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1 Introduction

In economics it is often of interest to test wether a set of time series moves together, that is
whether the series are driven by some common factors. The vast literature on cointegration has
focussed on long-run comovements for nonstationary time series. More recently, some authors
have analyzed the existence of short-run comovements between stationary time series or between
first differenced cointegrated-I(1) series (see Tiao and Tsay, 1989; Engle and Kozicki, 1993;
Gouriéroux and Peaucelle, 1993; Vahid and Engle, 1993; Vahid and Engle, 1997; Ahn, 1997).
Among these approaches, the concept of serial correlation common features (SCCF hereafter)
introduced by Engle and Kozicki (1993) appeared to be useful. It means that stationary time
series move together as there exist linear combinations of these variables that yield white noise
processes. These common feature vectors are measures for analyzing short-run relationships
between economic variables suggested by economic theory such as relative purchasing power
parity (Gouriéroux and Peaucelle, 1993), permanent income hypothesis (Campbell and Mankiw,
1990; Jobert, 1995), cross-country real interest rate differentials (Kugler and Neusser, 1991), real
business cycle models (Issler and Vahid, 1996), convergence of economies (Beine and Hecq, 1997a,
1998), Okun’s Law (Candelon and Hecq, 1997).

Serial correlation common features implies the existence of a reduced number of common
dynamic factors explaining short-run comovements in economic variables. A companion form
of the common features models is the common factor representation which has been used in
macroeconomics for some decades (see e.g. Engle and Watson, 1981; Geweke, 1977; Lumsdaine
and Prasad, 1997; Singleton, 1980). Beyond economic considerations, through the reduced-rank
restrictions, the existence of common features leads to a reduction of the number of parame-
ters to be estimated. In general, imposing common cyclical feature restrictions when they are
appropriate will induce an increase in estimation efficiency (Liitkepohl, 1991) and accuracy of
forecasts (Issler and Vahid, 1999).

Also as for unit roots and cointegration tests, the power of common cyclical feature pro-
cedures may be low for small samples (Beine and Hecq, 1999). The power of tests might be
increased by relying on panel data instead of using only time series data. Consequently, in this
paper we propose to extend these models by testing for serial correlation common features in a
panel data framework. In order to avoid confusion, it is worth noticing that standard panel data
models with common parameter structures obviously already imply a common feature structure,
namely the one which allows to pool the behavior of NV individuals. Notice that the assump-
tion of poolability often made in panels may be far too strong. An investigator may want to

test which poolability restrictions are supported by the data and which restrictions have to be



rejected for the panel data.

We propose to generalize the SCCF approach and apply it to search for common cyclical
features in panel data. In particular, we investigate whether there exist linear combinations of
the variables for individual or entity ¢ which are white noise for all i, in other words, which
weights in the linear combinations are identical across all entities. Developing a methodology to
analyze and test common cyclical features in panel data is of theoretical and practical importance
since common cyclical feature restrictions are less restrictive than the assumption of identical
parameters across individuals usually made in panel data modeling.

Some purists might not speak about panel for this type of analysis. Indeed, in situations
we are interested with, IV will be relatively small compared to its value in usual panel data and
T is assumed large (with 7" — oo asymptotic). Many macroeconomic studies deal with 15 to
50 annuals observations for 20 to 100 countries, regions, industry levels or big firms. In those
cases, the border between pure panel analysis (N — 00) and pure time series analysis (7" — o)
is fuzzy. Far from impoverishing the panel data analysis, taking into account medium or large
size time series raises new interesting issues such as testing for unit roots or cointegration in
panel data (see inter alia Levin and Lin, 1993; Pesaran and Smith, 1995; Evans and Karas,
1996; Kao, 1997; Pedroni, 1997; Phillips and Moon, 1999b, and Phillips and Moon, 1999a, for
the asymptotic theory).

The paper is organized as follows. Section 2 provides an example of common features between
consumption and income implied by economic theory and likely to be common to data for
different countries. In Section 3 we review the concept of serial correlation common features.
Section 4 extends it to panel data. As we study differences and similarities in macroeconomic
series for different countries, we concentrate our analysis on the fixed effect model (see Hsiao,
1986). Section 5 describes estimation procedures. In Section 6 simulation results are reported.
In Section 7 we present an empirical analysis of the liquidity contraint consumption model for
22 OECD countries and the G7. Section 8 concludes.

2 An Example of Common Features in Panel Data

To further motivate this paper, consider the permanent income hypothesis (PIH hereafter) and
the heterogeneous consumer model proposed by Campbell and Mankiw (1990, 1991). These
authors consider two groups of agents who receive a disposable income Yij; and Ys; in fixed
proportions of the total income respectively, such that Yi; = AY;, Yoy = (1 — A)Y; and V; =
Yi: + Yo:. Agents in the first group are subject to liquidity constraints. Therefore, they consume

their current income while agents in the second group consume their permanent income. We get



the following system:

Ci =Y =Y,
Cor =YL = (1= NY/F
Yie =Y + Y7}
Yor = Y + Y,

(1)

where Cj; is the consumption of agent ¢ and Ylf and Yg are the permanent and transitory com-
ponent of income of the agent ¢ which are assumed to be I(1) and I(0), respectively. Aggregating
over agents we get Cy =Y} + VI +YF =Y,” + Y]}, and thus:

C =YL  +2y”
{ R @

)/Vt:)/;P+)/;T7

which shows that aggregate consumption and income share a common trend Y;”. Note that
because a fraction A of income accrues to individuals who consume their current income rather
than their permanent income, this model has been labelled ” A model” by Campbell and Mankiw
(1990, 1991). It is also easily seen that if A = 0 we get the permanent income model. In order
to stress the common cycle component let us take the first difference of aggregate consumption
Cy = Ci¢ + Co. By substituting the shares of income in the total income we obtain Cy =
AY; + (1 — N\)Y,P which in first differences A can be written as:

AC; = AAY; + (1 — N)AY". (3)

Consequently, assuming that the permanent income is a martingale, the consumption func-
tion can be tested by the regression AC; = AAY;+(1—\)e;. However, e, is a difference martingale
which is not orthogonal by construction to AY;. Therefore this equation cannot be consistently
estimated by OLS but instrumental variables (IV') estimators are appropriate.

