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1 Introduction

Most articles on corporate taxation assume fully reversible investment (see
e.g. Boadway and Bruce, 1984). However, evidence shows that investment
is far from being fully reversible and that firms’ strategies are much more
complex. Due to reconversion costs, in fact, the firm can sell the capital at
a considerably low price (see Abel et al., 1996). This makes investment at
least partially irreversible.

Other articles discuss tax policy implications by assuming a single in-
vestment decision, undertaken at an exogenously given time (see e.g. Bond
and Devereux, 1995). Though irreversibility reduces the flexibility of busi-
ness strategies, managers are well aware that investment opportunities are
not obligations, but rather option-rights!. Thus, they can decide when to
undertake investment.

In our previous works (Panteghini, 2001 and 2002), we proposed an asym-
metric tax system ensuring neutrality under irreversibility and endogenous
timing. Neutrality is a direct implication of Bernanke’s (1983) Bad News
Principle, according to which irreversible decisions are affected only by un-
favourable events. Under the tax system proposed, the corporate tax is levied
in the good states. Thus, tax asymmetries exploit the asymmetric effects of
uncertainty to guarantee neutrality.

Our previous articles rely on the hypothesis that investment is a single
project. In reality, not only managers can decide when to invest but also
they have some limited ability to expand the firm’s capacity. In this paper,
therefore, we assume a two-stage investment framework, which account for
the option to expand. This is a crucial generalisation because incremental
strategies typically cause a twofold path dependence. On the one hand, the
firm’s current tax position will depend on the past accumulation of capital.
On the other hand, the firm’s tax position might depend on the project’s
size as well. Due to this path dependence, therefore, the neutrality result
might fail. Using an option pricing approach, instead, this paper shows that
neutrality still holds under both income and capital uncertainty.

Moreover, we will show that neutrality holds even when assuming sequen-
tial investment. In many cases, in fact, firms collect no revenues until more
than one or, even, all the investment stages have been undertaken. Though
this is an important case, it is usually disregarded by the current literature.

1See Amram and Kulatilaka (1999).



This article is structured as follows. Section 2 discusses the related lit-
erature. Section 3 introduces the two-stage model and discusses its main
assumptions. Section 4 presents the asymmetric tax system and shows that
it is neutral. Finally, section 5 summarises the results and discusses their
implications.

2 The related literature

In the traditional literature on corporate taxation there are two basic neutral
tax schemes. The first one, called 'imputed income method’ (see Samuelson,
1964), defines true economic profits as its tax base. The second one, pro-
posed by Brown (1948), is the cash-flow method. However, both methods are
not easy to implement. The former is informationally very demanding. The
computation of true economic profits, in fact, requires the knowledge of the
firm-specific rate of return (see Sandmo, 1979). The latter, re-proposed by
the Meade Committee (1978) in the UK, has at least three practical disad-
vantages. First, it is quite far from the standard notion of economic profits.
Second, it may cause double taxation when other countries do not apply it.
Third, the cash-flow tax may fail to contain both tax evasion and tax avoid-
ance, which may be caused by transfer pricing practices and intracompany
arrangements (see e.g. Shome and Schutte, 1993).

Given the above difficulties, Boadway and Bruce (1984) proposed ’a sim-
ple and general result on the design of a neutral and inflation-proof business
tax’ [p. 232]. According to their proposal, the business tax base was given
by the firm’s current earnings, net of the accounting depreciation rate and
of the nominal cost of finance. As shown by Fane (1987), neutrality can be
achieved by using the risk-free nominal interest rate as the deductible cost
of finance. This sharply reduces the information required.

Bond and Devereux (1995, 1999) have proven that a business tax scheme,
based on the Boadway-Bruce Principle, is neutral even when income, capital
and bankruptcy uncertainty are introduced. They have also proven that
the imputation rate ensuring neutrality remains the nominal interest rate on
default-free bonds®.

2 As argued by McLure and Zodrow (1998), who worked as tax advisors of the Bolivian
government, the US International Revenue Service was not convinced to make the cash-
flow tax eligible for the foreign tax credit.

3Bond and Devereux’ (1995, 1999) theoretical papers are closely linked to the tax device



Despite the above generalisations, the existing neutrality results are based
on at least two restrictive assumptions. The first regards the symmetric treat-
ment of profits and losses. The second concerns the unrealistic assumptions
on investment.

Tax symmetry is seldom implemented in the existing systems. In fact,
this device entails that if the tax charge is negative in any period, then a
subsidy should be granted to the firm. As the firm’s earnings are not accu-
rately observable, however, this rebate might lead to tax evasion or avoidance.
Moreover, future positive revenues might be non sufficient to offset previous
losses (see Ball and Bowers, 1983).

