CESifo Working Papers

EDUCATION, GROWTH AND INCOME INEQUALITY

Coen Teulings
Thijs van Rens*

CESifo Working Paper No. 653 (4)

January 2002
Category 4: Labour Markets

CESifo
Center for Economic Studies \& Ifo Institute for Economic Research
Poschingerstr. 5, 81679 Munich, Germany
Phone: +49 (89) 9224-1410 - Fax: +49 (89) 9224-1409
e-mail: office@CESifo.de
ISSN 1617-9595

[^0]
EDUCATION, GROWTH AND INCOME INEQUALITY

Abstract

When types of workers are imperfect substitutes, the Mincerian rate of return to human capital is negatively related to the supply of human capital. We work out a simple model for the joint evolution of output and wage dispersion. We estimate this model using cross-country panel data on GDP and Gini coefficients. The results are broadly consistent with our hypothesis of diminishing returns to education. The implied elasticity of substitution fits Katz and Murphy's (1992) estimate. A one year increase in the stock of human capital reduces the rate of return by about 2 per cent. The combination of imperfect substitution and skill biased technological change closes the gap between the Mincer equation and GDP growth regressions almost completely. JEL Classification: E20, J24, O10, O15.

Coen Teulings
Tinbergen Institute
Erasmus University
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Teulings@few.eur.nl

Thijs van Rens
Princeton University
Department of Economics
001 Fisher Hall
Princeton NJ 08544-1021
U.S.A.

1 Introduction

If workers with various levels of education were perfect substitutes, relative wages would be independent of the distribution of human capital. However, studies into the substitutability of worker types, for example K atz and Murphy (1992), have shown that this is not the case. Then, a simple economic argument establishes that the Mincerian rate of return should be negatively related to the average years of education among the workforce. Raising the average years of education in the economy makes low-skilled workers more scarce, raising their wages, while at the same time increasing the supply of highly educated workers, thereby reducing their wages. This mechanism reduces the return to human capital.

The relation between GDP and education at the aggregate level is a simple re \ddagger ection of a Mincerian earnings function at the micro level, when externalities of education can be ignored, as is suggested by a number of recent studies (Heckman and K lenow, 1997; A cemoglu and A ngrist, 1999). This simple theory of imperfect substitution between workers with dixerent levels of human capital has joint implications for GDP and income dispersion. The exect of an increase in the mean level of education on GDP should decline with the level of education. Hence, we expect a negative second order exect of increases in the education level on growth. Since wages are the main source of income for most families, measures of income inequality should be positively related to the return to education. The average level of education in the economy axects the return to schooling negatively. Hence, it compresses the wage distribution. The main idea of this paper is to simultaneously estimate the exect of the average education level on GDP and income dispersion.

The application of the Mincerian earning function as the driving force in the relation between GDP and education puts this paper in the extensive stream of research into the cross country relation between education and growth. In Barro and Sala-i-M artin (1999), a higher education level makes the labor force more able to deal with technological innovations, yielding a relation between the level of human capital and the growth of output. Barro and Sala-i-M artin found indeed that the level of education has a strong and signi..cant exect on future GDP growth, as did Benhabib and Spiegel (1994) in an earlier study. The exect of the growth in education on the growth of output, conditional on the exect of the level of education, is insigni..cant in their regressions. These results cast doubt on the relevance of the Mincer equation for the aggregate level, increasing the popularity of human capital based endogenous growth models.

Following K rueger and Lindahl (2000), we argue that these conclusion are due to a
number of misspeci..cations. M easurement error attenuates the coed cient for the growth in education. However, just K rueger and Lindahl's argument does not ..ll the whole gap between the Mincer equation and the GDP growth regression. The long run rate of return to education remains above any reasonable estimate. Gallup, Sachs and M ellinger (1999) show that geography matters for GDP. Proximity to the sea for transport and a temperate climate to avoid tropical diseases are great advantages to a country. A combination of ..xed exects due to geography, imperfect substitution between types of labor, and skill biased technological progress brings us much closer to a full reconcilliation of the GDP data and the Mincer equation. Countries with a favorable geography are richer and can therefore invest more in human capital. Hence, human capital variables pick up part of the favorable ..xed geography exect. The initial advantage in human capital increases in the course of time due to skill biased technological progress. This gives the impression that education yields a higher growth of GDP, not a higher level.

Previous studies on the relation between inequality and growth have focused on the exect of the one upon the other, some papers arguing that growth reduces inequality (the so called Kuznets curve), others highlighting the exect of inequality on growth (see Bénabou 1996 for a survey). Our approach dixers from this literature, in that we take both inequality and growth as dependent variables, simultaneously determined by the level of human capital. If the average education level has a negative exect on inequality and a positive exect on growth, as implied by our model, then this provides an explanation for the negative correlation between inequality and growth that has spurred this literature.

The theoretical framework we apply is derived from an assignment model with heterogeneous workers and heterogeneous jobs, see Teulings (2001). Highly educated workers have a comparative advantage in complex jobs. The return to education is therefore higher in more complex jobs. When the supply of highly educated workers increases, there are insu申 cient complex jobs for them. Some high skilled workers have to do less complex jobs, where their human capital has a lower return. This yields a negative relation between the aggregate supply of education and its Mincerian rate of return. We test this relationship by entering a second order term in education in a GDP regression. Furthermore, education should enter negatively in a regression of the variance of log wages, since a reduction of the Mincerian rate of return compresses wage dixerentials. The simple model we present in the next section formalizes these ideas. We also use our estimates to derive the compression elasticity: the percentage decline in the return to human capital per percent increase in the value of its stock. This concept relates our results to K atz and M urphy's (1992) estimate of the elasticity of substitution between
low- and highly skilled workers, providing a check on the interpretation of our estimation results.

Our empirical work uses Barro and Lee's (1999) panel data on GDP and education and Deininger and Squires' (1996) data on Gini coed cients for 100 countries over the period 1960-1990. Although the micro labor literature has shown that the log-linear Mincerian wage equation is strikingly robust (see Card 1999 for a survey), the estimated returns for dixerent countries vary substantially (P sacharopoulos 1994; Bils and K lenow 1998). This paper exploits this variation to estimate the degree of substitutability between worker types. We will also present direct evidence of diminishing returns to education from a cross section of M incerian rates of return estimated from micro data for various countries.

