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Abstract 
 
Good decision-making requires understanding the causal impact of our actions. Often, we only 
have access to correlational data that could stem from multiple causal mechanisms with divergent 
implications for choice. Our experiments comprehensively characterize choice when subjects face 
conflicting causal interpretations of such data. Behavior primarily reflects three types: following 
interpretations that make attractive promises, choosing cautiously, and assessing the fit of 
interpretations to the data. We characterize properties of interpretations that obscure bad fit to 
subjects. Preferences for more complex models are more common than those reflecting Occam’s 
razor. Implications extend to the Causal Narratives and Model Persuasion literatures. 
JEL-Codes: C910, D010, D830. 
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1 Introduction

To make good decisions, understanding the causal impact of our actions on desired outcomes is

essential. Yet, we frequently encounter only correlational data, which could stem from multiple causal

mechanisms that may diverge greatly in their implications for optimal choice. Experts, the media,

and politicians present causal interpretations of the facts that align with the data to various degrees.

This multiplicity forces us to decide which interpretations, if any, inform our actions.

For example, parents might ponder whether to spend more on their child’s college education,

enabling attendance at a more prestigious but costlier university. If prestigious universities indeed

add more value, a positive correlation between university prestige and graduate success justifies the

higher expenditure. However, this correlation could also result if graduate outcomes depend solely on

IQ as long as more prestigious institutions admit more capable students. In this case, extra spending on

tuition would not produce the desired outcomes. Insights into the actual causal mechanism may arise

from empirical correlations on which the two explanations disagree, such as that between university

rank and earnings conditional on IQ. While some parents might successfully use this information,

others might choose to view the world through rose-tinted glasses and follow the interpretation that

justifies high hopes for their children’s future. Yet others might prefer interpretations that do not

require high tuition payments whose causal impact they do not understand.

In this paper, we experimentally study decision-making in the face of conflicting causal interpre-

tations of correlational data. We focus on three interrelated questions. First, to what extent are

individuals able and willing to discard interpretations that do not fit the data they observe? Second,

in what way, if any, does decision-making depend on the hopes a causal interpretation raises or on

the actions it urges? Third, do individuals have preferences over the structure of interpretations? Do

they, for example, favor simpler over more complex interpretations, as Occam’s razor suggests, and

how do they conceptualize simplicity? Overall, we study how individuals use information to make

choices when they do not know the structure of the world, in contrast to the vast literature on belief

updating (Benjamin, 2019) that considers the case in which the structure of the world is known.

Our results provide empirical foundations for the emergent literature on mental models whose

applications span fields as diverse as behavioral economics (Spiegler, 2016), macroeconomics (Molavi,

2019), finance (Molavi et al., 2021; Shiller, 2017), strategic management (Felin and Zenger, 2017;

Camuffo et al., 2023), institutional economics (Denzau and North, 1994), and contract theory (Schu-

macher and Thysen, 2022). They are especially relevant for the literatures on Narrative Competition

(Eliaz and Spiegler, 2020; Eliaz et al., 2022; Levy et al., 2022; Angrisani et al., 2023) and Model

Persuasion (Schwartzstein and Sunderam, 2021, 2022; Ichihashi and Meng, 2021; Jain, 2023; Aina,

2024), whose divergent behavioral assumptions we test in a single experiment. Models of Narrative

Competition explain the pervasive multiplicity of conflicting causal narratives in the public discourse,

with fascinating implications: multiplicity is an equilibrium that guarantees the survival of false nar-
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ratives;1 it is possible to predict which narratives will persist; they permit comparative statics on the

relative prevalence of conflicting narratives; and, when embedded in dynamic political economy frame-

works, cycles of populism emerge (Levy et al., 2022). These phenomena hinge on the assumption that

individuals adopt the interpretation that promises the most appealing outcome—or, more generally,

choose based on any attribute that depends on the narratives’ relative support in the population. We

examine which, if any, of these attributes determine choice. The Model Persuasion literature charac-

terizes how principals can persuade agents to undertake specific actions by suggesting interpretations

of data that agents might not independently conceive. It rests on the premise that individuals choose

the interpretation that most closely fits the observable data. Limits in fit-checking and preferences

over the structure of interpretations alter the set of persuasive interpretations.

We answer our questions using laboratory experiments because they provide certainty about the

data-generating process and facilitate identification by letting us freely mold the decision environment.

Their stylized nature allows us to abstract from confounding factors such as prior beliefs or attachment

to political groups.2

In our experiment, subjects choose an action at a cost. The action affects a monetary outcome via

a stochastic causal model (the data generating process; DGP), which, in our case, is a system of linear

regression equations. Next to the action and the outcome, each DGP includes two additional variables

we call covariates. While the action is always exogenous, the outcome and the covariates can take var-

ious roles. They might be endogenous or exogenous, and they might be causes or symptoms of other

variables, or mediators between them. Subjects do not know the DGP, but they observe the (large-

sample) correlational information it generates. They also observe a menu of causal interpretations

that will inform their action choice. At the core of each interpretation lies a potentially misspecified

model that postulates how the four variables are causally related. When fit to the data generated by

the DGP, each such model implies a distinct optimal action (the recommendation), as well as a payoff

that the subject can expect if the model is correctly specified and the recommended action is taken

(the promise), both of which subjects observe. They choose an action by selecting one of the available

interpretations. Its action recommendation is then executed and determines the subjects’ payout ac-

cording to the DGP. To aid their choice, subjects also observe each interpretation’s model specification

in the form of a directed acyclic graph (DAG) along with the interpretations’ recommendation and

1For example, consider the question of whether mask-wearing causally reduces COVID-19 transmission. Focus on two
causal models. Model 1 accurately describes reality and states that increased masking reduces COVID-19 transmission.
Model 2 surmises that masking has no effect on disease transmission. If most individuals adopt the first model, they
will wear masks, and case counts will be low. According to Model 1, this situation can be maintained only by continued
masking, which has small hassle costs. Model 2 is more attractive because it predicts that ending mask-wearing will
eliminate hassle costs without affecting case counts. The literature assumes that due to its greater attractiveness,
individuals will flock to Model 2. Contrarily, if Model 2 is more popular, individuals will not wear masks, and case
counts will be high. According to Model 2, masking cannot change this situation. Model 1 makes the more attractive
prediction that case counts can be lowered at a small hassle cost. Individuals will thus flock to Model 1. Overall, the
more popular one model, the more attractive the other. Accordingly, no model, including the true one, can survive
alone; multiplicity is an equilibrium.

2For the same reason, research in experimental game theory (Camerer, 2003) and experimental decision theory (e.g.
Benjamin, 2019) also tends to focus on stylized settings.
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promise (see Figure 1). Subjects can access unconditional and conditional correlational data produced

by the DGP (see Figure 2). In principle, this data suffices to rule out incorrect interpretations, for

instance if a predicted correlation between two variables is absent in the data.

We model subjects as applying criteria from three classes: (1) Subjects use data-based criteria to

discard models that poorly align with the data. These criteria differ in the model implications and

correlational information they process. For example, some subjects might draw inferences only from

unconditional but not from conditional correlations. (2) Structure-based criteria capture preferences

over model structures that do not reference the data, such as a preference for simpler over more

complex models. (3) Advice-based criteria operate on an interpretation’s promise or recommendation;

they reference neither the model structure nor the data. Subjects who like to view the world through

rose-tinted glasses, for instance, might follow high-promise interpretations whereas others might opt

for interpretations that recommend the lowest action. These three classes of criteria correspond to our

three research questions. The model accommodates simultaneous application of criteria from different

classes.

Our primary objective is to quantify how often subjects use each decision criterion. We employ

two complementary identification strategies. Experiment 1 involves a sequence of menus, each charac-

terized by a DGP and two or three interpretations from which subjects select one. Any combination

of decision criteria, which we call a type, implies a distinct fingerprint of choices across the menus.

Averaging fingerprints across types, weighted by the probability of each type, yields a probability

distribution over choices across the menu sequence. We estimate the empirical type distribution by

fitting a finite mixture model that minimizes the distance between the model-implied and observed

choice distributions. Constructing a menu sequence that pinpoints all elements of the type distribution

is challenging because changing any single aspect of a decision problem generally has multiple effects.

For example, the structure of a model is inherently linked to it’s correlational implications. Therefore,

changing the misspecified model will likely affect its consistency with both data- and structure-based

criteria. We use several theoretical insights to construct a menu sequence. We then prove formally

that it identifies all type probabilities. Experiment 2 identifies the popularity of the decision criteria

by hiding selected elements of the decision problem. For example, we infer the fraction of subjects who

effectively utilize correlational data by comparing the proportion of participants who choose the cor-

rect interpretation when that data is available to the corresponding frequency when it is unavailable.

The two identification strategies complement each other because they depend on different identifica-

tion assumptions. Close congruence in the estimates derived from the two strategies suggests that

neither identifying assumption is severely mistaken.

We conduct Experiments 1 and 2 using university student samples. To assess the subject pool

dependency of our results, Experiment 3 recruits a U.S. general population sample that completes a

simplified and abbreviated version of Experiment 1.
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Empirically, which interpretations guide subjects’ actions? Broadly, our data feature three pre-

dominant groups of subjects. The first seeks to objectively determine the correct interpretations the

way a scientist would, with varying levels of success. The second opts for the interpretation that

offers the most optimistic outlook, consistent with a preference to view the world through rose-tinted

glasses. The third minimizes spending on the action, plausibly due to a reluctance to invest in actions

with consequences they may not understand clearly. Among subjects who choose by model structure,

a preference for complexity is twice as common as a preference for simplicity. The prevalence of these

groups varies across samples. Laboratory participants much more frequently exclude incorrect inter-

pretations compared to individuals from the U.S. general population, who more often favor the most

optimistic interpretations. This high-level summary of our results, however, hides much nuance.

In response to our first research question (discarding ill-fitting interpretations), we document pro-

nounced dispersion in the use of data-based criteria. Close to 40% of student participants consistently

choose the correct interpretation. This number that drops to 5% in the U.S. general population sam-

ple both in the presence and in the absence of a treatment that causes subjects to view data charts

thirteen percentage points more often. Another substantial minority of subjects (15% among students

and 20% among the U.S. general population) successfully utilize unconditional correlations but do not

draw correct inferences from conditional correlations. The largest fractions in both samples (45% of

students and 75% of the U.S. general population) fail to use any correlational information effectively.

Reassuringly, we estimate similar distributions of criteria usage through both identification strategies

in our student samples.

The popularity of high-promise (15% of student subjects and over 40% of U.S. general population

subjects) and low-action interpretations (30% of student subjects and 40% of U.S. general population

subjects) underscores the significance of our second question (advice-based criteria). Many individuals

exclusively rely on these criteria, not merely as a fallback when other criteria do not identify an

interpretation. Ex ante, two additional advice-based criteria appear plausible. First, subjects choosing

according to Gilboa and Schmeidler (1989)’s maximin criterion should consistently opt for the low-

promise interpretation in our setting. Second, individuals subject to the illusion of control (Langer,

1975) may prefer actively doing something over doing nothing, and hence might choose high-action

interpretations. Yet, both these criteria receive minimal support across all experiments.

In answer to our third question (preferences over the structure of interpretations), we find that

nearly 40% of student subjects employ structure-based criteria. Ten percent of subjects prefer simpler

models over more complex ones, whereas 23% show a reverse preference. Though puzzling from the

perspective of Occam’s razor, this result is intuitive once one realizes that simplification often involves

restricting models. Subjects who are not sufficiently confident about the validity of such restrictions

will thus prefer the unrestricted, more complex specifications. (The general population version of the

experiment is not equipped to identify structure-based criteria.)
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To test whether our findings capture stable behavioral tendencies, we turn to out-of-sample pre-

diction using a leave-one-out approach. Compared to a random benchmark, our model reduces the

distance between predicted and observed choice distributions by a reassuring 70 percent. Given the

impracticability of a large number of types, we then turn to the question of whether a much simpler

model could perform as well as our comprehensive model. Indeed, we find that a model consisting

of only three types—High Promise (no other criteria), Low Action (no other criteria), and Correct

Interpretation—achieves over 95% of the out-of-sample predictive power of the comprehensive model.

Predictive power deteriorates, however, as we include even fewer types. The most predictive two-

type model achieves just over 80% of the full model’s out-of-sample predictive power, while the most

predictive single-type model reaches not even 50% of that benchmark. Behavioral heterogeneity is a

hallmark of choice under conflicting causal interpretations.

We examine whether individual characteristics can predict this heterogeneity. Reassuringly, we

find that holding a graduate degree, being a STEM major, and having greater background knowledge

about statistical causal inference all increase the chance of selecting the correct interpretation. Student

subjects with a stronger belief in pseudoscience (Torres et al., 2020) select the correct interpretation

less often, though we do not observe this correlation in the U.S. general population. We find no

evidence that political preference predicts correct choices. While this result contrasts with the common

view that disagreements with one’s own political views stem from others’ objective inferential errors,

that view itself may be mistaken (näıve realism, Griffin and Ross, 1991).

Our study contributes to the rapidly growing body of research on mental models with a particular

focus on the Narrative Equilibria and Model Persuasion literatures cited above.3 The preference

for high-promise interpretations is consistent with the core assumption of the Narrative Equilibria

literature. Although fewer than half of the individuals in each sample display this preference, the

substantial minorities that do may still be pivotal in the political economy settings the Narrative

Equilibrium literature seeks to inform. Our results on data- and structure-based criteria also raise

exciting new questions for the Model Persuasion literature: how do persuasion opportunities change

with heterogeneous recipients who may not detect certain inconsistencies with the data, or refuse to

consider interpretations that are too simple or too complex?

A small number of recent experiments study questions related to ours. None of them shares

this paper’s comprehensive characterization of decisions under conflicting causal interpretations of

correlational data. Along with Barron and Fries (2023), the paper most closely related to ours, Kendall

and Charles (2022), shows that externally supplied mental models that can be used to interpret raw

data significantly influence individuals’ choices. In a setting that qualitatively differs from ours (it

displays neither recommendations nor promises to subjects, among other differences) that paper finds

that conflicting interpretations cause subjects to choose intermediate actions. In contrast to that

3Izzo et al. (2023) and Horz and Kocak (2022) also study narrative equilibria albeit in different frameworks than
those we address here.
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paper, we include a detailed investigation of fit-checking, preferences for simpler or more complex

explanation, explore different samples, and perform out-of-sample prediction. Further, Frechette et al.

(2023) ask what mental models subjects spontaneously form when presented with raw data, focusing

on predictions rather than causal interventions. Alysandratos et al. (2020) study choice between

interpretations in hypothetical real-world settings with strong priors. Existing work also abstracts

from limits to subjects’ fit-checking abilities and from preferences over model structures. A more

applied literature complements our inquiry into foundational human tendencies by studying mental

models in specific policy domains (Andre et al., 2022, 2023a,b).

A substantial body of work in cognitive psychology studies how individuals learn causal structures

and the characteristics of persuasive explanations (see Waldmann, 2017, for a review). That work

differs from ours in two key aspects. First, it often allows subjects to interact with the system

they are learning about. Our study, by contrast, is motivated by scenarios like policy choice where

experimentation is not feasible. Hence, it requires individuals to choose based on purely observational

data. Second, the psychology literature concentrates either on individual’s ability to pinpoint the

correct causal model when explicitly asked, or on motivated reasoning without reference to causal

structures (see, for example, Kunda, 1990; Epley and Gilovich, 2016, for reviews). Unlike the present

paper, it does not feature an integrated, comprehensive investigation of decisions related to causal

mechanisms.

The remainder of this paper proceeds as follows. Section 2 outlines the choice setting and de-

fines the choice criteria we study. Section 3 explains our identification strategies along with details

concerning the experimental design. Section 4 showcases our main empirical results. Section 5 comple-

ments our laboratory findings with results from the U.S. general population sample. Finally, Section

6 concludes.

2 Setting and choice criteria

2.1 Choice problem

In each round of each of our experiments, subjects choose between two or three real-valued action levels

A at the quadratic cost c(A) = c
2A

2. They know that the action stochastically maps into an outcome

Y , and that their payoff will be π(A) = Y (A) − c(A), but they do not know the data-generating

process (DGP) that determines whether and how the action causally affects the outcome.

In Experiments 1 and 2, DGPs involve four variables, the action A, the outcome Y , and two

covariates X and Z.4 These variables are related through a recursive system of linear Gaussian

equations (colloquially, a system of linear regression equations) in which A is exogenous, meaning

4This is the minimum number of variables that allows us to answer our research questions. In the simplified
Experiment 3, DGPs only involve three variables, at the cost of providing coarser insight into decision-making: the
action, the outcome, and a single covariate.
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Table 1: Example of a recursive equation system and its DAG representation

Recursive equation system DAG representation

A = βA + εA

X = βX + εX

Y = βY + βAY A+ βXY X + εY

Z = βZ + βY ZY + εZ ,

A

X

Z

Y

Notes: The left-hand side displays an example of a recursive system of linear equations and the right-hand side displays
its graphical representation. Parameters β are chosen to fit the data (in interpretations), or are given exogenously (in
the DGP). Random variables ε are independent, mean-zero Gaussian errors with variances chosen to fit the data (in
interpretations) or given exogenously (in the DGP). In the graphical representation of this system, no arrows point to
A and X, as they are exogenous. Arrows from A and X into Y indicate that both A and X appear in the equation
that describes Y , and the arrow from Y to Z indicates that Y is the only regressor in the equation that describes Z.

that is not influenced by any other variable. Other variables may be endogenous or exogenous.

Throughout, our DGPs include no isolated subsets of variables and feature generic (non-knife-edge)

parameters.5 The left-hand side of Table 1 provides an example.

Subjects choose an action by picking one of two or three exogenously provided interpretations.

An interpretation consists of a causal model, a recommendation concerning what action to take, and

a promise. A causal model specifies a recursive system of linear regression equations that posits

the causal relations among the variables. The inclusion of a variable as a regressor in an equation

signifies a direct causal influence of that variable on the corresponding endogenous variable. The

recommendation derives from an OLS fit of the model to the population moments implied by the

DGP (informally: a large sample of data generated by the DGP). It is the action level that maximizes

the expected payoff based on the action’s inferred causal effect on the outcome. The promise is the

corresponding expected payoff. In each round, one interpretation’s model is correctly specified. All

other models are misspecified.

We use directed acyclic graphs (DAG) to convey model specifications to subjects.6 A DAG G =

(N,E) consists of a finite set of nodes, N , and a set of directed links E ⊂ N × N . Nodes represent

variables, so that N = {A,X, Y, Z} in our setting.7 Edges represent direct causation. If the DAG

G = (N,E) represents a given recursive system of linear Gaussian equations, and I is a regressor in

the equation that corresponds to the endogenous variable J , then (I, J) ∈ E, which we also write as

I → J . Table 1 shows an example of the DAG representation of a recursive system of linear Gaussian

equations.

5A subset of variables is isolated if it is neither influenced nor influences variables outside that subset. Formally, a
property of a parameter vector is generic in our setting if it is violated only on a subset of the parameter space with
Lebesgue measure zero.

6Every recursive linear Gaussian system can be represented as a DAG. This is a bijection up to a re-parametrization.
7We use the same symbols to refer to a node and the random variable it represents.
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Subjects can check whether an interpretation is based on a misspecified model by comparing it to

the DGPs’ population moments (informally: the correlations in the data generated by the DGP). The

key observational prediction of any causal models is the set of (conditional) independence relationships

it implies. Because of our focus on linear Gaussian systems, (conditional) independence is equivalent

to the absence of (conditional) correlation. Assessing whether a model is misspecified thus entails

identifying the implied independence relationships and checking whether the corresponding empirical

correlations are indeed zero. In the case of generic parameter values, one can also conclude that a

model is misspecified if it predicts non-zero correlations that are zero in the data.

We frame the experiment to subjects by explaining that a mechanism (DGP) governs the relation

between an action (A, depicted as a hand emoji), the number of circles (covariate X, depicted as a

circle emoji), the number of squares (covariate Z, depicted as a square emoji), and a bonus (outcome

Y , depicted as a money emoji). Subjects know that the action is costly, and that their study payment

equals the bonus minus the cost of the action for one randomly selected round. Subjects select an action

by deciding which one of two or three advisors (interpretations) to follow; that advisor’s recommended

action will be implemented. Because the scaling of the action is arbitrary, recommendations concern

spending on the action (c(A)) rather than the level of the action itself (A).

Figure 1 shows the experiment’s interface. The data dashboard on top of the screen lets subjects

access data charts that may help them identify the correct interpretation. Subjects can observe the

correlations between any pair of variables, both unconditional and conditional on holding any third

variable fixed, in charts of the type shown in Figure 2.8 Section 3.3 explains the remaining elements

of the interface.

2.2 Archetypical causal models

A handful of archetypical causal models provide the key insights required for excluding misspecified

models in our setting:9

Observation 1. Consider a DAG G = (N,E), with N = {I, J,K}.

(i) If I → J , then generically cov(I, J) ̸= 0, and we say that I directly influences J .

(ii) (a) If G : I → K → J or G : I ← K → J , then generically cov(I, J) ̸= 0, and we say that I

indirectly influences J or a common cause influences both I and J , respectively.

(b) If G : I → K ← J , then cov(I, J) = 0.

8Charts conveying conditional correlations show two data series, one for the conditioning variable held fixed at
its above-median average and one holding it fixed at its below-median average. We do not show correlations that
condition on pairs of variables; the experiment is designed such that such information is never needed to identify correct
interpretations.

9These archetypical causal models employ three or fewer nodes. Appendix A.1 provides the natural formal extension
of Observation 1 to the case of four-node DAGs.



