the host of functionalities that Python provides. This said, our goal is not to

advocate for any particular library, but to demonstrate that software and hardware have

evolved to a point that allows Bayesian computation to be performed at scale without

the need to manually derive sampling equations.

4.2 Supervised Topic Model with Covariates

We now specify distributional assumptions to fully formulate a likelihood for empirical

analysis. We assume the regression errors in (4) are normally distributed and that the

distribution of θi conditional on gi is logistic normal. These assumptions are made for

illustrative purposes and applied researchers may modify them as desired. The resulting

model, which we call the Supervised Topic Model with Covariates (STMC), is formalized

in Model 1.

θi ∼ LogisticNormal (Φgi, IKσ
2
θ)

xi ∼ Multinomial
(
Ci,B

Tθi
) (Upstream Topic Model)

Yi ∼ Normal
(
γTSθi +α

Tqi, σ
2
Y

)
(Downstream Regression Model)

Model 1: Supervised Topic Model with Covariates

The matrix Φ is a K×J matrix of regression coefficients. The kth row of Φ, denoted

ϕk, captures how variation in covariates maps to variation in the prevalence of the kth

topic across observations. Hence, a number of research questions can be addressed by

performing inference on Φ. Model 1 also introduces scale parameters σθ and σY . While

we have modeled the error terms in the downstream regression and upstream logistic

normal as homoskedastic to simplify presentation, this can easily be relaxed.

Example: Monetary Policy Speeches (Continued). To return to the example of

Section 3, the downstream regression model could capture how policymakers’ attention

predicts policy actions controlling for economic conditions. But policymakers’ attention

can itself be a function of speaker characteristics such as demographic variables, or past

experience of economic conditions (Malmendier et al. 2021). Such variables would enter

gi but arguably not directly affect policy decisions beyond their effect on attention; i.e.,

they would not enter qi.

To our knowledge, STMC is new in the literature. Roberts et al. (2014) presents a

model in which a logistic normal distribution over θi is parameterized by covariates but

without a downstream regression. Blei and McAuliffe (2010) and Ahrens et al. (2021)

present models in which linear combinations of topic shares explain a normally distributed
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response variable, but do not allow covariates to enter the distribution over θi. As such,

we view STMC as of independent interest in the literature on topic modeling, although its

primary purpose is to provide an example in which dimensionality reduction and linear

regression are part of the same joint model and one cares about doing valid inference on

model parameters.

Following the literature on topic modeling, we specify the following standard prior

distributions for model parameters:

βk ∼ Dirichlet(η) ∀ k

ϕj,k ∼ Normal(0, σ2
ϕ) ∀ j, k

γk ∼ Normal(0, σ2
γ) ∀ k

αm ∼ Normal(0, σ2
α) ∀ m

σY ∼ Gamma(s0, s1)

(Priors)

In total, the model has seven hyperparameters: the three σ2 terms in (Priors) as well as

σ2
θ in (Upstream Topic Model); the symmetric Dirichlet parameter η in (Priors); the two

Gamma distribution parameters in (Priors).

Appendix C displays the NumPyro code needed to draw samples from the posterior

distribution of STMC. The core code is only several dozen lines long, and individual

elements can be quickly modified to specify alternative distributions or models. An

interested researcher should be able to modify it as needed to accommodate different

data; to test robustness of the conclusions to specifying alternative distributions for the

data; or to test robustness with respect to choice of priors. The key is to avoid having

to re-derive complex inference algorithms every time the model is adjusted, and this is

precisely the main advantage of automatic inference methods.

5 Empirical Results

In theory, the one-step strategy should outperform the two-step strategy, but establishing

the empirical relevance of the bias that the latter produces is clearly important. While

our computational approach makes the one-step strategy straightforward to implement,

easier still would be for applied researchers to continue to use off-the-shelf packages for

information retrieval and then to import the outputs into familiar regression software.

This section establishes that there is indeed a quantitatively meaningful difference in

regression parameter estimates produced by the two methods, both in simulated and

actual data. Moreover, the differences we observe are consistent with the key theoretical

results established above. This highlights the broad relevance of the one-step strategy

for the empirical literature.
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In all exercises, we perform inference using Hamiltonian Monte Carlo applied to the

Supervised Topic Model with Covariates with hyperparameters detailed in Appendix B.

We choose K = 2, which implies that each observation’s topic share vector can be writ-

ten θi = (θi, 1− θi). For the one-step strategy, we sample from the posterior distribution

implied by the full structure of STMC. For the two-step strategy, we first sample from

(Upstream Topic Model) and include only a constant in gi and thus ignore any depen-

dence that exists between covariates and θi in the upstream model. Including the constant

allows for θi to have an asymmetric prior. We use the sampled values of θi to compute

an estimate θ̂i of the posterior mean. We then estimate the following regression models

using HMC:

log

(
θ̂i

1− θ̂i

)
= ϕ0 + ϕ

T
1 gi + ui, (12)

Yi = γ0 + γ1θ̂i +α
Tqi + εi, (13)

where the error terms are normal. The prior distributions over the regression coefficients

are the same in both strategies. This procedure is designed to emulate the typical ap-

proach in the empirical literature while ensuring that any observed differences between

the two strategies are not driven by different inference methods or implicit modeling

choices.

Finally, our focus here is on inference rather than identification. Ke et al. (2021) high-

light that the parameters of topic models are generally set- rather than point-identified.

To restore point identification, a common assumption in the machine learning literature is

the existence of “anchor words” (Arora et al. 2012) which we adopt as explained below.13

5.1 Simulation

We start with a simulation exercise that compares the one- and two-step strategies in

terms of (i) the evolution of the bias in regression coefficients across different values of κ

and (ii) the coverage of confidence intervals. We simulate the data according to the data

generating process described in Model (1).14 We conduct three sets of simulations. Within

each set, the amount of unstructured data per observation is the same for all observations

and equal to Ci = C ∈ {10, 25, 200}. Together with the total number of observations,

n = 10000, this implies κ ∈ {10, 4, 0.5}, for the three sets of simulations, respectively.

13An alternative approach would be to dispense with the anchor words assumption, thereby allowing
for the possibility of partial identification, and use an identification-robust method for constructing
confidence sets based on the HMC draws as in Chen et al. (2018).

14We impose the anchor word assumptions in the simulation in the following way. We first draw β1

and β2 from symmetric (V − 50)–dimensional Dirichlet priors. Then we insert 50 zeros into both β1 and
β2 in such that there is no feature v where βv,1 = βv,2 = 0. Data is then simulated from these modified
topic-feature distributions.
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Table 1: Coverage Rates of Confidence Intervals

(a) Coverage for γ (b) Coverage for ϕ

κ 2-Step Bias-corrected 1-Step Infeasible 2-Step 1-Step Infeasible

10 0.575 0.095 0.955 0.955 0.000 0.920 0.975
4 0.635 0.915 0.965 0.955 0.000 0.955 0.975
0.5 0.910 0.935 0.960 0.955 0.025 0.965 0.975

Note: This table reports the coverage rates of 95% confidence intervals for γ1 and ϕ1 across
different values of κ. The values are reported for the two-step and one-step strategies, as
well as for the infeasible estimator that uses the true θi. The bias-corrected estimates are
obtained by subtracting the bias estimated using the formula from Theorem 1 from the
two-step estimates. The coverage rates are computed as the share of simulations in which
the true value of the parameter is included in the 95% confidence interval.

We conduct 200 simulations per set. Further details are included in Appendix B.

We focus on the estimation of two coefficients: (1) γ1, the effect of the increase in θi on

Yi; and (2) ϕ1, the effect of a numerical covariate in (12). Our general theoretical results

in Section 3 are directly applicable to two-step inference on γ1. Proposition 2 also shows

that one should expect a bias for ϕ1 that is also increasing in κ, and especially prominent

when the distribution of θi has non-trivial mass at extreme values. To illustrate that the

difference between the one-step and two-step strategies is due to mis-measurement of θi,

we also estimate the regression coefficients using the true (known) values θi as an input

instead of θ̂i. This approach is, of course, not feasible in practice, but it allows us to

isolate the effect of mis-measurement of θi on the regression coefficients.

Figure 1 presents the results. Each panel shows the coverage rates of confidence

intervals for different parameter values: the share of simulations in which the values of

the parameters are included in the 95% confidence intervals. The grey vertical dashed

lines show the true value of the parameter. The blue vertical dashed line represents

the median (across simulations) of mean posterior estimates for the two-step strategy.

The two top panels show the results for the set of simulations where the amount of

unstructured data per observation is the smallest and so κ = 10 is relatively large. The

theory presented earlier suggests that in this case we should expect the two-step strategy

to perform badly. This is indeed the case. The median (across simulations) estimate of

γ1 in top left, and ϕ1 in top right, are both substantially biased towards zero. Further,

as predicted by theory, the width of the CIs using the two-step strategy is similar to the

infeasible estimator that uses the true θi. This, together with the bias, means that the

CIs based on the two-step strategy under-cover. As reported in Table 1, for γ1 the true

value is included in the 95% CI in only 115/200 (57.5%) of simulations. For ϕ1 this looks

even worse: the true value is never included in the CIs.