Empirical research in this area is troubled by the issue of causality: does a higher education level lead to higher GDP or is it the other way around. The same problem applies to the relation between education and income inequality. Indeed, Bils and K lenow (1998) have argued that the posited causation from education to growth should be reversed. However, their arguments apply to the endogenous growth relation, and not to the Mincerian relation invoked here. ${ }^{1}$ Our solution to the endogeneity problem relies on the time-lags in the causation from GDP to average level of schooling of the population. First, the political system has to decide on spending of additional tax revenues on education. Then, new teachers have to be trained and schools have to be built. Only then the ..rst new cohort can undergo the improved training. It will then take some years or so before the ..rst cohort of better educated students enter the labor market. It takes several new cohorts of better educated workers before there is a noticeable exect on the average level of education of the workforce. We argue therefore, that it is reasonable to assume that GDP only axects education level with a lag of at least 10 years. We explore whether our results are driven by a few countries that experience high growth during the sample period (e.g. A sian tigers).

Our empirical results provide strong support for a negative relation between the supply of human capital and its return. M oreover, the estimation results are also largely mutually consistent quantitatively: a one year increase in the stock of human capital reduces its return by about 2 percentage points. This estimate is consistent with K atz and Murphy's (1992) estimate of the elasticity between low and high skilled workers.

We account for skill biased technological progress by entering cross exects of time

[^1]dummies and education. This relates our analysis to O'Neill (1995). Heasks thequestion as to why the huge investments in human capital by LDCs have not contributed to a convergence in GDP between LDCs and the industrialized world. His explanation relies on skill biased technological progress: "T he recent shift in production techniques toward high-skilled labor has resulted in a substantial increase in the returns to education. This trend, when combined with the large disparities that still exist in education levels between the developed and less developed countries, has led to an increase in inequality despite the signi..cant reduction in the education gap that has occurred over the last 20 years." (p.1299). Our results con..rm his analysis.

The interaction terms of education and time dummies allow inference on the pace of skill biased technological change. The GDP and inequality regressions yield quantitatively similar estimates, suggesting skill biased technological change to account for a 3\% to 4% increase in the return to education per decade. This is equivalent to the reduction in the return that would be achieved by a 0.8 year increase in the average level of schooling, about as much as the actual increase in the education level over period covered by our sample. Finally, our analysis reduces the dixerence between the long and the short run rate of return to education from a factor 6, as in Krueger and Lindahl (2000), to less than 2. One can therefore conclude, with some exaggeration, that T inbergen's race (1975) between education and technology and Mincer's earnings function rule the world.

The paper is structured as follows. In section 2, we present a simple Walrasian model with imperfect substitution between types of Iabor. Section 3 discusses the data and presents the estimation results. Section 4 concludes.

2 Theoretical framework

2.1 A simple growth model with emphasis on human capital

Consider the long run growth path of an economy with physical and human capital. All markets are perfectly competitive, so that wages equal marginal productivity. We specify both a simple aggregate production function and a Mincerian earnings function.

First, consider the Mincerian earnings function. Let $w_{i t}$ be the log wage of worker i at time t and let $s_{i t}$ be the years of schooling she attained; $w_{i t}$ is assumed to satisfy the Mincerian earnings function:

$$
\begin{equation*}
w_{i t}=!_{0}\left(S_{t} ; t\right)+!_{1}\left(S_{t} ; t\right) s_{i t}+3 / h_{i t}{ }^{\prime} w_{t}\left(s_{i t} ; u_{i t}\right) \tag{1}
\end{equation*}
$$

where S_{t} is the average education level of the workforce in the economy, $u_{i t}$ is a mean zero unit variance random variable representing other characteristics of workers (like
experience and innate ability) and 3/4is its standard deviation. Both the intercept!o(\dagger and the Mincerian rate of return to human capital $!_{1}(\Phi$ vary over time and with the average education level of the workforce. Equation (1) is constrained to be linear in s_{it}, implying that the rate of return to education at particular point in time t is independent of the years of schooling of an individual worker. This assumption plays an important role in the subsequent analysis.

Next, consider the aggregate production function. Let output per worker be governed by a constant returns to scale Cobb Douglas production function:

$$
\begin{align*}
& \mathrm{yt}_{\mathrm{t}}={ }^{\circledR} \mathrm{h}_{\mathrm{t}}+\left(1_{\mathrm{i}} \text { ® } \mathrm{k}_{\mathrm{t}}\right. \tag{2}\\
& \mathrm{h}_{\mathrm{t}}{ }^{-}{ }_{1} \mathrm{~S}_{\mathrm{t}} \mathrm{i} \frac{1}{2}{ }^{-}{ }_{2} \mathrm{~S}_{\mathrm{t}}^{2}+{ }_{3}{ }_{3} \mathrm{~S}_{\mathrm{t}} \mathrm{t}+{ }^{-}{ }_{4} \mathrm{t}
\end{align*}
$$

where y_{t} is \log output per worker, $k_{t} \log$ capital per worker and h_{t} is log average productivity. We assume $S_{t}<\frac{-1}{2}$, so that $\frac{d h_{t}}{d S_{t}}>0$. The ..rst term in the expression for h_{t} measures the exect of schooling. The second term measures the diminishing returns to education: the higher the mean level of education of the workforce, the smaller the re turn to additional schooling. The third term captures the exect of skill biased technical progress, while the ..nal term re \ddagger ects neutral technical progress: other things equal, the return to education increases over time when ${ }_{3}>0$.

F irst, consider the role of capital in this economy. Firms maximize pro..ts per worker, yielding a ..rst order condition for the optimal capital stock:

$$
\begin{equation*}
\left.R K_{t}=(1 ; ®) Y_{t}\right) \quad k_{t}=y_{t}+\ln (1 ; ®) ; \ln r \tag{3}
\end{equation*}
$$

where Y_{t} and K_{t} denote the exponentials of the corresponding lower case variables, and R is the rental rate of capital which we assume to be constant over time. Equation (3) re \ddagger ects the standard result for a Cobb Douglas technology that the share of capital in output is equal to 1 i ® ${ }^{\circledR}$ We assume that ..rms adjust their capital stock su申 ciently fast, so that we can ignore deviations from its equilibrium value. Then, combining the FOC for capital and the production function:

$$
\begin{align*}
& y_{t}={ }^{-}{ }_{1} S_{\mathrm{t}} \mathrm{i} \frac{{ }^{1}-{ }_{2}}{} \mathrm{~S}_{\mathrm{t}}^{2}+{ }_{4}{ }_{4} \mathrm{t}+{ }^{-}{ }_{3} \mathrm{~S}_{\mathrm{t}} \mathrm{t}+\frac{1_{\mathrm{i}}{ }^{\circledR}}{{ }^{\circledR}}\left(\ln (1 \mathrm{i} \text { ® })_{\mathrm{i}} \ln \mathrm{r}\right) \tag{4}\\
& \mathrm{k}_{\mathrm{t}}={ }^{-}{ }_{1} \mathrm{~S}_{\mathrm{t}} \mathrm{i} \frac{1}{2}{ }_{2}{ }_{2} \mathrm{~S}_{\mathrm{t}}^{2}+{ }^{-}{ }_{4} \mathrm{t}+{ }^{-}{ }_{3} \mathrm{~S}_{\mathrm{t}} \mathrm{t}+\frac{1}{\circledR}\left(\ln \left(\mathrm{I}_{\mathrm{i}} \text { ® }\right) \mathrm{i} \ln \mathrm{r}\right)
\end{align*}
$$