Figure 1: Decision screen

Notes: All links in the interface (underlined, buttons, and relations between quantities) are clickable. The links ‘ by
’ and ‘ by fixing ’ each open a pop-up (in the same window) that show the charts in Panels A and B of Figure 2,

respectively. Other links in the data dashboard show similar charts. The links ‘show remaining charts’ expand the data
dashboard with a list of links of the same format. For any pair of variables, and for any pair conditioning on any third
variable, a data chart displaying the corresponding relation is available in every round, except when noted otherwise.
For the advisor on the left-hand side, the link ‘show explanation’ displays the following text: ‘A higher action leads to
a higher bonus, when we hold the number of fixed. Raising the action by one raises the bonus by Fr. 0.80. Therefore
you should spend Fr. 8.00 on the action. The influence on the number of should not matter for your decision.’ The
link ‘show in words’ displays the following text: ‘ can directly affect , can directly affect , can directly affect
. There are no other direct effects.’ The corresponding links for all other advisors feature the same format.
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Figure 2: Example data charts shown to subjects

A. Unconditional correlation B. Conditional correlation

Notes: Subjects can retrieve each chart by clicking on the corresponding link in their ‘data dashboard.’ Panel A
shows an example of a chart displaying an unconditional correlation. Panel B shows an example of a chart displaying
a conditional correlation.

(iii) (a) If G : I → K → J or G : I ← K → J , then cov(I, J |K) = 0, and we say that K blocks

the path between I and J .

(b) If G : I → K ← J , then generically cov(I, J |K) ̸= 0.

In the example of Figure 1, observation (i) is insufficient to rule out any interpretation. Each of

the remaining observations can identify the correct interpretation.

To understand observations (ii)(a) and (iii)(a), if three variables are related in a chain, G : I →
K → J , then I indirectly causes J , so the two variables are unconditionally correlated. But holding

K fixed means that changes in I can no longer translate into changes in J . Hence, conditioning on

K causes the correlation between I and J to vanish. In Figure 1, for example, the left-hand side

advisor’s model contains the chain → → . Consistent with this model, the data in Figure

2 show a nonzero unconditional correlation between and that disappears upon conditioning on

.

If three variables are related in the form G : I → K ← J as in (ii)(b) and (iii)(b) (a v-collider),

then the (unconditionally) uncorrelated variables I and J become correlated once we condition on K

(the collider node). The intuition becomes most apparent through an example. Suppose intelligence

and parental wealth are uncorrelated in the general public. Therefore, learning the magnitude of

an individual’s inheritance does not change our beliefs about their cognitive ability. Now, consider

students at a highly reputable private university that offers two admission pathways: intelligence and

parental donations. In this context, information that a student has wealthy parents suggests they

may be less bright than their peers—money may be the reason they got in, in which case they did
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not need to be smart. In this example, university admission is the collider node (K) that generates

a conditional correlation between the two otherwise unrelated variables intelligence (I) and parental

wealth (J). The right-hand side advisor’s model in Figure 1, for instance, contains the v-collider

→ ← , which is inconsistent with the data in Figure 2.

Some of these archetypical causal structures and their correlational implications are easier to

understand than others. It is this variation that we use to characterize the limits to subjects’ fit-

checking abilities.

2.3 Decision criteria and types

Our main objective is to characterize the way in which subjects choose actions when facing conflicting

interpretations of the data they observe. To achieve this, we propose a list of decision criteria and

estimate how often subjects use each of them. We then collect evidence suggesting that our list

contains all empirically relevant ways of decision-making in our setting.

We consider three classes of decision criteria, of which subjects may use multiple. They correspond

to the three elements of our decision problems: the data, the model structure, and the advice (an

interpretation’s recommendation and promise).10

Data-based criteria rule out misspecified models based on correlational information in the data.

Employing the principles in Observation 1 and the assumption that principle (iii) is more challenging

than principle (ii), which, in turn, is more challenging than principle (i),11 we define three criteria

that correspond to the most challenging principle in use.

Definition 1.

(i) Direct Links: Subjects rule out an interpretation if it posits a direct link between two nodes I

and J but I and J are not correlated in the data.

(ii) Unconditional Correlations: Subjects rule out an interpretation if any of its implied uncondi-

tional correlations (or absence thereof) are inconsistent with the data.

(iii) Conditional Correlations: Subjects rule out an interpretation if any of its implied conditional or

unconditional correlations (or absence thereof) are inconsistent with the data.

Data-based criteria differ not only in the type of empirical correlations they employ but also in

the implications of the causal structures they recognize. Both the Direct Links and Unconditional

Correlations criterion, for instance, require processing information on unconditional correlations, but

10The variance of a subject’s payoff does not depend on the option they select from any given menu. This is because
the variance of the payoff is determined entirely by the DGP, which is assumed to be homoscedastic.

11While indirect causation may appear just as simple to understand as direct causation, the former requires a step of
inference. In many decisions outside of the domain of causal inference, individuals often fail to draw similarly simple
inferences, as conveyed by the adage, ‘What you see is all there is’ (Kahneman, 2011).
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the latter criterion draws inferences from a larger number of them. Experiment 2 will introduce a

similar distinction and consider two versions of the Conditional Correlations criterion that depend on

the involvement of v-colliders.

Structure-based criteria capture preferences over model structures, especially concerning their

simplicity (cf. Occam’s razor). Our setting permits three specific interpretations of simplicity, where

we refer to exogenous variables as roots.

Definition 2. Consider two models G and G′.

(i) G has greater Root Simplicity than G′ if G has fewer roots than G′.

(ii) G has greater Link Simplicity than G′ if G has fewer links than G′.

(iii) G has greater Subset Simplicity than G′ if the links in G are a subset of the links in G′.

Subjects may prefer more complex over simpler models; we call the corresponding criteria Root

Complexity, Link Complexity, and Superset Complexity. A potential rationale for a complexity prefer-

ence is the fact that a model whose links are a subset of those of another model is a restricted version

of that model. In large samples, an analyst unsure about the validity of that restriction will prefer the

unrestricted version.12 Interacting a preference for or against simpler models with the three notions

of simplicity yields six structure-based criteria.

Subjects’ preferences may also depend on the structure of the choice set. The Median Action

criterion encodes a preference for the model with the median recommended action. Vacuous in the

two-option case, this criterion only applies to three-option menus.

Advice-based criteria reference neither data nor models. Instead, they select an interpretation

based on its recommendation or promise. In a large-data context, only these criteria can satisfy the

core premise of the Narrative Equilibrium literature, which posits that individuals are drawn to causal

interpretations based on attributes that depend on the interpretations’ prevalence in the population.13

The reason is that the relative popularity of various interpretations does not affect the structure of

interpretations or the match between predicted and observed conditional independence relationships.

Therefore, data- and structure-based criteria cannot generate the required dependence.

There are four natural candidates for advice-based criteria.

Definition 3. Let C denote the set of interpretations under consideration.

(i) The High Promise criterion selects the interpretation with the highest promise in C.

(ii) The Low Promise criterion selects the interpretation with the lowest promise in C.

12Montiel Olea et al. (2022) provides related intuition.
13Based on action recommendations, the Median Action criterion can also satisfy the core premise.
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(iii) The Low Action criterion selects the interpretation that implies the lowest optimal action in C.

(iv) The High Action criterion selects the interpretation that implies the highest optimal action in

C.

The Narrative Equilibrium literature (Eliaz and Spiegler, 2020; Eliaz et al., 2022; Levy et al., 2022)

operationalizes its core premise through the assumption that individuals’ decisions are governed solely

by the High Promise criterion.

The Low Promise criterion, in our setting, is equivalent to Gilboa and Schmeidler (1989)’s maximin

criterion,14 which captures much of the spirit of the empirical literature of choice under ambiguity

(Trautmann and Van De Kuilen, 2015).

Because the equivalence between the maximin and Low Promise criteria may be unintuitive, cau-

tious subjects may alternatively follow the heuristic to refrain from investing in an action whose

returns they do not understand. Such subjects will implement the Low Action criterion. By contrast,

a subject who prefers to believe in her ability to actively enhance her circumstances, for instance, due

to the illusion of control (see, e.g., Stefan and David, 2013; Klusowski et al., 2021), will follow the

High Action criterion.

Types We consider individuals who potentially use multiple criteria, up to one from each class,

applied in the order data-based, structure-based, and advice-based.15 We assume that individuals

uniformly randomize across all interpretations that remain after applying the decision criteria.

Definition 4. A Type is a triple that consists of a (possibly empty) data-based criterion, a (possibly

empty) structure-based criterion, and a (possibly empty) advice-based criterion, applied in this order.

Indeterminacies are resolved through uniform randomization.

While the four data-based, eight structure-based, and five advice-based criteria (including the

empty criterion in each class) combine to form 160 different types, only 111 of them are behaviorally

distinct, for two reasons. First, a subject who applies the Conditional Correlations criterion consis-

tently selects the correct interpretation and hence never reveals the structure- or advice-based criteria

she would have used otherwise. Second, in our setting, all roots of a given model are uncorrelated.

Hence, any two models that differ in the number of roots also differ in the unconditional correlations

they imply. Once a subject has discarded interpretations based on the Unconditional Correlations

criterion, all remaining models have the same number of roots, which renders the Root Simplicity and

Complexity criteria vacuous.16

14This insight is generally true in the case of two-option menus, as we formally show in Appendix A.2. We ensure
that it also holds in our three-option menus.

15We place the application of advice-based criteria last because each advice-based criterion determines a unique
choice. Placing them first would be equivalent to placing them last and imposing the restriction that advice-based
criteria cannot be combined with other criteria. We place structure-based criteria after data-based criteria because,
in the tradition of Occam’s razor, the former are typically used to distinguish between interpretations that cannot be
separated based on the data alone.

16The first reason renders 40 types behaviorally equivalent. The second reason implies that for each combination
of one of the 5 advice-based criteria (including the empty criterion) with the Unconditional Correlations criterion, we
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3 Identification

To estimate the frequency with which subjects use each of the decision criteria, we employ two

complementary identification strategies. Experiment 1 follows the usual revealed preference logic.

Each subject makes a choice from each menu in a sequence of independent menus, which are structured

so that the overall choice distribution reveals the distribution of criteria used. We estimate type

frequencies using a finite mixture approach.

In Experiment 2, we reveal only selected elements of the decision problem to subjects. Comparing

these choices with those in the case where the selected elements are hidden informs us about the

fraction of subjects who use the corresponding information. For example, we estimate the proportion

of subjects that effectively utilize correlational information based on how often subjects choose correct

interpretation when they can access only correlational data (but not recommendations and promises)

in comparison to a random choice benchmark.

The two identification approaches complement each other, given their reliance on different iden-

tifying assumptions. The finite mixture approach in Experiment 1 assumes that our set of criteria

does not exclude any empirically relevant decision strategies. Experiment 2 assumes that withholding

elements of the decision problem does not trigger the use of decision criteria that subjects would

not otherwise have employed. If the two identification approaches yield similar estimates, we have

an indication that neither approach relies on substantially inaccurate assumptions and, in particular,

that our analysis considers all empirically relevant types.

Design principles Identifying the distribution of criteria in each of the three classes requires varia-

tion in, respectively, observed and implied correlations, model structures, as well as recommendations

and promises. The principal design challenge consists of the fact that we generally cannot modify

any single property without affecting others. For example, altering the model structure changes the

implied correlations, while adjusting the DGP parameters shifts the recommendations and promises

of each interpretation in a menu. A second challenge consists of the fact that no two interpretations

may recommend the same action, for otherwise, subjects would not have an instrumental reason to

distinguish between the available interpretations.

We construct menus to identify types based on four key insights: First, if two interpretations in

a menu differ only in that the two covariates are interchanged (e.g., menu 7 in Figure 2), structure-

based criteria are vacuous. This insight helps identify advice- and data-based criteria independent of

structure-based confounds. Second, the relevant correlational implications of the DGP are not sensitive

to its (non-knife-edge) parametrization,17 and neither are those of any interpretation. Accordingly,

once we fix a DGP and a set of causal models that determine the interpretations, we can freely select the

cannot distinguish between the structure-based criteria More Roots, Fewer Roots, and not using a structure-based
criterion at all, which renders 3 types behaviorally equivalent in each case.

17Data-based criteria only concern (conditional) independence relationships. They do not depend on the magnitudes
or signs of correlations.
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parameters to identify advice-based criteria. Third, we can partition the set of models we consider into

15 equivalence classes. Any two models in the same equivalence class imply the same optimal action

and promise for any given DGP. This fact helps us to satisfy the restriction that no two interpretations

in a menu recommend the same action—all models in the menu need to stem from different equivalence

classes. It also enables us to alter a menu’s correlational and structural properties while maintaining

constant action recommendations and promises by substituting one misspecified interpretation with

another from the same equivalence class. Appendix A.3 details the construction of these equivalence

classes. Fourth, for any pair of interpretations, we can choose the action distribution in the DGP to

independently vary whether the interpretation that recommends the higher action makes the higher or

the lower promise of the two interpretations.18 As we show in the same Appendix section, the former

case applies if and only if the mean of the action distribution exceeds some threshold. This result

implies that in three-option menus, the DAG associated with the median action recommendation can

never yield the highest promise.

Based on these principles, we heuristically construct candidate sequences of menus for Experiment

1. We aim for sequences that are short enough to be manageable for subjects. We choose DGP

parameters that imply few negative correlations, which subjects might find more demanding to process

than positive correlations, especially if chained in sequence, and we ensure that recommendations differ

perceptibly.19 To increase the statistical precision of our estimates, we further aim to create large

distances between any pair of types.20 Subsequently, we formally check whether a given candidate

sequence identifies the full vector of type probabilities, as explained later (subsection 3.1). Table 2

displays the resulting sequence of menus we use in Experiment 1.

3.1 Experiment 1: Varying choice sets

We use a finite mixture model to infer criterion frequencies from the choice distributions we observe.21

The model relies on the fact that we can predict each type’s distribution of choices across the sequence

of menus. Figure 3 graphically displays the predicted distributions for a selected subset of types.

Summing up these distributions across all types, weighted by type frequencies, yields a prediction

about the choice distribution we should observe in the overall sample. We estimate the empirical

type distribution as that which minimizes the distance between the predicted and observed choice

distributions. We calculate this distance using not only each individual menu (first moments) but

also each pair of menus (second moments).22 Formally, we use the generalized method of moments

18Unlike Eliaz and Spiegler (2020), we impose no requirement that relates the action distribution to subjects’ choice
frequency over the available interpretations.

19At least a handful of Swiss Francs in terms of implied spending on the action wherever possible.
20Appendix B.1.3 shows the distances between any pair of types.
21We identify the use of choice criteria in the aggregate because simulations revealed that individual-level classification

yields unreliable results given the number of types we seek to estimate and the amount of noise we expect to be present
in the data. Unlike individual-level classification, our aggregate identification approach lets us average out decision
noise across subjects.

22To understand the need for second moments, suppose there are only two menus, each with two options, A and
B, and three types. Type 1 chooses option A in both menus, type 2 chooses option B in both, and type 3 uniformly
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Table 2: Choice sets in Experiment 1

Menu DGP Comp. 1 Menu DGP Comp. 1 Menu DGP Comp. 1 Comp. 2
1 A

X

Z

Y

A

X

Z

Y

10 A

X

Z

Y

A

Z

X

Y

19 A

X

Z

Y

A

X

Z

Y

A

Z

X

Y

Promise 17.50 22.50 Promise 17.53 22.44 Promise 24.10 16.82 20.01
Action 0.10 10.13 Action 3.78 10.17 Action 12.50 2.42 7.20

2 A

X

Z

Y

A

X

Z

Y

11 A

X

Z

Y

A

Z

X

Y

20 A

X

Z

Y

A

X

Z

Y

A

X

Z

Y

Promise 17.50 22.50 Promise 22.50 17.50 Promise 21.19 19.83 20.48
Action 12.50 5.58 Action 3.78 10.16 Action 16.39 6.12 3.78

3 A

X

Z

Y

A

Z

X

Y

12 A

X

Z

Y

X

A

Z

Y

21 A

X

Z

Y

A

Z

X

Y

A

X

Z

Y

Promise 22.50 17.50 Promise 22.50 17.50 Promise 19.03 26.62 17.75
Action 12.50 5.35 Action 12.50 3.12 Action 7.03 0.68 12.50

4 A

X

Z

Y

A

Z

X

Y

13 A

X

Z

Y

X

A

Z

Y

22 A

X

Y

Z

A

X

Y

Z

A

X

Y

Z

Promise 17.50 22.50 Promise 17.50 22.50 Promise 12.68 13.81 25.15
Action 12.50 5.35 Action 12.50 3.12 Action 11.28 6.05 0.00

5 A

X

Z

Y

A

Z

X

Y

14 A

X

Z

Y

X

A

Z

Y

23 A

X

Y

Z

A

X

Y

Z

A

X

Y

Z

Promise 17.50 22.50 Promise 22.50 17.50 Promise 17.12 18.38 21.00
Action 12.48 3.45 Action 3.12 12.50 Action 3.12 9.73 0.00

6 A

X

Z

Y

A

Z

X

Y

15 A

X

Y

Z

A

X

Z

Y

24 A

X

Z

Y

A

Z

X

Y

A

Z

Y

X

Promise 22.50 17.50 Promise 17.72 22.25 Promise 21.52 19.76 20.44
Action 12.50 5.13 Action 0.00 8.38 Action 10.12 4.12 0.98

7 A

X

Z

Y

A

Z

X

Y

16 A

X

Z

Y

A

X

Z

Y

25 A

X

Z

Y

A

Z

X

Y

A

Z

Y

X

Promise 17.50 22.50 Promise 17.50 22.53 Promise 15.52 17.42 18.04
Action 12.50 5.13 Action 4.96 11.50 Action 10.12 6.27 5.45

8 A

X

Z

Y

A

Z

X

Y

17 A

X

Z

Y

A

X

Z

Y

Promise 22.47 17.56 Promise 22.50 17.52
Action 8.00 0.55 Action 4.96 11.50

9 A

X

Z

Y

A

Z

X

Y

18 A

X

Z

Y

A

X

Z

Y

Promise 17.50 22.51 Promise 22.50 17.50
Action 8.00 0.55 Action 3.12 5.96

Notes: Each menu shows the DGP and one or two competitor interpretations labeled ‘Comp. 1’ and ‘Comp. 2,’
along with the recommended spending on the action and the promised net payout. When combined with correlations
generated by the DGP, this is all information that is required to apply each of our choice criteria. In the subjects’
interface the variables of any DAG are positioned in the same way as in this table, except that subjects’ DAGs are
rotated clockwise by 45°.
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Figure 3: Fingerprints of selected choice criteria

Menu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

DGP

Competitor 1

Competitor 2

Conditional Correlations

DGP

Competitor 1

Competitor 2

High Promise

DGP

Competitor 1

Competitor 2

Low Action

DGP

Competitor 1

Competitor 2

Direct Links

DGP

Competitor 1

Competitor 2

Unconditional Correlations

DGP

Competitor 1

Competitor 2

Fewer Links

DGP

Competitor 1

Competitor 2

More Links

DGP

Competitor 1

Competitor 2

Middle Action

Notes: Each column corresponds to a menu. We use dark shading if the criterion chooses the corresponding option,
and no shading if the rule does not choose the option. Intermediate shades indicate the number of tied options.
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(GMM) with the optimal weighting matrix and heteroscedasticity-robust standard errors. Appendix

B.1.1 presents details.

We allow for stochastic choice by assuming that, in any given round, a subject either chooses a

type-consistent option (with probability (1−q)) or uniformly and independently randomizes across all

available options (with probability q).23 While we permit heterogeneity in noise probabilities across

subjects, we assume that the mean noise probability is the same within each type. The stochastic

choice probability and the proportion of the type that chooses uniformly randomly throughout are

not separately identifiable. We interpret our results under the assumption that the latter proportion

is zero.

Our mixture model has two attractive features. Both derive from the fact that, holding fixed the

stochastic choice probability q, the predicted aggregate choice distribution is a linear function of the

type frequencies. Linearity allows us to analytically prove identification: a sequence of menus identifies

the vector of type weights if this linear function has full rank.24 The second attractive feature is the

fact that, for any fixed noise probability, the GMM objective function is a quadratic form. Hence,

numerical optimization is rapid and evades the risk of converging to merely local optima, even with

large type sets.25

3.2 Experiment 2: Withholding elements of the decision problem

In Experiment 2, we estimate the distributions of data- and advice based criteria by revealing only

selected elements of the subjects’ decision interface, while precluding structure-based criteria through-

out.

Table 3 displays the choice sets we use. The menus in Panel A serve to estimate the frequency of

data-based criteria. In each of them, we withhold advice and recommendations. Subjects generally

have access to all correlational information. Subjects using the Direct Links criterion will identify the

correct interpretation only in menus D1-D3. Those using Unconditional Correlations will also detect

it in menus U1 and U2. Subjects who apply the Conditional Correlations criterion will pinpoint

the correct interpretation throughout. Compared to Experiment 1, menus C1 and C2 make it more

challenging to identify the correct interpretation in two ways. First, they give the correlational

randomizes. Suppose we observe that A is chosen 50% of the time in each menu (first moments). From this information
alone we cannot determine whether the data was generated by a population consisting of 50% type 1 and 50% type 2
individuals, by a population consisting only of type 3 individuals, or by a convex combination of these two possibilities.
This identification problem disappears once we also consider second moments. Because only type 3 may choose A in
menu 1 but B in menu 2, the joint choice distribution across this pair of menus determines the proportion of type 3
individuals.

23Costa-Gomes and Crawford (2006); Ambuehl and Bernheim (2021) base their inference on similar assumptions.
Some types generate a larger number of tied options than others. While the estimator is consistent, simulations show
that in small samples, this heterogeneity may cause the estimator to assign excess weight to types with fewer ties. We
choose sufficiently large study samples to render this issue negligible.

24We prove identification holding the noise probability fixed. We use numerical simulations to verify that our estimator
correctly recovers the noise probability in synthetic data.