With a few exceptions as Vahid and Engle (1993) and Jobert (1995), most empirical studies
do not take the cointegrating vector into account as a valid instrument when testing equation (3)
using IV estimates, and therefore may be subject to an omitted variable problem. Vahid and
Engle (1993) made the connection with the common feature hypothesis that €; is a white noise?

with [1 —A] the associate normalized common features vector. Empirical studies have shown

that X is usually significantly different from zero with coefficients in the range 0.3 to 0.5 for most

!Note that Vahid and Engle (1997) have extended their framework to the case where a linear combination is
a MA(q) process and not a white noise. They labelled this model non-synchronous common cycle.



countries. Therefore in order to test for the existence of one short-run relationship common to
a set of countries and to improve the power of common feature tests, a pooled common features
test in panel seems appropriate. The use of the cross-section dimension in the estimation could

also give rise to substantial efficiency gains.

3 Common Features in Time Series

In the context of time series analysis, serial correlation common features means that there
exist linear combinations of (stationary) economic time series which are white noise processes.
Consider a cointegrated VAR of order p = 2, written in its VECM form, for consumption and

income, for t =1...T:

Ac A A Acy— Q@ Cr— €
o el | ot R K o S
Ay Iz P21 P2 | [Ayr1 1 Yi-1 €2t
where 11 and 15 are constant drift terms, [e14,£2] is a bivariate white noise process with nonsin-
gular covariance matrix Q. (35//3;) is the long-run income elasticity if one chooses consumption

as normalized variable. The autoregressive coefficients matrix is of reduced rank and the system

may be written as:

o e A TSR o O o Y G
A distinction could be made at this stage between a strong and a weak form reduced rank
structure, as put forward by Hecq, Palm and Urbain (1997a,b). The Strong Form Reduced
Rank Structure (SF) is the original formulation proposed by Engle and Kozicki (1993) in which
long-run and short-run matrices share the same left null space. It corresponds to & = X in system
(5). In this case, there exists a common feature vector B/ =[1 — A] such that premultiplying
expression (5) by BI yields a white noise. In the less restrictive model, labelled Weak Form
Reduced Rank Structure (WF), a # A, and a linear combination of first differences in deviation
from the long-run equilibrium is a white noise. Consequences in terms of common cycles as well
as inference issues are analyzed in Hecq, Palm and Urbain (1997a,b).

Common features relationships give information on short-run comovements. These relation-
ships may come from economic theory (relative purchasing power parity, PIH) or from stylized
facts (convergence, RBC models) and give the dynamic common factor within the system, i.e.
o1 Ac;_l + P99 Ayi—1 in the WF case for instance. The orthogonal complement of the B , labelled

BL (B BL = 0sx2), gives the factor loading of the common dynamics in the equations, that is



B =[x l]l in system (5). Notice that these common dynamic factors should not be confused
with common cycles. Common dynamic factors refer in our study to reduced rank in VAR
matrices. Common cycles are defined in a specific trend-cycle decomposition as the part of the
time series left after removing permanent components. Vahid and Engle (1993) show that the
existence of s common feature vectors (of the SCCF or SF type) leads to n — s common cycles
in the multivariate Beveridge-Nelson decomposition. Vahid and Engle (1997) extend this defi-
nition to nonsynchronous cycles. Hecq, Palm and Urbain (1997b) propose a Beveridge-Nelson
decomposition for the WF that allows for a reduced number of common cycles. Notice that the
latter weak form reduced rank structure will in the sequel not be explicitly considered as we
want to focus on the extension of the standard serial correlation common feature analysis to
panel data.

In this simple bivariate model (4)-(5), the serial correlation common feature hypothesis may

also be written in terms of moment conditions such as:
E[(Act il )\Ayt) ® Wt} = 0, (6)

where E[.] is the linear expectation operator and Wi = {1,Act—1 ... Act—g, Aye—1. Ayr—1,2t-1)
is a set of instruments consisting of a constant term, the lags of both variables and the deviation
from the long-run relationship z;—1 = ¢t—1— (B2/51)yt—1-

Adopting a two-step approach?, there are two ways to test for SCCF. The first way is to
carry out a canonical correlation analysis between consumption and income on the one hand
and the set of instruments on the other hand. The nonsignificant squared canonical correlations
reveal the existence of linear combinations which yield white noise processes. Alternatively,
one can use generalized method of moments type estimators exploiting the moment condition
(6). A test of overidentifying restrictions in (6) is a test of serial correlation common features.
The use of canonical correlation estimation has the advantage that results do not rely on the
choice of the normalization of the moment conditions. Moreover, it is more convenient when we
test for the number of common feature vectors. In this paper we treat the problem in a GMM
framework for several reasons. Firstly, we have at most one common feature vector in a bivariate
system. Secondly, this framework may be more easily extended to panel data models. Finally,

normalization imposed on IV by selecting one variable as having a coefficient equal to one leads

2The first step checks for the presence of cointegrating relationships and then, given the estimated cointegration
relations, the common feature analysis is carried out in a second step. An alternative is to use an estimation
procedure that exploits both the cointegration and common features restrictions using a switching algorithm
(Hansen and Johansen, 1998; Hecq, 1999).



to an increase of the power of the test compared with those based on canonical correlations.?

4 Extension to Panel Data Models

Frequently, analyses comparing for instance the PIH with ” A model”, concentrate on one country,
very often the USA. In order to motivate the generality of the theory, some authors extend their
empirical investigation to several countries (Campbell and Mankiw, 1991; Evans and Karas,
1996). However it is difficult to claim that results for different countries are uncorrelated. Since
it is not possible to construct a pure time series model with relatively few observations for a
large number of individuals, such as a VAR model with 2 x N endogenous variables in a bivariate
case, alternatives must be found.

One solution would be to analyze the system under separation in common features (Hecq,
Palm and Urbain, 1999), an extension to separation in cointegration (Granger and Haldrup,
1998; Konishi and Granger, 1993). Under separation in common features, the common fea-
ture matrix is block-diagonal with blocks corresponding to one individual ¢ only. Treating the
issue in the complete system with separation in common features avoids losing efficiency com-
pared to an analysis of the marginal model for individual ¢ since separation does not require
block-diagonality of the distrurbance covariance matrix. This solution is however difficult to
implement for more then two or three individuals. We illustrate this point via a small Monte
Carlo experiment, of which the precise specification will be given in Section 6. Consider a DGP
made out of bivariate systems similar to (4), with « = A (SCCF hypothesis), for respectively two
and five individuals. The only cross-sectional relations are due to a non-diagonal disturbance
variance-covariance matrix. Complete separation in cointegration, in common features as well
as absence of bidirectional short-run Granger causality is thus maintained. Using a standard
canonical correlation framework (see inter alia Hecq, Palm and Urbain, 1998a) we perform a
serial correlation common feature analysis in the marginal model for the first individual, ignoring
the cross-correlations. Alternatively, under separation in common features, we test the number
(s =2 or s = 5) of common feature vectors for each individual in the complete system. We then
constrain the common feature space to be block-diagonal (see Hecq, Palm and Urbain, 1999)

and estimate the vector for the first individual.
INSERT TABLE 1 ABOUT HERE

In Table 1, we report for 5,000 replications the median and the spread (interquantile range)

of the bias, x? test statistics for the overidentifying restrictions implied by the presence of

#See Anderson and Vahid (1996) for the connection between GMM and canonical correlation estimators.



common features as well as a small sample adjusted version (Hecq, 1999). Although separation
in common features holds at the level of the DGP, some efficiency loss, as measured by the
spread, is observed in the marginal model compared to the full system from 7" = 25 for N = 2
and from T = 50 for N = 5. However the dispersion is too high for smaller sample size and test
statistics reject too often the presence of respectively two and five common feature vectors.