The equations for log output and capital are identical, up to a constant term. Estimation of the separate contributions of human and physical capital on the basis of equation (2) is therefore problematic, due to endogeneity of k_{t}. In the absence of measurement
error in both S_{t} and k_{t}, equation (2) is unidenti..ed since ${ }^{-}{ }_{1} S_{t}$ i $\frac{1^{-}}{2}{ }_{2} S_{t}^{2}+{ }_{4} t+{ }_{3}{ }_{3} S_{t} t$ is collinear with k_{t}. In the presence of measurement error, the relative magnitudes of their coed cients merely re \ddagger ects the precision of their measurement. Krueger and Lindahl (2000) argue that capital data are correlated to output by construction, since investment data ..gure in both series. Hence, measurement error in both series are likely to be correlated. This explains why they ..nd $1_{i} ®$ to be much higher than one would expect on the basis of capital's share in output (about 0.35). We shall therefore omit capital from all our regressions and report estimation results for equation (4) only.

Next, consider the role of types of labor in this economy. We have a similar condition for labor as for capital, aggregating over all individuals:

$$
®_{\mathrm{t}}={ }^{Z \mathrm{Z}} \mathrm{~W}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{f}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{dsdu}
$$

where $f_{t}(s ; u)$ is the joint cross-sectional density of s and u, and $W_{t}(s ; u)^{\prime} \exp \left(w_{t}(s ; u)\right)$ is the wage rate of an individual with s years of schooling and characteristics u. Labor gets a share ® of total output.

Marginal productivity theory implies that the increase in output from adding one worker with characteristics $(\mathrm{s} ; \mathrm{u})$ to the workforce of this economy raises output by $\mathrm{W}_{\mathrm{t}}(\mathrm{s} ; \mathrm{u})$. This implication extends to the (marginal) exect of new human capital: a marginal increase in the years of education of worker i will raise output by:

$$
\begin{equation*}
\frac{@_{t}}{@_{s_{i t}}}=\frac{@ W_{t}\left(s_{i t} ; u_{i t}\right)}{@_{s_{i t}}}=W_{t}\left(s_{i t} ; u_{i t}\right)!!_{1}\left(s_{t} ; t\right) \tag{6}
\end{equation*}
$$

where Y_{t} denotes aggregate output, and $W_{t}\left(s_{i t} ; u_{i t}\right)$ is given by the Mincer equation (1). Equation (6) states that the increase in output due to an increase in the schooling level of worker i by an amount h , equals the gain in output due to the addition of a worker with characteristics ($s+h ; u$) minus the loss in output due to the removal of a worker with characteristics $(\mathrm{s} ; \mathrm{u})$.

Consider an increase of the years of education of all workers by an equal amount $d s_{i t}=d s$ for all i. By construction, the average years of education S_{t} changes by that same amount: $\mathrm{dS}_{\mathrm{t}}=\mathrm{ds}$, thus shifting the marginal distribution of education to the right. Then, each worker's wage increases by an amount $\frac{\varrho W_{t}\left(s_{i t} ; u_{i t}\right)}{\left(s_{i t}\right.} d s=W_{t}\left(s_{i t} ; u_{i t}\right)!_{1}\left(S_{t} ; t\right) d s$. The change in total output is obtained from the production function (2):

$$
\frac{@_{\mathrm{t}}}{\mathfrak{C S}_{\mathrm{t}}} \mathrm{ds}=\left({ }^{-}{ }_{1 \mathrm{i}}-{ }_{2} \mathrm{~S}_{\mathrm{t}}+{ }_{3}{ }_{3} \mathrm{t}\right) \circledR \mathrm{B}_{\mathrm{t}} \mathrm{ds}
$$

By equation (6), the exect of this increase in S_{t} on aggregate output is equal to the sum over all workers of the increases in individual wages. Thus:

$$
\begin{aligned}
& \frac{@_{\mathrm{t}}}{\bigotimes_{\mathrm{t}}}=\frac{Z Z}{@_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u})} \mathrm{C}_{\mathrm{C}}(\mathrm{~s} ; \mathrm{u}) \mathrm{dsdu} \\
& \left({ }^{-}{ }_{1}{ }^{-}{ }_{2} S_{t}+{ }_{3}{ }^{\mathrm{t}} \mathrm{t}\right){ }^{\circledR} Y_{\mathrm{t}}=!_{1}\left(\mathrm{~S}_{\mathrm{t}} ; \mathrm{t}\right) \quad \mathrm{W}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{f}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{dsdu} \\
& =!_{1}\left(\mathrm{~S}_{\mathrm{t}} ; \mathrm{t}\right){ }^{\circledR} \mathrm{K}_{\mathrm{t}}
\end{aligned}
$$

where the third equality follows from equation (5). The second line relies on the linearity of the M incerian earnings function (1) in s_{i}, for otherwise! ${ }_{1}\left(\mathrm{~S}_{\mathrm{t}} ; \mathrm{t}\right)$ could not be brought outside the integral.

Dividing through by the labor share, we obtain an expression for the return to education:

$$
\begin{equation*}
!_{1}\left(S_{t} ; t\right)={ }_{1} i{ }^{-}{ }_{2} S_{t}+{ }_{3} t \tag{7}
\end{equation*}
$$

The increase in log aggregate output is equal to Mincerian rate of return to education. Or, in other words, the private return to education, as measured in a cross section analysis on individual wages, is equal to the social rate of return, as measured in a time series analysis of log aggregate output. This conclusion does not come as a surprise, since in this Walrasian world, there are no external exects of schooling decisions.