On the other hand, the one-step strategy performs very well. The estimates appear
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Note: Each mountain plot presents the share of simulations in which the value of γ1
(respectively ϕ1) on the x-axis is included in the 95% confidence interval. The grey vertical
dashed lines show the true value of the parameter. The blue vertical dashed line represents
the median (across simulations) of mean posterior estimates from the two-step strategy.
The bias reported is the difference between the truth and this median value.

Figure 1: Evolution of Bias in Regression Coefficients across κ Values

26



unbiased, and the CIs have close to nominal coverage. The coverage is 95.5 and 92%

respectively for γ1 and ϕ1. The difference between the lengths of CIs using the one-step

strategy and those using the infeasible estimator is small but noticeable. In the former, θi

is recognized as latent and the uncertainty in θi is accounted for when performing inference

on γ1 and ϕ1. The resulting CIs are approximately 20% wider than those obtained with

the infeasible estimator that uses the true θi.

Moving down from the top panels, we can see the evolution of bias and coverage as the

amount of unstructured data per observation C increases and κ decreases. As predicted

by theory, the bias in the two-step strategy becomes smaller as κ decreases. Increasing

C from 10 in the top panels to 25 in the middle, substantially reduces the absolute value

of median bias in the two-step estimate of γ1, while the width of a typical CI virtually

does not change. This results in a noticeable increase in the coverage rate from 57.5 to

63.5%, but the coverage remains far from nominal. A similar pattern is observed for ϕ1.

Meanwhile, the one-step strategy continues to perform well and one-step CIs are now

hardly distinguishable from (infeasible) CIs based on the true θi. Finally, in the bottom

panels, where C = 200 and κ = 0.5, the pattern continues. The bias in the two-step

strategy is now very small for γ1 and, consequently, coverage rate increases to 91%. A

small, though still noticeable bias remains for ϕ1.

In principle, one can bias-correct the two-step CIs to restore valid inference. This

is feasible because the model for unstructured data we use is sufficiently tractable that

the bias of the OLS estimator of γ1 can be characterized analytically, as in Theorem 1.

By plugging in estimates for B and Θ, we can correct for the asymptotic bias. Notably

though, the formula for the asymptotic bias is based on the first-order approximation

and so for large values of κ it is likely to perform poorly. This is indeed what we find.

For small κ = .5 the median asymptotic bias for γ is −0.03, compared with empirical

median bias of −0.07. Consequently, as reported in Table 1, applying the bias correction

to 2-step estimate improves coverage rate from 91 to 93.5%. For κ = 4 the median

estimated asymptotic bias is slightly larger than the empirical median bias (−0.36 vs.

−0.31), but applying it dramatically improves the coverage rate from 63.5 to 91.5%.

On the other hand, for κ = 10, the bias is poorly estimated and so the coverage rate

actually decreases (from 57.5 to 9.5%) if the bias correction is applied15. This suggests

that the bias correction is not a panacea and that the one-step strategy is a more reliable

approach in practice. Moreover, more complex models for unstructured data may not

admit analytical expressions for bias. The one-step strategy remains feasible in these

cases provided the model for unstructured data is generative (i.e., has a likelihood).

Overall, the simulations confirm the three main insights from Theorem 2: (1) there

is a first order bias in the two-step strategy, which is driven by the mis-measurement

15For more details on the bias correction, see Appendix B.1
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of θi; (2) the bias is larger when κ is larger; (3) the width of the confidence intervals

is not substantially affected by mis-measurement of θi. The simulations also show that

analytical bias-correction may be useful but only if κ is small, i.e. in the cases where

the two-step strategy should already be performing relatively well. On the other hand,

the one-step strategy performs well across all values of κ and is thus a more reliable

approach in practice. The one-step strategy is not only theoretically sound, but also

leads to substantially less biased inference in practice.

Finally, a word on the computational performance is in order. We have found that

Numpyro’s HMC implementation of the STMC model is fast—each simulation took ap-

proximately 4 minutes when estimated on a single mid-range professional GPU, the Nvidia

V100. As such, we think that the one-step strategy is feasible for most researchers, and

that the computational cost is not a major concern.

5.2 CEO Behavior

To show that modeling joint dependence and estimating jointly matters in practice, we

revisit the study of Bandiera et al. (2020), which collects and analyzes data on CEO time

use in a sample of manufacturing firms in several countries. The goal of that paper is to

describe salient differences in executive time use, and to relate those differences to firm

and CEO characteristics as well as firm outcomes.

The estimation sample consists of 916 CEOs, each of whom participated in a survey

that recorded features of time use in each 15-minute interval of a given week, e.g. Monday

8am-8:15am, Monday 8:15am-8:30am, and so forth. The recorded categories are (1) the

type of activity (meeting, public event, etc.); (2) duration of activity (15m, 30m, etc.);

(3) whether the activity is planned or unplanned; (4) the number of participants in the

activity; (5) the functions of the participants in the activity (HR, finance, suppliers, etc.).

In total there are 654 unique combinations of these categories observed in the data. We

let xi,j denote the number of times feature j appears in the time use diary of CEO i. The

average value of Ci is 88.4, with a minimum of 2 and a maximum of 222. Bandiera et al.

(2020) uses LDA with K = 2 dimensions to organize the time use data. The authors refer

to the separate distributions over time use combinations β1 and β2 as pure behaviors.

The share of CEO i’s time devoted to pure behavior 1, θi, is referred to as the CEO index.

The authors use the following inference procedure. First, estimate LDA on the time

use data using the collapsed Gibbs sampler of Griffiths and Steyvers (2004), then form an

estimate θ̂i based on the posterior means. They then use θ̂i as an input into productivity

regressions where Yi is the log of firm i sales, and qi is a vector of firm observables.

Further, they separately analyze which CEO and firm characteristics are associated with

behaviors by regressing θ̂i on a vector of characteristics gi.
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We re-examine these questions using the Supervised Topic Model with Covariates.

To explain CEO behavior, in gi we include log employment (a measure of firm size)

and an indicator for whether the CEO has an MBA degree. To explain sales, in qi we

include log employment and fixed effects for year and country. As before, we use HMC

for inference and the same priors for both strategies.16 The priors used are the same as in

the simulation exercise, except that we set the Dirichlet concentration parameter η = 0.1

to follow the original paper.

As demonstrated both theoretically and through the simulation exercise, the key

quantity that governs the relative importance of sampling error and measurement error

is κ. In the context of the CEO behavior data, the empirical analog of κ is the product

of the square root of the number of observations (CEOs) and the average value of the

inverse of the number of activities per CEO. This value is 0.44, which is close to the

lowest value of κ in the simulation exercise. This suggests that the two-step approach

should perform relatively well in this application. To further test our theory, we also

estimate the model using data where we first sample 10% of the activities for each CEO,

without replacement, with a minimum of one. This scenario could represent a researcher

observing only half of a workday for each CEO, instead of a full five-day workweek. Such

sampling increases the analogue of κ to 4.26, which is near the middle value of κ in the

simulation exercise, indicating that we should expect the two-step approach to perform

poorly under these conditions.

Turning to results, in Table 2 we report the relative probability of observing certain

activities in Pure Behavior 1 relative to Pure Behavior 2. The table shows that estimated

pure behaviors obtained with one-step and two-step strategies are very similar. What is

more, they are also similar to those obtained with LDA and reported in the original paper.

The table suggests that interacting with C-Suite executives, spending time communicat-

ing, and holding multi-function meetings are much more likely under Pure Behavior 1.

Conversely, spending time on plant visits and interacting solely with suppliers are more

likely under Pure Behavior 2. Based on these observations, the original authors label the

CEOs with high values of θ̂i as leaders and those with low values as managers.