These illustrative Monte Carlo results call for an extension to a (possibly nonstationary)
panel common feature analysis.

Let the subscript ¢ = 1, ..., N indicate the different groups/entities/units, ¢t = 1,...,T denote
the sample period and j = 1,...,n denote the number of variables for each group/entity. We
assume that the n—dimensional vector of observed I(1) variables for entity i, X;, is generated

by a p;—th order cointegrated VAR which can be expressed in error-correction form as follows:

pi—1
AXit=pi+7 +@ifiXie 1+ Y TijAXip j+e, i=1,..N, t=1,...,T, (7)
=1

where pi; denotes fixed individual effects, v, denotes a vector of deterministic time effects, a; and
B; are n x r; matrices of full column rank with r; being the cointegrated rank (r; < n) and e; is a
disturbance. The vector e, = (€ 4,... ,€ly,)" is an nIN x 1 dimensional homoskedastic Gaussian
mean innovation process relative to X 1 = {X;;;, ¢ = 1,...,N; j < t} with nonsingular
contemporaneous covariance matrix €2, the (¢,j) — th block of which being E(si,te;-7t) = ;5.
Notice that one could allow for random individual effects in expression (7). This would lead to
an error-component structure of ¢;; similar to that used in the panel data literature.

For system (7), we introduce the definition of an homogeneous SCCF panel model:

Definition 1 A panel model is called an homogeneous panel common feature model if there
exists, Vi = 1,... ,N, a (n x s;) matriz Bl = Bj Vi, j=1,...,N, whose columns span the
individual cofeature space, such that BiAXi,t = Biz—:i,t s a s;—dimensional white noise process

for each individual.

This definition applies to the case where the individual cofeature matrices, and hence their
column rank s;, are the same across all individuals. A typical dynamic panel data model with
fixed effects yi; and deterministic time effects -y, arises as a special case of (7) when the parameters
a;, 3, I j and ; are the same across entities i (see e.g. Hoogstrate, 1998). In order to clarify
the nature of the hypotheses underlying the panel common feature restrictions, in the next
subsection, following Groen and Kleibergen (1999) for panel cointegration, we consider a model
resulting from sequentially testing and applying restrictions to a high dimensional unrestricted
VECM.



4.1 A Panel VECM Representation

We are interested in testing for cointegration and common serial features with respect to n I(1)
time series in vector X; ; within a dynamic model for N individuals 7. Without loss of generality,
we consider a large VECM with one lag in the first differences, e.g. a VAR with two lags in
level. The generalization to high order dynamics is immediate by substituting I';; by I';;(L) in

(8) but it makes the notation heavy. We consider the model without any time dummies for sake

of simplicity. For t =1,... T we may write the n/N-dimensional system as:
Iy ... Ihiy 'n ... Iin
AX, = R : X1+ C : AXyq + uy, (8)
IIy1 ... IInn 'yt ... I'nny

where AX; = (AX],...AX N ,) s ug = (u), ... ufy,) and Xy = (X7, ;... X}y, 1) are vectors

of dimension n/N X 1, or more concisely

AXy =11y X1 + Ty AX 1 + Ut, (9)

where IL,, and I'y, are nN xnN matrices and u; = pi+e¢, pp = (@, ..., iy ), €6 = (€14 -- s€NL)

are nIN x 1 vectors with &; ~ N(0,$2).

Qi ... iy
] (10)

Oyt ... Qnwn

This large unrestricted model (8), without any zero block restrictions, is not estimable in prac-
tice. Consequently, restrictions have to be imposed. We first describe cointegrating restrictions

before introducing serial correlation common feature restrictions.

4.1.1 Cointegrating Restrictions in a Panel VAR

We first consider restrictions on the long-run matrix Il,,. in the unrestricted VECM. Two types
(A and B) of sequences of hypotheses naturally arise in panel data. The hypothesis involved in

a sequence can be tested either sequentially or jointly.

e Al: Absence of long-run Granger-Causality between the individual subgroups, i.e. Il is

block-diagonal with elements II;; = 0 for ¢ # j.



e A2: Cointegration in absence of long-run Granger-causality, i.e. Il; = a;/3;, with a; and

B, being n x r; matrices of rank r;, ¢ =1,..., N.
e A3: Homogeneous panel cointegration, i.e. 3, = 31,i=1,...,N; r = Nry.
e B1: Cointegration, i.e. IL,, = a3, with a and 3 being nN x r matrices of rank 7.

e B2: Complete separation in cointegration (see Granger and Haldrup, 1997), i.e. « and 3
are block-diagonal, with typical block a;/3; as defined in A2, and r = Ef\; 1T

e B3: Homogeneous panel cointegration, i.e. 8, =08 ;¢=1,...,N;r=Nr;

When the first two sets of restrictions in either sequence hold, the following restricted struc-

ture arises.

(116’1 0... 0 F11 e FlN
AX: = 0 .. 0 Xi 1+ - AXe 1+ u. (11)
0 0... OéNB/N FNl c. FNN

When it is appropriate to add a restricted trend in the cointegration space, we replace
Xi—1 by X = (X[_4,t)'. For N fixed, a likelihood ratio statistic for (11) versus (8) can be
obtained using the sum of two different conditional likelihood ratio statistics to test the sets
of restrictions {A1,A2} or {B1,B2}. Next, homogeneity of panel cointegration can be tested
using a likelihood ratio test. A decomposition similar to {A1,A2} is proposed by Groen and
Kleibergen (1999). The main problem with this approach is that under A1, that is absence of
long-run Granger-causality, the usual tests have an unknown asymptotic distribution, as the
possible presence of cointegration interferes with the block-diagonality of II,.. On the other
hand, once the cointegrating rank in the unrestricted VECM has been fixed, a test statistic with
separation as the null hypothesis has an y?-asymptotic distribution. It is worthwhile to mention
that although model (11) looks rather specific, it is less restrictive than the models used in the
dynamic panel literature, where quite frequently, in addition to separation in cointegration, the
same parameter structure is assumed to hold across individuals (see inter alia the overview in
Phillips and Moon, 1999b). Occasionally, complete separation is relaxed to requiring 3 to be
block-diagonal leaving « unrestricted. (Larsson and Lyhagen, 1999).