The return to education $!_{1}(\Phi)$ determines relative wages of workers with various levels of education. If ${ }_{2}$ were 0 , then the relative wages would be independent of S_{t} and workers with dixerent levels of education would be perfect substitutes. With ${ }^{-}{ }_{2}>0$, an increase in the mean level of education in the economy reduces the rate of return to education. Teulings (2001) provides a production technology that yields this implication. ${ }^{2}$

2.2 Inequality and the compression elasticity

A n increase in the level of education reduces the return on further investments in human capital by ${ }_{2} \mathrm{dS}_{\mathrm{t}}$. This fall in the return on human capital compresses wage dixerentials. We use this relation to analyze the interaction between the evolution of output and income dispersion D_{t}. For simplicity, capital income is assumed to be distributed

[^2]proportional to labor income, so that the log wage distribution and the log income distribution dixer only by their ..rst moment. We assume that $s_{i t}$ and $u_{i t}$ are jointly normally distributed, with correlation $1 / 2$ Furthermore, we assume that the variance of s_{it} is constant over time $\mathrm{V}\left(\mathrm{s}_{\mathrm{it}}\right)=\mathrm{V}$. ${ }^{3}$ We can then derive an expression for the variance of \log income $D_{t}=V\left(w_{i t}\right)$ from the Mincer equation (1).
\[

$$
\begin{align*}
D_{t} & =!_{1}\left(S_{t} ; t\right)^{2} V+2!_{1}\left(S_{t} ; t\right) V^{1=Z_{3 / / 2}+3 / 4} \\
& =\mu_{0 t} i \mu_{1 t} S_{t}+\mu_{2} S_{t}^{2} \tag{8}
\end{align*}
$$
\]

where

$$
\begin{aligned}
& \mu_{0 t}=\left({ }^{-}{ }_{1}+{ }_{3}{ }^{3}\right)^{2} V+2\left({ }^{-}{ }_{1}+{ }^{-}{ }_{3} \mathrm{t}\right) \mathrm{V}^{1=23 / 4 / 2+3 / 4} \\
& \mu_{\mathrm{It}}=2^{-}{ }_{2}\left({ }^{-}{ }_{1}+{ }^{-}{ }_{3} \mathrm{t}\right) \mathrm{V}+2^{-}{ }_{2} \mathrm{~V}^{1=2_{3 / 4} / 2} \\
& \mu_{2}=-\frac{2}{2} V
\end{aligned}
$$

The variation in income due to the education component is equal to the variance of years of education, multiplied by the return to education. The second equality follows from substitution of equation (7). Equation (8) establishes cross equation restrictions on the equations for output and income dispersion. W hen information on $1 / 23 / 4$ and V is available, these restrictions can be tested. Notice that if ${ }^{-}{ }_{2}=0, D_{t}$ would not depend on S_{t}.

The coed cient ${ }^{-}$2 relates in a simple way to earlier empirical ..ndings, like K atz and Murphy's (1992) estimate of the substitution elasticity between low- and highskilled workers of 1.4. For this purpose, we de.ne the compression elasticity ${ }^{\circ}$ as the percentage reduction in the return to human capital per percent increase in the value of its stock. This elasticity can be calculated from equations (1) and (2) as the relative reduction of the return to human capital per year increase in S_{t}, divided by the exect of this increase in the level of schooling on the log value of the stock of human capital:

Equation (9) implies that the compression elasticity is increasing in S_{t}. This implication is imposed by the quadratic speci..cation for h_{t} adopted in equation (2) and

[^3]should not be taken at face value. However, Teulings (2001) shows that the compression elasticity is indeed increasing in the level of human capital in the special case of a Leontief production technology over dixerent types of labor. ${ }^{4}$

The compression elasticity relates to the K atz and M urphy elasticity of substitution between high and low-skilled labor ' Iow-high by the following relation, see Teulings (2001):

$$
\begin{equation*}
{ }^{\circ}\left(\mathrm{S}_{\mathrm{t}} ; \mathrm{t}\right)=\frac{1}{\text { low-high } \mathrm{D}_{\mathrm{t}}} \tag{10}
\end{equation*}
$$

Using K atz and Murphy's (1992) estimate of ${ }^{\prime}$ low-high $=1: 4$ and using a typical value for wage dispersion in the United States of $D_{t} \underline{\underline{ }} 0: 36$, the compression elasticity is of the order of magnitude of 2 for the United States. We will use equations (9) and (10) to compare K atz and Murphy's estimate to our estimation results.

2.3 W hy linearity of the M incer equation is important

The interpretation of the second order exect of years of education on GDP as being caused by imperfect substitutability of worker types relies on the linearity of the M incer equation in s_{it}. In the subsequent argument, weignore technological progress and assume $u_{i t}$ and $s_{i t}$ to be uncorrelated for convenience. Suppose that workers with various levels of schooling are perfect substitutes (so $!_{0}$ and $!_{1}$ do not depend on S_{t}), but that the Mincerian earnings function (1) is concave in the years of education:

$$
\begin{equation*}
w_{i t}=w_{t}\left(s_{i t} ; u_{i t}\right)=!_{0}+!{ }_{1} s_{i t} i \frac{1}{2}!{ }_{2} s_{i t}^{2}+3 / m_{i t} \tag{11}
\end{equation*}
$$

Then, repeating the derivation of equation (7), we get:

$$
\begin{aligned}
& \frac{@_{t}}{@_{t}}=\frac{Z Z}{Z z} \frac{@_{t}(s ; u)}{@} f_{t}(s ; u) d s d u \\
& \left({ }_{1} \mathrm{i}^{-}{ }_{2} \mathrm{~S}_{\mathrm{t}}\right) \circledR{ }_{\mathrm{t}}=\left(!{ }_{1} \mathrm{i}!{ }_{2} \mathrm{~s}\right) \mathrm{W}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{f}_{\mathrm{t}}(\mathrm{~s} ; \mathrm{u}) \mathrm{dsdu}
\end{aligned}
$$

In appendix A we show that the integral has an analytic solution, and the above expression can be written as:

$$
\begin{equation*}
\left({ }_{1} i^{-}{ }_{2} S_{t}\right) \circledR{ }_{\mathrm{t}}=\frac{\mu}{!_{2} \mathrm{~V}+1} i \frac{!_{2}}{!_{2} \mathrm{~V}+1} \mathrm{~S}_{\mathrm{t}}{ }^{\text {® }} \mathrm{Y}_{\mathrm{t}} \tag{12}
\end{equation*}
$$

[^4]Hence, the model implies:

$$
-_{2}=\frac{!_{2}}{!_{2} V+1}
$$

This expression yields an alternative interpretation for ${ }^{-}$2 >0. Instead of imperfect substitution between types of labor, the negative second order exect of education on output is now interpreted as declining marginal returns to human capital for each individual worker. In this case the aggregate return to human capital also declines when the human capital stock increases since every worker moves along its schedule of declining marginal returns. We can derive an equation for income inequality D_{t} for this interpretation which is observationally equivalent to equation (8). A gain, this yields an alternative interpretation of a negative exect of S_{t} on income inequality. In fact, any combination of concavity of the Mincerian earnings function and imperfection in the substitutability of worker types can explain ${ }^{-}>0$. Data on output and the variance of log income alone do allow to disentangle both models. However, as observed by K rueger and Lindahl (2000), the abundant empirical evidence on the M incerian earnings function does not suggest any systematic non-linearities in the relation between log wages and years of schooling. We shall therefore interpret the second order exect in the log output equation as evidence that dixerent types of labor are imperfect substitutes.