25Because these properties only hold given a fixed noise probability, we designate a grid of starting values for the
noise probability, run the minimization algorithm for each of these starting points, and select the overall optimum.
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implications of conditioning on a v-collider a prominent role, and second, they forestall access to the

unconditional correlations. The latter would eliminate the need to interpret conditional correlations in

menus involving v-colliders (as is the case throughout in Experiment 1). These menus allow us to more

precisely characterize the boundaries to subjects’ inferential abilities. It addresses the ceiling effects

that might arise in Experiment 1 if many subjects consistently identify the correct interpretation.

Menus NV1 and NV2, by contrast, are at the same level of difficulty that we use to identify the

Conditional Correlations criterion in Experiment 1.

To interpret choices given the additional inferential challenges in this experiment (menus C1 and

C2), we introduce the Conditional Correlations (No V-colliders) subcriterion. As the Conditional

Correlations criterion, it rules out interpretations whose implied conditional or unconditional correla-

tions (or absence thereof) are inconsistent with the data, except in menus that involve v-colliders and

prevent access to unconditional correlational information.

The menus in Panel B identify advice-based criteria. They withhold correlational information and

let subjects only observe the model structures (which, by design, cannot aid in decision-making) and

the advice. In each pair of menus A1-A3, we vary whether the high-promise interpretation coincides

with the high or low recommendation. The inferences we can draw from these decisions differ from

those in Experiment 1. First, Experiment 2 reveals advice-based choices for all subjects, whereas

Experiment 1 only reveals them for subjects who do not consistently select the correct interpretation.

This fact prevents a direct comparison of the distributions of advice-based criteria across the two

experiments.26 Second, we can only infer the difference in the fraction of subjects using the High

versus Low Promise criteria, but not the proportion of subjects using any single one of these criteria.

The reason is that while we only observe the overall fraction of subjects choosing one rather than

the other interpretation, displaying the promises draws subjects following the High Promise criterion

toward the high-promise interpretation but pushes those following the Low Promise criterion away

from it. In case of an equal number of High and Low Promise subjects, for instance, the overall choice

frequency of the high-promise interpretation will thus not differ from the random benchmark. For a

parallel reason, we only observe the difference in the proportions of subjects using the High versus

Low Action criteria, but not the proportions themselves.

We formally estimate the frequency of the data-based criteria by assuming that tD, tU , tNV and

tC describe the frequencies with which subjects use the Direct Links, Unconditional Correlations,

Conditional Correlations (No v-Colliders), and Conditional Correlations criteria, respectively, and

that each subject chooses uniformly randomly with probability q in any given menu. Letting pD, pU ,

pNV and pC denote the observed frequencies with which subjects choose the correct interpretation in

menus D, U , NV and C, respectively, we deduce the frequencies of data-based criteria as follows (see

Appendix B.2):

26Experiment 2 does not provide a straightforward way of conditioning on subjects who do not use the Conditional
Correlations criterion as the two corresponding binary choices in menus C1 and C2 do not yield sufficient statistical
precision for reliable individual-level classification.
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Table 3: Choice sets in Experiment 2

A. Identification of data-based criteria

Menu DGP Competitor Predicted correlations

DGP Competitor

Identification of the Direct Links criterion
D1 A

X

Z

Y

A

Z

X

Y

cov(A,X) = 0 cov(A,X) ̸= 0
cov(A,Z) ̸= 0 cov(A,Z) = 0

D2 A

Z

X

Y

A

X

Z

Y

cov(A,X) ̸= 0 cov(A,X) = 0
cov(A,Z) = 0 cov(A,Z) ̸= 0

D3 A

X

Z

Y

A

Z

X

Y

cov(A,X) ̸= 0 cov(A,X) = 0
cov(A,Z) = 0 cov(A,Z) ̸= 0

Identification of the Unconditional Correlations criterion
U1 X

A

Z

Y

Z

A

X

Y

cov(A,X) = 0 cov(A,X) ̸= 0
cov(A,Z) ̸= 0 cov(A,Z) = 0

U2 Z

A

X

Y

X

A

Z

Y

cov(A,X) ̸= 0 cov(A,X) = 0
cov(A,Z) = 0 cov(A,Z) ̸= 0

Identification of the Conditional Correlations (No v-Colliders) criterion
NV1 A

X

Z

Y

A

Z

X

Y

cov(Z, Y |A) = 0 cov(Z, Y |A) ̸= 0
cov(Z, Y |X) = 0 cov(Z, Y |X) ̸= 0
cov(A, Y |X) = 0 cov(A, Y |X) ̸= 0
cov(X,Y |A) ̸= 0 cov(X,Y |A) = 0
cov(X,Y |Z) ̸= 0 cov(X,Y |Z) = 0
cov(A, Y |Z) ̸= 0 cov(A, Y |Z) = 0

NV2 A

X

Z

Y

A

Z

X

Y

cov(A,X|Z) ̸= 0 cov(A,X|Z) = 0
cov(A, Y |Z) ̸= 0 cov(A, Y |Z) = 0
cov(A,X|Y ) ̸= 0 cov(A,X|Y ) = 0
cov(A, Y |X) = 0 cov(A, Y |X) ̸= 0
cov(A,Z|X) = 0 cov(A,Z|X) ̸= 0
cov(A,Z|Y ) = 0 cov(A,Z|Y ) ̸= 0

Identification of the Conditional Correlations criterion
C1 A

Z

X

Y

A

X

Z

Y

cov(A,X|Y ) = 0 cov(A,X|Y ) ̸= 0
cov(A,Z|Y ) ̸= 0 cov(A,Z|Y ) = 0

C2 A

X

Z

Y

A

Z

X

Y

cov(A,X|Y ) ̸= 0 cov(A,X|Y ) = 0
cov(A,Z|Y ) = 0 cov(A,Z|Y ) ̸= 0

B. Identification of advice-based criteria

Menu DGP Competitor

Model Promise Recommendation Model Promise Recommendation

A1a A

X

Z

Y

pH aH A

Z

X

Y

pL aL
A1b pL aH pH aL

A2a A

X

Z

Y

pH aH A

Z

X

Y

pL aL
A2b pL aH pH aL

A3a A

X

Z

Y

pH aH A

X

Z

Y

pL aL
A3b pL aH pH aL

Notes: In the choice sets in panel A, subjects do not have access to promises and recommendations. It displays all
correlations for which the implications of the two models differ and that are accessible to subjects. In the choice sets in
panel B, subjects do not have access to correlational information from the DGP.




tC

tNV

tU

tD

 =
2

1− q


pC − 1

2

pNV − pC

pU − pNV

pD − pU

 . (1)

For econometric inference about advice-based criteria, we let ∆P denote the difference in the preva-

lence of the High and Low Promise criteria, and ∆A the difference in that of the Low and High Action

criteria. We assume that subjects who use neither of these criteria randomize uniformly across these

menus. Letting pa denote the choice proportion of the high-promise interpretation when it coincides

with the high action (menus A1a,A2a,A3a), and pb that in the remaining menus (A1b, A2b, A3b), we

infer (see Appendix B.2) ∆P

∆A

 =
1

1− q

 pa − pb

1− pa − pb

 . (2)

While the noise parameter q affects our inference, Experiment 2 does not identify it. Hence, we

first infer criterion frequencies assuming q = 0 (no errors) and then scale the inferred frequencies using

the estimate of q from Experiment 1.

3.3 Experiment design details

Subjects make choices in the interface displayed in subsection 2.1. The data charts subjects can

access do not indicate any statistical uncertainty because they display expected values and because

the public discourse rarely features such information. The data dashboard shows links to data charts

either overtly or behind the link ‘show remaining charts.’ Subjects know that overt links list all

correlations for which the current rounds’ advisors’ causal models have different implications; hidden

links show the remaining data. A link ‘explanation correlation and causation’ opens a page with

intuitive explanations of the information listed in Observation 1; Appendix E.1 reproduces it in full.

(To examine the behavioral effect of these simplifying elements, Experiment 3 in Section 5 includes

a treatment in which all links are overtly shown and the latter page is not available.) Further links

describe the causal structure in words (‘show in words’), explain how the observed correlations inform

the recommendation (‘show explanation,’ reproduced in Appendix E.1), detail the structure of the

unconditional and conditional data charts (‘how to read these charts’), and display a graph with the

cost of each action (‘explanation costs’).

The instructions stress that exactly one advisor is correct in each round, that the data do not affect

advisors’ model specifications, that recommendations and promises derive from fitting the model to the
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data, that there are no errors in fitting any model to the data, but that promises and recommendations

based on misspecified models are wrong nonetheless. They also explain that any exogenous nodes are

mutually independent, and that the action is always exogenous in the data displayed in the charts.27

A comprehension check that is hard to pass by chance ensures that subjects understand all elements

of the experiment. Subjects can proceed with the experiment only if they answer correctly. We ask

subjects who fail the check to revisit the instructions until they can pass. Because subjects in a pilot

study spent twice as long on their first decision as on later ones, the experiment begins with two

preliminary rounds (not identified as such) whose data we do not analyze.

We randomize elements of the experiment to increase the plausibility of our stochastic choice

assumptions. By having subjects proceed through the menus in individually randomized order, we

ensure, for instance, that even if subjects stop paying attention after some time, this lack of attention

is uniformly distributed across the menus. Randomization of the order in which the interpretations

appear on screen guarantees that behaviors such as consistently selecting the advisor on the right

appear as uniform randomization across interpretations.

Toward the end of the study, we elicit an array of individual characteristics that we relate to

decision criteria use. These include information that lets us classify each subject’s field of study as

STEM, economics and business, or other, as well as information on subjects’ familiarity with concepts

underlying probabilistic causal inference (completing the aphorism “correlation does not...”, writing

the name of the mathematical object P (A|B) in words, spelling out the acronym ‘DAG,’ and reporting

whether they have ever taken a class on causal statistical inference).28 We also elicit risk preferences

using the approach of Eckel and Grossman (2008) (incentivized), administer an extended version of

the Cognitive Response Test (Frederick, 2005; Toplak et al., 2014), and measure subjects’ beliefs in

pseudoscience (Torres et al., 2020). Subjects report their gender and the Swiss political party they

consider closest to their own views, which we assign a position on the political spectrum based on

Jolly et al. (2022).29 Finally, subjects describe in their own words how they typically made decisions

in the main rounds of the experiment.

Subjects are free to leave once they have finished the study, at which time they receive a completion

payment of Fr. 20, as well as the payoff from one randomly selected round of the study (including

risk-preference elicitation).30 We choose DGP parameters such that advisors’ promises range from Fr.

10 to Fr. 30 (though recommendation based on a misspecified model can lead to a far lower payout

than that model promises), for incentive payments ranging from Fr. 1.40 to Fr. 24.10 in Experiment

1 and from Fr. 8.50 to Fr. 22.50 in Experiment 2.

27To avoid overwhelming subjects, we do not explicitly communicate that DGPs are linear Gaussian. Linearity of the
relations between the variables X, Y , and Z becomes apparent to subjects inspecting the data charts. Charts involving
the action plot spending c(A) on the horizontal axis, which is concavely related to the remaining variables.

28We score the first three questions by whether they include the strings ‘caus’, ‘conditional’ or ‘given,’ and ‘acyc,’
respectively.

29That survey does not include a score for the Swiss communist party (“Partei der Arbeit”). We assign it a score of
0 (leftmost possible).

30At the time of the study, 1 Fr. = $1.12.
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All further design details are listed in Appendix C.1.

4 Analysis

We begin by explaining our data collection and sample characteristics (subsection 4.1). Subsection

4.2 contains our main estimates of the frequency with which subjects’ use the various decision criteria

in Experiment 1. Subsection 4.3 demonstrates the robustness of our results using out-of-sample

prediction exercises. Subsection 4.4 shows that we estimate a highly similar distribution of data-based

criteria using a different identification strategy with a separate sample of subjects in Experiment

2. Subsection 4.5 searches for parsimonious models whose predictive accuracy rivals that of our

unrestricted model with 111 types. Subsection 4.6 relates decision-making in our setting to subjects’

educational background, political preferences, and demographic and psychological traits.

4.1 Data collection and preliminary analysis

We ran Experiment 1 with 485 subjects earning a mean payment of Fr. 38.30 and Experiment 2

with 279 subjects earning a mean payment of Fr. 37.50 in April and May 2023 at the Laboratory

for Experimental and Behavioral Economics at the University of Zurich.31 Subjects took between 50

minutes and 2 hours to complete the experiment, with a median completion time of around 75 minutes.

Per round, the median subject spend 38 seconds in Experiment 1 and 20 seconds in Experiment 2

(means 56 and 40 seconds, respectively). The shorter decision times in Experiment 2 may be due to

the fact that rounds in which less information is available can be completed more quickly.32

Approximately two-thirds of our subjects are enrolled in a STEM major, another 13% are enrolled

in economics or business, and 18% report having taken a class on statistical causal inference. Yet,

only 55% can complete the aphorism ‘Correlation does not. . . ,’ one quarter can name ‘P (A|B)’ and

9% can spell out ‘DAG.’ Appendix D.1 lists further sample characteristics.

Subjects use the data dashboard frequently. In Experiment 1, 90.5% of subjects access it at least

once (excluding the two preliminary rounds). In an average round, 65.9% of subjects view at least

one chart. While any single one of the overtly displayed charts can be used to determine the correct

interpretation in each two-alternative menu, the average subject views 2.86 charts per round.33

31We preregistered a target sample size of 700 subjects, https://www.socialscienceregistry.org/trials/11336.
32Appendix D.2 examines order effects. While there are minor order effects in terms of time spent per round, these

appear to reflect learning rather than fatigue, as subjects view data charts at the same rate throughout the experiment.
33One potential concern is the possibility that subjects determine their choice simply by looking at the unconditional

correlation between the action and the outcome, which equals the true causal effect of the action. In fact, in Experiment
1, there is not a single round in which a subject viewed the unconditional correlation between A and Y , but did not
view any other chart.
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4.2 Distribution of decision criteria: Experiment 1

Figure 4 shows the overall distribution of choices for each menu. It provides initial insights about

the nature and quality of the data. Three features stand out. First, while choice distributions

place significant weight on all interpretations in most menus, some are far from uniform (e.g. 11,

21 and 25). Hence, the dispersion in choices present in some menus reflects individual heterogeneity

rather than general inattention to the experiment. Second, aggregate patterns anticipate some of our

overall conclusions. When the choices of the High Promise, Low Action, and Conditional Correlation

criteria coincide (menus 11, 14, 17, and 18; see Figure 3), choices concentrate substantially on the

corresponding prediction, suggestive of great popularity of these three criteria. Third, subjects do not

simply resort to a choose-the-middle-action heuristic even when they could. In fact, in menus 24 and

25, the interpretation with the median recommendation is chosen least often by a wide margin.

Figure 4: Aggregate choice distribution in Experiment 1

Menu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

DGP 72 49 56 43 56 65 48 68 55 68 84 61 51 73 66 74 85 82 60 49 54 50 45 45 38

Competitor 1 28 51 44 57 44 35 52 32 45 32 16 39 49 27 34 26 15 18 18 21 39 20 18 16 15

Competitor 2 23 30 7 30 37 39 47

Notes: Each column corresponds to a menu, listed in the same order as in Figure 3. Numbers list the percentage of
subjects choosing a given option. Shades of blue reflect the percentages.

We next use our mixture model to estimate criterion frequencies. We consider the fraction of

subjects who make use of a given criterion at some stage in their decision process. Accordingly, we

sum the estimated weights of all types that use a given criterion regardless of any other criteria they

may combine it with.

Before summing across types, we inspect the weights assigned to the three most common indi-

vidual types. Accounting for a total weight of 57.7%, each of them uses a single criterion that they

do not combine with other criteria. The most common type (37.4%) pinpoints the correct narrative

throughout.34 The second most common type (13.1%) consistently chooses the advisor recommending

the lowest action. The third most common type (7.2% of subjects) chooses the high-promise interpre-

tation without using any data- or structure-based criteria. Appendix D.3 lists the estimated frequency

of each type. To characterize the choice behavior of all subjects, including the 42.3% not described

by the three most popular types, we now turn to criteria distributions.

Panel A in Figure 5 displays the popularity of each data-based criterion; Table 4 lists the numer-

ical estimates (column 1 of Panel A). While the modal subject (46.1%) does not use any data-based

criterion, the 37.4% who pinpoint the correct interpretation throughout (the Conditional Correlations

criterion) constitute the majority of those who use data-based criteria (53.9%). Another 5.8% make

34Experiment 2 shows that this estimate partly reflects a ceiling effect.
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Figure 5: Distribution of decision criteria

A. Data-based criteria
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Notes: Whiskers show 95%-confidence intervals, truncated at 0. Panel A: Experiments 1 and 3 do not separately
identify the Conditional Correlations (No v-Colliders) and Conditional Correlations criteria. Experiment 3 does not
separately identify the Direct Links and Unconditional Correlations criteria. Experiment 2 estimates of data-based
criteria are adjusted for noisy choice using q = 0.266. Panel B: Estimates of advice-based criteria in Experiment 1
are shown conditional on not using the Conditional Correlations criterion. Experiment 2 only identifies the difference
between the High and Low Promise criteria and between the High and Low Action criteria, not the four levels. We set
the prevalence of the Low Promise and High Action criteria to zero and plot estimates using q = 0. Panel C: Only
Experiment 1 identifies structure-based criteria. The 37.4% of subjects who use the Conditional Correlations criterion
do not reveal structure-based criteria.



data-informed choices as long as unconditional correlations suffice to do so (the Unconditional Corre-

lations criterion), and an additional 10.7% do so if the Direct Links criterion is sufficient to discard

misspecified interpretations. Hence, not only is there limited fit-checking among a significant portion

of individuals, but there is also substantial heterogeneity in these limits.

Panels B of the Figure and Table showcase the distribution of advice-based criteria. The frequen-

cies in the table sum to 62.6% because the 37.4% of subjects who consistently identify the correct

interpretation do not reveal any advice-based criteria; those in the figure condition on not using the

Conditional Correlations criterion. Ostensibly cautious choice is popular: the modal advice-based cri-

terion is to choose the advisor whose action recommendation is lowest (28.8%). In spite of the formal

connection between the Low Promise and maximin criteria, a vanishing fraction of subjects (2.8%)

use that criterion.35 Even fewer participants systematically prefer high actions (2.3%). The High

Promise criterion describes 16.9% of our subjects. This fraction of maximax -decisions is considerable

from the viewpoint of the literature on cautious choice and from the viewpoint of a literature that

rarely evidences behavior consistent with anticipatory utility in laboratory experiments (reviewed in

Engelmann et al., forthcoming). From the viewpoint of the narrative equilibria literature (Eliaz and

Spiegler, 2020), which assumes that this criterion describes everyone, the fraction is low. As Section

5 shows, the High Promise criterion garners far more support in Experiment 3.

Panels C of the Figure and Table exhibit the relative popularity of structure-based criteria. These,

too, are observable only for the 62.6% of subjects who do not consistently choose the correct interpre-

tation.36 A mere 10.4% of subjects prefer simpler interpretations in the form of fewer roots (5.5%) and

subsets of links (4.9%), but not in the form of fewer links (0.0%). More than twice as many (22.8%)

favor more complex interpretations, especially those with more links (12.9%) and those whose links

are a superset of an alternative interpretation (9%). The difference between the proportion of subjects

with a complexity preference and those with a simplicity preference is highly statistically significant

(p < 0.01). While this result is unexpected in light of Occam’s razor, it may reflect the conceptual

appeal of the Superset criterion outlined in Section 2.3 which the More Links criterion heuristically

approximates.37 Conceptually, caution about imposing potentially incorrect model restrictions does

not support a preference for more roots, which, tellingly, subjects do not endorse (0.9% of subjects).

Finally, we estimate that only 4.6% of subjects systematically choose the interpretation with the

median action recommendation.

Due to randomness, a subject’s choices do not always conform to their type. The estimated random

choice parameter of 26.6%, however, indicates that participants paid attention to their choices and

35The formal connection between the maximin and Low Promise criteria is not obvious. Our interface does not
provide subjects with the information to apply the maximin criterion directly. Hence, the low support for the Low
Promise criterion should not be construed as evidence against maximin behavior in general.

36Moreover, as detailed in Section 2.3, the Fewer Roots and More Roots criterion cannot be used to discard inter-
pretations once interpretations based on ill-fitting unconditional correlations have been rejected. Therefore, we set the
fraction of types that combine the Unconditional Correlations criterion with one of the Root-based criteria to zero.

37Relatedly, Marsh et al. (2022) provide evidence that conspiracy theories tend to be disproportionately complex.
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Table 4: Distribution of criteria use

(1) (2) (3)

Criteria Experiment 1 Experiment 2 Experiment 2
Adjusted for noise - No Yes

A. Data-based

None 0.461 0.614 0.474
(0.009) (0.037)

Any Unconditional 0.165 0.106 0.145
(0.011) (0.049)

Direct Links 0.107 0.092 0.125
(0.012) (0.049)

All 0.058 0.014 0.020
(0.008) (0.054)

Any Conditional 0.374 0.280 0.381
(0.006) (0.044)

No V-Colliders - 0.133 0.181
(0.057)

All - 0.147 0.200
(0.046)

B. Advice-based

None 0.118 - -
(0.020)

High Promise 0.169 0.333 0.454
(0.008) (0.025)

Low Promise 0.028 0† 0†

(0.007)

High Action 0.023 0† 0†

(0.009)
Low Action 0.288 0.423 0.576

(0.009) (0.029)
C. Structure-based

None 0.247 - -
(0.021)

Simplicity
Fewer Roots 0.055 - -

(0.009)
Fewer Links 0.000 - -

(0.006)
Subsets 0.049 - -

(0.012)
Complexity

More Roots 0.009 - -
(0.004)

More Links 0.129 - -
(0.006)

Supersets 0.090 - -
(0.011)

Middle Action 0.046 - -
(0.004)

Random choice probability 0.266 0† 0.266†

(0.008)

Subjects 475 279 -
Observations 11875 4185 -

Notes: † indicates imposed values. Dashes indicate that the corresponding experiment or model does not estimate
the listed criterion frequency. Standard errors in parentheses, heteroskedasticity-robust in column 1, and clustered
by subject in column 2. Estimates in column 1 represent the output of a single estimation. Estimates in column 2
reflect the output of two regressions, one for data-based criteria (OLS, 2511 observations from 279 subjects) and one
for advice-based criteria (two-equation stacked OLS, 1674 observations from 279 subjects), with q = 0. Estimates in
column 3 present the corresponding estimates using q = 0.266.



suggests that out-of-sample predictability will substantially exceed a random choice benchmark, as

we will examine in Subsection 4.3.