10



4.1.2 Common Feature Restrictions

Imposing serial correlation common feature restriction, system (11) becomes:

BT8O 0 BTt 0... 0
AXy = 0 0 X1+ 0 0 AXi_ 1+ uy.
0 0... BinUnBy 0 0... BLN\IITV

(12)

As for cointegrating restrictions, this model may be obtained by considering two of the next

three hypotheses under (11).

~!

C1: Serial correlation common features: there exists a (nIN X s) matrix 3 such that § AX;

is an s dimensional white noise, with s = Ef\ilsi.

e C2: Absence of short-run Granger-causality between the individual subgroups: T, is
block-diagonal, i.e. I';; = 0 for 7 # j.

~

e C3: Separation in common features: the matrix § is block-diagonal with the (s; x n)

matrix 3, being a typical block on the main diagonal, s = Zi]\;ﬁi-

e C4: Homogeneity of common features: 3, = 3;;¢=1,..., N; s = Nsj.

Actually the hypothesis C2 is implicit when one stacks VECM. Restriction C3 is developed
in Hecq, Palm and Urbain (1999) for the SCCF as well as for the weak form structure. Here
again a likelihood ratio for model (12) versus (11) can be obtained as the sum of two conditional
likelihood ratio statistics to test of either {C1,C2} or {C2,C3}. This means that we can first test
for common cyclical features under the maintained hypothesis of short-run Granger-noncausality
C2. Alternatively, we can first test for absence of short-run causality and then test for SCCF
since both sequences of restrictions imply separation in common feature. This results derives
from Proposition 3.3. in Hecq, Palm and Urbain (1999) which states that under separation in
cointegration and block diagonality of this long-run matrix, the presence of common features

implies that the cofeature matrix is block-diagonal.

5 GMM Estimation

To test for common features in a time series context, we have the choice between GMM estimators

applied to a regression framework and a canonical correlation procedure based on maximum

11



likelihood (ML) estimation. Both methods have their advantages and drawbacks. The ML
estimation is fully efficient and likelihood ratio tests are asymptotically most powerful. GMM
estimators can be more easily implemented but they are in general not fully efficient. In this
Section we present a GMM estimator that will be used in our empirical analysis for a bivariate
system for consumption and income for the case where at most one serial correlation common
feature vector exists.

For each individual, let us split X;; = (yi¢,2i¢)" and let the bivariate DGP be

Ayir = p + B:Azi,t + it (13)
pi—1 pi—1

Aziy = o;(yi — Bizi)e—1 + Zéz’,lkAyi,t—l + Zéi,%Azi,t—l +eit (14)
k=1 k=1

where the second equation for Az;; is just one row of the VECM (11), with normalized cointe-
grating vector 3; = [1,—[]. Both the y's and the z’s are autocorrelated with n;¢ & nonlinear
function in the parameters of lags in Ay;;, Az;; and error correction mechanism. Under the
null of serial correlation common features for individual ¢, 7, ; is a white noise process and the

~ %k

normalized SCCF vector is given by BZ = {1, —62}

In practice (Vahid and Engle, 1993, 1997), after the cointegration analysis in the first step,
the GMM procedure proceeds as follows. Regress the explanatory variables Az; on the whole
set of instruments (i.e. lags of AX; and cointegrating vectors) in order to obtain the best
linear prediction AZ;. Then regress Ay; on a constant term and AZ2;. This estimate gives the
potential serial correlation common feature vector %2 Finally, one tests for the validity of the

overidentifying restrictions using Hansen’s (1982) x? test.

5.1 Heterogeneous Independent Case

When the observations on individuals are assumed cross-sectionally independent, a joint test for
the existence of one individual-specific (heterogeneous) common feature vector can be obtained
by computing the y2-statistics for the SCCF restrictions for each individual [¢; v~ x?(v;)], with
the same number of variables for each ¢ but with the possibility of having a proper dynamics
and the presence or not of cointegrating vectors. The degrees of freedom are then given by

vi=n(p; — 1) +r; — (n — 1) since s; equals one. Using the standard central limit theorem for

12



large NV, we then have

N
Zlgz’ -V N
2L AN(0,1) wherev= v (15)
1/2
(2v)Y/ k=1

This procedure is however not appropriate in the presence of cross-correlation, a phenomenon
pointed out inter alia by O’Connel (1998) in the case of panel unit root tests. The size distortions
increase with NV and with the cross-correlation. While these distortions are DGP dependent, we
observe empirical sizes of about 20 % (nominal size = 5%) for 7' = 25 and N = 10 as well as for

T =50 and N = 25 using a Monte Carlo experiment similar to the one presented in Section 6.*

5.2 Homogeneous and Heterogeneous Dependent Case

In most cases disturbances across individuals ¢ will be at least contemporaneously correlated.
For instance, when testing for PPP in panel data, contemporaneous disturbance correlation
arises because one country must serve as a benchmark. Also, for instance, for a given country
consumption and income cannot be assumed independent. One way to deal with this cross-
country correlation is to incorporate a common time dummy in the panel. This solution was
pursued by Pedroni (1997) in the context of panel cointegration test, but it appears that time
dummies do not capture all the correlation, see O’Connel (1998). Another solution we use here
is to account for cross-correlation by using GLS or SUR type corrections. These corrections
require that 7' > N and the asymptotic we consider are mainly based on T — oo while N is
fixed or at least grows at a lower rate than 1.

Assuming that all the variables in levels are I(1), we first test for each individual ¢ the
existence of a cointegrating relationship using standard time series based procedures. In the
case the null hypothesis of no-cointegration can be rejected, the cointegration vector(s) are
then considered as known in the subsequent analyses. An alternative to the time series based
cointegration analysis is to rely on a testing procedure designed for cointegrated panel models,
a procedure which could possibly be more powerful. The asymptotic arguments used in panel
cointegration analysis are however mainly based on large N— asymptotic and independence
across units while we are here dealing with fixed N cases allowing for dependence across the
units. Existing Monte Carlo simulations furthermore reveal (see inter alia McCoskey and Kao,
1998, Pedroni, 1997) the existence of some problems when cross-correlation exists. Moreover, the

properties of common feature test statistics will be affected by the outcome of the cointegration

1Complete results are available upon request.
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analysis. Indeed, if one erroneously imposes an identical homogeneous cointegrating matrix 3
for all ¢, while for some j cointegration does not hold or holds with a cointegrating matrix
different from (3}, the likelihood to reject the SCCF restrictions will tend to increase.