In terms of the regression coefficient estimates, we find patterns that are consistent

with theory and the simulation results. In Table 3, we report the estimates of the regres-

sion coefficients under the two-step and one-step strategies. In Panel (a), we show the

estimates for the downstream coefficient γ1, and in Panel (b), we show the estimates for

the upstream coefficients ϕ1. In both panels, columns (1) and (2) report the estimates

obtained using one- and two-step strategies, respectively, for the full sample. The coeffi-

cient on the CEO index in the downstream model is equal to 0.4 and 0.402, respectively,

16We impose the anchor word assumption by zeroing out from β1 (β2) the activity that is relatively
least likely in Pure Behavior 1 (2).
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Table 2: Comparison of Pure Behaviors

Activity 1-step 2-step
Bandiera et al

(2020)

Plant Visits 0.1 0.09 0.11
Suppliers 0.61 0.74 0.32
Production 0.38 0.33 0.46
Just Outsiders 0.74 1.21 0.58
Communication 1.44 1.23 1.49
Multi-Function 1.35 1.12 1.9
Insiders and Outsiders 1.8 1.83 1.9
C-suite 29.78 16.76 33.9

Note: This table reports the relative probability of observing
certain activities in Pure Behavior 1 relative to Pure Behavior 2.
The value of 1 indicates that this activity is equally likely under
both Pure Behaviors. Values higher than 1 mean that this type
of activity is more likely to be performed under Pure Behavior
1. The values are reported in columns (1) and (2) are computed
by first obtaining mean posterior probabilities of each activity
in the given types. In column (3) we present values reported in
Bandiera et al. (2020).

in the two strategies; the CIs have a similar length and exclude 0. Thus, both strategies

suggest that a larger share of time spent on Pure Behavior 1 is associated with higher firm

productivity. In the upstream model, we see larger differences between the two strategies

as in the simulations. While having an MBA and managing larger firms are both asso-

ciated with a higher CEO index, the point estimates differ substantially. As suggested

in the simulations, there appears to be a downward bias in the two-step strategy: for

instance, the coefficient on the MBA dummy is equal to 0.307 in the two-step strategy,

compared to 0.606 in the one-step strategy. The CIs are marginally wider in the one-step

strategy (0.297 vs. 0.261), but as the theory predicts, the difference is not substantial.

Note there is no overlap in the CIs for these coefficients: the one-step CIs lie entirely to

the right of the two-step CIs.

The differences between the strategies are substantially more pronounced when we

consider the estimates obtained using the 10% subsample of unstructured data. Under

the one-step strategy, the empirical conclusions are largely the same as when using the

full data. For example, the point estimate on γ1 changes from 0.402 to 0.439. While the

confidence intervals are 54% wider than when using the full data (reflecting the increased

uncertainty in estimated θi), there is still a strong estimated relationship between CEO

behavior and firm performance. This is not so with the two-step strategy: the point

estimate of γ1 is now halved to 0.211, and the CI includes 0. Likewise, in the upstream

model, the estimate of the coefficient on the MBA indicator remains large and statistically

significant in the one-step strategy, but is reduced by 62% and is no longer statistically
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Table 3: Regression Coefficient Estimates under Alternative Model Specifications

Dependent variable: Log(sales)

(1) 2-Step (2) 1-Step (3) 2-Step (4) 1-Step

CEO Index 0.4 0.402 0.211 0.439
(0.219, 0.572) (0.240, 0.603) (-0.028, 0.449) (0.153, 0.711)

Log Employment 1.212 1.198 1.239 1.199
(1.159, 1.268) (1.154, 1.248) (1.186, 1.29) (1.148, 1.26)

Controls X X X X

Activities’ Sample Full Full 10% 10%

(a) Downstream Model: CEO Index and Firm Productivity

Dependent variable: Un-normalized CEO index

(1) 2-Step (2) 1-Step (3) 2-Step (4) 1-Step

MBA 0.307 0.606 0.118 0.323
(0.176, 0.437) (0.446, 0.743) (-0.012, 0.249) (0.107, 0.486)

Log Employment 0.356 0.492 0.154 0.443
(0.306, 0.406) (0.432, 0.548) (0.104, 0.204) (0.376, 0.507)

Controls X X X X

Activities’ Sample Full Full 10% 10%

(b) Upstream Model: MBA and CEO Index

Note: In parentheses we report symmetric (equal-tailed) 95% confidence interval.

significant in the two-step strategy. This is consistent with the theory and simulation

results, which suggest that the two-step strategy should perform particularly poorly in

this scenario.

What explains the differences in estimates across strategies? To answer this question,

we plot the estimated CEO indices in Figure 2. Panel (a) plots the estimated CEO

indices obtained using the full sample, while Panel (b) plots the estimated CEO indices

obtained using the 10% subsample. The blue line represents the local polynomial fit (with

confidence intervals). The figure shows that when the full sample is used, both strategies

find a large number of CEOs with θ̂i close to 0 and 1, and a strong correlation between the

two estimates. However, the correlation is much weaker for the 10% subsample, suggesting

that there is a large scope for mis-measurement of θi. Interestingly, Proposition 2 suggests

that the bias in the two-step estimate of ϕ1 can be severe when θi has mass near 0 and

1, as appears to be the case in this dataset. This provides an explanation for why the

two-step strategy produces smaller estimates of ϕ1 even in the full dataset.

Taken together, both the simulation results and the analysis of CEO behavior data

highlight the importance of having a large amount of unstructured data per observation.

Without it, the coefficients estimated using the two-step strategy can be badly biased,
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Note: Each point represents the mean posterior estimate of a single CEO’s index, θ̂i. The
blue line is the local polynomial fit (with confidence intervals) obtained with ‘ggplots’s’
‘geom smooth’ with default parameters.

Figure 2: Scatterplots of Estimated CEO Indices θ̂i

which can lead to incorrect empirical conclusions. The good statistical and computational

performance of the one-step strategy makes it attractive to guard against this risk.

6 Conclusion

The leading strategy for analyzing unstructured data uses two steps. First, quanti-

tative representations of unstructured data are extracted in an upstream information

retrieval step. Second, the derived quantitative representations are plugged into down-

stream econometric models, with the representations treated as regular numerical data

for the purposes of estimation and inference. This paper highlights, both theoretically

and empirically, a previously unrecognized problem with this popular two-step strategy:

measurement error introduced in the first step leads to biased estimates and invalid infer-

ence for downstream regression coefficients. The degree of bias, and therefore the degree

to which it distorts inference, depends on the relative importance of measurement er-

ror and sampling error, but it can be material in applications. To guard against it, we

propose a robust inference method based on joint maximum likelihood estimation of the

IR and regression models. Joint estimation is straightforward using HMC and modern

probabilistic programming languages. This strategy outperforms the two-step strategy in

simulations and generates quantitatively important differences in a leading application.
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Implementing the one-step strategy requires formulating a likelihood. Latest-generation

machine-learning- and AI-based approaches to information retrieval increasingly use neu-

ral networks with no obvious structure that yields a likelihood. While implementing the

one-step strategy may not be possible in these settings, the measurement error problem

does not thereby disappear: it simply becomes harder to characterize. Such approaches

are often given statistical foundations following their adoption and, as this process plays

out, the scope for the one-step strategy will expand accordingly.17

Finally, we note there are limits on the scalability of HMC, even when fully optimized.

When one confronts a vast amount of data, alternative approaches for approximating the

joint distribution in the one-step strategy must be used. One popular choice in computer

science is variational inference (VI; Jordan et al. 1998, Wainwright and Jordan 2008)

which has recently seen applications in economics (Bonhomme 2021, Olenski and Sacher

2022, Mele and Zhu 2023). VI is no more complicated to implement because it too

can be formulated within probabilistic programming languages that rely on automatic

differentiation (Hoffman et al. 2013). However, VI has fewer statistical guarantees than

HMC because it uses an approximate likelihood in place of the true likelihood. In ongoing

work, we are studying how to best perform scalable inference in the one-step strategy

with massive data.

17One illustrative example is the popular word2vec model for producing word embeddings. The orig-
inal model (Mikolov et al. 2013b,a) had no statistical interpretation but yielded word representations
that nevertheless captured semantic relationships well. Word2vec has subsequently been adopted by
economists as part of the two-step strategy, for example to measure occupation-level exposure to tech-
nological change (Kogan et al. 2019) and emotionality in political speech (Gennaro and Ash 2022). In
parallel, a literature has developed likelihood-based interpretations of embeddings (Arora et al. 2016,
Dieng et al. 2020, Ruiz et al. 2020) which could in principle be adapted for use in the one-step strategy.
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A Proofs

Notation Let ∥ ·∥ denote the Euclidean norm when applied to vectors and the spectral

norm when applied to matrices. Let ∥ · ∥F denote the Frobenius norm.

A.1 Proofs for Section 2

Proof of Proposition 1. We start by writing

√
n(γ̂1 − γ1) =

1√
n

∑n
i=1(Yi − γ1(θ̂i − ¯̂

θ))(θ̂i − ¯̂
θ)

1
n

∑n
i=1(θ̂i −

¯̂
θ)2

= −γ1

1√
n

∑n
i=1(θ̂i − θi)(θ̂i − ¯̂

θ)

1
n

∑n
i=1(θ̂i −

¯̂
θ)2

+

1√
n

∑n
i=1 εi(θ̂i −

¯̂
θ)

1
n

∑n
i=1(θ̂i −

¯̂
θ)2

=: T1,n + T2,n,

where
¯̂
θ = 1

n

∑n
i=1 θ̂i. Note by Chebyshev’s inequality that for integers k1, k2 ≥ 0 and any

t > 0, we have

Pr

(∣∣∣∣∣ 1n
n∑

i=1

θ̂k1i θk2i − E[θ̂k1i θk2i ]

∣∣∣∣∣ > t

)
≤ E[θ̂2k1i θ2k2i ]

t2n
≤ 1

t2n
. (14)

Consider the denominator term in T1,n and T2,n. By inequality (14), we have∣∣∣∣∣ 1n
n∑

i=1

(θ̂i − ¯̂
θ)2 − Var(θ̂i)

∣∣∣∣∣→p 0,

where, by the law of total variance and independence of Ci and θi,

Var(θ̂i) = Var(θi) + E
[
1

Ci

]
E[θi(1− θi)] → Var(θi)

because E
[
C−1

i

]
→ 0.