Overall, these results document, first, pronounced dispersion in the willingness and ability to assess

the fit between interpretations and observable data, second, some support for the core assumption of

the narratives equilibria literature and substantial support for a notion of caution not yet considered

in the literature (the Low Action criterion), and, third, a considerable preference for more complex

over simpler interpretations.

One potential concern with these findings is that our experiment may not measure subjects’ nat-

ural comprehension and use of the correlational implications of causal structures because it provides

an explainer about these linkages. Experiment 2 presents evidence indicating that this concern is

unwarranted—subjects rarely open the explainers, and they do not open them more often in more

difficult problems. Experiment 3 dispels the concern in a different subject population using a treat-

ment that does not provide this explainer to subjects, and that, in addition, overtly displays links to

all data charts regardless of whether they help distinguish between the available interpretations.

A second concern questions whether subjects’ misunderstandings are confined to the correlational

implications of causal structures (which we explicitly model) or whether they reflect more fundamental

misperceptions about the decision environment in our study (from which we abstract). While our

mandatory comprehension checks minimize the latter possibility, subjects’ answers to the open-ended

question of how they typically chose between advisors provide additional insight. Many subjects

describe approaches consistent with our criteria.38 Yet, 33 subjects (6.8%) appear confused about the

fact that a promise or recommendation based on a misspecified model carries no information. These

subjects commonly describe a strategy of comparing the difference in promised outcomes across the

interpretations to the difference in the costs of the recommended actions, in an apparent attempt at

cost-benefit analysis.39 We obtain highly similar estimates when we estimate our finite mixture model

excluding these subjects, as Appendix D.4 shows.

These results abstract from priors about the plausibility of the models in a menu. Appendix D.5

considers decisions in three different real-world framings and shows that such beliefs would indeed

confound the identification of our decision criteria. The same Appendix section also considers the

effects of conveying models verbally rather than graphically in two selected menus. While the verbal

38For instance: Conditional Correlations (“I tried to look at all the given graphs. If there were a a1 → a2 → a3 path,
I especially looked at the graph where a2 was fixed”), Unconditional Correlations ( “I tried to find quantities which
do not influence each other. I prefered the realtion between pairs instead of the fixing third quantities. Then I tried
to find data which does not fit into the statement of one of the advisors. I never looked at the amount of money.”),
High Promise (“I only glanced at the data provided. In most rounds i chose the advisor by looking whose theory would
result in the highest expected payment if they were right.”), High Action (“[I] never choose the actions that where the
cheapeast because theirs a spanisch saying that allways the cheapeast becomes the expensiest.”), or choosing randomly
after partial data checking (“sometimes i choose randomly because i didnt know the answer”).

39Example statements are “I always looked at how much the action would cost in relation to the bonus that the
advisor expected” and “I was comparing the amount I spend with the bonus I eventually get”. A research assistant
classified each subject’s response according to whether it shows definite evidence of the misunderstanding or potential
evidence. We report the numbers that include merely potential evidence for misunderstanding. In Experiment 2, 25
subjects (9.0%) report such strategies.
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presentation substantially raises response times, it does not have statistically significant effects on the

likelihood with which subjects choose any given interpretation at the 5% level.

4.3 Out-of-sample predictions

The large number of types in our mixture model may raise questions about overfitting. We address

these by testing the out-of-sample predictive power of our model. We designate a training set of

menus, which we use to estimate the type distribution, as well as a test set, which we use to evaluate

predictive success. We score predictions by the Euclidian distance between the predicted and actual

choice distributions on the test set. We designate training- and test-sets using the leave-one-out

approach: one menu constitutes the test set and all remaining menus make up the training set. While

there is one menu (menu 21 of Table 2) that must be included in every training set to guarantee the

identification of all types, we repeat the procedure using each of the remaining menus as test set once,

and average the predictive scores.

Figure 6 shows the results. Each blue circle represents the alternative predicted to be more popular

in a two-alternative menu. Its horizontal position indicates the predicted choice frequency, and its

vertical position indicates the observed frequency. Each three-option menu is represented by two

symbols: red triangles for the interpretation predicted to be most popular, and green rectangles for

the one predicted to be second-most popular. We observe tight clustering around the diagonal, which

demonstrates substantial out-of-sample predictive power.
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Figure 6: Out-of-sample predictive power
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to be second-most popular.

Panel A of Table 5 shows the formal results. We attain an average distance of 0.031 between

predicted and actual choice distributions. Benchmarked against the distance of 0.101 between the uni-

formly random and actual choice distributions, our model predictions correspond to an improvement

of 69.3%. This substantive out-of-sample predictive power indicates that our estimates in Subsection

4.2 are not simply a consequence of overfitting.

4.4 Distribution of decision criteria: Experiment 2

Experiment 2 provides a robustness check of the results from Experiment 1. It also lets us more

precisely characterize the bounds of subjects’ inferential abilities. In contrast to Experiment 1, it

excludes structure-based criteria and it only identifies the popularity of criteria rather than types

(combinations of criteria).

Table 4 lists the estimates of criterion frequencies we obtain from Experiment 2. Column 2 assumes

zero noise; column 3 uses the noise parameter of 0.226 estimated in Experiment 1. We first consider

data-based criteria, plotted in Panel A of Figure 5, which shed light on the boundaries of subjects’

inferential abilities. Of the subjects who use conditional correlational information effectively at the

level of difficulty that corresponds to Experiment 1 (38.1%), only about half (20% of all subjects) also

manage to do so in menus that involve v-colliders and prevent access to unconditional correlations. One
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candidate explanation for the lower rate of correct choices in those menus is the mistaken belief that

uncorrelated parents of a collider remain uncorrelated even when conditioning on the collider. Under

this misperception, a participant facing menu C1 will interpret the observed statistic cov(A,X|Y ) = 0

as consistent with both available interpretations, cov(A,Z|Y ) ̸= 0 as equally inconsistent with both,

and will thus choose randomly. This finding shows that subjects struggle not only with reading data

charts but also with deducing a theory’s correlational implications and connecting these to the data.

We study the robustness of our main results by comparing the estimates from Experiment 1

with the noise-adjusted estimates from Experiment 2.40 They coincide to a surprising extent; the

largest discrepancy is the marginally lower weight of the Unconditional Testing criterion in Experiment

2. The agreement between the estimates suggests that our set of types in Experiment 1 does not

omit empirically relevant structure- and advice-based criteria. Otherwise, Experiment 1, but not

Experiment 2, would misattribute the choices of omitted types to the included types, likely bringing

the estimated distributions of advice-based criteria out of alignment across the experiments.41

The juxtaposition of the estimates from the two experiments also addresses whether subjects in

Experiment 1 use advice- and structure-based criteria as cognitively inexpensive substitutes for fit-

checking. If so, Experiment 2 would yield higher rates of data-based decision-making than Experiment

1, contrary to our findings. Along with the result that Experiment 2 has a higher percentage of subjects

checking data charts in any given round than Experiment 1 (76.6% (s.e. 2.0%) vs. 65.9% (s.e. 1.9%)),

the comparison of the use of data-based criteria across the experiments also suggests that the failure

to apply data-based criteria is at least partly due to limited ability, not solely unwillingness. While

the foregoing argument relies on a comparison of decisions across different sets of menus, the same

results emerge when we focus on the two menus included in both experiments (see Appendix D.9).

Experiment 3 obtains a qualitatively similar result through a treatment/control comparison.

Our estimates of data-based criteria are not driven by the explanations provided in the study

interface concerning the correlational implications of causal structures. In any given round that

provides access to correlational data, only a small number of subjects (16.1%) view these explanations.

Moreover, if subjects checked the explanations whenever they encountered a model whose implications

they did not understand, we would observe data-checking to increase in more challenging problems,

contrary to our evidence (see Appendix D.7).42

As explained in Section 4.4, the distributions of advice-based criteria cannot be directly compared

across the experiments because the distribution in Experiment 1 excludes subjects who apply the

Conditional Correlations criterion, whereas Experiment 2 includes them. Ignoring these selection

effects, and assuming that there is no support for the Low Promise and High Action criteria, we

40The alignment of estimates between the two experiments is not a consequence of the noise adjustment, since this
adjustment does not alter the relative frequencies of the criteria.

41Appendix D.6 shows that estimating the mixture model excluding structure-based criteria, excluding advice-based
criteria, or both leads to estimates of data-based criteria that substantially differ from both those we obtain from the
full model and from those in Experiment 2.

42This absence of an effect may arise if subjects fail to realize when they misunderstand the correlational implications
of a causal structure.
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observe that low actions are more popular than high promises (column 2 of Panel B of Table 4).

This qualitative feature mirrors Experiment 1, but at a greater magnitude. Accounting for noise

using the corresponding estimate from Experiment 1 further magnifies the differences between the

two experiments’ criteria distributions.43

4.5 Parsimonious approximations

So far, our analysis considers a larger number of types than is practical for applications. Can more

parsimonious models explain our data similarly well as our unrestricted model?

To answer this question, we consider the leave-one-out predictive power of all possible one-, two-,

and three-type combinations, measured by the Euclidian distance between predicted and observed

choice distributions, averaged across leave-out rounds. We benchmark the results against the full

model (mean distance 0.031), which we treat as a lower bound,44 and against uniform choice (mean

distance 0.101), which we treat as an upper bound. Panel A of Table 5 lists the benchmarks. Panels

B, C, and D show the three most predictive one-, two-, and three-type models, respectively, along

with their predictive scores. The best one-type model covers a mere 47.1% of the distance between the

two benchmarks. The best two-type model does substantively better, covering 82.9% of the distance.

The best three-type model rivals the performance of the full model. It covers a whopping 95.7% of the

distance. The most predictive three-type combination features precisely the three single-criterion types

to which the full model assigns the largest weight when maximizing in-sample fit: High Promise, Low

Action, and Conditional Correlations. This three-type model best fits the data in-sample with type

frequencies of 15.5%, 30.8%, and 53.8%, respectively. While it rivals the full models’ out-of-sample

predictive power, the fact that its in-sample estimated noise parameter of 42.9% substantially exceeds

the full model’s 26.6% suggests that its parsimony comes at the cost of excluding some empirically

relevant types.

4.6 Individual characteristics

Heterogeneity is a key characteristic of subjects’ approaches to choice under conflicting causal inter-

pretations. This fact raises the question of whether it is possible to predict the way in which a subject

approaches these decisions. To answer this question, we first study which individual characteristics

predict the choice of the correct, the low-action, and the high-promise interpretations. We then es-

timate an extended version of our mixture model that lets the weights of a restricted set of types

depend on predictor variables.

In our reduced-form analysis, we regress binary indicators for selecting interpretations with a

given property (e.g. high promise) on a vector of individual characteristics. We control for the

43Since the provision of correlational information arguably increases problem difficulty, it is plausible that subjects
implement advice-based criteria in Experiment 2 with less noise than in Experiment 1.

44The full model does not necessarily minimize the distance between predicted and empirical choice distributions, as
it may overfit.
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Table 5: Best n-type models

Out-of-sample In-sample

L1O Euclidian Type Noise
distance frequency parameter

A. All types
Full model 0.031 0.266
Uniformly random 0.101 1.000

B. Best single types
Combination 1 0.068 0.699
A. High Promise, Unconditional Correlations, More Links 1.000

Combination 2 0.069 0.697
A. Unconditional Correlations, Supersets 1.000

Combination 3 0.069 0.671
A. Unconditional Correlations, More Links 1.000

C. Best two-type combinations
Combination 1 0.043 0.494
A. Low Action 0.395
B. Conditional Correlations 0.605

Combination 2 0.053 0.488
A. High Action, Unconditional Correlations, More Links 0.385
B. Low Action 0.615

Combination 3 0.055 0.531
A. High Action, Unconditional Correlations, More Links 0.388
B. Low Action, Supersets 0.612

D. Best three-type combinations
Combination 1 0.034 0.429
A. High Promise 0.155
B. Low Action 0.308
C. Conditional Correlations 0.538

Combination 2 0.035 0.440
A. High Promise, Supersets 0.164
B. Low Action 0.298
C. Conditional Correlations 0.539

Combination 3 0.036 0.443
A. High Promise, Middle Action 0.148
B. Low Action 0.314
C. Conditional Correlations 0.538
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correlations between the correct, high-promise, and low-action interpretations that arise across menus.

For example, when the dependent variable is an indicator for choosing the correct interpretation,

controls consist of indicators for whether the correct interpretation coincides with the high-promise

interpretation, the low-action interpretation, or both. We construct parallel sets of control indicators

when the dependent variable indicates choosing the high-promise or the low-action interpretation.

Column 1 of Table 6 shows how individual characteristics affect the propensity to choose the correct

interpretation. Reassuringly, we find that higher CRT scores and greater background knowledge of

statistics and causal inference both positively predict that propensity (p < 0.01 in both cases). So

does studying a STEM field (p < 0.01), and—although insignificantly so—studying economics or

business. The effects are sizeable, especially compared to the random choice benchmark.45 Given our

highly educated subject sample, these effects suggest that our laboratory results represent a ceiling

on subjects’ fit-checking abilities; a hypothesis we examine in Section 5.

45To derive the random choice benchmark, notice that the experiment uses 7 three-option rounds and 18 two-option
rounds. Assuming that in each round fraction p of subjects choose the correct consistently and fraction (1−p) randomize
uniformly across all options, we expect fraction of subjects 7

25
(p + (1 − p) 1

3
) + 18

25
(p + (1 − p)) 1

2
) = 0.5467p to choose

the correct interpretation. Therefore, an effect of ∆q on the probability of choosing the target corresponds to an effect
of ∆q/0.5467 of choosing the target for reasons other than randomness.
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Table 6: Predictors of choice: demographics and subject background

(1) (2) (3) (4) (5) (6) (7)
Reduced-form estimates Structural estimates

VARIABLES Correct DAG Data viewed High Promise Low Action High Promise Low Action p-value
difference

Constant 0.398*** 0.234** 0.351*** 0.419*** -1.546*** -0.684*** 0.000***
(0.049) (0.091) (0.040) (0.046) (0.058) (0.079)

Female -0.050** -0.071* 0.039*** 0.015 0.843*** 0.170** 0.015**
(0.021) (0.040) (0.014) (0.019) (0.219) (0.080)

CRT score (0 to 1) 0.156*** 0.521*** -0.093*** -0.097** -1.496*** -1.069*** 0.389
(0.038) (0.077) (0.031) (0.040) (0.508) (0.138)

Knowledge index (0 to 1) 0.133*** 0.141** -0.024 -0.069** -0.660* -0.559*** 0.834
(0.034) (0.062) (0.024) (0.031) (0.349) (0.190)

Field: STEM 0.069*** 0.140*** -0.011 -0.053*** -0.016 -0.361*** 0.199
(0.020) (0.046) (0.017) (0.020) (0.277) (0.057)

Field: Econ. or business 0.042 0.155*** -0.030 -0.042 -0.564 -0.434*** 0.747
(0.032) (0.059) (0.022) (0.030) (0.366) (0.111)

Pseudoscience score (0 to 1) -0.161** -0.325*** 0.080 0.078 2.298*** 0.884*** 0.056*
(0.062) (0.113) (0.050) (0.057) (0.603) (0.248)

Political position (0 to 1) -0.007 0.096 0.016 -0.020 -0.026 -0.599*** 0.162
(0.031) (0.060) (0.023) (0.030) (0.340) (0.131)

Risk aversion perc. rank (0 to 1) -0.001 0.105* -0.056** 0.024 -1.796*** -0.072 0.000***
(0.032) (0.061) (0.025) (0.030) (0.390) (0.125)

Observations 11965 11965 11965 11965 11725
Subjects 479 479 479 479 469

Notes: Columns 1 to 4 report coefficient estimates from OLS regressions. Columns 5 and 6 represent estimated odds ratio from a single GMM estimation. Knowledge
index is the number of the following questions a subject can answer correctly, normalized to the unit interval: 1. Name of P (A|B), 2. Complete “Correlation does
not...” 3. Spell out ‘DAG’. Omitted category for gender is male. Samples exclude subjects who identify as neither male nor female (2 and 6 in Experiments I and
S, respectively). Omitted category for field of study is ‘other.’ Political position is the position of the preferred political party according to Jolly et al. (2022), with
higher values indicating a more right-wing orientation. Pseudoscience scale (Torres et al., 2020) is higher the more an individual believes in pseudoscience. Coefficient
estimates for the structural model show the effect of the predictor on the log-odds of being the specified type rather than the conditional tester. p-values in column 7
reflect Wald tests of the joint hypothesis that the two estimates on a given predictor equal each other (1 degree of freedom). Each regression in columns 1-4 includes 25
observations for each of the 479 subjects in Experiment 1 who have provided complete demographic characteristics, with the exception of 10 subjects in the first session
who were not shown round 25. The model in columns 5-7 excludes the 10 subjects from the first session entirely. * p < 0.1, ** p < 0.05, *** p < 0.01.
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A greater belief in pseudoscience negatively predicts choosing the correct interpretation (p < 0.05).

Yet, contrary to common expectations, we do not find an effect of political position.46 This result

appears less surprising when considering that both sides of the political spectrum tend to doubt their

political opponents’ capacity to make rational inferences from observations (cf. näıve realism; Griffin

and Ross, 1991). We also find that females choose the correct interpretation less often (p < 0.05,

though this effect vanishes in Experiment 3) and that risk preferences do not predict this choice.

Neither effect admits a straightforward interpretation.47

Column 2 examines a potential mechanism underlying these findings by using an indicator for

whether a subject viewed a data chart in the current round as the dependent variable. The effects

generally parallel those of column 1. This suggests that the effects on correct choice do not exclusively

reflect differences in the ability to draw inferences from data but also differences in the willingness to

check data.

The dependent variable in column 3 is an indicator for choosing the high-promise interpretation.

We find that women more frequently choose it (p < 0.01), whereas more risk-averse individuals

(p < 0.05) and individuals scoring higher on the CRT (p < 0.01) choose it less often. The latter also

select the low-action interpretation less often, as column 4 demonstrates (p < 0.05). Topically related

characteristics such as knowledge about statistical causal inference (p < 0.05) and studying a STEM

field (p < 0.01) exert similar effects on the propensity to choose the low-cost action.

The foregoing regressions only utilize a subset of the moments that our mixture model employs.

To estimate the effect of individual characteristics on types using the full set of moments, we estimate

a version of our mixture model that employs a multinomial logit formulation of type probabilities.48

For tractability, we use the three-type model with the best out-of-sample predictive power (Subsection

4.5), which consists of the single-criterion types Conditional Correlations, High Promise, and Low Ac-

tion. We estimate the model with GMM using heteroscedasticity-robust standard errors. Columns 5

and 6 of Table 6 display the estimated effects of the individual characteristics on the High Promise and

Low Action type probabilities, respectively, using the Conditional Correlations type as the benchmark

category. The estimates are consistent with those from the reduced form regressions but generally

provide higher statistical precision. In fact, tests of the joint hypothesis that the effect of a charac-

teristic on both high-promise and low-action types is zero are rejected at p < 0.01 throughout. The

effect of a belief in pseudoscience on choosing the high-promise interpretation is particularly large and

46We also do not find an effect when we replace the position on the political spectrum by its square, to capture
political extremism, or by the extent of populism (quantified by Meijers and Zaslove, 2021) of the political party closest
to one’s views. Moreover, replacing subjects’ political positions with their responses to the question “most political
issues are inherently complex” (strongly disagree...strongly agree) has no effect either.

47Our setting incorporates different types of risk with countervailing effects. The risk of selecting a wrong interpreta-
tion can be mitigated by spending more effort checking data charts, but expending that effort is itself risky for a subject
unsure about her ability to identify the correct interpretation based on the charts. Experiment 3 (Section 5) also tests
the effect of ambiguity attitudes.

48Specifically, given reference type K, the probability of type k is given by log
(

tk
tK

)
= βkX, where X = [Xi,k]i,k is

a matrix with one column for each demographic and psychological predictor and a constant term and one row for each
subject. All other aspects of the model remain unchanged from Section 4.2.
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larger than that on choosing the low-action recommendation (p < 0.1). Only gender and risk aversion,

however, differentially affect the probability of being a high-promise and low-action type at p < 0.05,

as column 7 shows.49

5 General population

Experiments 1 and 2 use a sample of students in predominantly technical fields, which raises the

question of whether a broader subject population would behave similarly. Experiment 3 is a simplified

version of Experiment 1 that we administer to a general population sample.

Experiments 1 and 2 also raise the question of the extent to which subjects’ choices reflect specific

design choices, especially the highlighting of data charts that differentiate between the available in-

terpretations and the explainer of the correlational implications of causal structures. We address this

question by including these elements in the Explanation Treatment of Experiment 3, administered to

half our subjects, and excluding them in the Control, administered to the other half.

Table 7 displays the menus we use in Experiment 3. To simplify the experiment, we only use

three-node DAGs. To abbreviate it, we reduce the number of rounds. To effectively discern data- and

advice-based criteria, we design the experiment to preclude the influence of structure-based criteria.