Before presenting the GMM-estimator, we present the model under common features in

general terms. Under separation C3, the model (11) can be written as

~ o : _ . o -
61 0 0 AXlt 6 0 0 U1t
~1! ~/
0 B 0 AXo 0 By 0 ugt (16)
0 : 0
0 By AXnt 0 By UNt
) sXnN o nix1 ] sXnN ] _nN><1
with s = Zf\il s; and uy = (U], vy, .., uh,)" being TTN(0,$2).
Under the homogeneity assumption C4, the model (16) specializes to become
~1/ ~/
(In ® B1)AX; = (In ® B1)us- (17)

Asin (13) and (14), we partition the vector AX;; as [Ay},, Az},]", where Ay;; and Az are s; x 1

and (n — s;) x 1 subvectors. The matrix B; is normalized (without loss of generality) as follows

~/

B; = {I i —B: /} . Under this normalization, the system (16) can be expressed as

_ _ C - _
Ay B 0 0 Az
Ayat 0 B 0 Az .
i = /62 + 6,Ut (18)
: o . .0
| Aynt | 0 - 0 B}‘\/,_ | Aznt |
sx1 sx(nN—s) (nN—s)x1
or more compactly
Ayt = BIAZt “+ vt (19)

with Ay, = [Ayl, ..., Ayh,), B = diag(B:/), Azy = [AZyy, .., Az, ) v = B,Ut- Transposing

(19) and writing the model for a sample of 7" observations, we get

AY =

Txs (20)

%
Tx(nN—s)(nN—s)xs Txs
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or in vectorized form

Ay*=  AZ" o + v* (21)
Tsx1  Tsx(ns—%;s2)(ns—%;s2)x1  T'sx1
with Ay* = vec(AY),v* = vec(V),AZ* = diag(Ils; ® AZ;) with AZ; = [Azy|, of dimension
Tx(n—s;),witht=1,...,7, 1 =1,...,n — s;; and § being a vector with typical i-th subvector
being equal to UBC(—B:). Under the homogeneity assumption C4, Br = BI, t=1,...,N,s= Nsy,

the system (21) specializes to become

Ay* = AZr6, +v* (22)
with the [TNs; x N(n — s1)] matrix
I, @ AZy 1
AZ - I, ® AZy
I ©AZy

and the [s;(n — s1) x 1] vector 8, = vec(—3;).

The vector of parameters ¢ and §, can be estimated by GMM provided we have a (T's x k)
matrix of instrumental variables W such that EW/v* = 0 and k is equal to or larger than the
number of unknown parameters in ¢ (or 6,).

The GMM estimator solving W/v* = 0 using the weighting matrix S is given by
Savn = [AZYWSTWAZT| T AZHW ST IW Ay (23)

The optimal weighting matrix is S = WXW, where ¥ = Ev*v* = Ir ® 3, ¥, = B/QB When
3 is unknown, it will have to be replaced by a consistent estimate. The asymptotic covariance

matrix of dgarar with optimal weighting matrix S is given by
Var(baarnr) = [AZYW(W'SW)TW/AZ* L. (24)

Under homogeneity C4, §, can be estimated by expression (23) replacing AZ* by AZ*. When

the number of instruments k is strictly larger than the number of parameters 6 (or é,) to be
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estimated, these overidentifying restrictions can be tests using the well-known criterion
I%nzwﬂwxwﬁmqﬂan% (25)

which has an asymptotic y? -distribution with the number of degrees of freedom being equal to
k minus the number of parameters.

Some remarks on the choice of the instruments have to be made. We can determine the
order p; of the VAR for each country ¢ using for instance information criteria. The lagged
first differences of AX;, ¢ = 1,...,p; — 1, and the lagged long run relations can be used to
yield n(p; — 1) 4+ r;, instruments W; for AZ; in (19) and taking W = diag(itrs,, W;) where
r; is the cointegrating rank of individual ¢. As is well-known, the OLS estimator regressing
Ay* on AZ*, where the AZ* are the projections of AZ* on W, can be obtained as a GMM
estimator by selecting S = Irs in (23) and taking W(W'W)~'W' as instrument. Similarly,
the GLS estimator regressing Ay* on AZ* = WW' W) tw's* 1A Z* with ¥* being the
disturbance covariance matrix of the (multivariate) regression of AZ* on W, can be obtained
from (23) by taking S = ¥ and using as instruments W (W’S*1W)1W’'S* ! instead of W.

In the empirical analysis in Section 7, we consider a fixed effects model because in the
macroeconomic application, we study the population and not a sample. Adding fixed effects to

the model (21) for the case which we analyze, e.g. for s; =1,7=1,..., N and n = 2, yields
Ay=Z,p [+ 23N + AZES 0%, (26)

where Z, = 17 ® Iy and Z\ = It ® tn. Let Jy denote a N x N matrix of ones, so Z)\Z} =
It ® Jy and the projection of Jy on Zy is It ® Jy with Jy = Jn/N. This matrix averages
over individuals. Also define time means by ZMZL = Jr ® In and the projection of Jr on ZL is
Jr @ In. It is shown in Baltagi (1995, p28) that

b = (AZFQETQAZY) TAZIQY ' QAy, (27)

where Q = Int — Jr ® Iy for model with only individual effects and Q = I+ ® Iy — Jr ®
Iy — It ® Jy + Jr ® Jy when time dummies are present. The estimator (26) with AE: =
W(W'S*IW)tW’s* A Z* will be indicated as the GLS-LSDV estimator. When the matrix
Y. is replaced by the identity matrix, a less-efficient estimator arises which will be denoted as the

LSDV estimator. The asymptotic covariance matrix of ST,G MM with optimal weighting matrix
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S is then given by
Var(br.aarar) = [AZYQW(W'EW) T 'W/QAZ! L. (28)

A test for the validity the overidentifying restrictions is obtained using (25) and is readily
seen to be a test for the null hypothesis of C4, e.g. for the null of homogeneity of common
features: Ez = Bl; i = 1,...,N,with s = Nsj, s; = s1 = 1, Vi = 1,..., N. In this specific
case, the number of degrees of freedom for the overidentifying restrictions test (25) is given by
Zi]il n(pi — 1) +7ri) — (n—1)] + (n — 1)(N — 1) where n,p;,r; are respectively the number of
variables, the number of lags and the number of cointegrating relations for each 7. Notice that
the factor (n—1)(/N —1) arises as a consequence of the pooled estimation of the common feature
vector. Imposing a common cofeature vector actually decreases by (n — 1)(IN — 1) the number
of parameters to be estimated.