3 Empirical evidence

3.1 Data sources

Our empirical analysis is largely based on data from two sources: the Barro and Lee $(1996,1993)$ data on educational attainment and the Deininger and Squire (1996) data on income inequality. These datasets were supplemented with data on real GDP per worker from the Penn World Table (Summers and Heston 1991) mark 5.6a.

The Barro and Lee dataset contains detailed data on educational attainment for 114 countries for the period 1960-1990 in intervals of 5 years. Barro and Lee report the fraction of the population that attained a certain education level, as well as the average duration of this education level. They use these data to construct the average education level of the population in years. We also calculate a rough estimate of the variance of the education distribution. ${ }^{5}$

[^5]Deininger and Squire (1996) use results from a large number of studies and assess their comparability. Their dataset contains Gini coed cients of the income distribution for 115 countries from 1947 to 1996. We use only the 'high quality' data for the pe riod 1960-1990. The 'high quality' label is provided by Deininger and Squire on the basis of three criteria: data are (i) based on a national household survey, (ii) which is representative of the population, and (iii) in which all sources of income have been counted. The total number of observations in the high quality sample is 693 . The data contain missing values due to limitations to the time period of data availability, and due to missing observations within that time period. For virtually all countries, data are available only every two or ..ve years or at irregular intervals. We construct data for 5 year intervals from 1960 to 1995 by linear inter- and extrapolation. ${ }^{6}$ This method yields a dataset containing 370 observations for 98 countries. Only for 58 countries we have three or more observations. We calculated the variance of log income from the Gini coed cients, assuming that log income is distributed normally. The details of this calculation can be found in appendix B.

Table 1 summarizes the main variables in the combined dataset. ${ }^{7}$

3.2 Direct estimates of diminishing returns to education

Before presenting the estimation results for our main dataset, we present some estimates of the exect of the mean years of schooling on the return to human capital as measured directly from individual data. In table 2 we have ranked a large number of countries
each level of schooling (1996, p.218). We can express the calculation as:

$$
S=f_{\text {pri }} S_{\text {pri }}+f_{\text {sec }}\left(D_{\text {pri }}+S_{\text {sec }}\right)+f_{\text {high }}\left(D_{\text {pri }}+D_{\text {sec }}+S_{\text {high }}\right)
$$

where S is average years of schooling in the total population, $f_{\text {level }}$ is the fraction of the population that has attained a certain education level (no education, primary education, secondary education or higher education), $\mathrm{D}_{\text {level }}$ is the typical duration of the dixerent education levels, and $\mathrm{S}_{\text {level }}$ is the average duration of a certain education level for those people that have not continued to attain a higher education level. Intuitively $\mathrm{S}_{\text {level }}<\mathrm{D}_{\text {level }}$ due to early drop-out.

The calculation of average years of schooling in this expression is just an expected value, which suggests the following proxy for the variance in education within each country (cf. Checchi 1999):

$$
V(S)=f_{p r i} S_{p r i}^{2}+f_{\text {sec }}\left(D_{\text {pri }}+S_{s e c}\right)^{2}+f_{\text {high }}\left(D_{\text {pri }}+D_{\text {sec }}+S_{h i g h}\right)^{2} i S^{2}
$$

[^6]for which such estimates of the return to schooling are available. The data are obtained from Bils and Klenow (1998) and include estimates from Psacharopoulos (1994) and other authors (sources in the table). We have plotted the return to education against the average schooling level in ..gure 1, panel A. A part from J amaica, there is a clear negative relationship between the two. The return to education is plotted against income inequality in Panel B. This relation documents that inequality is indeed strongly related to the return to education.

Table 3 presents the results for some simple regressions on these data. Obviously, these estimates should be interpreted with some care. The data in table 3 provide the best estimates that are available for many countries, but it is not clear to which extend these estimates are comparable across countries. In particular, the underlying studies dixer in whether and how they account for ability bias and measurement error. Nevertheless, the estimates are informative. They show that the return to education is about 16% for countries with an education level of zero, and decreases by about 0.7% for every year of education. For the average education level of 5.3 years in our sample, this would correspond to a return to schooling of 12%. In the US, with an average education level of 12 years of schooling in 1990, the return to education would be about 7.5%. This simple cross section analysis provides therefore ..rst evidence of the negative relation between the return to education and the mean years of schooling in the economy. The time dummies suggest that there has been skill biased technological progress from 1985 to 1990, raising the return to human capital by 4%. However, there is little action before 1985. The estimation results even suggest a negative skill bias in that period, but the results are insigni..cant. Weighting countries by log GDP per worker or log population size does not axect these conclusions.

3.3 Estimation results for GDP

We apply an error correction version of equation (4) for output as a starting point for our empirical analysis. We replace the time trends in skill biased and neutral technological progress by dummies to allow for variations in their pace. Indexing countries by j , the equation we estimate is:
where v_{t} is an error term. The short run return to human capital is ${ }^{\circ}{ }_{1 t}+2^{\circ}{ }_{2} \mathrm{~S}_{\mathrm{jt}}{ }_{1}$, while the long run return is $\left({ }^{\circ}{ }_{3 t}+2^{\circ}{ }_{4} \mathrm{~S}_{\mathrm{j}_{\mathrm{i}} \mathrm{I}}\right)= \pm \mathrm{K}$ rueger and Lindahl (2000) have shown that estimates of the return to human capital from this type of model are strongly axected by attenuation bias because of measurement error when using short time intervals. However, the longer the time interval, the greater the risk of reverse causality. As argued in the introduction, we take it to be unlikely that shocks to GDP have a major impact on the mean level education within 10 years. Hence, we apply a 10 year observation interval. This implies that we have at most 3 observations on the change in education for each country, 1960 till 1990.

Estimation results for equation (13) are reported in Table 4. Column (1) replicates K rueger and Lindahl (2000, Table 3). The results dixer slightly because we use GDP per worker rather than GDP per capita. The short run exect of 8% additional GDP per year education is roughly consistent with the micro literature on the M incerian earnings function. The long run exect takes a long time to materialize, as can be seen from the low coed cient of the level of GDP lagged. However, the long run exect is 6 times larger than the short run exect $(0.00297 / 0.00616=48$ log points increase in GDP per additional year of education), exceeding by far any estimate of the Mincerian rate of return.