For the numerator in T1,n, we similarly have∣∣∣∣∣ 1√
n

n∑
i=1

(θ̂i − θi)(θ̂i − ¯̂
θ)− 1√

n

n∑
i=1

(θ̂i − θi)(θ̂i − E[θ̂i])

∣∣∣∣∣→p 0.

Because E[θ̂i|θi] = θi and Var(θ̂i|θi, Ci) = C−1
i θi(1− θi), we have

E
[√

n(θ̂i − θi)(θ̂i − E[θ̂i])
]
= E

[√
n(θ̂i − θi)

2
]

=
√
nE

[
1

Ci

]
E[θi(1− θi)] → κE[θi(1− θi)] .
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A second application of inequality (14) gives

Pr

(∣∣∣∣∣ 1n
n∑

i=1

√
n(θ̂i − θi)(θ̂i − E[θ̂i])− E[

√
n(θ̂i − θi)(θ̂i − E[θ̂i])]

∣∣∣∣∣ > t

)

≤ E[(θ̂i − θi)
2(θ̂i − E[θ̂i])2]
t2

≤ E[(θ̂i − θi)
2]

t2
= E

[
1

Ci

]
E[θi(1− θi)]

t2
→ 0 .

Hence,

T1,n →p −κ γ1
E[θi(1− θi)]

Var(θi)
.

For T2,n, we have∣∣∣∣∣ 1√
n

n∑
i=1

εi(θ̂i − ¯̂
θ)− 1√

n

n∑
i=1

εi(θ̂i − θi)−
1√
n

n∑
i=1

εi(θi − E[θi])

∣∣∣∣∣→p 0

because (
¯̂
θ−E[θi])× 1√

n

∑n
i=1 εi →p 0. Note that E[εi(θ̂i−θi)] = 0 because Yi and (Xi, Ci)

are independent conditional on θi and both εi and θ̂i − θi have conditional (on θi) mean

zero. Hence by Chebyshev’s inequality, for any t > 0 we have

Pr

(∣∣∣∣∣ 1n
n∑

i=1

√
nεi(θ̂i − θi)

∣∣∣∣∣ > t

)
≤ E[ε2i (θ̂i − θi)

2]

t2
= E

[
1

Ci

]
E[ε2i θi(1− θi)]

t2
→ 0,

because εi and (Xi, Ci) are independent conditional on θi, Ci and θi are independent, and

E
[
C−1

i

]
→ 0. Finally, 1√

n

∑n
i=1 εi(θi − E[θi]) is asymptotically N(0,E[ε2i (θi − E[θi])2]) by

the central limit theorem. ■

The next assumption is used to derive Proposition 2.

Assumption 3. (i) Var(Zi) > 0, E[Z2
i ] < ∞, and E[u2

i (Zi − E[Zi])
2] < ∞.

(ii) Pr(θi ∈ [δ, 1− δ]) = 1 for some δ > 0.

(iii) Ci ≳ (log n)1+ε almost surely for some ε > 0.

Part (i) is standard and ensures the OLS estimator of ϕ1 without measurement error

is well defined with finite asymptotic variance. Part (ii) is made to simplify technical

arguments and can be relaxed, e.g., by controlling the rate at which the distribution of θi

behaves at the boundary of its support. Finally, part (iii) is the same as Assumption 2(vi)

and is also made to simplify technical derivations and can be relaxed.

Proof of Proposition 2. To simplify notation, let Yi = log
(

θi
1−θi

)
and Ŷi = log

(
θ̂i

1−θ̂i

)
.
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We have

√
n(ϕ̂1 − ϕ1) =

1√
n

∑n
i=1 ui(Zi − Z̄)

1
n

∑n
i=1(Zi − Z̄)2

+

1√
n

∑n
i=1(Ŷi − Yi)(Zi − Z̄)

1
n

∑n
i=1(Zi − Z̄)2

=: T1,n + T2,n,

where Z̄ = 1
n

∑n
i=1 Zi. It follows by standard arguments that under Assumption 3(i), we

have

T1,n →d N

(
0,

E [u2
i (Zi − E[Zi])

2]

Var(Zi)2

)
and 1

n

∑n
i=1(Zi − Z̄)2 →p Var(Zi).

It remains to characterize the numerator of T2,n. To this end, first note that with δ

as in Assumption 3(ii), we have

Pr

(
min
1≤i≤n

θ̂i < δ/2

∣∣∣∣ {(Ci, θi)}ni=1

)
≤

n∑
i=1

Pr
(
θ̂i < δ/2

∣∣∣Ci, θi

)
≤

n∑
i=1

Pr
(
θ̂i < θi/2

∣∣∣Ci, θi

)
(almost surely)

≤
n∑

i=1

e−
1
8
Ciθi (almost surely)

≤ ne−
1
8
δc(logn)1+ϵ

(almost surely),

where the first inequality is by the union bound, the second is by Assumption 3(ii), the

third is by Chernoff’s inequality for Binomial random variables, and the fourth is because

Ci ≥ c(log n)1+ϵ for some c > 0 and θi ≥ δ both hold for all i with probability one by

Assumption 3(ii)-(iii). Therefore,

Pr

(
min
1≤i≤n

θ̂i < δ/2

)
≤ ne−

1
8
δc(logn)1+ϵ → 0. (15)

We may similarly deduce that

Pr

(
max
1≤i≤n

θ̂i > 1− δ/2

)
→ 0, (16)

and that

max
1≤i≤n

∣∣∣θ̂i − θi

∣∣∣→p 0. (17)

In view of Assumption 3(ii), condition (17) also implies that max1≤i≤n |Ŷi − Yi| →p 0

because x 7→ log( x
1−x

) is uniformly continuous on [δ, 1 − δ]. But then note that this
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implies

1√
n

n∑
i=1

(Ŷi − Yi)(E[Zi]− Z̄) ≤ max
1≤i≤n

|Ŷi − Yi||
√
n(E[Zi]− Z̄)| →p 0

by Assumption 3(i). It therefore remains to show

1√
n

n∑
i=1

(
Ŷi − Yi

)
(Zi − E[Zi]) →p κCov

(
2θi − 1

2θi(1− θi)
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)
.

By Taylor’s theorem, we have

Ŷi − Yi =
θ̂i − θi

θi(1− θi)
+

(2θi − 1)(θ̂i − θi)
2

2θ2i (1− θi)2
+

(3θ̃2i − 3θ̃i + 1)(θ̂i − θi)
3

3θ̃3i (1− θ̃i)3

where θ̃i is between θi and θ̂i. Note that Assumption 3(ii) implies that θi(1 − θi) ≥ δ2.

We also have by (15) and (16) that θ̃i(1 − θ̃i) ≥ δ2/4 with probability approaching one

(wpa1). Thus, all terms on the right-hand side are well defined wpa1. We control the

covariance of Zi with these terms using E[θ̂i|θi] = θi and Var(θ̂i|θi, Ci) = C−1
i θi(1 − θi)

and the fact that (Xi, Ci) and Zi are independent conditional on θi as follows:

First, by Chebyshev’s inequality, we have for t > 0 that

Pr
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n
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2
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]
→ 0

by (3), independence of (Xi, Ci) and Zi conditional on θi, and independence of Ci and

(θi, Zi). Second, we similarly have
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2θi − 1

2θi(1− θi)
, Zi

)
.

Moreover, letting Wi =
(2θi−1)(θ̂i−θi)

2

2θ2i (1−θi)2
(Zi−E[Zi]) and noting |2θi− 1| ≤ 1 and |θ̂i− θi| ≤ 1

because θi, θ̂i ∈ [0, 1], we have by Chebyshev’s inequality that for t > 0,

Pr

(∣∣∣∣∣ 1√
n

n∑
i=1

Wi − E[Wi]

∣∣∣∣∣ > t

)
≤ 1

t2
E[W 2

i ] ≤
1

4t2
E

[
(θ̂i − θi)

2

θ4i (1− θi)4
(Zi − E[Zi])

2

]

≤ 1

4t2
E
[
1

Ci

]
E
[
(Zi − E[Zi])

2

θ3i (1− θi)3

]
→ 0.
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Finally, because θ̃i ∈ [δ/2, 1 − δ/2] holds for all 1 ≤ i ≤ n wpa1, there is a positive

constant D such that∣∣∣∣∣ 1√
n

n∑
i=1

(3θ̃2i − 3θ̃i + 1)(θ̂i − θi)
3

3θ̃3i (1− θ̃i)3
(Zi − E[Zi])

∣∣∣∣∣
≤ D max

1≤i≤n
|θ̂i − θi|

(
1√
n

n∑
i=1

(θ̂i − θi)
2|Zi − E[Zi]|

)

holds wpa1. Hence, in view of (17), it suffices to show that the right-hand side term is

bounded in probability. To this end, note by Markov’s inequality that for t > 0,

Pr

(
1√
n

n∑
i=1

(θ̂i − θi)
2|Zi − E[Zi]| > t

)
≤ 1

t

√
nE

[
(θ̂i − θi)

2|Zi − E[Zi]|
]

=
1

t

√
nE

[
1

Ci

]
E [θi(1− θi)|Zi − E[Zi]|]

→ 1

t
κE [θi(1− θi)|Zi − E[Zi]|] ,

as required. ■

A.2 Proofs for Section 3

The next two lemmas apply in both fixed-populations and sequences-of-populations.