More generally, one could naturally extend the analysis (in the case n > 2) and consider
similar analyses for s; = 1,..,n — 1. Sequentially testing, for s; = 1,..,n — 1, the validity of the
underlying overidentifying restrictions with (25), provides a direct way to test the number of
common co-features in a GMM set-up, provided we first properly normalize the cofeature matrix
as above. A somewhat similar use of GMM for the detection of the dimension of the common
feature space, albeit in a pure time series context, is discussed in Vahid and Engle (1997).

In the next section, we evaluate the merits of this analysis (for s;, =s1 =1,Vi=1,...,N) in

a small Monte Carlo experiment.

6 DMonte Carlo Simulations

In this section we present some illustrative Monte Carlo evidence on the usefulness of the common
feature test statistic (25) presented above for panel data. The data are generated as if there
exists a huge VECM with both common feature and cointegrating restrictions. Under the null
of reduced rank structures, the bivariate DGP for each of NV individuals assumes the existence

of one cointegrating vector and of a single common feature vector. It has the form:
Ay; .25 _
Yit _ H1 n ( 1 1 ) Yrt-1 n
Aziy o 5 21,1
.5 A — E;
(6 3 ) )+ ),
1 Az €2t
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where the p’s are generated from uniform distributions py ~ U(0,.3), uy ~ U(—.25,.15)
so that E(uy) = .15 and E(uy) = —.05. The normalized common feature vector is [ =
{ 1 -5 }, and the normalized cointegration vector is simply 3 = { 1 -1 },. For each in-
dividual 4, with [g;1 ¢, €s2,¢]/ is bivariate Gaussian with variance-covariance matrix €2;;. The cross-
contemporaneous correlation matrices between individual ¢ and j are all equal to €2;; so that the

panel VECM variance-covariance matrix is given by (10) with

1 8 7 .6
Qi = Q; = .
8 1 6 .75

We have added an heterogeneous structure increasing with N. From this DGP wee see that

under the assumption of reduced rank the short run dynamic matrices (for each i) are simply

0.30 0.15
given by ( 060 0.30 > ,while under the alternative we chose to fix arbitrarily one element to
0.30 0.00
Zero: .
0.60 0.30

We consider three sample sizes, i.e. T = 10, 25 & 50, and five cases for the number of
individuals, i.e. N =1, 2, 5, 10 and 25. We report the median and the spread (interquantile
range) of the bias of the GMM panel estimator. We also report the median of the standard
deviation of 3,~7G M- We report the empirical size (nominal being 5%) as well as the empirical size
adjusted power for over-identifying restrictions test statistics. Due to the huge computational
time required for these simulations, 5,000 replications were used for N = 1,2, 3; 2,000 for N = 10
and 1,000 for N = 25.

INSERT TABLE 2 ABOUT HERE

The results are presented in Table 2. One can directly observe that the bias is small and
decreases when both 7" and/or N increase. The accuracy of estimates, measured both by the
spread and the standard deviation of the estimate, also increases with 7" and/or N. We interpret
these illustrative findings as evidence in favor of the pooling estimator. No substantial size
distortions are observed. Remark that the values of N we have retained in these simulations are

clearly too small to asses the validity of a central limit theorem based on large N asymptotic.

18



7 Empirical Analysis

The data we use are taken from the Penn World Tables Mark 5.6 (see Summers and Heston,
1991)°. These data, thanks to the homogeneity in their definition, are extremely useful and
have been extensively used in empirical literature. This does however certainly not exclude the
presence of measurement errors because the price to pay for obtaining long series of homogeneous
data for more than 150 countries is the reliance on a set of hypotheses, approximations and
interpolations. Because of both the quality of the data as well as the underlying theoretical
motivation, we limit our analysis to 22 OECD countries for the sample period 1950-1992 (up
to 1991 for Greece and 1990 for Portugal)®. The data extracted are Y ="RGDPL: Real GDP
per capita (Laspeyres index) in 1985 international prices” and C = 7 C: Real Consumption
share of GDP in 1985 international prices” xY /100. This last operation is necessary to get the
consumption in level and not in percentage of income’.

Table 3 reports time series statistics for each country. The first column of Table 3 lists in
alphabetical order, the names of the countries as well as the date of joining OECD?®. Column 2
gives the quality ranking of the data as presented in Summers and Heston (1991). It is seen that
for the most part, the quality of the data is reasonable. Columns 3 and 4 give the value of the
Augmented Dickey-Fuller unit root test for respectively consumption and income. All the tests
are based on both a constant and a trend. The number of lags necessary to whiten the residuals
is given in parentheses. Columns 5 and 6 give respectively the value of the Engle-Granger
Augmented Dickey-Fuller cointegrating test and the long-run elasticity with consumption as a
dependent variable. Column 7 gives the order of the VAR(p;) in level, where p; is determined
using multivariate Hannan-Quinn (HQC) criteria. These lags, as well as the presence of an error

correcting mechanism term, will determine the instruments to be used in common features test

"The data may be downloaded via different internet sites such as http://www.nber.org/pwt56.html or
http://datacentre.epas.utoronto.ca:5620/pwt.

%Because of computation facility, we have balanced the panel in this study and we didn’t consider either Greece
and Portugal.

"We didn’t consider here a slightly different model in which real government expenditures are substracted
from output. Indeed, as raised by Evans and Karas (1993), the ” A model” should be extended to take care of the
potential substitutability or complementarily between private and public goods. Without a fine distinction of the
components of government expenditures, it might be desirable to extend the model to take into account a third
variable. It is also possible to consider a simple alternative model where all the public goods are substitutable to
private one by substracting G from Y.