This approach, however, limits our ability to differentiate between the Direct Link and Unconditional

Testing criteria. Consequently, we identify 10 different types, each of which combines one advice-

based criterion with one data-based criterion (including ‘none’ in both cases). In order to identify the

Conditional Correlations criterion in this simplified setting, Menus 9 and 10 do not display advisers’

promises and recommendations. Each subject encounters menus 1 to 8 twice, with slightly different

parametrizations each time, for a total of 18 choice problems, shown in individually randomized order

and preceded by 2 practice menus. We ensure that the high and low promises amount to approximately

$10 and $6, respectively, in each round.

We conducted the study on December 6 and 7, 2023, on prolific.com, targeting a sample repre-

sentative in gender, age, and political affiliation. A total of 789 subjects completed the study; an

additional 408 subjects started the study but did not complete it. In terms of education and age,

there are no statistically significant differences between subjects who completed the survey and those

who did not. Our sampling restrictions further ensure that our final sample is gender-balanced even

though men drop the study at a lower rate. See Appendix D.1 for details. The median subject com-

pleted the study in 50 minutes using 15 seconds per round and earned an average incentive payment

of $6.60 and a completion payment of $10.50

49Appendix D.8 performs a parallel analysis using subjects’ agreement with various statements that loosely relate to
our decision criteria.

50This duration is substantially shorter than the corresponding figure in Experiment 1. Possible causes include
population differences, differences in the complexity of the experiments, and stakes.
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Table 7: Menus used in Experiment 3

Menu 1 2 3 4 5 6 7 8 9 10

DGP A

X Y

A

X Y

A

X Y

A

X Y

A

X Y

A

X Y

Competitor A

X Y

A

X Y

A

X Y

A

X Y

A

X Y

A

X Y

Advice withheld No No No No Yes Yes
Independence
In the data A ⊥⊥ Y A ⊥⊥ X|Y X ⊥⊥ Y |A A ⊥⊥ X A ⊥⊥ X|Y X ⊥⊥ Y |A
Implied by comp. A ⊥⊥ X A ⊥⊥ Y |X A ⊥⊥ Y |X A ⊥⊥ Y A ⊥⊥ Y |X A ⊥⊥ Y |X

High-promise DAG Comp. DGP Comp. DGP Comp. DGP Comp. DGP DGP Comp.
Low-action DAG DGP DGP Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp.

Notes: Each DAG in this table implies precisely one conditional or unconditional independence relationship which we
list under the heading Independence. Any other conditional or unconditional correlation is generically nonzero. Each
menu 1-8 is presented twice, with two slightly different parametrizations.

Figure 7: Aggregate choice distribution in Experiment 3

Menu 9 10

Parameters a b a b a b a b a b a b a b a b

1 2 3 4 5 6 7 8

DGP 40 42 75 78 22 21 46 48 21 24 55 59 66 68 67 67 44 52

Competitor 60 58 25 22 78 79 54 52 79 76 45 41 34 32 33 33 56 48

Notes: Each column corresponds to a menu from Table 7. Numbers list the percentage of subjects choosing a given
option. Shades of blue reflect the percentages.

Figure 7 shows the aggregate distribution of choices pooled across the Explanation and Control

treatments. The fact that we observe similar distributions in each pair of equivalent menus (up to

minor parametric variation) indicates that subjects paid attention to the study.

We fit our mixture model to infer the popularity of the individual choice criteria. Table 8 shows

the results. Column 1 pools across the Explanation and Control treatments (results plotted in Figure

5); columns 2 and 3 show the corresponding treatment-specific estimates. Two features stand out

in the pooled analysis. First, at 6.4%, the fraction of subjects who consistently identify the correct

interpretation is less than a fifth of the corresponding figure in the laboratory sample. Second, at

40.9%, the prevalence of the High Promise criterion—a preference to view the world through rose-

tinted glasses—is more than double the rate observed in the laboratory sample. While we observe a

higher fraction of subjects using the High Action criterion (7.4%) than in the laboratory sample (2.3%),

the fraction of subjects using the Unconditional Correlations or Direct Link criteria is comparable to
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the laboratory sample (19.5% and 16.5%, respectively), as is the virtual absence of subjects described

by the Low Promise criterion (0.2% and 2.3%, respectively).

The impact of the Explanation Treatment is minor. It decreases the popularity of the High Promise

criterion by 4 percentage points (p < 0.01), and increases the estimated probability of random choice

by 5.2 percentage points (p < 0.01). As column 4 shows, however, it does not statistically significantly

alter the prevalence of any data-based criterion, including ‘none.’ The latter effect is surprising

considering that the treatment nearly doubles the fraction of subjects who view a chart in any given

round (from 17.8% to 33.8%; p < 0.01). These effects are consistent with the hypothesis that the

Explanation Treatment encourages subjects to try to make more data-based decisions. Yet, the slight

changes in choices it causes do not reflect an improvement.

Table 8: Distribution of criteria use in general population sample

(1) (2) (3) (4)

Sample p-value treatment effect
Explanation treatment ✓ ✓
Control ✓ ✓

Data-based criteria
None 0.741 0.766 0.745 0.069

(0.007) (0.009) (0.008)
Unconditional 0.195 0.188 0.201 0.532

(0.013) (0.015) (0.014)
Conditional 0.064 0.046 0.054 0.687

(0.014) (0.016) (0.014)
Advice-based criteria
None 0.075 0.020 0.053 0.538

(0.033) (0.032) (0.044)
High Promise 0.409 0.448 0.407 0.000

(0.007) (0.007) (0.008)
Low Promise 0.002 0.008 0.005 0.827

(0.007) (0.007) (0.008)
High Action 0.074 0.078 0.098 0.538

(0.020) (0.019) (0.027)
Low Action 0.375 0.401 0.383 0.295

(0.011) (0.010) (0.014)
Random choice probability 0.311 0.268 0.320 0.000

(0.007) (0.007) (0.008)
Subjects 789 387 402
Observations 14202 6966 7236

Notes: Column 4 shows p-values of Wald tests that the frequency estimates in the Explanation and Control treatments
equal each other.

As in Experiment 1, we find that a three-type version of our full model achieves out-of-sample

predictive power (0.021) akin to that of the full model (0.020). We use a leave-out-one approach

based on the Euclidian distance between predicted and actual choice distributions for all subsets of
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types.51 While the most predictive three-type subset includes the single-criteria types High Promise

and Low Action, just as in Experiment 1, it is unsurprising that the Conditional Correlations criterion

is not included in that subset given its low incidence in Experiment 3. Instead, the third type

uses the Unconditional Correlations criterion and resolves indeterminacies by selecting the low-action

interpretation. The best two-type model achieves substantially lower power (0.026), as does the best

single-type model (0.040).

Finally, we use the larger variation in individual characteristics in the general population sample

to examine the predictors of choice under conflicting causal interpretations. We extend the set of

predictors with ambiguity attitudes measured using the method of Dimmock et al. (2015), as well

as age and personal income defined as household income divided by the square root of household

size (OECD, 2022). Table 9 displays the results. Consistent with our interpretation of Experiments

1 and 2 as an upper bound on inferential abilities, we find that individuals with a graduate degree

significantly more often choose the correct interpretation (p < 0.01). We also replicate the effect of

knowledge of statistical causal inference on correct choice (p < 0.01), though we no longer detect an

effect of CRT scores. We further replicate the null effect of political position even in this politically

more diverse sample, though belief in pseudoscience is no longer predictive. The effects of risk and

ambiguity aversion countervail each other and are statistically weak. Age and income exert negative

effects.52 The frequency of chart-viewing in column 2 provides suggestive evidence about mechanisms.

Consistent with an ability-channel, subjects with a graduate degree do not check the data more often,

but still choose the correct interpretation more often. CRT scores exhibit the opposite pattern. In spite

of more frequent chart-checking (p < 0.01), higher-scoring subjects do not make better choices. Neither

do subjects with a greater belief in pseudoscience, though they check data less frequently (p < 0.01).

Columns 3 and 4 show the effects of individual characteristics on the propensity to choose the high-

promise and low-action interpretations, respectively. Mirroring results from the laboratory, subjects

with a graduate degree less often choose the low-action interpretation (p < 0.05), and those with

more knowledge about statistical causal inference less often choose the high-promise interpretation

(p < 0.01). Higher-earning individuals more often choose either (p < 0.01 in both cases). There are

no strong or consistent effects of risk and ambiguity attitudes.53

To estimate the effect of individual characteristics on the type distribution using the full set of mo-

ments, we again estimate our mixture model with a multinomial logit formulation of type probabilities,

restricting attention to the most predictive three-type model. In contrast to the corresponding anal-

ysis in the laboratory sample, our benchmark type combines the Unconditional Correlation and Low

Action criteria. The estimates achieve greater statistical precision than those from the reduced-form

51To achieve the globally best predictive power (0.018), the best-fitting three-type model needs to be extended to a
four-type model using the High Action single-criterion type.

52The effect of income is consistent with the hypothesis that identifying the correct interpretation has cognitive costs
and higher-earning individuals have a lower marginal utility of money.

53In light of existing studies on the cross-domain predictive power of ambiguity attitudes, the latter result is not
entirely surprising (Trautmann and Van De Kuilen, 2015).
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analysis. Column 5 shows that being more politically conservative and earning a higher income both

significantly increase the likelihood of being a high-promise type (p < 0.05 in both cases), whereas

a higher CRT score and greater knowledge about statistical causal inference decrease it (p < 0.01 in

both cases). Column 6 shows that multiple factors raise the probability of being a low-action type

(each with p < 0.01): being politically more conservative, being female, earning more, and being more

risk-averse. Education- and knowledge-related factors (undergraduate degree, graduate degree, CRT,

and knowledge score) decrease it, as, surprisingly, does greater ambiguity aversion (p < 0.01). In each

of these cases, the two coefficients on the High Promise and Low Action types are statistically jointly

significant. The difference in the effects is only statistically significant for the case of possessing a

graduate degree (p < 0.05, column 7).

Overall, the results from the broader population in Experiment 3 differ in two key ways from those

obtained from the laboratory sample in Experiments 1 and 2:54 a significantly higher popularity of the

High Promise criterion and a substantially lower incidence of the Conditional Correlations criterion.

Other results emerge in both populations. There is pronounced heterogeneity in decision-making with

conflicting causal interpretations, the criteria High Promise and Low Action both receive substantial

support, as does one of the data-based criteria, and a three-type model suffices to achieve out-of-sample

predictive power that rivals the performance of the full model, while simpler models do not.

54Because Experiments 1 and 3 also differ in terms of design and incentive amounts, we cannot exclude the possibility
that factors other than subject-pool differences contribute to these effects.
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Table 9: Predictors of choice: demographics and subject background

(1) (2) (3) (4) (5) (6) (7)
Reduced-form estimates Structural estimates

VARIABLES Correct DAG Data viewed High Promise Low Action High Promise Low Action p-value
difference

Constant 0.327*** 0.286*** 0.634*** 0.454*** 0.903*** 0.337*** 0.000***
(0.037) (0.076) (0.041) (0.044) (0.110) (0.129)

Female -0.014 -0.004 -0.020 0.018 -0.046 0.380*** 0.052*
(0.013) (0.027) (0.013) (0.015) (0.128) (0.118)

Age (10 year units) -0.008 -0.020** 0.001 -0.002 0.113** 0.092* 0.792
(0.005) (0.010) (0.005) (0.005) (0.050) (0.051)

Income (USD 100k units) -0.056** -0.065 0.023 0.070** 0.651** 1.009*** 0.404
(0.024) (0.059) (0.027) (0.029) (0.276) (0.291)

Undergraduate degree 0.019 0.020 -0.002 -0.014 -0.210 -0.371*** 0.548
(0.015) (0.033) (0.016) (0.018) (0.163) (0.141)

Graduate degree 0.049*** -0.039 0.028 -0.045** 0.262* -0.457** 0.021**
(0.018) (0.039) (0.020) (0.021) (0.158) (0.189)

CRT score (0 to 1) 0.017 0.234*** -0.028 -0.010 -0.649** -0.578** 0.863
(0.024) (0.049) (0.025) (0.030) (0.251) (0.255)

Knowledge index (0 to 1) 0.060** 0.198*** -0.086*** -0.021 -1.734*** -1.220*** 0.327
(0.026) (0.057) (0.029) (0.033) (0.468) (0.326)

Pseudoscience score (0 to 1) -0.035 -0.244*** 0.009 -0.050 0.350 0.319 0.958
(0.033) (0.072) (0.034) (0.039) (0.347) (0.303)

Political position (0 to 1) -0.015 -0.065* 0.016 0.017 0.539*** 0.569*** 0.925
(0.018) (0.037) (0.021) (0.023) (0.203) (0.213)

Risk aversion perc. rank (0 to 1) -0.038* -0.045 -0.016 0.032 0.280 0.656*** 0.292
(0.021) (0.043) (0.022) (0.025) (0.213) (0.203)

Ambiguity aversion perc. rank (0 to 1) 0.037* -0.063 -0.009 -0.049* -0.237 -0.506** 0.476
(0.021) (0.043) (0.022) (0.027) (0.215) (0.218)

Help treatment 0.013 0.135*** -0.013 -0.010 -0.129 -0.098 0.885
(0.013) (0.027) (0.013) (0.015) (0.127) (0.111)

Observations 13500 13500 13500 13500 13500
Subjects 750 750 750 750 750

Notes: The estimates exclude 39 subjects, of which 24 report a political party preference of ‘other,’ 18 identify as neither male nor female, and 3 do both. The omitted
category for education is having neither a graduate nor undergraduate degree. Effective income is measured in units of $100,000. Age is measured in units of 10 years.
Columns 1 to 4 report coefficient estimates from OLS regressions. Columns 5 and 6 represent estimated odds ratio from a single multinomial logit regression. Knowledge
index is the number of the following questions a subject can answer correctly, normalized to the unit interval: 1. Name of P (A|B), 2. Complete “Correlation does
not...” 3. Spell out ‘DAG’. Omitted category for gender is Male. Pseudoscience scale (Torres et al., 2020) is higher the more an individual believes in pseudoscience.
Coefficient estimates for the structural model show the effect of the predictor on the log-odds of being the specified type rather than the conditional tester. Asterisks
in columns 1 to 4 reflect tests of the null hypothesis that the corresponding parameter value is zero. Asterisks in columns 5 and 6 reflect tests of the null hypothesis
that the corresponding odds ratio is one. p-values in column 7 reflect Wald tests of the joint hypothesis that the two-parameter estimates on a given predictor equal
each other (1 degree of freedom). Each regression in columns 1-4 includes 18 observations for each of the 750 general population subjects. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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6 Conclusion

In this paper, we have experimentally studied the common problem of selecting actions according

to their causal impact when only correlational data and some hypotheses about underlying causal

mechanisms are available. Our data feature three prominent types: those who seek to determine the

objective truth (with varying levels of success), those who select the interpretation that promises the

rosiest outlook, and those who minimize spending on the action. More detailed analysis reveals that

subjects’ abilities to determine the correct interpretation range from merely interpreting unconditional

correlations to accurately identifying correct interpretations, even amid complexities such as the pres-

ence of v-colliders and the absence of data on unconditional correlations. Among subjects who use

structure-based criteria, a preference for complexity is more than twice as common as a preference for

simplicity. While the popularity of some criteria varies substantially across student subjects and the

U.S. general population, the arguably small group of criteria garnering significant support is consistent

across both samples.

Our results confirm some of the key assumptions in the Narrative Equilibria and Model Persuasion

literatures, but add important qualifications, such as the prevalence of a preference for low actions

that is likely driven by caution. The diversity in inferential abilities we document introduces intriguing

screening challenges to the Model Persuasion literature. Beyond theoretical implications, our findings

also help predict when individuals’ behavioral tendencies yield the greatest losses. This typically

occurs when the true causal mechanism demands substantial investments but an alternative interpre-

tation promises better outcomes with lesser investment, especially when the discrepancies between

the alternative interpretation and the data are hard to discern. The debate on anthropogenic climate

change is an example.

Our current analysis, facilitated by a stylized decision environment, prompts exploration in richer

settings. These include situations in which no interpretation completely aligns with the DGP, situ-

ations influenced by prior beliefs and attachments to specific advisors, and situations involving the

added challenge of small-sample uncertainty. Based on results about the dependence of optimal model

complexity on sample size (Montiel Olea et al., 2022) and on evidence concerning domain-specific pri-

ors over model structures (Tenenbaum et al., 2011; Johnson et al., 2019), we anticipate that these

factors will particularly impact the support for structure-based criteria, as may settings that feature

a need to memorize and internalize model structures. We leave these questions for further research.
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A Theory

A.1 Generalization of Observation 1

In this section, we provide the formal extension of Observation 1 detailing the independence assump-

tions (unconditional and conditional on a single node) between any pair of nodes embedded in a DAG

G = (N,E).

We use the following definition:

Definition 5. Consider a DAG G = (N,E).

(i) A path in G is a sequence of distinct nodes {X1, . . . , Xn} such that for every k < n, (Xk, Xk+1) ∈
E or (Xk+1, Xk) ∈ E.

(ii) A node L is said to be a descendent of K if there exists a sequence of nodes {X1, . . . , Xn} with
X1 = K and Xn = L such that (Xk, Xk+1) ∈ E for every k < n.

(iii) A path p is said to be blocked by Z ⊂ N if and only if

(a) p contains a sequence I → K → J or I ← K ← J such that K ∈ Z.

(b) p contains a sequence I → K ← J such that K ̸∈ Z and no descendent of K is in Z.

A set Z ⊂ N is said to d-separate I and J if and only if Z blocks every path from I to J .

Observation 2. Consider a DAG G = (N,E), with I, J,K ∈ N and Z ⊂ N .

(i) If I → J , then generically cov(I, J) ̸= 0.

(ii) (a) If Z = ∅ does not d-separate I and J , then generically cov(I, J) ̸= 0.

(b) If Z = ∅ d-separate I and J , then cov(I, J) = 0.

(iii) (a) If Z = {K} d-separate I and J , then cov(I, J |K) = 0.

(b) If Z = {K} does not d-separate I and J , then generically cov(I, J |K) ̸= 0.

This observation follows directly from Theorem 5.2.1 in Pearl (2009).

A.2 The Low Promise criterion and maxmin choices

We characterize the choices of subjects who choose actions according to the maxmin criterion proposed

by Gilboa and Schmeidler (1989) in two-option menus, using notation and results from Appendix A.3.

As Lemma 1 formalizes, such a subject always chooses the interpretation that makes the lowest

promise.
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Lemma 1. Let G be the set of DAGs the interpretations under consideration is based on. If |G| = 2,

DAG G∗ ∈ G implies the lowest promise if and only if

G∗ ∈ arg max
G′∈G

min
G∈G

VG(a
G′
).

Proof. Consider two interpretations based on the DAGs G and G′. The expected payoff predicted by

model G if action recommendation aG
′
is implemented given by:

VG(a
G′
) = α̂G + α̂G

Aa
G′ − c

2

(
aG

′)2
= α∗ + (α∗

A − α̂G
A)E[A] + α̂G

Aa
G′ − c

2

(
aG

′)2
= α∗ + (α∗ − c · aG)E[A] + c · aGaG′ − c

2

(
aG

′)2
,

where the second equality follows from Lemma 2 (through the steps used in the proof of Lemma 3),

and the third equality follows from aG =
α̂G

A

c .

The expected payoff according to G when action recommendation aG
′
is implemented is higher

than the expected payoff according G′ when the action recommendation aG is implemented if and

only if

VG(a
G′
)− VG′(aG) = c · (aG′ − aGA)E[A] +

c

2

((
aG
)2 − (aG′)2) ≥ 0,

or equivalently,

c · (aG − aG
′
)

(
aG + aG

′

2
− E[A]

)
≥ 0.

By Lemma 3, VG(a
G) > VG′(aG

′
) if and only if c · (aG − aG

′
)
(

aG+aG′

2 − E[A]
)

> 0. Which in

turn is equivalent to VG(a
G′
) > VG′(aG). Furthermore, by definition of aG

′
, and aG

′ ̸= aG, we have

VG′(aG
′
) ≥ VG′(aG). Hence, VG′(aG) ≤ min{VG(a

G′
), VG′(aG

′
)}, this completes the proof.

A.3 Tools to construct menus that identify criteria distributions

In this section, we first find the optimal action recommendation given a model fitted to the data

(section A.3.1). Second, we separate the four-node DAGs into equivalence classes, such that given any

DGP, any two DAGs from the same equivalence class recommend the same action (section A.3.2). In

section A.3.3 we show that any recursive system of linear Gaussian equations (with a constant term)

when fit to the data correctly predicts the unconditional mean of each variable. We use this result in

section A.3.4 to show that for any two interpretations with divergent action recommendations, there

2



is a cut-off, Ā, such that when the mean of the action in the data is below (above) the cut-off then

the interpretation with the higher (lower) action recommendation makes the higher promise.

Throughout, we will use the following definitions.

Definition 6. Consider a DAG G = (N,E).

(i) For I ∈ N , G(I) = {J ∈ N | (J, I) ∈ E} is the set of Parents of node I.

(ii) For I, J,K ∈ N we call the triple (I, J,K) a v-collider if I, J ∈ G(K), but I ̸∈ G(J), and

J ̸∈ G(I).

In the model represented by G, the set of parents G(I) is the set of right-hand-side variables of the

regression equation for I. That is, it is the set of variables that model G posits to directly influence on

I. A v-collider arises whenever two variables appear on the right-hand-side in the regression equation

of a given third variable, but neither is a right-hand-side variable in the respective other variable’s

regression equation.

Furthermore, let VG(a) = EG[Y | A = a] − c
2a

2 denote the expected payoff according to the

interpretation based on G, when the action a is implemented.

A.3.1 Optimal action recommendation

Consider a linear system of equations with DAG representation G and G(A) = ∅ fitted to the data

using ordinary least squares. Due to the linear structure, we can write the mean of Y conditional on

A as:55

EG[Y |A] = α̂G + α̂G
AA,

When G is consistent with the DGP we let α∗, and α∗
A denote the intercept and slope coefficients.

Therefore, the optimal action recommendation associated with DAG G is the solution to the

following maximization problem:

aG = argmax
a

α̂G + α̂G
Aa−

c

2
a2.