Lemma 1. Suppose that (5) holds. Then

E
[
p̂ip̂

T
i

∣∣Ci,θi
]
= BTθiθ

T
i B+

1

Ci

(
diag(BTθi)−BTθiθ

T
i B
)
,

and

E
[
(p̂i − pi)(p̂i − pi)

T
∣∣Ci,θi

]
=

1

Ci

(
diag(BTθi)−BTθiθ

T
i B
)
.

Proof of Lemma 1. First note by (5) that

E
[
p̂ip̂

T
i

∣∣Ci,θi
]
=

1

C2
i

E
[
xix

T
i

∣∣Ci,θi
]

=
1

C2
i

(
E [xi|Ci,θi]E [xi|Ci,θi]

T +Var [xi|Ci,θi]
)

= BTθiθ
T
i B+

1

Ci

(
diag(BTθi)−BTθiθ

T
i B
)
,

where the last line follows from the mean and variance of the multinomial distribution.

The second result now follows because E [ p̂i|Ci,θi] = pi = BTθi. ■
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Lemma 2. Let Assumption 1(i)-(iii) hold. Then∥∥∥∥∥ 1n
n∑

i=1

θ̂i θ̂
T
i − E

[
θiθ

T
i

]
− E

[
1

Ci

] (
(BBT )−1Bdiag(BTE[θi])BT (BBT )−1 − E

[
θiθ

T
i

])∥∥∥∥∥→p 0.

Proof of Lemma 2. In view of Assumption 1(iii), we have∥∥∥∥∥ 1n
n∑

i=1

θ̂i θ̂
T
i − (B̂B̂T )−1B̂

(
1

n

n∑
i=1

p̂ip̂
T
i

)
B̂T (B̂B̂T )−1

∥∥∥∥∥→p 0

where (B̂B̂T )−1 exists with probability approaching one by Assumption 1(i)-(ii). Each

element of p̂ip̂
T
i is bounded between 0 and 1, so we may deduce by Chebyshev’s inequality

that ∥∥∥∥∥ 1n
n∑

i=1

p̂ip̂
T
i − E

[
p̂ip̂

T
i

]∥∥∥∥∥→p 0.

Hence, by Assumption 1(ii) and Slutsky’s theorem, we have∥∥∥∥∥ 1n
n∑

i=1

θ̂i θ̂
T
i − (BBT )−1BE

[
p̂ip̂

T
i

]
BT (BBT )−1

∥∥∥∥∥→p 0.

The result follows by Lemma 1 and independence of Ci and θi. ■

Lemma 3. Let Assumption 1(iv) hold. Then

1

n

n∑
i=1

qiq
T
i →p E

[
qiq

T
i

]
,

(
1

n

n∑
i=1

qiq
T
i

)−1

→p E
[
qiq

T
i

]−1
.

Proof of Lemma 3. The first result follows by the law of large numbers (LLN). The second

result then follows because the rank condition on E
[
ξiξ

T
i

]
implies E

[
qiq

T
i

]
has full

rank. ■

Lemma 4. Let Assumption 1 hold. Then

1

n

n∑
i=1

θ̂iq
T
i →p E

[
θiq

T
i

]
.

Proof of Lemma 4. In view of Assumption 1(iii)-(iv), we have∥∥∥∥∥ 1n
n∑

i=1

θ̂iq
T
i − (B̂B̂T )−1B̂

(
1

n

n∑
i=1

p̂iq
T
i

)∥∥∥∥∥
≤
(
max
1≤i≤n

∥θ̂i − (B̂B̂T )−1B̂p̂i∥
)
× 1

n

n∑
i=1

∥qi∥ →p 0.
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Moreover, (B̂B̂T )−1B̂ →p (BBT )−1B by Assumption 1(i)-(ii). Let Xi = qi p̂
T
i − E[qi p̂

T
i ]

and let D denote the dimension of qi. Then

E

∥∥∥∥∥ 1n
n∑

i=1

Xi

∥∥∥∥∥
2

F

 =
1

n

D∑
j=1

V∑
k=1

E
[
(Xi)

2
j,k

]
≤ 1

n

D∑
j=1

V∑
k=1

E
[
(qi,j)

2 (p̂i,k)
2]

≤ 1

n
E
[
∥qi∥2

]
→ 0,

by Assumption 1(iv) and the fact that p̂i is in the simplex. Hence, 1
n

∑n
i=1Xi →p 0. The

result follows by Slutsky’s theorem, noting that E[qip̂
T
i ] = E[qiθ

T
i ]B. ■

In what follows, we let 0 denote a conformable matrix of zeros.

Lemma 5. Let Assumption 1 hold. Then∥∥∥∥∥ 1n
n∑

i=1

ξ̂i ξ̂
T
i − E

[
ξiξ

T
i

]
−

[
E
[

1
Ci

]
S
(
(BBT )−1B diag(BTE[θi])BT (BBT )−1 − E

[
θiθ

T
i

])
ST 0

0 0

]∥∥∥∥∥→p 0.

Proof of Lemma 5. Note that

1

n

n∑
i=1

ξ̂i ξ̂
T
i =

 S ( 1
n

∑n
i=1 θ̂i θ̂

T
i

)
ST S

(
1
n

∑n
i=1 θ̂iq

T
i

)(
1
n

∑n
i=1 qi θ̂

T
i

)
ST 1

n

∑n
i=1 qiq

T
i

 .

The result follows by Lemmas 2, 3, and 4. ■

Proof of Theorem 1. First consider the denominator. By Lemma 5, we have

1

n

n∑
i=1

ξ̂i ξ̂
T
i →p E

[
ξiξ

T
i

]
+

[
E
[

1
Ci

]
S
(
(BBT )−1B diag(BTE[θi])BT (BBT )−1 − E

[
θiθ

T
i

])
ST 0

0 0

]
. (18)

For the numerator term, first note that

1

n

n∑
i=1

ξ̂iYi =

[
S
(

1
n

∑n
i=1 θ̂iYi

)
1
n

∑n
i=1 qiYi

]
. (19)
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For the upper block on the right-hand side, we use Assumption 1(iii) to deduce∥∥∥∥∥ 1n
n∑

i=1

θ̂iYi − (B̂B̂T )−1B̂

(
1

n

n∑
i=1

p̂iYi

)∥∥∥∥∥→p 0.

We have (B̂B̂T )−1B̂ →p (BBT )−1B by Assumption 1(i)-(ii). Moreover, by the LLN and

independence of xi and Yi conditional on (Ci,θi), we have

1

n

n∑
i=1

p̂iYi →p E [p̂iYi] = E
[
E
[
xi

Ci

∣∣∣∣Ci,θi

]
E [Yi|Ci,θi]

]
= E

[
BTθiE [Yi|Ci,θi]

]
= BTE [θiE [Yi|θi,qi]]

= BTE
[
θiθ

T
i

]
STγ +BTE

[
θiq

T
i

]
α,

Hence,

S

(
1

n

n∑
i=1

θ̂iYi

)
→p SE

[
θiθ

T
i

]
STγ + SE

[
θiq

T
i

]
α .

Similarly, for the lower block on the right-hand side of (19), we have by the LLN that

1

n

n∑
i=1

qiYi →p E[qiYi] = E
[
qiθ

T
i

]
STγ + E

[
qiq

T
i

]
α.

Combining the above two displays, we have

1

n

n∑
i=1

ξ̂iYi →p E
[
ξiξ

T
i

]
ψ. (20)

The first result follows from (18) and (20). Note that the matrix on the right-hand

side of (18) is bounded below (in Loewner order) by E
[
ξiξ

T
i

]
so its inverse is well defined

by Assumption 1(iv). The second result follows because (A+∆)−1 = A−1−A−1∆A−1+

O(∥∆∥2) for A invertible and ∆ small. ■

The next three lemmas are used in the proof of Theorem 2. They are derived in the

sequence-of-populations asymptotic framework.

Lemma 6. Let Assumption 2(i)-(iii) hold. Then

1√
n

n∑
i=1

θ̂i (θi − θ̂i)T →p −κ
(
(BBT )−1B diag(BTE[θi])BT (BBT )−1 − E[θiθTi ]

)
.