Bond and Devereux (1995) respond to the above objections by proposing
alternative treatments of tax losses. In particular, the firm might be allowed
to sell its tax losses to other firms with taxable profits. Alternatively, the
losses might be carried forward marked up at the default-free nominal interest
rate to set against future taxable profits. Moreover, in the event that the firm
winds up with accumulated tax losses, Bond and Devereux (1995) propose
the payment of a rebate.

The above devices are not fully satisfactory. As we know, a firm might
compensate for tax asymmetries in several ways. First, it might change
its accounting policies to shift income over time. Second, it might acquire
another firm that has taxable income. Third, it might sell its tax shields by
means of a leasing arrangement. However, these transactions may be fairly
expensive. Using a sample of US nonfinancial firms, in fact, Auerbach and
Poterba (1987) find that if selling tax losses were feasible, the transaction
price would not be attractive for 90% of the firms.

Moreover, Isaac (1997) argues that ”...there is both survey and anecdotal
evidence that both governments and companies commonly place considerably
more value on cash flow than is measured by conventional NPV arithmetic”
[pp. 308-9]. For this reason, companies are stimulated to make tax-motivated
(rather than business-motivated) take-overs. As we know, the tax motivation
for merger is twofold. On the one hand, after a loss, the firm might decide
to merge in order to exploit its losses (see Brealey and Myers, 2001). On the
other hand, even before the realisation of losses, mergers can be used as an
insurance against future redundant losses (see Green and Talmor, 1985). By

proposed by the IFS Capital Taxes Group (1991) for the UK system, called Allowance for
Corporate Equity (ACE). According to this proposal, the ACE tax base should be set equal
to the firm’s current earnings net of: i) an arbitrary tax allowance for capital depreciation
(not necessarily the cost of economic depreciation) and ii) the opportunity cost of finance.
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eliminating any carry device, therefore, any urge to tax-motivated mergers
vanishes.

The second objection to traditional neutrality results concerns the as-
sumptions on investment strategies. In fact, these results are obtained by as-
suming that investment is either fully reversible (Boadway and Bruce, 1984)
or that it cannot be delayed (Fane, 1987; Bond and Devereux, 1995, 1999).
However, evidence shows that investment is, at least, partially irreversible
and that it does not entail a now-or-never decision.

Over the last decade, tax economists departed from the standard neo-
classical model and adopted option pricing techniques to study the effects of
taxation on investment. Apart from one exception®, investment was treated
either as a discrete one one-off variable® or as a continuous variable®.

Once again, empirical evidence shows that, in most cases, investment
is neither a one-off nor a continuous variable. Rather, firms usually face
fixed adjustment costs and undertake a limited number of investment stages.
Furthermore, firms have a limited ability to expand’. To make our analysis
as realistic as possible, therefore, we will use a two-stage model, which allows
us to deal with both investment lumpiness and limited expandability.

3 The model

In this section we present a continuous-time model describing a two-stage
investment strategy undertaken by a representative firm. The following hy-
potheses hold:

*See Boshm and Funke (2000).

In a pioneering work, MacKie-Mason (1990) showed that, under irreversibility, an
asymmetric corporation tax always reduces the value of the investment project. However,
it may happen that the decrease in the value of the investment project is more than offset
by a decrease in the option value. Thus investment is stimulated by taxation. Alvarez
and Kanniainen (1997, 1998) showed that, under irreversibility, the Johansson-Samuelson
Theorem (see Sinn, 1987) fails to hold if taxation leaves the project’s value unchanged but
raises the option value of the project. In this case investment is discouraged. The reader
will find further delatils on the relationship between a one-off investment and taxation in
Pennings (2000) and Zhang (1997).

6See McKenzie (1994) and Faig and Shum (1999), who show that imperfect loss-offset
provisions lead to underinvestment.

"This may be due to limited land or natural resource reserves, or to the need for permits
and licenses (Dixit and Pindyck, 1998).



1. risk is fully diversifiable;
2. the risk-free interest rate r is fixed;
3. the firm is risk-neutral, but its owners may be risk-averse;

4. there exists an irreversible investment, which can be split into two
parts, Iy and I,. The firm has the opportunity but is not obliged to
undertake the total amount [; 415 immediately. Rather, it can decide to
undertake I; when the current payoff is sufficiently high. By investing
I,, it acquires an option® to undertake investment Is.

5. The firm’s payoff follows a geometric Brownian motion. In particular
we assume that

U (K (1)) [dII(8)] = ¥ (K (¢)) [all(t)dt + oTI(t)|dz.

where o and o are the growth rate and variance parameter, respectively
and z is a Wiener process, and where ¥ (K (t)) is a function of capital
K (1), ie.