That is, the interpretation based on the DAG G recommends the action aG = α̂G

c .

A.3.2 Equivalence classes

In order to separate the four-node DAGs under consideration into 15 classes that always yield the

same action recommendation, we start by noting that only variables that are posited to (directly

or indirectly) influence the variable Y can affect the estimated effect of the action of the outcome.

55Notice that for every G with G(A) = ∅, we have EG[Y |do(a)] = EG[Y |a], where EG[Y |do(a)] gives the conditional
mean of Y induced by deleting the equation for A, and substituting A = a in the remaining equations.
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Note that the equivalence classes we consider here are defined differently than the Markov equivalence

classes commonly used in the Bayesian Networks literature.

We characterize the set of DAGs in each equivalence class and report the estimated effect of the

action on the bonus for the DAGs in that class. The variance and covariance operators refer to the

DGP. Recall that for any two variables I and J , the estimated slope coefficient of the regression of J

on I is given by cov(J,I)
var(I) . The slope coefficient of I in a regression of a variable J on variables I and

K is given by cov(I,J)var(K)−cov(I,K) cov(K,J)
var(I)var(K)−cov(I,K)2 .

Class 1 consists of all DAGs in which A does not (directly or indirectly) influence Y . Regardless

of the DGP, the any system of linear regressions represented by a DAG in this group will predict that

the action does not influence the outcome. Hence, for any DAG G in this class, we have α̂G = 0.

Class 2 consists of all DAGs with A ∈ G(Y ), and there is no I ∈ N such that (A, I, Y ) is a

v-collider. That is, A has a direct influence on Y , and no other variable has a direct influence on Y .

While some of the system of linear regressions represented by a DAG in this class might calculate the

total effect of A on Y as the sum of the direct effect of A on Y and the indirect effect of A on Y

through one or more of the covariates, the total predicted effect of A on Y is the same. This follows

directly from Proposition 2 in Spiegler (2020). For any DAG G in this class,

α̂G =
cov(A, Y )

var(A)
.

Class 3 consists of all DAGs with G(X) = {A} and G(Y ) = {X}. That is, A does not have a

indirect influence on Y , but a direct influence on Y through X, and Z does not (directly or indirectly)

influence Y . For any DAG G in this class,

α̂G =
cov(A,X)

var(A)

cov(X,Y )

var(X)
.

Class 4 consists of all DAGs with G(Z) = {A} and G(Y ) = {Z}. This class parallels Class 3 with

the positions of X and Z switched. For any DAG G in this class,

α̂G =
cov(A,Z)

var(A)

cov(Z, Y )

var(Z)
.

Class 5 consists of the single DAG G : A→ X → Z → Y . We have

α̂G =
cov(A,X)

var(A)

cov(X,Z)

var(X)

cov(Z, Y )

var(Z)
.
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Class 6 consists of the single DAG G : A→ Z → X → Y . It parallels Class 5 with the positions

of X and Z switched. We have

α̂G =
cov(A,Z)

var(A)

cov(Z,X)

var(Z)

cov(X,Y )

var(X)
.

Class 7 consists of all DAGs that contain the v-collider (A,X, Y ) and no other v-colliders. For

any DAG G in this class,

α̂G =
cov(A, Y )var(X)− cov(A,X) cov(X,Y )

var(A)var(X)− cov(A,X)2
.

Class 8 consists of all DAGs that contain the v-collider (A,Z, Y ) and no other v-colliders. It

parallels Class 7 with the positions of X and Z switched. For any DAG G in this class,

α̂G =
cov(A, Y )var(Z)− cov(A,Z) cov(Z, Y )

var(A)var(Z)− cov(A,Z)2
.

Class 9 consists of all DAGs for which G(Y ) = {A,X,Z} and A ̸∈ G(X), G(Z). For any DAG G
in this class,

α̂
G

=
cov(AY )(var(X)var(Z) − cov(X,Z)2)

var(A)var(X)var(Z) + 2 cov(A,X) cov(A,Z) cov(X,Z) − cov(X,Z)2var(A) − cov(A,X)2var(Z) − cov(A,Z)2var(X)

−
cov(A,X)(cov(X,Y )var(Z) − cov(X,Z) cov(Z, Y )) + cov(A,Z)(cov(Z, Y )var(X) − cov(X,Z) cov(X,Y ))

var(A)var(X)var(Z) + 2 cov(A,X) cov(A,Z) cov(X,Z) − cov(X,Z)2var(A) − cov(A,X)2var(Z) − cov(A,Z)2var(X)
,

which is the slope coefficient on A in the regression of Y on the three regressors A,X,Z.

Class 10 consists of the single DAG G : A→ X → Y ← Z. We have

α̂G =
cov(A,X)

var(A)

cov(X,Y )var(Z)− cov(X,Z) cov(Z, Y )

var(X)var(Z)− cov(X,Z)2
.

Class 11 consists of the single DAG G : A→ Z → Y ← X. It parallels Class 10 with the positions

of X and Z switched. We have

α̂G =
cov(A,Z)

var(A)

cov(Z, Y )var(X)− cov(X,Z) cov(X,Y )

var(X)var(Z)− cov(X,Z)2
.

Class 12 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,Z)var(X)− cov(A,Z) cov(X,Z)

var(A)var(Z)− cov(A,Z)2
cov(X,Y )

var(X)
.
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Class 13 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,X)var(Z)− cov(A,X) cov(X,Z)

var(A)var(X)− cov(A,X)2
cov(Z, Y )

var(Z)
.

Class 14 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,Z)var(X)− cov(A,Z) cov(X,Z)

var(A)var(Z)− cov(A,Z)2
cov(X,Y )var(Z)− cov(X,Z) cov(Z, Y )

var(X)var(Z)− cov(X,Z)2
.

Class 15 consists of the single DAG A

X

Z

Y

. We have

α̂G =
cov(A,X)var(Z)− cov(A,X) cov(X,Z)

var(A)var(X)− cov(A,X)2
cov(Z, Y )var(X)− cov(X,Z) cov(X,Y )

var(X)var(Z)− cov(X,Z)2
.

This is a comprehensive list of all DAGs we consider for the experiment. We exclude the DAG

A

X

Z

Y

because one of its characteristic independence relationships, A ⊥⊥ Y |(X,Z), involves condi-

tioning on two variables simultaneously, which is not information that we provide to subjects.

A.3.3 Unconditional means predicted by misspecified models

Next, we turn to the unconditional means predicted by potentially misspecified models. Given a

system of linear equations represented by the DAGG in whichA is an exogenous variable, the predicted

conditional mean might deviate from the observed conditional mean. However, any variable’s expected

value (according to the DGP) of the unconditional mean predicted by G equals the true unconditional

mean, as 2 shows. An immediate implication of this lemma is that any interpretation predicts the

same mean bonus if the action equals its mean in the data. This observation proves useful below,

when we compare the predicted payoffs of the recommended actions across interpretations.

Lemma 2. Consider a system of linear equations represented by the DAG G = (N,E), where G(A) =

∅. For every DGP and I ∈ N , we have

E[EG[I | A]] = E[I].

Proof. We prove this statement by induction. To anchor the induction, consider any variable I ∈ N

for which G(I) = ∅. If I = A, this holds trivially. If I ̸= A, then EG[I | A] = E[I], since G treats I

and A as exogenous variables, and therefore as independent. Hence, E[EG[I | A]] = E[I].

Next, consider any node J and suppose that the induction hypothesis E[EG[I | A]] = E[I] holds

for every I ∈ G(J). Let β̂IJ denote the slope coefficient on variable I in the OLS regression of J on

6



all its parents. Then, the constant term in that regression, β̂J is given by

β̂J = E[J ]−
∑

I∈G(J)

β̂IJE[I]. (3)

Furthermore, applying the conditional expectation operator EG[·|A] to the regression equation that

defines J according to G yields

EG[J | A] = β̂J +
∑

I∈G(J)

β̂IJEG[I | A]. (4)

Substituting 3 into equation 4, and taking the expectation over the action, we obtain:

E[EG[J | A]] = E[J ] +
∑

I∈G(J)

β̂IJ(E[EG[I | A]]− E[I])

By the induction hypothesis, the term in parentheses is zero. Hence, E[EG[J | A]] = E[J ] as was to be

shown.

A.3.4 Pairwise comparison of promises

We next demonstrate how to select the mean of the action in the DGP to change which of two given

models yields the higher promise. Lemma 3 shows that the interpretation with the lower action

recommendation make the higher promise if and only if the mean action exceeds some threshold. An

immediate consequence of the lemma is that in any three-option menu, the interpretation associated

with the median action recommendation can never make the highest promise.

Lemma 3. Consider two interpretations based on the models, G and G′, where G(A) = G′(A) = ∅.
Let aG and aG′ denote the corresponding action recommendations, and suppose aG > (<)aG′ . Then

VG(a
G) ≥ VG′(aG

′
) if and only if E[A] ≤ (≥)aG+aG′

2 .

Proof. First, recall that for every DAG, G, we can write the predicted conditional mean of the bonus

as a linear function of the action, a, specifically, EG[Y | A = a] = α̂G + α̂G
Aa. By Lemma 2, we thus

have

E[Y ] = E[EG[Y | A]] = α̂G + α̂G
AE[A]

E[Y ] = E[E[Y | A]] = α∗ + α∗
AE[A].

Combining the two equations and solving for α̂G yields:

α̂G = α∗ + (α∗
A − α̂G

A)E[A]. (5)

7



We use (5) to express the interpretation’s promise as a function of E[A]:

VG(a
G) = α̂G + α̂G

Aa
G − c

2

(
aG
)2

= α∗ + (α∗
A − α̂G

A)E[A] + α̂G
Aa

G − c

2

(
aG
)2

= α∗ + (α∗
A − c · aG)E[A] +

c

2

(
aG
)2

,

where the third equality uses aG =
α̂G

A

c . We use this expression to write the difference between the

promises associated with models G and G′, respectively, as follows:

VG(a
G)− VG′(aG

′
) = c · (aG′ − aG)E[A] +

c

2

((
aG
)2 − (aG′)2)

= c · (aG − aG
′
)

(
aG + aG

′

2
− E[A]

)
.

This concludes the proof.
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B Identification and estimation

B.1 Experiment 1

In this section we present the details of our GMM estimator (section B.1.1), perform Monte Carlo

simulations to explore its finite-sample properties (section B.1.2), and exhibit the distances between

any pair of types (section B.1.3).

B.1.1 GMM estimation

Let t = (t1, . . . , tn−1) denote a (n − 1)-simplex which identifies the distribution over the n types.

Each type i is associated with a matrix T i with elements (T i
c,m) that indicates the probability with

which type i chooses c from menu m, where T i
3,m = 0 for every menu with only two options. Hence,

if i makes a unique choice on menu m, then T i
c,m = 1 if c is the chosen option and 0 otherwise. If

i randomizes across k options, then T i
c,m = 1/k for each chosen option c, and 0 for each unchosen

option. We let N denote the vector consisting of elements Nc,m = 1
|m| where |m| denotes the number

of alternatives in menu m.

We use the generalized method of moments to obtain an estimate t̂ of the type vector and an

estimate q̂ of the noise probability. We choose these to make the model match all first moments and

all second moments of the choice distribution. Specifically, the estimated parameters (t̂, q̂) should

match the marginal distribution of choices across all menus, i.e. the vector of observed probabilities

pc,m with which option c is chosen on menu m in our subject sample. In addition, the estimated

parameters should match the products of these probabilities, i.e. pc,mpc′,m′ for all menus m,m′ and

for all options c, c′ from the corresponding menus.

To state the optimization problem formally, and to prove identification of our model, let p̃ic,m(q) =

(1 − q)T i
c,m + qNc,m denote the probability type i chooses option c and menu m given the noise

probability q. Similarly, p̃i(c,m),(c′,m′)(q) = (1− q)2T i
c,mT i

c′,m′ + q2Nc,mNc′,m′ + q(1− q)(T i
c,mNc′,m′ +

Nc,mT i
c′,m′) denote the probability type i chooses option c from menu m and option c′ from menu

m′. Given (t, q), our model then predicts first moments p̃c,m =
∑n

i=1 tip̃
i
c,m, and second moments

p̃(c,m)(c′,m′) =
∑n

i=1 tip̃
i
(c,m),(c′,m′). Note that some of these choice probabilities are redundant, since

(conditional) choice probabilities across all options in a menu must sum to one. Therefore, we remove

the last option in all menus.

Let M1(q) = [(p̃ic,mj
(q))(c,mj),i] (where c = A whenever |mj | = 2 and c ∈ {A,B} otherwise)

denote the matrix with n columns (each column corresponds to a type) and
∑

j (|mj | − 1) rows. The

rows list the probability with which the types choose all but the last option in all menus. Similarly, let

M2(q) = (p̃i(c,mj)(c′,mj′ )
(q))((c,mj),(c′,mj′ ),i (where c = A whenever |mj | = 2 and c ∈ {A,B} otherwise,

and mj′ > mj). The rows list the probability with which the types chooses an option in two menus,

where the last option is omitted in both menus.

9



Letting M(q) =

M1(q)

M2(q)

, the vector of theoretically predicted moments is M(q) · t̄. Let Ẽ denote

the corresponding empirical moments, and t̄ be an n-column vector, where the first n − 1 columns

corresponds to the simplex t and the n’th column is given by 1−∑n−1
i=1 ti. Thus, t̄ specifies the entire

distribution over the types. Our estimator is then defined as

(t̂, q̂) = argmin
t,q

(
M(q)t̄− Ẽ

)
W
(
M(q)t̄− Ẽ

)⊺
s.t. t is a simplex (6)

For the weighting matrix W we use both the identity matrix and the optimal weighting matrix derived

from two-stage feasible GMM. For any given q, the objective function is a quadratic form in t̄. Hence,

it has a unique global minimum to which any numerical estimator quickly converges even in case of a

large number of types.

Identification Fixing a noise parameter q, the type frequencies are identified only if M(q)t̄ =

M(q)t̄′ implies t̄ = t̄′, that is, if the nullspace of the linear map M(q) from the type space to the

moment space is empty, a condition that is easy to check. We constructed the set of menus in the Main

treatment (Table 2) based on this insight. To determine identification with endogenous q, we rely on

the intuition that any distribution of moments obtained from noise parameter q and type distribution

t̄ can be replicated by setting q = 0 but including a type that uniformly randomizes on each menu.

We then check that the nullspace of M(0) in the redefined problem is empty. Numerically, we start

the estimation procedure on a grid of initial values for q that spans the unit interval and check the

local identification condition at the resulting estimates.

B.1.2 Monte Carlo Simulation

It is well known that GMM is consistent but potentially biased in finite samples. To check for such bias

in our specific setting, we conduct Monte Carlo studies. We consider two data-generating processes,

one whose parameters equal the estimates in column 1 of Table 4, the other consisting of pure noise.

In each cases, we generate 1000 samples of 475 individuals each.

Figure B.1 plots the estimated criterion frequencies averaged across the simulations. For our first

data-generating process, the estimates closely match the assumed true distribution of criteria use.

While the procedure overestimates the fraction of subjects using none of the advice-based or structure-

based criteria, these discrepancies are within a few percentage points. Noise is slightly underestimated,

which is an expected and inevitable consequence of in-sample fitting procedures (purely noisy choice

will coincide with some type in some cases by pure chance). Overall, the results suggest that the

finite-sample bias of our estimator is small.
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Figure B.1: Distribution of decision criteria in Monte Carlo Simulations
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Notes: Whiskers extend from the 2.5th to the 97.5th percentile of the distribution of criteria use across the 1000
Monte Carlo draws, truncated at 0 and 1. Blue circles represent the estimated criteria frequencies averaged across the
1000 simulation draws. Blue diamonds display the assumed ground truth (the estimates from Experiment 1). Green
triangles show the estimated criteria frequencies averaged across 980 simulation draws of pure noise data. We exclude
20 simulations where the optimization algorithm failed to converge. A plausible reason for convergence issues is the fact
the type frequencies are not identified when the noise parameter is 100%. We show estimates of advice-based criteria
conditional on not using the Conditional Correlations criterion.



For our second data-generating process (pure noise), we find, reassuringly, that the three criteria

that are most prominent in our empirical data (Conditional Correlation, High Promise, Low Action)

do not receive substantial weight. Our result on preferences for simpler versus more complex model

is also unlikely an artifact of the small-sample properties of our estimator. This is evidenced by the

fact that our classification of pure noise does not show a bias towards or against a preference for more

complex interpretation. While we do observe the unavoidable underestimation of noise, the estimated

parameter of 85.4% is still very high.

Overall, our results are unlikely due to small-sample bias or misclassification of noise.

B.1.3 Distance between pairs of types

Here, we show the distance between any pair of types on the choice sets of Experiment 1. We measure

the distance between types t and t′ as d(t, t′) = (M(0)It) (M(0)It′)
′
where M(0), as defined in

section B.1.1, is the matrix of theoretically predicted moments when the probability of noisy choices

equals q = 0 and It and It′ are column vectors that have entries one in positions t and t′, respectively,

and zero everywhere else.

Figure B.2 places types in lexicographic order along the axes. Figure B.3 displays the same

information with types placed in an order that places types with smaller distances in closer proximity.

B.2 Experiment 2: Inferring type frequencies from choice frequencies

We derive type frequencies from observable choice frequencies.

To estimate the distribution of data-based criteria, we let t = [tC , tNV , tU , tD]′, p = [pC , pNV , pU , pD],

I1 = [1, 1, 1, 1]′, and

A =


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 .

Thus, if subjects choose without random errors (i.e., q = 0), then for the sample of subjects who use

some data-based criterion, we have p = At. Hence, the fraction of subjects unable to identify the

correct interpretation in menus C, NV , U , and D, respectively, is I1 −At. By assumption, subjects

unable to identify the correct interpretation in a given menu uniformly randomize across the available

interpretations. Thus, we have

p = (1− q)

(
At+

1

2
(I1 −At)

)
+ q

1

2
I1
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Figure B.2: Distances between types, ordered lexicographically
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Figure B.3: Distances between types, ordered by closeness
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Rearranging yields

2

1− q
A−1

(
p− 1

2
I1

)
= t (7)

which is equation (1).

To estimate the distribution of advice-based criteria, we let s = [sHP , sLP , sHA, sLA]
′ denote the

fraction of subjects following the High Promise, Low Promise, High Action, and Low Action criteria,

respectively, and we let ∆P = sHP − sLP , ∆A = sLA− sHA, ∆ = [∆P ,∆A]
′, p = [pa, pb]

′, I1 = [1, 1]′,

and

B =

 1 −1
−1 −1


Recall that the High Promise criterion chooses the correct interpretation in menus a, but not in

menus b, and that the Low Action criterion never chooses the correct interpretation. Therefore,

p = (1− q)

1 0 1 0

0 1 1 0

 s+
1

2

I1 −

1 1 1 1

1 1 1 1

 s

+ q
1

2
I1

=
(1− q)

2

 1 −1 1 −1
−1 1 1 −1

 s+
1

2
I1

=
(1− q)

2
B∆+

1

2
I1

Therefore, using B−1 = 1
2B,

∆ =
1

1− q
B

(
p− 1

2
I1

)
,

which is equation (2).
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C Experimental design

C.1 Experiments 1 and 2

Table C.1 shows an overview of the structure of the study, which was coded in Qualtrics and javascript.

Here, we list details about each of the stages.

Table C.1: Experiment structure

1. Instructions and comprehension check

2. Choice between causal interpretations

(a) Preliminary rounds

(b) Main decisions

(c) Framing manipulation

3. Additional decisions

(a) Risk preference elicitation

(b) Self-classification of decision style

(c) Cognitive Response Test

(d) Pseudoscience scale

(e) Explanation of own decision-making

(f) Educational background and demographics

Notes: The experiment proceeds in the order listed. Within each part of section 2, the order of rounds is randomized
at the individual level. The two rounds of risk elicitation are also shown in individually randomized order.

Instructions and comprehension check We display all instructions on screen. The entire ex-

periment is in English. A good command of English is a curricular requirement for all students in

our subject pool. The instructions include a part that sequentially highlights each of the interactive

display elements and requires subjects to interact with them.

Our statistical inference relies on the assumption that subjects have understood specific aspects

of the decision environment, in particular: (i) what part of an advisor’s recommendation responds

to data and what part does not, (ii) how, qualitatively, DGP and action co-determine the payment,

(iii) that each round is independent of all other rounds. We repeatedly emphasize these points in the

instructions. Moreover, each subject can continue with the experiment only once they pass a compre-

hension check that presents them with ten statements that are either true or false. The statements

refer to the three crucial points above. Subjects need to simultaneously label each statement as true

or false and can continue only once no error is left. In case of an error, subjects only learn that one

of the statements was labeled incorrectly, but not which one. Because there are 1024 possible ways of
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labeling the statements, it is unlikely that a subject passes by chance. A subject who is unable to pass

can raise their hand. The experimenter first reminds them to check the summary of the instructions

on the previous page. If the subject is still unable to continue, the experimenter checks which of the

statements was labeled incorrectly and explains the point to the subject.

Preliminary rounds Table C.2 shows the menus used for the preliminary rounds. From the sub-

jects’ point of view, preliminary rounds are indistinguishable from other rounds of the study.

Table C.2: Preliminary rounds

Experiment 1 Experiment 2

Menu DGP Competitor Menu DGP Competitor
P1 A

X

Z

Y

A

Z

X

Y

P1 A

X

Z

Y

A

Z

X

Y

Promise 17.50 22.50 Promise 17.50 22.50
Action 8.00 0.07 Action 12.48 3.45

P2 X

A

Z

Y

Z

A

X

Y

P2 Z

A

X

Y

X

A

Z

Y

Promise 22.50 17.50 Promise 17.50 22.50
Action 8.82 1.13 Action 0.10 10.13

Main rounds We graphically position the nodes of each DAG in a diamond shape. We assign

nodes to positions with the following objectives, in the given priority order: (i) Arrows never cross,

(ii) Whenever a menu contains two DAGs such that one can be obtained from the other by exchanging

the covariates, the display of these two DAGs only differs by switching the symbols representing the

covariates, (iii) If a DAG can be obtained from another DAG by deleting a link, then the nodes are

in the same position in the two DAGs, and (iv) the symbol representing the action is on top and the

symbol representing the bonus is at the bottom. If condition (iv) is inconsistent with the previous

conditions, we place the symbol representing the action on the left.