Proof of Lemma 6. First note that
∥∥∥ 1√

n

∑n
i=1 θ̂i (θi − θ̂i)T − T1,n − T2,n

∥∥∥ →p 0 by As-
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sumption 2(iii), where

T1,n = (B̂B̂T )−1B̂

((
1

n

n∑
i=1

p̂ip
T
i

)
√
n
(
BT (BBT )−1 − B̂T (B̂B̂T )−1

))

T2,n = (B̂B̂T )−1B̂

(
1√
n

n∑
i=1

p̂i(pi − p̂i)
T

)
B̂T (B̂B̂T )−1.

Assumption 2(i)-(ii) implies
√
n(BT (BBT )−1− B̂T (B̂B̂T )−1) →p 0. As ∥ 1

n

∑n
i=1 p̂ip

T
i ∥ ≤

1, it follows that T1,n →p 0. For term T2,n, note by Lemma 1 that

E
[
p̂i (p̂i − pi)

T
]
= E

[
(p̂i − pi) (p̂i − pi)

T
]

= E
[
1

Ci

] (
diag

(
BTE [θi]

)
−BTE

[
θiθ

T
i

]
B
)
. (21)

Let Xi = p̂i (p̂i − pi)
T − E

[
p̂i (p̂i − pi)

T
]
. Then

E

∥∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥∥
2

F

 =
V∑
j=1

V∑
k=1

E
[
(Xi)

2
j,k

]
≤

V∑
j=1

V∑
k=1

E
[
(p̂i,j)

2 (p̂i,k − pi,k)
2]

≤
V∑

k=1

E
[
(p̂i,k − pi,k)

2]→ 0,

where the second inequality is because p̂i is in the simplex and the convergence to zero

holds in view of (7) and (21). It follows that∥∥∥∥∥ 1√
n

n∑
i=1

p̂i(pi − p̂i)
T −

√
nE

[
p̂i (pi − p̂i)

T
]∥∥∥∥∥→p 0.

We conclude that T2,n →p −κ
(
(BBT )−1B diag(BTE[θi])BT (BBT )−1 − E[θiθTi ]

)
by (7),

(21), and Assumption 2(i)-(ii) ■

Lemma 7. Let Assumption 2(i)-(iv) hold. Then

1√
n

n∑
i=1

qi(θi − θ̂i)T →p 0.

Proof of Lemma 7. First note that
∥∥∥ 1√

n

∑n
i=1 qi(θi − θ̂i)T − T1,n − T2,n

∥∥∥ →p 0 by As-
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sumption 2(iii)-(iv), where

T1,n =

((
1

n

n∑
i=1

qip
T
i

)
√
n
(
BT (BBT )−1 − B̂T (B̂B̂T )−1

))

T2,n =

(
1√
n

n∑
i=1

qi(pi − p̂i)
T

)
B̂T (B̂B̂T )−1.

Assumption 2(i)-(ii) implies that
√
n(BT (BBT )−1 − B̂T (B̂B̂T )−1) →p 0. Moreover,

∥ 1
n

∑n
i=1 qi p

T
i ∥ ≤ 1

n

∑n
i=1 ∥qi∥, which is bounded in probability by Assumption 2(iv).

It follows that T1,n →p 0. For T2,n, note that E[qi(p̂i − pi)
T ] = 0 by independence of qi

and xi conditional on (Ci,θi). Let Xi = qi (p̂i − pi)
T and D the dimension of qi. Then

E

∥∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥∥
2

F

 =
D∑
j=1

V∑
k=1

E
[
(Xi)

2
j,k

]
=

D∑
j=1

V∑
k=1

E
[
(qi,j)

2 (p̂i,k − pi,k)
2]

≤
D∑
j=1

V∑
k=1

E
[
(qi,j)

4]1/2 E [(p̂i,k − pi,k)
4]1/2

≤ constant×
V∑

k=1

E
[
(p̂i,k − pi,k)

2]1/2 → 0,

where the first inequality is by Cauchy-Schwarz, the second is by Assumption 2(iv) and

the fact that |p̂i,k − pi,k| ≤ 1, and convergence to zero is by (7) and (21). It follows that
1√
n

∑n
i=1 Xi →p 0. We conclude by Assumption 2(i)-(ii) that T2,n →p 0. ■

Lemma 8. Let Assumption 2(vi) hold. Then

max
1≤i≤n

∥p̂i − pi∥ →p 0.

Proof of Lemma 8. Let ∥ · ∥1 be the ℓ1 norm. As p̂i|(Ci,θi) ∼ Ci
−1Multinomial(Ci,pi),

for all t > 0 we have

Pr

(
max
1≤i≤n

∥p̂i − pi∥1 > t

∣∣∣∣ {(Ci,θi)}ni=1

)
≤

n∑
i=1

(2V − 2) exp

{
−Cit

2

2K

}

by the union bound and Lemma 1 of Mardia et al. (2019). Then by Assumption 2(vi),

Pr

(
max
1≤i≤n

∥p̂i − pi∥1 > t

)
≤ n(2V − 2) exp

{
−c(log n)1+ϵt2

2K

}
,

where c, ϵ > 0. Hence, max1≤i≤n ∥p̂i − pi∥1 →p 0. The result now follows because the ℓ1

norm is weakly greater than the Euclidean norm. ■
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Proof of Theorem 2. First consider the denominator term. By Lemma 5 and condition

(7), we have 1
n

∑n
i=1 ξ̂i ξ̂

T
i →p E[ξiξTi ]. Hence, by Assumption 2(iv),

(
1

n

n∑
i=1

ξ̂i ξ̂
T
i

)−1

→p E[ξiξTi ]−1. (22)

Now consider the numerator term. We have

1√
n

n∑
i=1

ξ̂i (Yi − ξ̂Ti ψ) =
1√
n

n∑
i=1

ξ̂i(ξi − ξ̂i)Tψ +
1√
n

n∑
i=1

ξ̂iεi =: T1,n + T2,n.

First consider term T1,n. By definition,

T1,n =

 S ( 1√
n

∑n
i=1 θ̂i(θi − θ̂i)T

)
STγ(

1√
n

∑n
i=1 qi(θi − θ̂i)T

)
STγ

 .

It follows by Lemmas 6 and 7 that

T1,n →p

[
−κS

(
(BBT )−1B diag(BTE[θi])BT (BBT )−1 − E[θiθTi ]

)
STγ

0

]
. (23)

Now consider term T2,n. By construction,

T2,n =

 S ( 1√
n

∑n
i=1 θ̂iεi

)
1√
n

∑n
i=1 qiεi

 .

We may deduce by arguments similar to those in the proof of Lemma 6 that∥∥∥∥∥ 1√
n

n∑
i=1

θ̂iεi − (BBT )−1B

(
1√
n

n∑
i=1

p̂iεi

)∥∥∥∥∥→p 0.

under Assumption 2(i)-(iii). Moreover,

E
[
ε2i ∥p̂i − pi∥2

]
= E

[
E
[
ε2i
∣∣Ci,θi

]
E
[
∥p̂i − pi∥2

∣∣Ci,θi
]]

= E
[
E
[
ε2i
∣∣Ci,θi

] 1

Ci

tr
{
diag(BTθi)−BTθiθ

T
i B
}]

= E
[
1

Ci

]
E
[
ε2i
(
diag(BTθi)−BTθiθ

T
i B
)]

→ 0.

In the above display, the first equality is by independence of (Yi,qi) and xi conditional on

(Ci,θi), the second is by Lemma 1, and the third is by independence of Ci and (Yi,θi,qi).
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Therefore,
1√
n

n∑
i=1

(p̂i − pi)εi →p 0

and so ∥∥∥∥∥T2,n −
1√
n

n∑
i=1

ξiεi

∥∥∥∥∥→p 0.

Note that E
[
ε2i ξiξ

T
i

]
is finite by Assumption 2(iv)-(v). It follows by the central limit

theorem that

T2,n →d N
(
0,E

[
ε2i ξiξ

T
i

])
. (24)

Result (8) now follows by combining (22), (23), and (24).

For result (9), it remains to show

1

n

n∑
i=1

ε̂2i ξ̂i ξ̂
T
i →p E

[
ε2i ξiξ

T
i

]
.

To this end, first write

1

n

n∑
i=1

ε̂2i ξ̂i ξ̂
T
i =

1

n

n∑
i=1

ε2i ξiξ
T
i +

1

n

n∑
i=1

ε2i

(
ξ̂i ξ̂

T
i − ξiξTi

)
+

1

n

n∑
i=1

(ε̂2i − ε2i )ξ̂i ξ̂
T
i =: T3,n + T4,n + T5,n.