Column (2) of Table 4 adds the crucial second order exect in education. Its coed cient has the expected negative sign and is signi..cant at the 5% level. The second order term is about $1 / 20$ of the ..rst order term, both for the short and the long run terms. This ratio of one over 20 will be a recurrent theme in all our estimates. This regression implies a return to education in the range of -1.7% to 10% for an average education level of 12 to 4 years. When we allow for skill biased technological change as in column (3) the coed cient ${ }^{\circ}{ }_{1}$ seems to increase substantially, but this is because the reference category for the time dummy interactions is 1990. Although the short run cross-exects of time dummies and education are not very precisely measured, they provide some information regarding the nature of technological progress. Their negative sign is evidence of skill biased technological progress: keeping constant the average education level, the return to education has gone up over the period. The pace of skill biased technological progress increased dramatically during the eighties, raising the return by as much as 6.7%. To get some idea about the size of the impact of skill biased technological progress, we can use the second order term for education to calculate the increase in average years of education that is required to oxset this increase: $\frac{0: 067}{200: 0085}=4$ years. The exect of skill biased technological progress on the return to schooling in the eighties (one decade) was about twice as high as the exect of the increase in the average education level over the
whole sample period (three decades). The long run coed cients yield a similar picture. Note however that the long run return to education is still 6 times higher than the short run return.

We report some speci..cation tests in columns (4) through (6). Column (4) adds the variance in the years of education. This does not axect the results. In columns (5) and (6) observations are weighted by log GDP per worker and log population size respectively. A gain, this does not make much dixerence. The WLS estimates show that our results are not driven by a few very poor or very small countries, and are consistent with tests that show that there is no heteroskedasticity in the residuals.

We also estimated the model with random and ..xed exects. These regressions strongly suggest the presence of country speci..c ..xed exects. This does not come as a surprise. Gallup, Sachs and M ellinger (1999) have shown the importance of geography for growth and GDP. A ccess to open sea or navigable rivers is an important advantage. Countries with a temperate climate do much better than countries in the tropical zone. The authors present evidence that the exect of climate is likely to be due to tropical diseases, in particular malaria. Where these factors are largely ..xed (there is some reduction in the number of countries where malaria is endemic), we should allow for ..xed exects in our estimation.

OLS estimation of equation (13) is inconsistent in the presence of ..xed exects as $y_{t_{i}} 1$ is correlated with the ..xed exect. Also, OLS in ..rst dixerences would be inconsistent because of the lagged dependent variable. We therefore use the methodology set out in Blundell and Bond (1998). We respecify equation (13) as:

$$
\begin{align*}
y_{j t}= & { }^{\circ}{ }_{0 t}+\left(1_{i} \# y_{j t_{i} 1}+{ }^{\circ}{ }_{1 t} S_{j t i}\left({ }^{\circ}{ }_{1 t} i \quad{ }^{\circ}{ }_{3 t}\right) S_{j t_{i} 1}\right. \\
& +{ }_{2} S_{j t}^{2} i \quad\left({ }_{2} i^{\circ}{ }_{4}{ }_{4}\right) S_{j t_{i} 1}^{2}+f_{j}+{ }^{2}{ }_{j t} \tag{14}
\end{align*}
$$

where we assume:

$$
\begin{aligned}
& E\left[" j f_{j}\right]=0 \\
& E\left[" j t " j t_{i} s\right]=0 \\
& \text { for } s \in 0 \\
& E\left[" j t S_{j} t_{i} s\right]=0 \\
& \text { for } s, 0
\end{aligned}
$$

The third assumption re \ddagger ects our identifying assumptions that shocks "jt in log GDP take at least ten years to have a signi..cant exect on S_{t}. The eф cient GMM estimator of equation (14) uses the following moment conditions (A rellano and Bond 1991)

$$
\begin{aligned}
E\left[\${ }_{j j t} y_{j t_{i}}\right] & =0 \text { for } s, 2 \\
E\left[\${ }_{j t} S_{j t} s\right] & =0 \text { for } s, 1
\end{aligned}
$$

which follow directly from our assumptions on the error term above. We estimated this model using the DPD98 for Gauss package (A rellano and Bond 1998). Table 5 gives the estimation results. Column (1) is identical to column (3) in table 4, but now presented in levels as in equation (14). Column (2) repeats column (1) in ..rst dixerences. Both estimators are inconsistent. Column (3) presents the GM M estimation results using the above moment conditions. The results are insigni..cant, as was to be expected given the small number of observations and short time dimension of our data.

Blundell and B ond (1998) suggest jointly estimating equation (14) in ..rst dixerences and in levels. This results in an ed ciency gain, particularly in panels with a short time dimension, because the estimator uses additional moment conditions. We have to make one additional assumption:

$$
E\left[f_{j} \not \subset S_{j t}\right]=0
$$

Then, two additional moment conditions are available:

$$
\begin{aligned}
& E\left[\left(f_{j}+"_{j t}\right) \notin y_{j t_{i} s}\right]=0 \text { for } s, 1 \\
& E\left[\left(f_{j}+{ }_{j j t}\right) \notin S_{j t_{i} s}\right]=0 \text { for } s, 0
\end{aligned}
$$

Columns (4) and (5) present the estimation results using all moment conditions, where we use a two step procedure to account for the covariance structure in the error terms in column (5). We take column (5) as the benchmark for our discussion. The Sargan test-statistic for the validity of instruments is 12.65 with 12 degrees of freedom (p-value is 39.5%), accepting the over-identifying restrictions. The ratio of the ..rst and second order term of S_{t} is still about 20, both for the contemporaneous and the lagged exect. However, the long run exect is now much closer to the short run exect than in Table 4: the short run exect of the ..rst order term is $0: 46$ and the long run exect $\frac{0: 46 \mathrm{i}}{1_{\mathrm{i}} 0: 13} 0=0: 89$, less than 2 times the short run return. This is as close as our analysis will bring us to the Mincerian wage equation. Finally, there is clear evidence of skill biased technological progress, raising the return to education by about 4.5% during the eighties and about 3.5% during the nineties (keeping constant the mean level of education).

The estimate for the diminishing returns to education ${ }^{-}{ }_{2}=2^{\circ}{ }_{2}=\mathrm{i} 0: 048$ is about 7 times higher than the direct estimate in table 3. The combination of allowing for ..xed exects and skill biased technological change is crucial for this result. There is a clear intuition for this. Geography gives some nations an initial advantage over others. These countries can axord a higher level of investment in human capital, raising their level of S_{t}. Hence, S_{t} is correlated with the ..xed exect and is likely to pick up some of the exects
of geography in a regression without ..xed exects. Next, countries with a high level of S_{t} see their initial advantage increased by skill biased technological progress. W hen we do not allow for this type of technological progress by including time dummies crossed with S_{t}, this exect shows up as endogenous growth due to a high initial level of education. A combination of Tinbergen's race between education and technology, Mincer's return to human capital and Gallup, Sachs and M ellinger's geography gives therefore a ..ne description of the evolution of GDP between 1960 and 1990.