8Other countries are now joining OECD. This is the case of the Czech Republic in 1995, Korea in 1996, Poland
1996 and Mexico 1994. We drop them because the ending year is 1992 in our data set. Also note that OECD
has its origin in the Organisation for European Economic Cooperation which grouped European Countries. This
organisation was charged with administering United States aid, under the Marshall Plan, to reconstruct Europe
after the World War II. Consequently, for countries that did not participate at the beginning in this project,
homogeneity of cointegration and/or common features might be rejected for that reason.
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statistics.
INSERT TABLES 3-5 ABOUT HERE

In Table 3, a 7*” indicates that individual unit root or cointegration test statistics reject the
null at a 5% nominal level. It emerges that, except for Portugal, UK and Turkey, we cannot reject
the unit root hypothesis for consumption and income. Using Engle-Granger cointegration test,
the null hypothesis of non-cointegration is rejected for nine countries with long-run elasticity 3}
close to 1. Consequently, we will use the cointegrating vectors as instruments in six different
versions: four homogeneous cases and two heterogeneous ones. The results are reported in Table
4.

The homogeneous cases refer to a panel estimation of a common cointegrating vector. Be-
cause most panel cointegration test statistics assume independence across individuals, we cannot,
strictly speaking, rely on panel cointegration test statistics. However because the estimator is

still consistent we use them to get estimates for four different cases.

e As Tables 3 shows that even when the absence of cointegration is not rejected, the elasticity
is close to one, we first analyze a version in which we assume there exists a homogeneous
cointegrating relationship for all the countries with a coefficient 3* equal to one (see upper

panel of Table 4). Similar results are obtained using Johansen’s MLE based procedure.

e A second panel cointegration test uses the group mean estimator (GM) of Pesaran et al.

(1997). This means that we average cointegrating vectors over the 22 individuals.
e A third alternative uses the usual OLS estimator.
e The last one allows for intercept heterogeneity and is the usual LSDV estimator.

Notice that the pooled FM-OLS estimator proposed by Pedroni (1997), which assumes in-
dependence across units, gives a point estimate of 0.971 for the 22 OECD countries and 1.021
for the G7 countries, the latter being not significantly different from one. Both results are very
close to those obtained with the LSDV and OLS estimators so that the results of the common
cyclical feature analysis obtained with Pedroni’s FM-OLS estimator are not reported.

For the two heterogeneous cases we impose cointegration for the nine countries for which
the Engle-Granger ADF test is significant. We take as an instrument, cointegrating vectors
for countries for which we reject the null. Notice that Phillips-Hansen Fully Modified OLS
estimation was also used to test formally the assumption of unit long-run elasticity. The null of
unit long-run elasticity was formally rejected in all cases of cointegration but for three (Austria,

Canada and New-Zealand). Two different cases are considered:
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e For the nine countries we take the estimated value of (3] given by the long-run regression.

e We fix these values to 1.
The maximum lag length for a country is four, so that p* = (p —1) =0,1,2 or 3 for some

e p* is fixed uniformly to respectively 1, 2, 3

e p* is fixed to the estimated value.

Note that over-estimating the lag length will certainly reduce the power of the test statistics
(Beine and Hecq, 1999). The results of the two panel common feature statistics are presented.
For the heterogeneous cases, the first two columns present the group mean estimates (denoted
by ET,G]\/[) as well as the value of the Normal test statistics (Ngas) in (15). The next columns
present the value of common feature elasticity for the homogeneous dependent case (denoted by
g’r,G]\/[M) as well as the value of the test of the overidentifying restrictions and the associated
p—values.

It appears that the estimated coefficient ET,GMM and ;5\,“7GM are too high compared with a
priori expectations. Moreover we reject the null of a panel common feature model with both test
statistics. Table 5 presents the results for the G7. The results are similar to those for the panel
of 22 countries. However in several situations we cannot reject the null of one homogeneous
common features vector. In these cases, we imposed the unlikely hypotheses of an homogeneous
cointegrating vector with a lag order uniformly fixed to p* = 3.

Finally, we want to notice the implications for empirical modeling that follow from a re-
striction between the number of variables n and the sum of cointegrated vectors and common
features vectors. From Vahid and Engle (1993), Theorem 1, it follows that the common feature
space and the cointegration space are linearly independent. This means that the sum of the
number of common feature vectors (s) and of the number of cointegrating vectors (r) should be
less or equal to the number of variables (n): r + s < n. In a panel context under the absence of
Granger long and short-run causality, this has obvious but different implications depending on
whether common features vectors and cointegrating vectors are homogeneous or heterogeneous.
A misspecification of the number of homogeneous cointegrating vectors may for instance too
heavily constrain the dimension of the homogeneous common feature space and lead to flawed
inference regarding the existence of common features.

A last remark seems in order. Although we can formally reject the existence of a common
homogeneous co-feature relation in this OECD data set, one should be aware our results do not

per se imply the absence of SCCF for some of the countries taken individually.
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8 Conclusion

In this paper we have proposed to extend the serial correlation common feature analysis to
nonstationary panel data models. Concentrating upon the fixed effect model, we defined homo-
geneous panel common feature models. We give a series of steps allowing to implement these
tests. We then apply this framework when investigating the liquidity constraints model for 22
OECD and G7 countries. At a 5% nominal level, we reject the presence of a panel common
feature vector.

Our model representation is not stricto sensus a dynamic panel because only a part of the
dynamics is common to all individuals. However it does part of the job. Indeed while no size
distortions have been noticed in our Monte Carlo results, we can increase the power of test
statistics, by going a step further towards dynamic panel data if the null hypothesis of panel
common-cyclical feature model is not rejected. In the opposite case, it is not worth imposing
further common restrictions if the null is rejected. This is a clue for considering less restrictive
models like heterogeneous or group homogeneous models. A bootstrap procedure could certainly
be undertaken to find the distribution. This is also perhaps the place to choose more flexible
models like the non-synchronous common cycle model (Vahid and Engle, 1997) or the weak form

common feature analysis (Hecq, Palm and Urbain, 1997).
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Table 1: Monte Carlo Results
(Separated vs. Marginal Systems)

Marg. Separ.
biass biaszs—os X2(2) x%(2) biass biaszs_o5  X2(8)  xZ(8)
N=2 T=10 -.056 310 14.64 6.22 -.040 441 70.98 12.8
T=25 -.026 .155 7.56  5.20 -.027 138 18.36 7.14
T =50 -.011 .104 6.30 5.04 -.013 .090 10.16 6.16
T =100 -.005 .068 4.86  4.42 -.007 .059 6.66 5.14
Marg. Separ.
biass biaszs_25 X3(2)  x%(2) biass biasrzs_os x2(14)  x%(14)
N=5 T=10 -.061 299 14.14  5.86 — — — —
T =25 -.025 152 7.82 5.44 -.019 241 99.76 35.04
T =50 -.012 .100 6.30 5.18 -.011 .087 62.88 15.26
T =100 -.006 .069 558  5.04 -.007 .052 25.18 9.38