Evidently, T3,n →p E
[
ε2i ξiξ

T
i

]
by the LLN. Now consider T4,n. By construction, we have

T4,n =

[
1
n

∑n
i=1 ε

2
i (θ̂i θ̂

T
i − θiθTi ) 1

n

∑n
i=1 ε

2
i (θ̂i − θi)qT

i

1
n

∑n
i=1 ε

2
iqi(θ̂i − θi)T 0

]
.

Consider the upper-left block. We may deduce by arguments similar to those in the proof

of Lemma 6 that∥∥∥∥∥ 1n
n∑

i=1

ε2i (θ̂i θ̂
T
i − θiθTi )− (BBT )−1B

(
1

n

n∑
i=1

ε2i (p̂ip̂
T
i − pip

T
i )

)
BT (BBT )−1

∥∥∥∥∥→p 0,

by Assumption 2(i)-(iii),(v). Since pi and p̂i both take values in the simplex, we have

∥p̂ip̂
T
i − pip

T
i ∥ ≤ 2∥p̂i − pi∥ and so∥∥∥∥∥ 1n

n∑
i=1

ε2i (p̂ip̂
T
i − pip

T
i )

∥∥∥∥∥ ≤ 2

(
max
1≤i≤n

∥p̂i − pi∥
)

1

n

n∑
i=1

ε2i →p 0,

by Lemma 8 and Assumption 2(v). Now consider the lower-left (equivalently, upper-right)
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block. Again by arguments similar to those in the proof of Lemma 7, we have∥∥∥∥∥ 1n
n∑

i=1

ε2iqi(θ̂i − θi)T −

(
1

n

n∑
i=1

ε2iqi(p̂i − pi)
T

)
BT (BBT )−1

∥∥∥∥∥→p 0,

by Assumption 2(i)-(v). But note that∥∥∥∥∥ 1n
n∑

i=1

ε2iqi(p̂i − pi)
T

∥∥∥∥∥ ≤
(
max
1≤i≤n

∥p̂i − pi∥
)

1

n

n∑
i=1

ε2i ∥qi∥ →p 0,

by Lemma 8 and Assumption 2(iv)-(v). Therefore, T4,n →p 0.

Now consider T5,n. We have

ε̂i − εi = (Sθ̂i)
T (γ − γ̂) + (S(θi − θ̂i))Tγ + qT

i (α− α̂),

where

max
1≤i≤n

∣∣∣(Sθ̂i)T (γ̂ − γ)
∣∣∣ ≤ (max

1≤i≤n
∥S(θ̂i − (B̂B̂T )−1B̂p̂i)∥+ ∥S(B̂B̂T )−1B̂∥

)
∥γ̂−γ∥ →p 0

by Assumption 2(iii), consistency of γ̂, and the fact that ∥(B̂B̂T )−1B̂∥ is bounded in

probability by Assumption 2(i)-(ii) and ∥p̂i∥ ≤ 1. Moreover,

max
1≤i≤n

|(S(θ̂i − θi))Tγ| ≤ ∥S∥
(

max
1≤i≤n

∥θ̂i − (B̂B̂T )−1B̂p̂i∥

+
∥∥∥(B̂B̂T )−1B̂− (BBT )−1B

∥∥∥+ ∥∥(BBT )−1B
∥∥ max

1≤i≤n
∥p̂i − pi∥

)
∥γ∥ .

Consider the three terms in parentheses on the right-hand side of this display. The first

two terms converge in probability to zero by Assumption 2(i)-(iii) and the third converges

in probability to zero by Lemma 8. Finally, we have

max
1≤i≤n

∥∥qT
i (α− α̂)

∥∥ ≤
(
max
1≤i≤n

∥qi∥
)
∥α− α̂∥ →p 0

by
√
n-consistency of α̂ and the fact that n−1/4max1≤i≤n ∥qi∥ →p 0 by Assumption 2(iv).

Therefore, max1≤i≤n |ε̂i − εi| →p 0.

Now, since

ε̂2i − ε2i = 2(ε̂i − εi)εi + (ε̂i − εi)
2,

we have

T5,n =
2

n

n∑
i=1

(ε̂i − εi)εiξ̂i ξ̂
T
i +

1

n

n∑
i=1

(ε̂i − εi)
2ξ̂i ξ̂

T
i ,
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and so

∥T5,n∥ ≤ 2

(
max
1≤i≤n

|ε̂i − εi|
)

1

n

n∑
i=1

|εi|∥ξ̂i∥2 +
(
max
1≤i≤n

|ε̂i − εi|2
)

1

n

n∑
i=1

∥ξ̂i∥2

=

(
max
1≤i≤n

|ε̂i − εi|
)
tr

{
2

n

n∑
i=1

|εi|ξ̂i ξ̂Ti

}
+

(
max
1≤i≤n

|ε̂i − εi|2
)
tr

{
1

n

n∑
i=1

ξ̂i ξ̂
T
i

}
→p 0,

because 1
n

∑n
i=1 |εi|ξ̂i ξ̂Ti is bounded in probability by control of T3,n and T4,n, which

together imply 1
n

∑n
i=1 ε

2
i ξ̂i ξ̂

T
i is bounded in probability, and 1

n

∑n
i=1 ξ̂i ξ̂

T
i is bounded in

probability by Lemma 5. ■

Proof of Theorem 3. Let Si = p1,i · p2,i and Ŝi = p̂1,i · p̂2,i. By standard OLS algebra,

√
n(γ̂1−γ1) =

1

1
n

∑n
i=1(Ŝi − ¯̂

S)2

(
1√
n

n∑
i=1

εi(Ŝi − ¯̂
S)−

(
1√
n

n∑
i=1

(Ŝi − Si)(Ŝi − ¯̂
S)

)
γ1

)
,

where
¯̂
S = 1

n

∑n
i=1 Ŝi.

By Chebyshev’s inequality, for all integers k1, k2 ≥ 0 and all t > 0, we have

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Ŝk1
i Sk2

i − E
[
Ŝk1
i Sk2

i

]∣∣∣∣∣ > t

)
≤ 1

nt2
E
[
Ŝ2k1
i S2k2

i

]
≤ 1

nt2
, (25)

because |Ŝi| ≤ ∥p̂1,i∥∥p̂2,i∥ ≤ 1 by virtue of the fact that ∥p̂t,i∥ ≤ ∥p̂t,i∥1 = 1 for t = 1, 2,

with ∥ · ∥1 denoting the ℓ1 norm, and similarly for Si. Let Fi = (p1,i,p2,i, C1,i, C2,i). Note

that

E
[
Ŝi

∣∣∣Fi

]
= Si

because x1,i, and x2,i are independent conditional on (C1,i, C2,i,p1,i,p2,i). Hence, E[Ŝi] =

E[Si] and so it follows by (25) that
¯̂
S →p E[Si]. Moreover, for any conformable non-

stochastic matrix M, we have for t = 1, 2 that

E
[
p̂T
t,iMp̂t,i

∣∣Fi

]
= pT

t,iMpt,i +
1

Ct,i

tr
{
M
(
diag(pt,i)− pt,ip

T
t,i

)}
.
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Hence, by independence of x1,i and x2,i conditional on Fi, we have

E
[
Ŝ2
i

∣∣∣Fi

]
= E

[
E
[
p̂T
1,i(p̂2,ip̂

T
2,i)p̂1,i

∣∣ p̂2,i, Fi

]∣∣Fi

]
= E

[
pT
1,i(p̂2,ip̂

T
2,i)p1,i +

1

C1,i

tr
{
(p̂2,ip̂

T
2,i)
(
diag(p1,i)− p1,ip

T
1,i

)}∣∣∣∣Fi

]
= E

[
p̂T
2,i(p1,ip

T
1,i)p̂2,i

∣∣Fi

]
+

1

C1,i

E
[
p̂T
2,i

(
diag(p1,i)− p1,ip

T
1,i

)
p̂2,i

∣∣Fi

]
= S2

i +
1

C2,i

pT
1,i

(
diag(p2,i)− p2,ip

T
2,i

)
p1,i +

1

C1,i

pT
2,i

(
diag(p1,i)− p1,ip

T
1,i

)
p2,i

+
1

C1,iC2,i

tr
{(

diag(p2,i)− p2,ip
T
2,i

) (
diag(p1,i)− p1,ip

T
1,i

)}
. (26)

It follows by (11) and (25) that ∣∣∣∣∣ 1n
n∑

i=1

Ŝ2
i − E[S2

i ]

∣∣∣∣∣→p 0.

Hence, 1
n

∑n
i=1(Ŝi − ¯̂

S)2 →p Var(Si).