The returns to education by decade, evaluated at the average education level across countries in our sample are as follows.

	1970	1980	1990
Average education level S_{t}	3.83	4.56	5.32
R eturn to Education	19.9%	20.8%	20.6%

Notice that the numbers are not strictly comparable over time because some countries do not have data on education for the whole sample period. The number for 1980 is about twice times K rueger and Lindahl's estimate of 8.5%. However, the return is much lower in the OECD countries. It is even negative for the country with the highest education level, the United States ($S_{t}=12$ in 1990). ${ }^{8}$ A 0.8 year increase in the mean value of S_{t} during eighties su申 ces to oxset the exect of skill biased technological progress, which seems to be a more realistic number than the 4 years calculated on the basis of table 3. The race between education and technology has no clear winner: the upward exect of technology is oxset by the increase in the average education level across the world.

From equation (9) we can calculate the compression elasticity evaluated at the average education level in 1990 using the estimates of column (5): ${ }^{\circ}(5: 3 ; 1990)=1: 14$. This is lower than the value of 2 implied by K atz and Murphy's (1992) estimate of the elasticity of substitution between highly and low-skilled workers. However, their estimate applies to the United States. We cannot calculate the complexity dispersion parameter for the United States due to its estimated negative rate of return to human capital, but theory suggests that the complexity dispersion parameter is increasing in S_{t}, see the discussion in Section 2.2. Hence, our estimation results are reasonably consistent with K atz and Murphy's elasticity of substitution.

As pointed out by K rueger and Lindahl (2000), a shorter observation period exacerbates the consequences of measurement error in $¢ \mathrm{~S}_{\mathrm{t}}$. In table 6 we report the estimation

[^7]results for K rueger and Lindahl's speci..cation and for our baseline regression (table 4, column 3) using 5, 10 and 20 year changes. Reading the table horizontally, we see that the coed cient estimates for ϕS_{t} and $\phi{ }^{1} S_{t}^{2}{ }^{\dagger}$ increase as we use longer time intervals. From column (1) to column (3) the number of observations drops from 607 to 292. Nevertheless the signi..cance of the parameter estimates increases substantially. The long run coed cients do not change much. Moving from a 10 to a 20 year observation period raises the coed cients even further, though not by far as much as in K rueger and Lindahl's speci..cation. This result is problematic for the conclusions of Krueger and Lindahl. M easurement error provides a justi..cation for using long time intervals, but there is no clear rule as to how long the interval should be. Whereas the long run return is 6 times higher than the short run return when measured by using 10 year intervals, one can increase the estimate of the short run return to almost any level by using longer and longer time dixerence intervals. Therefore, the smaller dixerence between long and short run return and the lower sensitivity of the estimation results to the dixerencing interval applied, makes one feel more comfortable about the interpretation of the results. Columns (7) and (8) repeat the estimations for 20 year time interval with the K yriacou (1991) data for education. The results are largely similar to the B arro and Lee education data.

Table 7 presents a robustness check. Our results might be driven by a few countries with exceptionally high growth rates and exceptionally high investment in human capital, both persisting over the whole 30 year period covered. This would open a channel for reverse causality by the following story: some countries grow fast over prolonged period, and use their additional revenues to invest in education. In that case, the increase in the average level of education in this observation period is just a predictor of the raise in education during the previous observation period. Hence, we exclude ..rst the 10 highest and lowest observations on $\$ y_{t} ; \phi S_{t} ; y_{t}$ and S_{t} in a number of regressions. Obviously, this compression of the variation in the data reduces the signi..cance of the coed cients. However, the crucial coed cient ${ }^{\circ}{ }_{2}$ never changes sign and is quite stable.

3.4 Estimation results for inequality

As starting point, we estimate an extended version of equation (8):

$$
\begin{equation*}
D_{j t}=\mu_{0 t}+\mu_{\mathrm{lt}} S_{j t}+\mu_{2} S_{j t}^{2}+\mu_{3} V_{j t}+"_{j t} \tag{15}
\end{equation*}
$$

where we added V_{jt} as a control variable as discussed in section 2.2. A gain, we use a ten year observation period. The data on income inequality are less comparable across
countries than the data on GDP growth and education level. In particular, the Gini coed cients in the Deininger and Squire dataset are based on dixerent de..nitions: some use income and others expenditure data, some are based on the household as a reference unit and others on the individual, some are based on gross and others on net income. As suggested by Deininger and Squire (1996) we include dummy variables in the regressions to control for changes in the de..nition of the income variable.

The OLS estimation results for equation (15) are reported in table 8. Columns (1) to (3) present results for the model in levels. Column (1) presents the full model. The main variables S_{t} and $\mathrm{S}_{\mathrm{t}}^{2}$ have the expected sign, though the latter is not signi..cant. Note however, that just the signi..cance of $\mu_{1 t}$ is sut cient evidence for ${ }^{-}>0$, since neither S_{t} nor S_{t}^{2} would have any exect on income dispersion if ${ }_{2}=0$. If the correlation $1 / 2$ between $u_{i t}$ and $s_{i t}$ were zero, the model would imply that the ..rst and second order exects in this regression dixer by the same ratio as the ..rst and second order exects in the GDP equation: $\frac{\mu_{2}}{\mu \mathrm{Lt}}=\frac{\frac{1}{-}^{-}{ }^{-}{ }^{2}}{1 t}=\frac{0^{2}}{\partial_{1 t}}$, see equation (8). In our estimates of the GDP equation we found a rather robust ratio of one over 20 between the second and ..rst order exects. In column (1), this ratio is much lower. This would be consistent with a positive correlation between years of schooling and other worker characteristics, $1 / 2>0$, but due to the lack of precision in the measurement of μ_{2}, we cannot draw strong conclusions. This is documented by the results in column (2): dropping the time variation in $\mu_{1 t}$ raises μ_{2} by a factor 2 . We take column (2) as a benchmark.

Testing cross equation restrictions between (8) and (13) requires information on $\mathrm{V} ; 1 / 2$ and $3 / 4$ An estimate for V can be found in table 1: V $\underline{\underline{2}} 12: 6$. Since we do not have a reliable estimate for $1 / 2$ the subsequent calculations are based on $1 / 2=0 .{ }^{9}$ The estimation results in column (5) of table 5 for 1990 imply:

$$
\begin{aligned}
& \mu_{\mathrm{It}}=2^{-}{ }_{2}\left({ }^{-}{ }_{1}+{ }_{3}{ }_{3} \mathrm{t}\right) \mathrm{V}=4^{\circ}{ }_{2}{ }^{\circ}{ }_{1 \mathrm{t}} \mathrm{~V}=0: 57 \\
& \mu_{2}=-2 \mathrm{~V}, ~ \\
& \mathrm{~V}=4^{\circ}{ }_{2}^{2} \mathrm{~V}=0: 03
\end{aligned}
$$

The estimated values for μ_{lt} in column (2) of table 8 are a factor 7 smaller than what one would expect on the basis of estimate of the GDP growth equation. The estimate for μ_{2} is a factor 18 too small.