We randomize the following display elements: (i) The order in which the list of charts is displayed.

For each individual, we randomly select an order of charts displaying unconditional relations that we

keep constant for the entire experiment.56 For each unconditional relation, there is a pair of conditional

relations that condition on either of the remaining variables, respectively. For each subject, we display

these pairs of conditional relations in the same order as the unconditional variables. (ii) The position

of the interpretations in a menu in each round for each individual. (iii) The position of theory and

recommendations within the advisor speech bubbles. This is kept constant for a given subject. For

56All subjects in the first sessions saw the same order of charts.
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half of the subjects, the theory is on top, for the other half the recommendations are on top. (iv) We

randomly redraw the colors of the advisors in each round for each individual.

Table C.3 displays the parameters used in each round.

Framing manipulation We test our assumption that using real-world contexts instead of our

abstract frame would induce plausibility considerations that hinder the identification of the decision

criteria we seek to study. Subsection D.5 describes details and shows evidence of such framing effects.

Risk preference elicitation There are two rounds. In the first round, subjects chose one of the six

50/50 lotteries with payments (14, 14), (18, 12), (22, 10), (26, 8), (30, 6), (35, 1), where all amounts

are in Swiss Francs. In the second round, payments are (21, 21), (27, 18), (33, 15), (39, 12), (45, 9),

(52.5, 1.5). We randomize whether the lotteries are ordered safe to risky or risky to safe.

Self-classification of decision style Subjects indicate their agreement with each of several state-

ments that describe how they approach real-world decisions in the case of conflicting causal interpre-

tations. Appendix Section D.8 presents details and results.

Demographics and other characteristics In addition to the characteristics listed in Section 3.3,

we also elicit the following characteristics: (i) native language, (ii) monthly spending, (iii) religiosity,

(iv) eligibility to vote in political elections in Switzerland, (v) extent of agreement with the position of

the political party they are closest to, (vi) degree level to which the subject is working towards, (vii)

final grades in the university admission exam in mathematics and in their main language. Subjects

also indicate their agreement with each of the following statements about political issues (such as

immigration, unemployment, income inequality, social insurance, healthcare, etc.): “Most political

issues are simple in principle. They have straightforward solutions.” and “Most political issues are

inherently complex. They do not have straightforward solutions.”

C.2 Experiment 3

In addition to the differences outlined in Section 5, Experiment 3 differs from Experiment 1 in the

following ways: (i) We elicit a subset of demographic information at the beginning of the study in

order to understand attrition. (ii) We do not ask subjects to self-classify their decision style. We do

not include rounds with real-world or verbal framing. (iii) We elicit risk preferences by letting subjects

make one choice from the 50/50 lotteries (7, 7), (9, 6), (11, 5), (13, 4), (15, 3), (17.5, 0.5) and another

choice from the 50/50 lotteries (10.5, 10.5), (13.5, 9), (16.5, 7.5), (19.5, 6), (22.5, 4.5), (16.25, 0.75)

(shown in this order; all amounts in USD).

In the Control treatment, in which we do not provide access to explanations about the correlational

implications of causal structures, we still provide descriptions of the archetypical causal structures.
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Table C.3: DGP parameters

Round βA βX βY βZ βAX βAY βAZ βXY βXZ βY Z σA σX σY σZ

A. Experiment 1

1 6.20 3.75 14.02 2.00 -0.90 0.90 0.00 0.90 0.00 1.00 3.09 5.50 0.50 5.50
2 35.94 3.00 5.00 3.00 0.50 1.00 0.00 2.00 0.00 3.00 2.50 4.50 0.50 2.50
3 6.22 5.00 5.00 10.00 1.00 0.00 1.00 1.00 0.00 0.00 2.75 1.00 0.50 2.00
4 35.13 5.00 0.00 10.00 1.00 0.00 1.00 1.00 0.00 0.00 2.75 1.00 0.50 2.00
5 29.62 3.00 0.53 1.00 0.67 0.00 0.60 1.50 0.60 0.00 5.50 1.50 0.50 5.50
6 6.59 5.00 5.00 7.00 1.00 0.00 0.00 1.00 0.00 0.90 2.75 1.00 0.50 2.00
7 34.44 5.00 0.00 7.00 1.00 0.00 0.00 1.00 0.00 0.90 2.75 1.00 0.50 2.00
8 4.30 10.00 4.47 0.00 0.00 0.80 -0.70 1.00 0.00 4.00 2.15 2.50 0.50 2.50
9 21.12 3.00 6.50 3.00 0.00 0.80 -0.70 1.00 0.00 4.00 2.15 2.50 0.50 2.50
10 4.20 3.20 5.75 10.00 0.00 0.55 -1.00 2.50 0.00 1.05 2.10 2.10 0.50 2.10
11 32.36 4.00 8.72 20.00 0.00 0.55 -1.00 2.50 0.00 1.05 2.50 2.50 0.50 2.50
12 8.75 3.00 7.00 3.00 0.00 1.00 -0.75 1.00 0.00 2.00 2.50 1.50 0.50 0.50
13 28.75 3.00 2.00 3.00 0.00 1.00 -0.75 1.00 0.00 2.00 2.50 0.50 0.50 0.50
14 28.75 3.00 16.38 33.00 0.00 0.50 -1.50 1.00 0.00 1.00 2.50 2.50 0.50 0.50
15 4.70 3.00 17.72 3.00 6.00 0.00 0.00 6.00 1.00 0.00 2.35 0.50 5.00 2.50
16 4.60 3.00 9.24 5.00 1.30 -0.80 0.00 1.10 0.00 1.00 2.30 2.50 0.50 2.50
17 35.00 3.00 14.24 5.00 1.30 -0.80 0.00 1.10 0.00 1.00 2.30 2.50 0.50 2.50
18 41.15 0.00 19.38 5.00 1.50 -1.00 0.00 1.00 0.00 2.00 5.50 4.00 0.50 4.50
19 5.00 3.00 9.80 3.00 0.50 0.70 0.00 0.60 0.00 1.50 2.50 2.50 0.50 2.50
20 20.00 4.00 2.00 4.00 0.85 0.55 0.00 0.70 0.00 1.00 2.00 3.50 3.00 2.50
21 27.00 4.00 14.00 7.00 0.50 1.00 0.00 -0.50 0.00 0.50 5.50 5.50 5.50 5.50
22 25.00 2.00 0.00 2.00 0.50 0.60 0.00 0.70 0.90 0.00 3.50 1.50 1.50 2.50
23 14.00 3.00 11.00 4.00 1.00 -0.50 0.00 1.00 1.00 0.00 2.50 4.50 0.50 2.50
24 13.00 6.00 6.00 7.00 1.00 0.00 0.00 0.90 0.00 0.50 2.00 0.50 1.90 1.00
25 30.00 6.00 0.00 7.00 1.00 0.00 0.00 0.90 0.00 0.50 2.00 0.50 0.50 0.50

B. Experiment 2

D1 21.12 3.00 6.50 3.00 0.00 0.80 -0.70 1.00 0.00 4.00 2.15 2.50 0.50 2.50
D2 21.12 3.00 6.50 3.00 -0.70 0.80 0.00 4.00 0.00 1.00 2.15 2.50 0.50 2.50
D3 4.30 3.00 5.48 3.00 0.91 0.00 0.00 0.91 1.00 1.00 2.15 1.00 0.50 2.50
U1 5.00 2.00 11.68 2.00 0.00 0.84 0.00 1.00 1.00 1.50 2.50 2.50 1.50 0.50
U2 22.00 2.00 6.68 2.00 0.00 0.84 0.00 2.00 1.00 1.00 2.50 0.50 1.50 2.50
NV1 35.15 5.00 0.00 10.00 1.00 0.00 1.00 1.00 0.00 0.00 2.75 1.00 0.50 2.00
NV2 6.59 5.00 5.00 7.00 1.00 0.00 0.00 1.00 0.00 0.90 2.75 1.00 0.50 2.00
C1 5.00 2.00 11.47 5.00 0.00 0.85 0.00 1.00 0.00 0.60 2.50 2.50 2.50 0.50
C2 17.40 5.00 6.47 2.00 0.00 0.85 0.00 0.60 0.00 1.00 2.50 0.50 2.50 2.50
A1a 4.72 3.00 8.49 2.00 0.85 0.00 0.00 1.00 0.00 1.00 2.36 0.50 0.50 2.50
A1b 16.50 3.00 3.47 2.00 0.85 0.00 0.00 1.00 0.00 1.00 2.35 0.50 0.50 2.50
A2a 29.18 3.00 2.00 3.00 1.00 0.00 1.00 1.00 1.00 0.00 2.50 1.50 0.50 5.50
A2b 8.65 3.00 7.00 3.00 1.00 0.00 1.00 1.00 1.00 0.00 2.50 1.50 0.50 5.50
A3a 29.32 3.00 2.00 3.00 1.00 0.00 0.00 1.00 1.00 1.00 2.50 0.50 0.50 5.00
A3b 8.61 3.00 7.00 3.00 1.00 0.00 0.00 1.00 1.00 1.00 2.50 0.50 0.50 5.00

Notes: Each DAG can uniquely be represented as a system of linear Gaussian equations. For any variable i, βi

denotes the constant term in the equation corresponding to endogenous variable i, and σi is the standard deviation of
the corresponding error term. For any endogenous variable i that depends on some other variable j, βij is the slope
coefficient on variable j in the equation corresponding to endogenous variable i.
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Table C.4: DGP parameters in Experiment 3

Round βA βX βY βAX βAY βXY σA σX σY

Experiment 3

1a 1.33 5.00 6.10 -0.83 0.00 0.70 2.80 1.00 1.50
1b 14.14 2.00 10.00 -0.63 0.00 1.00 2.80 0.50 1.50
2a 25.25 2.00 -0.30 0.00 0.71 0.60 2.00 1.00 1.00
2b 1.75 2.00 3.70 0.00 0.71 0.60 2.00 1.00 1.00
3a 27.93 5.00 -1.03 0.60 0.75 0.00 2.00 1.00 1.00
3b 1.90 5.00 2.97 0.60 0.75 0.00 2.00 1.00 1.00
4a 14.17 5.00 1.50 0.00 0.60 0.90 2.00 1.00 1.00
4b 1.97 5.00 4.72 0.00 0.65 1.00 2.00 1.00 1.00
5a 1.45 5.00 6.00 0.85 0.00 -0.80 2.80 1.00 1.50
5b 14.21 5.00 10.00 0.85 0.00 -0.80 2.80 1.00 1.50
6a 27.46 2.00 -1.03 0.00 0.75 0.65 2.00 1.00 1.00
6b 2.15 2.00 2.97 0.00 0.75 0.65 2.00 1.00 1.00
7a 22.55 35.00 -0.12 -0.43 0.70 0.00 2.00 0.99 1.00
7b 2.49 5.00 3.88 -0.43 0.70 0.00 2.00 0.99 1.00
8a 14.23 5.00 1.04 0.00 0.63 1.00 2.00 1.00 1.00
8b 1.53 5.00 5.04 0.00 0.63 1.00 2.00 1.00 1.00
9 3.68 2.00 2.40 0.00 0.78 0.60 2.00 1.00 1.00
10 22.55 35.00 -0.12 0.43 0.70 0.00 2.00 0.99 1.00

Notes: Each DAG can uniquely be represented as a system of linear Gaussian equations. For any variable i, βi

denotes the constant term in the equation corresponding to endogenous variable i, and σi is the standard deviation of
the corresponding error term. For any endogenous variable i that depends on some other variable j, βij is the slope
coefficient on variable j in the equation corresponding to endogenous variable i.

Appendix E.2 shows screenshots. In each prospect used for ambiguity elicitation, subjects can win $7

or $0. Table C.4 shows the parameters of the DGPs used in Experiment 3.
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D Analysis

D.1 Summary statistics

Table D.5 shows summary statistics of our samples across the three experiments.

Experiments 1 and 2 Our sample skews female and to the political left, as is common for student

subject pools. A slight majority of our subjects are from German-speaking Europe, and approximately

20% each are from the remaining Europe and from Asia. Mean monthly spending is Fr. 1208 and Fr.

1348 in Experiments 1 and 2, respectively.

Experiment 3 We elicited subjects’ race, age, gender, and education at the beginning of the survey

to test whether individuals who complete the survey differ systematically from those who give up at

the comprehension check stage. We targeted a gender-balanced sample of 800 U.S. subjects.57 1197

individuals started the survey and continued until the attention check. 396 subjects did not pass the

comprehension check (and did not take up our offer to help with it by email). 12 did not finish the

study in spite of passing the comprehension check.

57On December 5, we ran a pilot study with 50 participants that did not include menus 17 and 18 with the
purpose of checking that the Prolific subjects understood the instructions. We preregistered the study on https:

//www.socialscienceregistry.org/trials/12652.

21

https://www.socialscienceregistry.org/trials/12652
https://www.socialscienceregistry.org/trials/12652


Table D.5: Subject characteristics

(1) (2) (3) (4) (5)

Exp. 1 Exp. 2 Exp. 3

Completed Dropped at p-value
study attention check attrition

Demographics
Male 0.436 0.509 0.511 0.400 0.000
Female 0.564 0.491 0.489 0.600 0.000
Age 23.335 23.503 41.493 41.859 0.657

Origin
German-speaking Europe 0.535 0.517 - - -
Other Europe 0.181 0.183 - - -
Asia 0.187 0.215 - - -
Other 0.097 0.086 - - -

Income - - -
Monthly spending 1207.967 1347.790 - - -

Education
Highschool - - 0.113 0.157 0.030
BA 0.436 0.406 0.636 0.652 0.591
MA 0.535 0.519 0.215 0.145 0.003
PhD and MD/JD 0.029 0.076 0.035 0.047 0.350

Field of study
STEM 0.632 0.699 - - -
Economics or business 0.135 0.126 - - -
Other field 0.233 0.176 - - -

Knowledge of statistics and inference
Can name P (A|B) 0.246 0.261 0.067 - -
Can complete ”Correlation does not...” 0.563 0.527 0.602 - -
Can spell out DAG 0.087 0.097 0.071 - -
Taken class on statistical causal inference 0.186 0.183 0.105 - -

Psychological measures
CRT score (0 to 7) 4.939 5.166 4.630 - -
Pseudoscience score (20 to 100) 59.772 60.458 56.663 - -
Religiosity (1 to 5) 1.785 1.708 2.414 - -

Political party preference
SVP 0.050 0.047 - - -
FDP 0.138 0.154 - - -
BDP 0.074 0.043 - - -
CVP 0.077 0.064 - - -
GPL 0.258 0.273 - - -
SP 0.222 0.226 - - -
Green 0.143 0.151 - - -
PdA 0.037 0.043 - - -
Republican - - 0.185 - -
Independent - - 0.352 - -
Democrat - - 0.432 - -
Other party - - 0.000 - -

Subjects 485 279 789 408

Notes: For Experiments 1 and 2, educational categories refer to the program in which subjects are enrolled. For
Experiment 3, educational categories reflect subjects’ highest educational attainment. Parties listed in order of overall
stance on the political spectrum, beginning with most conservative. CVP is the center party.22



D.2 Order effects

Panel A of Figure D.4 plots the median response time against the position at which the subject made

the corresponding decision in Experiment 1. Subjects take substantially longer or the first decision,

presumably to familiarize themselves with the interface and to draw inferences for the first time that

can be recalled in a lesser amount of time later. While response times decline across the entire

experiment, this decline appears to reflect learning rather than decreased attention, as Panel B shows.

For each decision position, it plots the fraction of subjects in Experiment 1 who viewed at least one

data chart. Approximately two-thirds of all subjects do so throughout the main rounds, slightly fewer

than in the preliminary rounds.

Figure D.4: Order effects

A. Response time B. Data viewing
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Notes: Data from Experiment 1 (subjects do not have access to the data charts in some rounds of Experiment 2).

D.3 Best-fitting types

Table D.6 lists the estimated frequencies of all 39 types that receive at least 0.1% weight, along with

heteroscedasticity-robust standard errors.

D.4 Robustness to subjects affected by contingent reasoning failure

Table D.7 replicates Table 4 excluding subjects classified as falling prey to the failure of contingent

reasoning based on their open responses, as discussed in Section 4.2.
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Table D.6: Most common types

Criterion Frequency s.e.

Advice-based Data-based Structure-based
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• 0.374 (0.006)
• ◦ ◦ 0.131 (0.011)

• ◦ ◦ 0.072 (0.012)
• ◦ • 0.064 (0.006)

◦ ◦ • 0.045 (0.038)
◦ • • 0.045 (0.038)

• ◦ • 0.030 (0.009)
• • ◦ 0.024 (0.011)

• ◦ • 0.023 (0.006)
• ◦ • 0.020 (0.006)

• ◦ • 0.016 (0.005)
• • • 0.014 (0.009)

◦ • ◦ 0.013 (0.023)
• • • 0.013 (0.005)
• • • 0.012 (0.005)
• ◦ • 0.009 (0.010)

• ◦ • 0.009 (0.011)
• ◦ • 0.009 (0.007)

• ◦ • 0.009 (0.012)
• • • 0.008 (0.005)

◦ ◦ • 0.007 (0.032)
• • • 0.006 (0.008)

◦ ◦ • 0.005 (0.029)
• • ◦ 0.005 (0.004)
• • • 0.004 (0.006)

• • • 0.003 (0.004)
• • • 0.003 (0.012)

• • • 0.003 (0.010)
• ◦ • 0.003 (0.009)

• • • 0.003 (0.012)
• • • 0.003 (0.008)
• ◦ • 0.002 (0.010)
• • • 0.002 (0.006)

• ◦ ◦ 0.002 (0.010)
◦ ◦ • 0.002 (0.022)

• • • 0.002 (0.006)
• • • 0.001 (0.007)
• ◦ • 0.001 (0.008)

• ◦ • 0.001 (0.012)

Notes: The symbol • indicates that the corresponding criterion is being used, ◦ indicates that no criterion from the
corresponding class is being applied. The top row contains only a single symbol because the Conditional Correlations
criterion prevents the identification of structure- and advice-based criteria. Heteroskedasticity-robust standard errors
in parentheses.



Table D.7: Distribution of criteria use in Experiments 1 and 2 excluding subjects affected by con-
tingent reasoning failure

(1) (2) (3)

Criteria Experiment 1 Experiment 2 Experiment 2
Adjusted for noise - No Yes

A. Data-based

None 0.433 0.594 0.443
(0.011) (0.038)

Any Unconditional 0.171 0.106 0.146
(0.013) (0.050)

Direct Links 0.115 0.106 0.146
(0.014) (0.050)

All 0.056 0.000 0.000
(0.010) (0.056)

Any Conditional 0.396 0.300 0.411
(0.007) (0.045)

No V-Colliders - 0.157 0.216
(0.058)

All - 0.142 0.195
(0.047)

B. Advice-based

None 0.109 - -
(0.023)

High Promise 0.158 0.338 0.464
(0.010) (0.025)

Low Promise 0.032 0† 0†

(0.008)

High Action 0.026 0† 0†

(0.010)
Low Action 0.278 0.409 0.562

(0.010) (0.029)
C. Structure-based

None 0.237 - -
(0.025)

Simplicity
Fewer Roots 0.047 - -

(0.011)
Fewer Links 0.000 - -

(0.006)
Subsets 0.048 - -

(0.014)
Complexity

More Roots 0.008 - -
(0.005)

More Links 0.139 - -
(0.007)

Supersets 0.081 - -
(0.013)

Middle Action 0.044 - -
(0.004)

Random choice probability 0.271 0† 0.271†

(0.009)

Subjects 453 267 -
Observations 11325 4005 -

Notes: This table replicates Table 4 excluding subjects affected by a contingent reasoning failure.



Table D.8 replicates Table 8 excluding the corresponding subjects in Experiment 3.

Table D.8: Distribution of criteria use in Experiment 3 excluding subjects affected by contingent
reasoning failure

(1) (2) (3) (4)

Sample p-value treatment effect
Explanation treatment ✓ ✓
Control ✓ ✓

Data-based criteria
None 0.718 0.743 0.734 0.405

(0.008) (0.009) (0.008)
Unconditional 0.201 0.200 0.187 0.555

(0.014) (0.016) (0.015)
Conditional 0.081 0.057 0.079 0.319

(0.015) (0.018) (0.014)
Advice-based criteria
None 0.070 0.003 0.066 0.279

(0.036) (0.035) (0.045)
High Promise 0.412 0.474 0.392 0.000

(0.007) (0.008) (0.008)
Low Promise 0.006 0.017 0.004 0.258

(0.007) (0.008) (0.008)
High Action 0.072 0.081 0.085 0.906

(0.022) (0.021) (0.027)
Low Action 0.359 0.369 0.374 0.772

(0.012) (0.011) (0.015)
Random choice probability 0.322 0.283 0.329 0.000

(0.008) (0.007) (0.009)
Subjects 707 338 369
Observations 12726 6084 6642

Notes: This table replicates Table 8 excluding subjects affected by a contingent reasoning failure.

D.5 Framing effects

We conduct our experiment in an abstract frame to prevent the influence of priors. Here, we show

that framing the experiment in terms of social and biological systems causes subjects to introduce in

plausibility considerations that would prevent the clean identification of decision criteria.