1 if K(t) =1,
‘I’(K(t)):{ U>1 if K(t) =1+ L

Namely, after investing I3, the firm receives a payoff I1(¢). When the
firm undertakes I, total payoff raises to WII(¢).

6. The lifetime of investment follows a Poisson process. At any time ¢
there is a probability Adt that the existing project dies during the short
internal dt’.

Assumptions 1 and 2 are standard ones and do not deserve any com-
ment. Assumption 3 was previously introduced by McDonald and Siegel
(1985, 1986). Using the option pricing approach, they assume that the firm’s
option to delay irreversible investment is owned by well-diversified investors.
Therefore, the firm’s problem under risk aversion is equivalent to the one

8In technical terms, this opportunity to expand is an American call option. For further
details see Trigeorgis (1996).

9The cumulative probability distribution function at any instant 7" is (1 — e=*7).



under risk neutrality, if an appropriately risk-adjusted discount rate is used
for valuation®’.

Assumptions 4 and 5 are the most important novelty of this work as
they introduce path dependence. With assumption 4 incremental invest-
ment strategies are introduced!!. Assumption 5 introduces the scale effect.
As argued by Dixit (1995), the investment decision depends on whether the
returns to scale are increasing or decreasing. In the former case, investment
is lumpy, in order to cross the region of increasing returns. Thus, the thresh-
olds that trigger these jumps are such that 'the expected total return exceeds
the Marshallian normal return by the same factor that captures the option
value of waiting’ [p. 328]. In the latter case (namely, when the region with
increasing returns has been crossed), investment undertakes infinitesimal in-
crements (see e.g. Bertola, 1998, and Caballero, 1991).

Assumption 6 introduces capital uncertainty. As argued by Bulow and
Summers (1984) capital risk is the most important source of risk involved
in holding an asset. To deal with capital risk these authors assume a deter-
ministic depreciation rate with an uncertain future price of capital. Here we
propose a slightly different way of treating capital uncertainty. Namely, the
price of capital is normalised to 1 and the investment’s lifetime is assumed to
be random. More importantly, we assume that when the investment project
expires, the firm gets an option to restart. In this case, immediate restarting
may not be profitable. Rather, the firm may find it profitable to wait until
current profits will rise. With such an option to restart, therefore, the firm
regains a limited degree of reversibility.

Given the above assumptions, the firm owns the option to delay invest-
ment [, the option to expand production (by investing I5), and, the option
to restart production after the investment’s death. The firm’s investment
strategy is thus analogous to the exercise of compound options. The firm’s
problem will then be one of finding the optimal trigger points above which

10Majd and Myers (1987) explain this certainty equivalent valuation by arguing that
options are not valued in absolute terms, but rather relative to the underlying asset. If,
therefore, the value of the asset is market down for risk, then the call option must be
marked down as well. For further details see Panteghini (2002).

1Tt is worth noting that the firm’s payoff W (K (¢))II(¢) might be thought of as the
reduced form of a more general function which incorporates both a market structure
(i.e. imperfect competition) and variable inputs. This generalisation, however, would not
change the quality of the results. For further details, see Dixit and Pindyck (1994, Ch.
10).



investing I; and I, respectively, and restarting production is profitable.
Given the above assumptions, we can thus say that the incremental strat-
egy is preferred to the simultaneous strategy if inequality ¥ < % holds.
This condition can be easily interpreted. As we know, if the firm invests I;
it earns I1. If, instead, it invests (I; + I5), its payoff grows to WII. Compare
now the returns on the undertaken investment. In the first case we have
% and in the second case we obtain % If we have \Ifﬁ < %, then
U < %, namely decreasing returns to scale are obtained and an incremen-
tal strategy may be optimal. If the converse is true, the returns to scale are

increasing and the firm’s strategy is one-off.

4 The asymmetric tax system

In this section we will discuss the effects of an asymmetric tax system on
investment strategies. This tax design, presented in Panteghini (2001 and
2002), is based on an imputation method!?. As in Garnaut and Ross (1975),
in fact, the tax base is given by the firm’s return, net of an imputation
rate, rg, times the amount of investment. Contrary to Garnaut and Ross’
proposal, when the firm’s return is less than the imputation rate, no tax
refunds are allowed'?. As argued by Green and Talmor (1985), in fact, loss
carry devices are a tax claim for the government. Namely, the government
owns a portfolio of call options on the firm’s earnings with a variable exercise
price. Current tax revenues, in fact, depend on either the past or the future
firm’s tax position. This makes the effective tax rate path dependent and
causes a distortion. The elimination of any carry device thus eliminates a
source of path dependence.