27



Table 2: Monte Carlo Results
(GMM estimation and test statistic)

o~

biasnredian iasQrs—g2s  O(OrGMM) Median XV size  adj.power
~0123 2298 156 2) 788  9.90
-.0101 1387 .098 (2) 5.58 19.78
-.0067 .0944 .070 (2) 5.54 34.68
-.0136 AR17 .106 (5) 4.98 8.56
-.0069 .1057 .079 (5) 6.18 16.58
-.0034 .0726 .057 (5) 5.72 31.52
-.0045 .1409 .067 (14)  3.96 7.26
0044 0751 060 (14) 568  12.52
-.0021 .0460 .047 (14) 5.74 24.82
-.0022 .0658 .046 (29) 4.70 11.00
-.0020 0377 .038 (29) 4.80 21.55
.0002 .0398 .029 (74)  5.80 13.80
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Table 3: Time Series Statistics

(Individual countries)

Qual. ADF ¢ ADF y EG B, HQC
Australia (1971) A -1.21(4)  -.93(2)  -146(1) .95 3
Austria (1961) A -82(0)  -1.25(2) -3.59(0)% 1.00 1
Belgium (1961) A 143(1) 741 -236(0) 94 1
Canada (1961) A~ -150(1)  -1.80(1) -3.89(1)* 1..00 1
Denmark (1961) A- -.94(0) -.94(0)  -3.69(0)* .82 1
Finland (1969) A 248(1)  -20(2)  -1.69(3) .98 4
France (1961) A -.11(2) -.04(1)  -1.96(0) .98 2
Germany (1961) A 218(2)  -3.10(2)  -1.69(2) 1.07 2
Greece (1961) A- -.58(0) .01(0) -79(0) 97 1
Iceland (1961) B+ -2.64(1) -223(1) -452(00* 1.04 1
Treland (1961) A~ -254(1)  -2.82(1) -3.76(2)* 81 1
Ttaly (1961) A 61(1) 771 -1.86(1) 1.09 4
Japan (1964) A S91(0)  -48(1)  -ATH()* 92 4
Luxembourg (1961) A- -1.45(1)  -3.32(4) -2.16(4) 1.34 4
Netherlands (1961) A -71(2)  -.20(2) -3.07(1) 1.08 4
New Zealand (1973)  A-  -2.26(0) -1.52(0) -5.93(0)* 1.02 1
Norway (1961) A -1.29(1)  -1.76(1)  -1.83(1) .80 1
Portugal (1961) A- -3.54(3)*  -2.95(3) -3.07(3) .88 3
Spain (1961) A -1.95(0)  -1.34(0)  -2.99(0) .94 1
Sweden (1961) A S70(1)  -30(1)  -3.58(1)* 81 2
Switzerland (1961) B+  .03(4)  -1.69(2) -3.28(0) .92 2
Turkey (1961) C -3.26(2) -3.48(0)* -1.73(0) .8 1
UK (1961) A S361(D)*F -3.62(1)%  -2.13(0) 1.04 3
USA (1961) A 175 -2.05(0)  -4.08(0)% 115 2
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Table 4: Common Features within 22 OECD Countries

6’7 :17
(7)

)

*
i

—
<
3

N—

Bt = Bows = 939

(V7)

BGM =.979,

Bt = Brspy = 968 p* =

\D)

5: = Bj
(Vi,j with

cointegration)

B =1
(Vi with

cointegration )

oram Namr dravnm 0(6raun)  Test  cv p_val
p* = 770 3.71 745 .050 148.98 65 <.001
p* =2 .769 6.14 .660 .036 173.65 109 <.001
p* = 770 4.43 .704 .031 211.27 153 .001
p* =p; — — 718 .036 156.04 93 <.001
p* = .829 5.36 .768 .051 146.67 65 <.001
p* = .804 6.54 .670 .036 176.61 109 <.001
p* = .793 4.95 .710 .031 214.06 153 <.001
p* =p; — — 728 .036 156.92 93 <.001
p* =1 .870 5.74 .814 .050 131.96 65 <.001
p* =2 837 5.12 687 .036 170.16 109 <.001
p* = .822 3.93 127 .031 206.93 153 .002
p*=p; — — 738 .036 145.01 93 <.001

.855 6.03 782 .051 14293 65 <.001
p* = 821 6.25 677 .036 175.97 109 <.001
p* = .804 4.94 715 .031 213.50 153 .001
p*=p; — — 733 .036 155.12 93 <.001
p* = 814 6.89 782 .053 138.45 52 <.001
p* = 726 6.16 .647 .036 158.74 96 <.001
p* = .755 4.46 .696 .031 210.03 140 <.001
p*=p; — — 707 .037 146.50 80 <.001
p* = .865 1.59 .810 .056 115.25 52 <.001
p* = 784 3.89 .682 .037 144.00 96 .001
p* = 775 2.72 734 .033 192.33 140 .002
p* =p; — — .750 .040 131.56 80 <.001
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Table 5: Common Features within G7 Countries

Bt =1=Brepy
(Vi)

B =1.035

=)

*
2

—~
<
3

N—

07 = Bovs =1.023
(i)

gr =1,
(Vi,j with

cointegration )

5 =g =1
(Vi,j with

cointegration)

—~

—~

—~

dram Nam oramm 0(0ramnr)  Test  cv  p_value
p* = .866 2.47 1.042 087 32.83 20 .035
p* =2 .763 2.37 .856 .060 53.70 34 017
p* = 755 1.81 872 .052 67.05 48 .036
p* =p; — — .884 .058 50.84 30 .010
p* = .893 1.64 1.021 .082 31.51 20 .048
p* = 777 1.815 857 .060 50.25 34 .036
p* = .766 1.49 .878 .052 62.75 48 .075%*
p* =p; — — .892 .057 46.22 30 .029
p* =1 .882 1.75 1.036 .084 32.06 20 .043
p* =2 771 1.89 .856 .060 51.11 34 .030
p* = 762 1.51 .876 .052 63.87 48 .062*
p*=p; — — .890 .057 47.84 30 .021
p* = 818 6.02 .894 .074 49.07 16 <.001
p* = 710 3.58 723 .053 52.66 30 .006
p* = 137 2.13 787 .047 64.46 44 .024
p* =p; — — .800 .051 46.61 26 .008
p* = 875 2.68 1.029 .089 27.69 16 .034
p* = .753 2.60 .859 .062 47.49 30 .022
p* = .764 1.66 .894 .053 60.14 44 .053*
p* =p; — — 917 .061 43.97 26 .015
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