Framing treatments After completing the main rounds, subjects proceed through three rounds

that have the same structure and parameters as previous rounds, but in which the decisions are

presented in different frames. The interface no longer displays the links ‘show in words’ and ‘show

explanation.’ While the theories in our main treatments only make statements about which quantities

are causally connected, verbal explanations sound natural only if they also indicate whether the effect

is positive or negative, which we include. We use different parametrizations and assignments of frame
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elements to nodes. This variation occurs across subjects; each subject makes exactly one decision in

each of the three frames.

Table D.9 outlines the frames. The first manipulation (column 1) keeps the decision context

the same—decisions concern action, circles, squares, and bonus—but the theory part of the advisor

speech bubble is replaced by a verbal description of the mechanism. The explanation differs from

what subjects can see by clicking ‘show in words’ in the main treatment. One advisor’s theory is

presented as follows. “Circles are the mechanism through which the action affects the bonus. Squares

are only a symptom, but not a cause of the bonus. That is, a higher action increases the number of

circles, which then increases the bonus. And a higher bonus increases the number of squares, but that

does not matter for your decision.” For the other advisor, we exchange ‘circles’ and ‘squares’ in the

foregoing explanation, but otherwise keep the explanation unchanged.

The second and third manipulations use a biological and social context, respectively, see columns

2 and 3. In the farming context, we present the interpretation corresponding to the DGP as follows:

“Fertilizer directly increases rice growth. So does the presence of ladybugs. Both fertilizer and

rice growth affect soil quality, growth depletes it, and fertilizer regenerates it. But soil quality is a

symptom rather than a cause of rice growth in the current year. The presence of ladybugs does not

depend on fertilizer use, soil quality, or rice growth.” (We inform subjects that ladybugs feed on other

insects, which renders causal influences between rice growth and the presence of ladybugs plausible.)

The social context concerns a blended education technology, called BlendEd, presented as follows in

the case of the competitor interpretation. “BlendEd enables better self-regulated learning, which,

in turn, increases mathematics comprehension. BlendEd also affects computer skills, but computer

skills neither affect nor depend on mathematics comprehension or on self-regulated learning.” We

reformulate these explanations to match the remaining DAGs.

When introducing these contexts we inform subjects that “If this round is selected for payment,

you will be paid according to the rice growth that your choice of fertilizer generates (minus the costs

of the fertilizer)” and “If this round is selected for payment, you will be paid according to the maths

comprehension that your choice of BlendEd generates (minus the costs of the investment).” We

highlight that all other aspects are unchanged from the previous rounds of the study.

Results Table D.10 analyzes behavior in the framed rounds. The six columns correspond to the

three menus of Table D.9, each with two parameterizations, respectively. Each column uses data from

a single parametrized menu along with the corresponding menu from the main rounds. It uses a frame

indicator as a predictor in OLS regressions on an indicator for choosing the correct interpretation

(panel A), an indicator for viewing any data charts (panel B), and on the number of seconds taken to

make a choice (panel C).

Columns 1 and 2 show verbal descriptions of abstractly framed decisions slightly decrease the

choice of the correct interpretation for one (p < 0.1) but not for the other parametrization, does not
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Table D.9: Framing manipulation treatments

Menu F1 F2 F3

DGP Competitor
A

X

Z

Y

A

Z

X

Y

DGP Competitor
A

X

Z

Y

A

Z

X

Y

DGP Competitor
A

X

Z

Y

A

X

Z

Y

Context
C1 Farming Education
a X: ladybugs,

Z: soil quality
b X: soil quality,

Z: ladybugs

C2 Education Farming
a X: computer skills

Z: self-regulated learning
b Z: computer skills

X: self-regulated learning
Parameters

P1 as in menu 6 as in menu 9 as in menu 17
High-promise DAG DGP Competitor DGP
Low-action DAG Competitor Competitor DGP

P2 as in menu 7 as in menu 10 as in menu 16
High-promise DAG Competitor Competitor Competitor
Low-action DAG Competitor DGP DGP

Notes: Menu labels refer to Table 2. For menu F2, we interchange the assignment of labels to nodes X and Z across
subjects.

affect chart viewing but substantially increases the time subjects take to decide (p < 0.01 in both

cases). One potential explanation for these results is that the verbal explanation is cognitively more

difficult to process, though other explanations are possible.

In terms of data viewing and response times, the results in columns 3 to 6 parallel those of columns 1

and 2. There is no effect on chart viewing, and decision times drastically increase. In terms of choice,

column 3 shows that choice can be substantially affected by a frame in otherwise identical choice

problems. The effect applies to one but not the other real-world context, which suggests that it arises

from domain-specific plausibility considerations rather than from the difference between abstract and

real-world frames in general. Column 5 shows a similar though weaker effect.

We conclude that real-world frames presented verbally increase the difficulty of the problem for

subjects, and introduce plausibility considerations that would impede clean identification of decision

criteria in our main experiment.
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Table D.10: Framing effects

(1) (2) (3) (4) (5) (6)

Menu F1 F2 F3

DGP Competitor DGP Competitor DGP Competitor
A

X

Z

Y

A

Z

X

Y

A

X

Z

Y

A

Z

X

Y

A

X

Z

Y

A

X

Z

Y

Parameters P1 P2 P1 P2 P1 P2

High-promise DAG DGP Comp. Comp. Comp. DGP Comp.
Low-action DAG Comp. Comp. Comp. DGP DGP DGP

A. Correct interpretation chosen

Context
Symbols -0.068* -0.031

(0.038) (0.056)
Farming 0.040 -0.088 -0.111** -0.117*

(0.070) (0.065) (0.051) (0.062)
Education -0.208*** -0.012 -0.063 -0.106*

(0.071) (0.064) (0.051) (0.063)
Constant 0.648*** 0.466*** 0.555*** 0.683*** 0.833*** 0.752***

(0.027) (0.039) (0.041) (0.037) (0.022) (0.036)

B. Any data charts viewed

Symbols 0.012 0.025
(0.037) (0.052)

Farming 0.045 0.026 -0.074 0.080
(0.066) (0.061) (0.062) (0.063)

Education -0.032 0.085 0.018 0.031
(0.067) (0.060) (0.062) (0.064)

Constant 0.660*** 0.671*** 0.685*** 0.708*** 0.657*** 0.652***
(0.026) (0.037) (0.038) (0.035) (0.027) (0.037)

C. Time to decide in seconds

Symbols 16.585*** 18.463***
(3.489) (4.662)

Farming 51.905*** 50.446*** 31.154*** 47.369***
(9.273) (7.544) (6.927) (8.159)

Education 50.025*** 48.283*** 38.393*** 48.628***
(9.358) (7.451) (6.850) (8.261)

Constant 47.508*** 45.325*** 36.429*** 41.624*** 45.557*** 42.646***
(2.467) (3.296) (5.378) (4.328) (2.954) (4.740)

Observations 648 322 292 322 470 322

Notes: Each column in each panel displays the estimates of an OLS regression of the dependent variable on context
indicators using data from a single decision problem in different frames. Behavior in the abstract frame (main rounds)
constitutes the baseline throughout. Standard errors in parentheses, clustered by subject. *p < 0.1, **p < 0.05,
***p < 0.01.
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D.6 Estimates with restricted criteria spaces

Table D.11 shows that our mixture model yields substantially different distributions of data-based

criteria when we exclude advice-based or structure-based criteria from our specification than when

we estimate the full model. Column 1 reproduces the distribution of data-based criteria from column

1 of Table 4. Column 2 estimates the model excluding all types that make use of an advice-based

criterion. The fraction of subjects estimated to use the Conditional Correlations criterion drops by

11.4 percentage points, and that corresponding to no data-based criteria increases by 10.6 percentage

points. (While these directional changes may be surprising, recall that omitted variable bias yields

inconsistencies in the estimates of all parameters in unpredictable directions even in OLS regressions.)

Excluding structure-based criteria (column 3) increases the estimated fraction of subjects using the

Conditional Correlations criterion by 9.6 percentage points, presumably because choices following

a structure-based criterion are attributed to a data-based criterion when structure-based criteria

are excluded. When we exclude both advice- and structure-based criteria (column 4), we set the

fraction of subjects using no data-based criterion to zero due to the fact that we cannot identify an

implementation noise parameter separately from the frequency of a pure noise type (see Section 3.1).

While this mechanically increases the fraction of types attributed to a data-based criterion, the fact

that the increase is much larger for the Conditional Correlations criterion than for the Unconditional

Correlations criteria shows that the exclusion of the two classes of criteria substantially changes

inference over data-based criteria.

D.7 Checking of explanations

Throughout the experiment, subjects had access to buttons displaying additional explanations they

had seen in the instructions. Data on button usage addresses questions about the extent to which our

results are driven by the availability of these explanations. We consider usage data from Experiment

2 because of the clear ranking of menus in terms of the data-based criteria required to identify the

DGP.

Column 1 of Table D.12 lists the frequency with which subjects clicked the button to reveal the

explanation concerning the correlational implications of causal structures. The first row shows that

22% of subjects check the explanation in at least one of the practice rounds. According to the second

row, merely 16.1% check it in at least one of the main rounds. The fact that these rates are low

suggests that the availability of the explanations is not a main driver of our results. The remaining

rows show that subjects do not check the explanations more frequently in more difficult decisions.

We see that 6.8%, 3.9%, 5.0%, and 3.2% check the explanation in at least one of the rounds in

which the the Direct Links, Unconditional Correlations, Conditional Correlations (No v-Colliders),

and Conditional Correlations criteria are necessary to identify the correct interpretation, respectively.
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Table D.11: Distribution of data-based criteria use in restricted models

(1) (2) (3) (4)

Full model Excluded criteria class

Advice-based Structure-based Advice- and
structure-based

Data-based criteria
None 0.461 0.567 0.409 0†

(0.009) (0.005) (0.003)
Any Unconditional 0.165 0.173 0.121 0.200

(0.011) (0.006) (0.004) (0.002)
Direct Links 0.107 0.115 0.038 0.177

(0.012) (0.005) (0.004) (0.002)
All 0.058 0.058 0.083 0.024

(0.008) (0.005) (0.003) (0.003)
Any Conditional 0.374 0.260 0.470 0.800

(0.006) (0.004) (0.002) (0.002)
Random choice probability 0.266 0.187 0.375 0.647

(0.008) (0.006) (0.005) (0.002)

Subjects 475 475 475 475
Observations 11875 11875 11875 11875

Notes: † indicates imposed values. Heteroskedasticity-robust standard errors in parentheses. Estimates in column 1
represent the output of the full model. Estimates in column 2 reflect the output of a model that excludes advice-based
criteria. Column 3 presents the corresponding estimates for a model excluding structure-based criteria. Estimates in
column 4 reflect a model that excludes both advice- and structure-based criteria.
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Column 2 shows the frequencies with which subjects check the explanation on how to read our

data charts. Column 3 displays data on how often subjects check the explanation of the costs. The

qualitative patterns mirror those of column 1, with no more frequent checking in more challenging

problems.

Table D.12: Frequency of checking explanations

(1) (2)

Explanation Correlational implications Data charts Costs
of causal structures

Preliminary rounds 0.222 0.348 0.237
(0.025) (0.029) (0.025)

All data-based rounds 0.161 0.233 0.100
(0.022) (0.025) (0.018)

D1, D2, D3 0.068 0.115 0.036
(0.015) (0.019) (0.011)

U1, U2 0.039 0.061 0.022
(0.012) (0.014) (0.009)

NV1, NV2 0.050 0.065 0.032
(0.013) (0.015) (0.011)

C1, C2 0.032 0.043 0.018
(0.011) (0.012) (0.008)

Notes: Each entry in the table shows the fraction of subjects in Experiment 2 who view the corresponding explanation
at least once in the set of menus indicated in the first column.

D.8 Self-classification

Design We elicit subjects’ self-reported decision-making strategies in 3 hypothetical scenarios, dis-

played in random order. The first scenario describes the decision to eat less food with additives E250

and E252 that have recently been linked to cancer. We describe a competing interpretation by which

the relation between the consumption of these additives and cancer arises artifactually as a conse-

quence of a generally unhealthy lifestyle. We intentionally choose additives labels that subjects are

unlikely to know, so they approach the problem as novel. The second scenario describes the decision to

consume more foods that contain lycopene, a substance that has been linked with health benefits, but

in a way that may also reflect a general tendency for a healthy lifestyle. The third scenario considers

a business setting in which action needs to be taken to reverse a decline in sales.

Subjects then indicate their agreement with each of the following statements, appropriately adapted

to each scenario. (i) In situations like this, I tend to follow advice that gives me more hope about

my health outcomes. (ii) Unfortunately, in situations like this, advice that gives me less hope is more

often the right advice to take, so I tend to follow that. (iii) In situations like this, I tend to follow

advice that enables me to take action, rather than sticking with the status quo. (iv) In situations

like this, I tend to follow the advice that appears to be the easiest. (v) In this situation, I would
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check the facts to determine whether there really is a correlation between the consumption of these

additives and cancer risk. (vi) In this situation, I would look into the facts. I would only consider

people with an otherwise healthy lifestyle, to determine whether a relation between the consumption

of these additives and cancer risk is present for this population. (vii) In situations like this, reality is

rarely simple. I am more likely to follow advice that is based on more comprehensive and elaborate

theories. (viii) In situations like this, simpler explanations are usually better. I am more likely to

follow advice based on simpler and more straightforward theories. (ix) In this situation, I would check

the facts with a focus on determining which analyses are most methodologically sound to ensure any

correlations are not spurious.

The statements are intended to capture the following criteria: (i) High Promise, (ii) Low Promise,

(iii) High Action, (iv) Low Action, (v) Unconditional Correlations, (vi) Conditional Correlations,

(vii) simplicity preference, (viii) complexity preference. Statement (ix) captures a general tendency

for scrutinizing data.

Results We consider how subjects’ self-descriptions of their information search behavior relate to

their experimental choices, using the same econometric specifications as Table 6, except that we use

self-reported decision strategies as predictor variables rather than demographics. The results need to

be interpreted in light of existing research that shows that people are often inept at self-assessment

(e.g. Kruger and Dunning, 1999). Some of the correlations we find appear intuitive, others counterin-

tuitive. Amongst the former, we observe that a propensity for following advice that appears hopeful

is negatively related to selecting the correct interpretation (p < 0.05) and to viewing data charts

(p < 0.05), and positively related to choosing the advisor making the higher promise (p > 0.1). A

self-reported propensity for checking conditional correlations is also consistent with our expectations;

it positively predicts selecting the correct interpretation (p < 0.05), though without a strong effect on

the propensity to view data charts. Relatedly, a propensity for checking the methodological sound-

ness of studies positively predicts choosing the correct interpretation (p < 0.1) and the propensity

to check data charts (p < 0.01). Finally, individuals with a preference for simpler theories check

data less often (p < 0.01) and choose the correct interpretation less often (p < 0.01). Turning to

counterintuive results, we observe that a self-reported propensity to follow the advice that appears

easiest positively relates to choosing the correct interpretation (p < 0.01), and fails to predict choosing

the cost-minimizing advisor. Moreover, a self-reported propensity for checking unconditional corre-

lations negatively predicts choosing the correct interpretation and checking data charts (p < 0.05)

but positively predicts taking the cost-minimizing action. Self-reported propensities to choose more

pessimistic advice, advice that permits taking action, and a preference for more comprehensive and

elaborate theories no not have statistically significant predictive power on any dependent variable in

columns 1 to 4.
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The foregoing analysis only employs a subset of the moments that our mixture model employs.

We thus estimate the multinomial logit specification of the three-type version of our mixture model

that we introduced in Section 4.6. The results are often consistent with the corresponding results

from columns 1 to 4, and usually more highly statistically significant. Subjects with a self-reported

propensity to adopt more hopeful advice more frequently correspond to the High Promise (p < 0.01)

and Low Action (p < 0.01) types. These subjects are thus also less likely to be consistent with

the Conditional Correlations type, our baseline category. We observe directionally similar effects for

subjects who prefer advice that lets them take action, who report using unconditional correlations

to determine the soundness of interpretations, and for subjects who prefer simpler to more complex

interpretations. Subjects who report using conditional correlations to determine the soundness of

interventions, by contrast, less often choose consistently with the High Promise (p < 0.01) and Low

Action (p < 0.01) types (and thus more often with the Conditional Correlations type). A directionally

similar result holds for subjects who report attempting to determine the methodological soundness of

the analyses on which interpretations are based.
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Table D.13: Self-classification and choice in Experiment 1

(1) (2) (3) (4) (5) (6) (7)
Reduced-form estimates Structural estimates

VARIABLES Correct DAG Data viewed High Promise Low Action High Promise Low Action p-value
difference

Constant 0.662*** 0.718*** 0.471*** 0.488*** -1.126*** -0.413*** 0.000***
(0.058) (0.107) (0.044) (0.048) (0.106) (0.030)

Advice that gives more hope -0.088** -0.190** 0.050* 0.029 1.091*** 0.554*** 0.101
(0.040) (0.084) (0.029) (0.038) (0.220) (0.207)

Advice that gives less hope 0.013 -0.064 -0.030 -0.046 -0.121 -0.338 0.582
(0.050) (0.102) (0.035) (0.047) (0.214) (0.291)

Advice that lets me take action -0.031 0.003 0.010 0.021 0.574*** 0.399* 0.610
(0.047) (0.089) (0.032) (0.042) (0.211) (0.240)

Advice that appears easiest 0.125*** 0.147 0.060* 0.002 0.071 -0.987*** 0.009***
(0.047) (0.093) (0.031) (0.040) (0.216) (0.305)

Correlation (unconditional) -0.107** -0.228** 0.063 0.092** 1.103*** 0.868** 0.595
(0.054) (0.094) (0.039) (0.042) (0.255) (0.342)

Correlation (conditional) 0.079** 0.058 -0.025 -0.046 -0.843*** -0.662*** 0.538
(0.039) (0.073) (0.025) (0.036) (0.189) (0.206)

Determine methodological soundness 0.088* 0.259*** -0.052 -0.027 -1.410*** -0.584** 0.045**
(0.050) (0.094) (0.036) (0.046) (0.279) (0.265)

More comprehensive and elaborate theories -0.030 0.084 -0.008 -0.048 0.451** 0.226 0.476
(0.042) (0.074) (0.031) (0.035) (0.179) (0.246)

Simpler explanations usually better -0.137*** -0.263*** 0.039 0.048 1.336*** 1.097*** 0.456
(0.042) (0.082) (0.034) (0.038) (0.228) (0.205)

Observations 12115 12115 12115 12115 11875
Subjects 485 485 485 485 475

Notes: Columns 1 to 4 report coefficient estimates from OLS regressions. Columns 5 and 6 represent estimated odds ratio from a single GMM estimation. Predictor
variables are normalized to range from 0 to 1. Each variable is the average of a subject’s answers to the corresponding questions across all three scenarios for which we
asked the question. Coefficient estimates for the structural model show the effect of the predictor on the log-odds of being the specified type rather than the conditional
tester. Asterisks in columns 1 to 4 reflect tests of the null hypothesis that the corresponding parameter value is zero. Asterisks in columns 5 and 6 reflect tests of the
null hypothesis that the corresponding odds ratio is one. p-values in column 7 reflect Wald tests of the joint hypothesis that the two estimates on a given predictor equal
each other (1 degree of freedom). Each regression in columns 1-4 includes 25 observations for each of the 485 subjects in Experiment 1 who have provided complete
answers to all questions, with the exception of 10 subjects in the first session who were not shown round 25. The model in columns 5-7 excludes the 10 subjects from
the first session entirely. Standard errors in parentheses, clustered by subject. * p < 0.1, ** p < 0.05, *** p < 0.01.
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D.9 Effect of a fact-checking nudge in the laboratory sample

Section 4.4 argues that the comparison of the use of data-based criteria across the experiments sug-

gests that the failure to apply data-based criteria is at least partly due to limited ability, not solely

unwillingness, though in a comparison that uses different menus. Here, we show that this argument

also applies when we focus on the two menus (6 and 10) included in both experiments.

Table D.14 shows the effect of making advice available. As columns 1 and 2 show, in both menus,

it decreases the fraction of subjects who view at least one data chart by around 10 percentage points.

As columns 3 and 4 show, there is no effect on the choice of the correct interpretation.

Table D.14: Effect of availability of advice in Experiments 1 and 2

(1) (2) (3) (4)
VARIABLES View a data chart Correct interpretation

chosen

Menu 6 10 6 10

Advice shown -0.094*** -0.102*** 0.024 0.056
(0.033) (0.032) (0.036) (0.036)

Constant 0.760*** 0.789*** 0.624*** 0.616***
(0.026) (0.024) (0.029) (0.029)

Observations 764 764 764 764

Notes: Standard errors in parentheses, clustered by subject. *p < 0.1, **p < 0.05, ***p < 0.01.
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E Experiment instructions

E.1 Experiments 1 and 2
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Subjects also answer parallel questions for the following scenarios:

• Suppose you’re considering eating less food with additives E250 and E252, whose
health implications have recently found some publicity (which you are not expected
to know). Some experts suggest these additives can increase your risk of developing
cancer. However, other experts claim that the correlation between consuming these
additives and cancer is spurious, as some individuals both lead unhealthy lifestyles
and frequently consume foods that contain these additives. As a result, they claim,
we see a relation between the consumption of these additives and cancer risk, even
though the additives themselves do not causally affect cancer risk. Suppose you
generally like foods containing these additives and no good alternatives are available.

• Suppose you are managing a company that is experiencing a decline in sales. The
sales team sees the reason for the decline in a lack of advertising efforts. It rec-
ommends spending more on advertising to increase brand awareness and attract
new customers. However, the finance team argues that the decline in sales is due
to both a regional economic downturn and demographic changes in the consumer
base. By contrast, the finance team advises that investing more in advertising will
not address the root cause of the problem and may worsen the financial situation
of the company. Despite the conflicting opinions, the company must decide on the
level of advertisement efforts.
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E.2 Experiment 3

Explanation correlational implications of causal structures in Treatment
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Explanation archetypical causal structures in Control
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