By eliminating any carry device only incremental and scale effects cause
path dependence. As explained by Auerbach (1986), in fact, a multistage
project introduces additional state variables in the form of previous realiza-

121t is worth noting that, in the Nineties, tax systems based on the imputation method
were introduced in the Nordic countries (see S¢rensen, 1998), in Croatia (see Rose and
Wiswesser, 1998), and in Italy (see Bordignon et al., 1999 and 2001). Recently, an impu-
tation tax design has also been proposed for Germany (see Fehr and Wiegard, 2001).

13This asymmetric system is also related to the well-known R-based cash-flow tax anal-
ysed by Brown (1948) and Meade (1978). As we know, the main difference between the
R-based and the S-based tax is that, under the latter, interest payments are deductible. As
shown by Bond and Devereux (1999), however, the S-based tax requires a greater amount
of information and may lead to tax avoidance more easily.



tions of the stochastic process. Moreover, Majd and Myers (1985) argue that
for small projects, the firm’s tax position may be exogenous. Large projects,
instead, may affect the overall status of the firm. Thus, interactions between
the firm’s tax status and its capacity might be distortive. As will be shown,
instead, the asymmetric system under study remains neutral.

Hereafter, for simplicity, we will omit the time variable. Given the amount
of capital accumulated so far, K, tax payments are

Tmax [V(K)II —rgK,0]. (1)
Given (1), net instantaneous profits (or losses) are therefore equal to
MY = U (K)[ — 7 max [¥(K)II - ry K, 0] .

The firm’s solution to the optimal stopping time is one of choosing the after-
tax trigger points, H’{T and H;T, at which it is optimal to invest. Given the
above tax system we can show that the following Proposition holds:

Proposition 1 When incremental investment is a feasible strategy, the asym-
metric tax device is neutral, i.e. the post-tax trigger points are equal to the
pre-tax ones (II*' = II*, i = 1,2) provided that the imputation rate is high
enough, i.e.

Iy wiIn
TE 2 Tg max( ! 2>- (2)

1_1’ L+ 1

Proof- See the Appendiz.

In the Appendix, the reader will find the formal proof of the above Propo-
sition. Here we will give the intuition behind the result. As we know, corpo-
rate taxation is equivalent to equity participation (see Domar and Musgrave,
1944). Under asymmetric taxation, however, the government’s tax claim is
equivalent to a portfolio of European call options, one on each year’s cash
flow!?, and rp K is the exercise price. If, therefore, the firm’s payoff reaches
rg K, the government exercises the call option and shares profits.

Let us next define V;(II) and V,"(II) as the pre- and post-tax present
discounted value of the firm’s stage ¢ = 1,2, respectively. Moreover, define

HFor further details on this interpretation see Majd and Myers (1987) and van Wijn-
bergen and Estache (1999).



C;(IT) and C](II) as the pre- and post-tax value of the firm’s compound
options, at stage ¢ =1,2. In the Appendix we will show that the neutrality
result derives from the following conditions

V(L) — I, — CT (1) = [Vi(IT) — I, — Gy(ID)] = 0, (3)

K2

o[V () — I, — CI ()] 9[Vi(Il) — I — Cy(I)] 0 (4)
o1l oIl .

The former condition arises from the Value Matching Condition, which re-

quires the equality between the net present value of the project'®, [V;'(IT) — I;]
and the value of the compound option C] (IT). The latter is derived from
the Smooth Pasting Condition and requires the equality between the slopes
of [V(I) — L] , and the value of the compound option C] (II). Given the
above equalities, the pre-tax and post-tax case are equivalent.

Equations (3) and (4) yield a sufficient neutrality condition that accounts
for the firm’s ability to modify its strategies by exercising options!S.

It is worth noting that an increase in the tax rate reduces not only the
present value VI (IT) but also the option value CI (IT). However, Proposition

1 shows that these decreases neutralise each other. Namely, the equalities
T(1)—CT g )
V(1) — CY (1) — I, = [Vi(TT) — Cy(IT) — 1] and 2L @-CL0] _ owan-cumy

hold irrespective of the tax rate applied. This neutrglfity result is an appli-
cation of Bernanke’s (1983) Bad News Principle (BNP): under investment
irreversibility, bad events affect the firm’s propensity to invest!'”. If the cor-
porate tax is levied only in the good state, therefore, investment decisions
are not affected.

It is well-known that the elimination of a tax benefit (e.g. the loss-offset
arrangement) must be offset by a new benefit (e.g. a higher imputation rate)
in order for neutrality to hold. However, many authors (see e.g. Ball and

Bowers (1983) and Auerbach (1986)) argue that it is hard to compute the

15This is the relevant measure of profitability in the absence of any option to change
investment strategies.