For the numerator term, note that∣∣∣∣∣ 1√
n

n∑
i=1

εi(Ŝi − ¯̂
S)− 1√

n

n∑
i=1

εi(Si − E[Si])

∣∣∣∣∣→p 0,

because: firstly,

Pr

(∣∣∣∣∣ 1√
n

n∑
i=1

εi(Ŝi − Si)

∣∣∣∣∣ > t

)
≤ 1

t2
E
[
E
[
ε2i
∣∣Fi

]
E
[
Ŝ2
i − S2

i

∣∣∣Fi

]]
→ 0

by (11) and (26), mutual independence of C1,i, C2,i, and (p1,i,p2,i, Yi), and using finite

second moment of εi; and, second,∣∣∣∣∣ 1√
n

n∑
i=1

εi(
¯̂
S − E[Si])

∣∣∣∣∣ ≤ ∣∣∣ ¯̂S − E[Si]
∣∣∣ ∣∣∣∣∣ 1√

n

n∑
i=1

εi

∣∣∣∣∣→p 0

by the CLT and consistency of
¯̂
S. So by a second application of the CLT we deduce that

1√
n

n∑
i=1

εi(Ŝi − ¯̂
S) →d N

(
0,E

[
ε2i (Si − E[Si])

2
])

.
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Finally to characterize the bias term, first note that∣∣∣∣∣ 1√
n

n∑
i=1

(Ŝi − Si)(Ŝi − ¯̂
S)− 1√

n

n∑
i=1

(Ŝi − Si)Ŝi

∣∣∣∣∣ = | ¯̂S|

∣∣∣∣∣ 1√
n

n∑
i=1

(Ŝi − Si)

∣∣∣∣∣→p 0

by consistency of
¯̂
S and because

E[(Ŝi − Si)
2] → 0

holds by (11) and (26) and mutual independence of C1,i, C2,i, and (p1,i,p2,i, Yi). Hence

by Chebyshev’s inequality, we have

Pr

(∣∣∣∣∣ 1√
n

n∑
i=1

(
(Ŝi − Si)Ŝi − E

[
(Ŝi − Si)Ŝi

])∣∣∣∣∣ > t

)
≤ 1

t2
E[(Ŝi − Si)

2Ŝ2
i ]

≤ 1

t2
E[(Ŝi − Si)

2] → 0,

where the second inequality is because |Ŝi| ≤ 1. We have therefore shown that∣∣∣∣∣ 1√
n

n∑
i=1

(Ŝi − Si)(Ŝi − ¯̂
S)− E[

√
n(Ŝi − Si)Ŝi]

∣∣∣∣∣→p 0.

Finally,

E[
√
n(Ŝi − Si)Ŝi] → κ1E

[
pT
2,i

(
diag(p1,i)− p1,ip

T
1,i

)
p2,i

]
+ κ2E

[
pT
1,i

(
diag(p2,i)− p2,ip

T
2,i

)
p1,i

]
,

by (11), (26), and mutual independence of C1,i, C2,i, and (p1,i,p2,i, Yi). ■
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B Further Details on the Simulation Exercise

Table B.1 presents the parameters used for simulation exercise. Since we used K = 2

types and type shares must add to 1, only the differences in regression parameters, e.g.

γ1−γ2 are identified, therefore in the simulation and estimation we normalized γ2 and ϕ2

to 0. Second, since class ‘labels’ are not identified in estimation, it is necessary to adjust

signs post estimation.

To investigate the impact of κ on the estimation of γ, we ran three sets of simulations

which vary only by the total number of features drawn per observations. For simplicity,

in each of the set of simulations we set Ci to be equal for all i. We set C ∈ {10, 25, 200}
which, given that N is fixed to 10000 corresponds to κ ∈ {10, 4, 0.5}.

To ensure the model is properly identified, in each simulation we set A = 100 features

to be ‘anchor words’ meaning that βj,0 or βj,1 is set to 0.

We simulated data 200 times for each set and then estimated the model using 1-step

approach, 2-step approach and the infeasible 2-step approach with known θ.

We construct 95% confidence intervals for γ1 and ϕ1 using the corresponding 95%

posterior credible intervals for these parameters. This construction is justified in view of

the discussion in Section 4.1.

Table B.1: Parameters for the simulation exercise.

Parameter Value Description

(a) Data Simulation

N 10000 Number of observations
V 300 Number of distinct features
Ci {10, 25, 200} Total number of features per document
K 2 Number of latent types
True ϕ 1 Effect of a covariates on un-normalized type shares
True γ 5 Effect of topic shares on numerical outcomes
True α (0, 1, 1, 1) Effect of additional covariates on numerical outcomes

gi ∼ N(0, log(3)
1.96

) Covariate affecting type shares
qi,m ∀m ∈ (1, 2, 3) ∼ N(0, 3) Additional covariates affecting outcome
σ2
Y 16 SD of the numeric outcome’s residual

σ2
θ 1 SD of residual of the un-normalized type shares

η 0.2 Dirichlet concentration parameter

(b) Hyperparameters

K as above Number of latent types
η as above Dirichlet concentration parameter
σ2
θ as above SD of residual of the un-normalized type shares

p(ϕ1) N(0, 4) Prior for ϕ1, i.e. σ
2
ϕ = 4

p(γ1) N(0, 100) Prior for γ1, i.e. σ
2
γ = 100

p(α) ∀m ∈ (0, 1, 2, 3) N(0, 100) Prior for α, i.e. σ2
α = 100

p(σY ) Gamma(1, 10) Prior for σY , i.e. s0 = 1 and s1 = 10
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We performed the simulation on a ‘N1-highmem-2’ instance on the Google Could

Platform. The instance has 2 vCPUs and 13 GB of memory. We also utilized a single

Tesla V100 GPU. We run chose 500 warmup and 500 post-warmup iterations. A single

simulation (consisting of drawing the data, and estimating the model in three ways) took

approximately 6 minutes.

B.1 Additional Results

Figure B.1 below, replicates Figure 1 but adds the bias-corrected estimates for γ1. The

bias-corrected estimates are obtained by subtracting the estimated bias computed using

the formula from Theorem 1 from the two-step estimates. Since the estimates of the

asymptotic bias are negative, the bias-corrected estimates are larger than the two-step

estimates. Since the theorem relies on a first-order approximation, the bias-correction

works best for small values of κ. As κ increases, the accuracy of the bias-corrected

estimates diminishes, and for κ = 10, they perform worse than the uncorrected two-step

estimates.
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Estimation: 1−step 2−step 2−step (Bias Corrected) 2−step (Infeasible)
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Note: Each mountain plot presents the share of simulations in which the value of γ1
(respectively ϕ1) on the x-axis is included in the 95% confidence interval. The grey vertical
dashed lines show the true value of the parameter. The blue vertical dashed line represents
the median (across simulations) of mean posterior estimates from the two-step strategy.
The bias reported is the difference between the truth and this median value.

Figure B.1: Evolution of Bias in Regression Coefficients across κ Values, including
Bias-Corrected Estimates
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C Example Code

1

2 from numpyro import sample, plate
3 import numpyro.distributions as dist
4 import jax.numpy as jnp
5 from jax.nn import softmax
6

7 class SUPTMC:
8 def __init__(self, K, N, V, z, q, eta = .1, alpha = 1):
9 self.K = K # number of latent types

10 self.N = N # number of observations
11 self.V = V # number of distinct features
12 self.z = z # number of covariates affecting outcome
13 self.q = q # number of covariates affecting type shares
14 self.eta = eta
15 self.alpha = alpha
16

17 def model(self, C, Z, Q, Y=None, X=None):
18 # Supervised topic model with covariates
19

20 # Y : regression outcome
21 # X : feature count matrix
22 # C : total number of features per observation
23 # Z : covariates entering regression
24 # Q : covariates entering type shares
25 # K : number of types
26 # eta, alpha : Dirichlet hyperparamters
27

28 #### Upstream Factor Model ###
29

30 with plate("topics", self.K):
31 beta = sample("beta", dist.Dirichlet(
32 self.eta * jnp.ones(self.V - self.num_anchors_per_class)))
33

34 phis = sample("phis", dist.Normal(0,2).expand([self.q, self.K-1]))
35

36 with plate_stack("docs", sizes = [self.N, self.K - 1]):
37 A = sample("A", dist.Normal(jnp.matmul(Q, phis) , self.alpha))
38

39 # document-topic distributions
40 theta = deterministic(
41 "theta",
42 softmax(jnp.hstack([A, jnp.zeros([self.D, 1])]), axis = -1)
43 )
44

45 distMultinomial = dist.Multinomial(
46 total_count=C,
47 probs = jnp.matmul(theta, beta)
48 )
49 with plate("hist", self.N):
50 X_bows = sample("obs_x", distMultinomial, obs = X)
51

52 #### Downstream Regression Model ###
53

54 gammas = sample("gammas", dist.Normal(0, 10).expand([self.K-1]))
55 zetas = sample("zetas", dist.Normal(0, 10).expand([self.z]))
56 sigma = sample("sigma", dist.Gamma(1, 10))
57

58 mean = jnp.matmul(theta[:,:(self.K-1)], gammas) + jnp.matmul(Z, zetas)
59

60 with plate("y", self.N):
61 Y = sample("obs_y", dist.Normal(mean, sigma), obs = Y)

Figure C.1: Numpyro’s code used to estimate Supervised Topic Model with Covariates
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