Y6For details on the sufficient conditions under tax symmetry, see Niemann (1999).

17 As stated by Bernanke (1983), " The investor who declines to invest in project i today
(but retains the right to do so tomorrow) gives up short-run returns. In exchange for this
sacrifice, he enters period ¢+ with an ”option” (...). In deciding whether to "buy” this
option (...), the investor therefore considers only ”bad news” states in ¢t+1 (...)” [p. 92-3].
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neutral rate rg . Since each firm has its own risk profile, the neutral impu-
tation rate should be risk-specific. This result holds under the unrealistic
assumption of full reversibility of investment.

In our model, instead, an entire region of neutral imputation rates can
be derived. Thus, it is sufficient to find the minimum imputation rate 7},
18 1f, therefore, rg € [r}, 00), neutrality holds. To explain this result, let
us assume an increase in rg. The effects of this increase are twofold. On
the one hand, the increase in rp increases the government’s exercise price
ri K, thereby reducing the value of its options and increasing the post-tax
firm’s value project. On the other hand, the increase in r raises both the
option to wait (related to investment /;) and the option to expand (related
to investment I5). Proposition 1 shows that, if rp € [r};, 00), these two effects
offset each other thereby ensuring neutrality.

Let us next focus on the scale effect. As shown in the proof of Proposition

1, the relationship II7 — IT} o (% - \If> is obtained. If, therefore, I} < II}

(i.e. U < %) , then the returns to scale are decreasing and the incremental

strategy may be optimal. In this case, inequality 1}—11 < ITE%Q holds. Thus, the
WIS

775 If, instead, II] <TI; the converse is
true and minimum imputation rate is rj = 51—11 Therefore, the tax rule (2)
ensures neutrality irrespective of the returns to scale.

Sequential investment is a special but important case. In many circum-
stances, firms earn no revenues until more than one or, even, all the invest-
ment stages have been undertaken'®. Oil production is a good example of
sequential investment. In the first stage exploration takes place. When oil
has been found, a pipeline can be built and, subsequently, oil can be sold.
Exploitation of natural resources and R&D are other interesting examples.
Despite their importance, they are disregarded by the current literature.

To discuss the effects of taxation on sequential investment, let us modify
assumption 5 as follows:

5’. After investing I; the firm earns no revenues, but it acquires an option
to undertake the second stage Io. When it invests I, it starts to earn WII.

minimum imputation rate is 7y =

18Note that r% > 7 always holds. Under the non-refundability system, therefore, the
differential 7} — r is sufficient to neutralise the effects of the asymmetric treatment of
profits and losses.

9Dixit and Pindyck (1994, Ch. 10) report other examples of sequential investment,
such as pharmaceutical and aircraft companies.
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Thus we have

(0 HEK®
WM3—{@>11H«@:

The following Proposition can be proven:

]17
L+ L.

Proposition 2 Under sequential investment neutrality holds if

UIT;
L+

TR =T =

(5)

Proof - See the Appendix.

Under sequential investment, inequality WII} > WII} holds. If, therefore,
the firm’s payoff reaches WIIT the project can be immediately completed.
Thus, this case would collapse to the one-off strategy. However, Proposition
2 is not banal. Dixit and Pindyck (1994) argue that the study of sequential
strategies case is important for, at least, two reasons. First, undertaking
investment takes time. Thus firms often complete the early stages and then
wait before undertaking the following stages. Second, different investment
stages may require different skills or they may be located in different places.
In all these cases, therefore, a firm might find it profitable to sell a partially
completed project.

Given Propositions 1 and 2 one can finally derive a comprehensive neu-
trality rule. Let us compare the sufficient neutrality conditions obtained
under both incremental and sequential, i.e. (2) and (5). Since an entire
region of neutral imputation rates can be obtained, it is sufficient to set

eI \ Ol
> —
rE > max (max<f1’f1+fz>’f1+fz> (6)

to ensure neutrality. The following Corollary thus holds.
Corollary 3 If the imputation rate is high enough (i.e. inequality (6) holds),

the asymmetric tax device is neutral irrespective of whether investment is an
one-off, an incremental or a sequential decision.

12



5 Conclusion

In this article, we have discussed the effects of an asymmetric tax system on
a two-stage investment project. Although incremental investment strategies
and scale effects lead to path dependence, it is shown that taxation is neu-
tral. Namely, neither the minimum imputation rate nor the trigger point are
affected by the tax rate. The result has an important policy implication. In
order to obtain neutrality, in fact, the corporate tax should be levied only
when the investment project is completed or, equivalently, the firm is mature.

Not only is the system proposed neutral but it is also easy to manage.
In fact, the computation of the firm’s tax liabilities is based on accounting
data. Moreover, the absence of any carry device eliminates a source of path
dependence, thereby reducing tax compliance costs.

The generalisation to N stages is left to future research.

6 Appendix

In this Appendix the proofs of Propositions 1 and 2 are discussed.

6.1 Proof of Proposition 1

The proof of Proposition 1 consists of three steps. First, we will compute
the functional form of the option to delay. Then we will turn to the value
function. Finally, we will compute the trigger points H’{T and HgT. As will
be shown they are unaffected by taxation, namely H;‘T =IIv=1,2.

6.1.1 The option to delay

Let us start with the option function. Using dynamic programming we have

O(IT) = e " {£ [O(IT + dIT)]} . (7)

Expand the RHS of (7). Using It6’s Lemma, eliminating all the terms mul-
tiplied by (dt)? and dividing by dt, one obtains

2
rO(IT) = (r — )10y + %H2OHH. (8)

13



The solution of O(II) has the standard general form

i=1
where
=G B>
o=t /G- & <0
Since the boundary condition O(0) = 0 holds*, the solution (9) reduces to

O(Il) = A,I1°:. (10)

6.1.2 The value function

Let us now turn to the value function. We first study the value function
when investing /;. Then we will turn to the increment /5. Using dynamic
programming we can write the value function as

P (I1) = IIdt + e~"(1 — Adt)¢ [P(IT + dIT)] +

¢ [O(T1 + dIT)] if e lo,Im"), (11)
+dt
P +dl) — 1) if e (I, 10"),

where the trigger points H’{T and H’Q‘T are to be determined. As can be seen,
P (IT) consists of two branches. Depending on whether IT is in the [0, IT*" ) or
in the (IT:", II3" ) region the form of the value function changes. If, in fact, the
project dies when IT € [0, H’{T), then restarting production immediately is not
profitable. If, instead, the project’s death takes place when II € (H’{T, H;T),
the value function is given by the second branch.

Let us start with the first branch of P(II). Using It6’s Lemma and sim-
plifying, one obtains

(r+A)P(IT) = I + (r — &)1y (II) + %2H2PHH(H) + AO(II). (12)

20This boundary condition is an implication of the stochastic process followed by II. It
implies that if II goes to zero, it will stay at zero. For further details see Dixit and Pindyck
(1994, Ch. 5).

14



Next subtract equation (8) from (12) and define X (II) = P(II) — O(II), so
as to obtain

2
(r + N X (IT) = I+ (r — 6)TIXy (IT) + %H?XHH(H).
The function X (IT) has the standard general form

2
II
i=1

where

Setting the boundary condition X (0) = 0, function (13) reduces to

IT

Next, using (10) and (14) we obtain the solution of the first branch

11
P(I) = 5=+ AP + X TT% 0, (15)

Let us now turn to the second branch of P(II). Using Itd’s Lemma and
simplifying yields

2
rP(IT) = IT — Ay + (r — 8§)ITPy(IT) + %HzPHH(H). (16)
Given equation (16) it is straightforward to obtain the second branch

L
P(H):E—A?jLZPZ-HZ. (17)
i=1

Let us next study the value function after investment I,. It consists of three
branches

15



Q(I) = {¥ (K)TI — 7max [¥ (K)II — rgK, 0]} dt + e (1 — Adt)€ [Q(IT + dII)] +
(18)

( ¢ [O(T1 + dIT)] if e (0,117),

e\ gt E[P(T+dIl) — 1]  if Te (I, 103,

E[QUI+dI) — (I + 1)) if T € (1T, 00).

\

If the project expires when II € (0, H’{T), immediate investment is not opti-
mal. If expiration takes place when IT € (IT{", II3"), investment I; is imme-
diately profitable. If, finally, IT € (H;T, 00), it is optimal to invest both I
and [, immediately.

Before solving the above function let us apply the tax-holiday rule ensur-
ing an exemption for at least IT > IT; . This implies that the first and second
branches do not account for current taxation, namely the current net payoft
is simply WII. Start with the first branch of Q(II). Using It6’s Lemma and
simplifying yields

(4 NQU) = 1L+ (+  HIQu(ID) + TIEQu(ID) + XO).  (19)

Next, define Y(II) = Q(II) — O(II) and subtract equation (8) from (19)
thereby obtaining

2
(r+ \Y(IT) = IT + (r — §)ITY;y(IT) + %HZYHH(H).
The general solution of Y (II) is
VI
Y (II) = st > v, (20)
i=1
Setting the boundary condition Y (0) = 0, yields
UII

Y (1) = Tt AN (21)

16



Next using (10) and (21) yields the first branch

121
QUD =5+ AP + Y I ), (22)

Let us now turn to the second branch. To compute it we follow the same
procedure. Namely, we start with the Bellman equation in the (H‘{T, H’Q‘T)
region, 1.e.

(r + N)Q(IT) = VII + (r — §)Qnu(IT) + O;HQQHH(H) +AP(I).  (23)

Then, we define Z(I1) = Q(IT) — P(II) and subtract (16) from (23), thereby
obtaining

(r+XNZ(I) = (¥ - 1)+ (r — 6)IZy(II) + %2HQZHH(H). (24)

Solving (24) yields

Z(H): 6H +Zznﬂ (25)

Using (17) and (25) one obtains

2 2
Q(Il) = [% + %1 —~ A% +Y PRI 4> ZIAN. (26)
=1 i—

Let us finally turn to the third branch. If we apply the tax-holiday rule we
have to split the branch into two parts, which measure the value function in

the (H;i%) and <w\y”2) )region, respectively. Using equation

(18) and applying It6’s Lemma yields
TQ(H) == \IJH—TmaX[\IJH—’I“E(Il +]2),0] - )\(]1 —|—12)+

27
+(r = 6)T1Q (1) + T Qun (D) 27
Solving (?7) yields
FI = M+ 50 QU1 if e (11", melpetel)

Q(II) =
(1767)\111'1 +(r2 = 2) (L + L)+ S22 ORI iflle (rE(hHQ)’OO)
(28)
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The term R;I1°t measures a speculative bubble as II goes to oo. If we assume
that no bubbles exist, namely R; = 0, the second part of (28) is simplified?!.

6.1.3 The solution

Let us next find the trigger points I3 and II; . Given the above functions,
we have ten unknown parameters (Ay, X1, P, Ps, Z1, Zs, Q1, Q2, Y1 and Ry),
plus IT*" and IT;" . To compute their solutions we thus need twelve equations.
Fight equations can be found by stitching together the branches of the value
functions. The remaining four equations will be found using the VMC and
SPC.

Let us start with function P(IT). The first and second branch of this
function meet tangentially at point II = H‘{T, namely both the value and
the derivative of the two branches are equal (see Dixit and Pindyck, 1994).

Substituting (15) and (17) into the (VMC) and (SPC) we have

"
5§+

;"
+ AT A XA = g

I < r
— A= PIT: P, 29
T‘+;; 1 (29)

2
1 1
T T AAI A B )X A = S B BRI (30)
i=1

Let us turn to function Q(II). Its meeting points are H‘{T and H;T, plus, if
the tax-holiday rule holds, L\;b) Start with the first two branches (22)
and (26). They meet tangentially at point IT{" , namely

‘PH’{T «T\ B «T\ By (N)

gy (D)
= (I -+ R () A 2 ()

s B () Bt g, O (1) 1 =
= (1) XL BE () A 4 0, B0z (1

2For further details on this absorbing barrier see Dixit and Pindyck (1994, Ch. 6).

>m@>1 (32)
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Similarly, the second branch (26) and the first part of the third branch (28)
meet tangentially at point H;T

B; Bi(A)
(% + %) HgT - )\I'r_l + 212:1 B <H§T> + Z?=1 Z; <H§T> =

i

5 (33)
— %H; _ /\hJTrIQ + Z?:l Qz (H§T> 7

(% ¥ %) Y ()" + S 502 ()™ =2+ 36 (m)".
i=1 —1

i=1 =
(34)
Finally, let the two parts of the branch (28) meet tangentially at point
re(I1+12)
7

- Bi
3 (U} - AL 32 Qi ()

(1—7)¥ (rg(l1+I2) rg(I1+12) Ba (35)
= (E&j2>—|—(TT—E—;)(11—}—]2)—|—R2(E&12> ,

T

—+Zw@< Il””) Ly (W)ﬁrl.

(36)

We have thus obtained eight equations. Now let us recall the option function

(10) and concentrate on the investment choices. Investment I; is undertaken
when the (VMC) and (SPC) conditions hold, i.e.

P(II) — O(IT) = I, (37)

Pu(IT) — O (I1) = 0. (38)
Substituting (10) and (15) into conditions (37) and (38), respectively, yields??

T
*
Hl

X A =1 (39)

22Note that the two branches of P(II) meet tangentially at point II} . Thus we could
use either of them. However, we will use its first branch (15) since computations are easier.
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1 T
— A) XTI A1 = o, 40
Y + (M) XalD (40)
It is worth noting that equations (39) and (40) correspond to conditions (3)
and (4), when the firm is deciding to invest I;. In fact, X111 ") measures the
post-tax compound option which embodies the option to delay, the option
to expand and the option to restart. Solving the sub-system (39)-(40) yields

w0 ﬁl(Al)
B 1 1 L1=B1()
&__Eaﬁiil

Since the point IT}" is not affected by taxation, we have equality ITf" = ITf.
According to conditions (3) and (4), therefore, both the post- and pre-tax
value of the project, net of investment I; and of the compound options, are
null at point II = H‘{T = IT7.

Let us now concentrate on investment /5. The second stage is undertaken
when the following conditions hold

Q) — P(I) = I, (42)

QH(H) - PH(H> =0. (43)

The above conditions are used for obtaining the last two equations, necessary
for finding the solutions. Substitute the second branch of both P(II) and
Q(I0), i.e. (17) and (26), into the above conditions®, so as to obtain

-1\ _r < r

[ * 7 Bi(A) —
(57 ) "+ oz =, (44)
-1 &

- - E () ZiH*Tﬁi(’\)_l —0. 45

23 As in the previous case we could use either the second or the third branch of Q(II),
since they meet tangentially at point H;l . However, the use of the second branch is easier.
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It is worth noting that equations (44) and (45) represent conditions (3) and
(4) when the firm decides to invest I5. In other words, 21221 Z 117 measures
the post-tax compound option which embodies the option to expand and the
option to restart.

Given the solutions for H’{T and X, a ten-equation sub-system remains
to be solved. Subtract (31) from (29) and (32) from (30), respectively. It is
straightforward to obtain

(X1 — Y1 + Zl)H’{Tﬂl(/\) + ZQHTTﬂQ(A) =0, (46)

BN (X1 = Y1+ Z)T0] A4 B,(N) ZT1 20 =0, (47)

which yields X; =Y, — Z; and Z; = 0. Given Z; = 0, solving the sub-set
(46)-(47) yields

H;T o ﬁl()q) O+ A

S B0 1T 1™ (48)

7 _ 1 v—-1_,1-5M
TR N S+ 2 ’

and the post-tax compound option reduces to Z;I11%:™)| Like the first trigger
point, the second is unaffected by taxation, i.e. II = II;.

We have thus obtained the relevant solutions H’{T and H;T, plus X, 71,
Zy. Then, using the equality X; = Y; — Z;, we find Y;.

The remaining six unknown parameters (A, P, Py, Q1, Q2 and Ry) can
be solved numerically by using the sub-system (29), (30), (32), (34), (35) and
(36). However, their solution is not relevant for our purposes.

Finally, let us compute the minimum imputation rate ensuring neutral-
ity. To do so, recall the solutions of trigger points (41) and (48). Easy
computations yield the following relationship

L+ I
L ’

Hf—nfm<@— (49)

which confirms Dixit’s findings. If, therefore, for a given current payoff II,
inequality ¥ < 11[_4;12 holds (i.e. returns to scale are decreasing), then we

have H{T < H;T. This implies that the incremental strategy is preferred to
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the simultaneous strategy. If, instead, we have ¥ > , the converse is
true and the two-stage project reduces to an one-off investment.

Recall now the tax-holiday condition. We know that when W(K)II <
r K, no tax is paid. Thus in order to ensure a sufficiently long tax holiday
after the firm’s investment, both the following inequalities must hold

Lit1o
I

> il (50)
r max [ —, .

r L6+,

Namely, if the firm faces increasing returns to scale we have rg > % > If’sz.

If instead it is characterised by decreasing returns to scale, then inequality
rg > Il\I’JrHIQ > % must hold.

Now substitute the relevant trigger points (41) and (48) into condition
(50). It is straightforward to obtain the minimum neutral imputation rate
(2). Inequality g > r}, represents a sufficient neutrality condition. Proposi-

tion 1 is thus proven.Hl

6.2 Proof of Proposition 2

The proof of Proposition 2 is straightforward. Asshown by Dixit and Pindyck
(1994, pp. 322-328), inequality II¥ > IT; always holds under sequential in-
vestment. Namely, once II reaches II] the firm will be able to undertake
both stages of the project. The investment decision thus might reduces to
an one-off problem. Apply now Panteghini’s (2002) Proposition 1, which has
the same notation as that used in this article, except for the gross payoff
which is WII instead of II. If the imputation rate is high enough, the trigger
point is unaffected by taxation, i.e.
10

VIl = 5.0 = 1(5—1—/\)([1+Iz) (51)
Recall in fact the tax-holiday condition. We know that when WIT < rg(1; +
I5), no taxes are paid. Substituting (51) into condition (50) yields the mini-
mum imputation rate ensuring neutrality (5). Proposition 2 is thus proven.ll
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