[^8]Two remarks are in place here. First, the estimates for μ_{1} and μ_{2} (in absolute value) are positively correlated: a low estimate for μ_{1} generates a low estimate for μ_{2} as well. Constraining the ratio between the ..rst and second order exect to 20 , the estimate goes up to $\mu_{1}=$ i $0: 15$ (t_{i} value: 9:39), reducing the dixerence with its expected value on the basis of the GDP model to a factor 4.

Second, in the derivation of equation (8) we assumed that capital income is distributed proportionally to labor income. This assumption is clearly incorrect. Since capital income accounts for a large share on income inequality and since inequality is unrelated to the return to human capital, the empirical exect of S_{t} on inequality can be expected to be smaller than predicted by equation (8).

The proxy for the variance of the schooling distribution that we include as a control variable in the regressions is insigni..cant. This suggests that the direct exect of schooling on the income distribution (a more homogeneous human capital distribution leads to less income dispersion) is less important than the indirect, general equilibrium exect (a higher average education level reduces the return to human capital and therefore compresses the income distribution). However, since we only have a crude proxy for the variance of education, we may expect its coed cient to be attenuated towards zero. In any case its inclusion does not axect the other coed cient estimates.

Column (3) enters ..xed exects as a robustness check. Though the sign of the coed cients remains consistent with the model, they are no longer signi..cant. An alternative way to eliminate country speci..c exects is by ..rst dixerencing equation (15). Estimation results for this model are presented in columns (4) trough (7). Column (4) presents the results when both S_{t} and S_{t}^{2} are included. Both μ_{lt} and μ_{2} are insigni..cant, but have the expected sign. Column (5) presents the most robust test of the model: testing ${ }^{-}{ }_{2}>0$ by entering only S_{t} while allowing for ..xed country exects by ..rst dixerencing. The coed cient for S_{t} is signi..cant.

The positive and signi..cant intercept documents a rising trend in income inequality, keeping education constant. This trend can be explained by the exect of skill biased technological progress. Using the results in column (5) we can evaluate the size of this
 estimate ${ }_{2}={ }_{3}$ as the ratio of the coe \downarrow cient for $\$ \mathrm{~S}_{\mathrm{t}}$ and the constant term, yielding ${ }^{-}{ }_{2}={ }_{3}=5: 6$. From the GDP regression in table 5, column (5) we can retrieve ${ }_{2} \overline{-}_{3}$ as $2 £$ the coe \downarrow cient on $\phi^{i} \mathrm{~S}_{\mathrm{t}}{ }^{\dagger}$ divided by estimate for skill biased technological progress, that is, 3.5% per decade. Hence ${ }^{-} \overline{-}_{3}=1: 4$. Based on the estimates for GDP one would have expected a four times higher intercept in the inequality regression. This calculation indicates that there are other factors compressing inequality, which oxset
the exect of skill biased technological progress.
Columns (6) and (7) present results when we weigh observations by log GDP per worker and log population size. Like in the GDP growth equation, this does not make a lot of dixerence. We present a ..nal robustness check in column (8). As pointed out by Atkinson and Brandolini (1999), additive dummy variables may be insuł cient to control for changes in de..nitions of the Gini coed cient. We therefore dummied all 21 observations with a de..nitional change separately. This correction is clearly asking too much from the data (the number of observations is only 77), and all coeq cient estimates become insigni..cant, though the coe cient for $\$ S_{t}$ still has the expected sign.

3.5 Inequality and growth

The positive exect of education on GDP and its negative exect on inequality imply a negative correlation between inequality and GDP. We estimated the global average return to education at around 21%, and the exect of education on the variance of the log income distribution at around -8\% (evaluated at the average education level $\mathrm{S}_{\mathrm{t}}=4: 56$ in 1980). These estimates imply a correlation between GDP and the variance of log wages of

$$
\operatorname{Corr}\left(y_{j t} ; D_{j t}\right)=\frac{i 0: 08 ₫ 0: 21 \Phi V\left(S_{j t}\right)}{V\left(y_{j t}\right)^{i=2} V\left(D_{j t}\right)^{i=2}}=i 0: 42
$$

where we used the variance of the average education level across countries and time, and the standard deviations of $y_{j t}$ and $D_{j t}$ from table 1. The observed correlation between $y_{j t}$ and $D_{j t}$ in our sample is $; 0: 20$, and the correlation between $\$ y_{j t}$ and $\phi D_{j t}$ is $\mathbf{0} 0: 29$.

M ost of the existing literature has focused on the relation between inequality and GDP growth (see B énabou 1996 for a survey). However, since GDP growth is correlated with the level of GDP (correlation coed cient 0.24), the negative correlation between $\$ y_{j t}$ and $D_{j t}$ (correlation is ; 0:13) that has spurred this literature, may very well be due to the negative correlation between $y_{j t}$ and D_{jt} caused by education and possible other third factors. Instead, the literature has focused on a causal relation between inequality and growth, an approach that has recently been questioned by Quah (2001). Quah argues that because most of the variation in inequality is across countries and most of the variation in growth is across time, it is unlikely that inequality has an empirically relevant exect on growth. Our results oxer support for this argument. Modelling GDP and inequality as being jointly determined by education implies an even larger negative correlation than is observed in the data. This approach seems more promising than looking for a causal relation between inequality and growth or vice versa.

4 Concluding remarks

We have shown that the evolution of GDP, the Gini coed cient and the rate of return to education can be captured by a simple Walrasian model of imperfect substitution between workers with various levels of education in the presence of skill-biased technological progress. Human capital enters as a factor of production in this simple constant returns to scale Cobb-Douglas economy. We derived easy to interpret relations between educational attainment, GDP and income inequality that can be estimated from crosscountry panel data.

Our empirical results provide strong support for the negative relation between the supply of human capital and its return. The implied return to schooling in dixerent countries is well in line with evidence from micro data. Our estimates provide a simple explanation for the negative correlation between inequality and growth based on the comovement of these variables with the average education level. Our results suggest that this mechanism is quantitatively more important than a causal relationship between inequality and growth.

A Non-linear Mincer equation

To get expression (12) in the text, we ..rst used the assumption that s_{it} and u_{it} are uncorrelated to integrate out over u

Z Z

$$
\left(!{ }_{1} i!{ }_{2} s\right) W_{t}(s ; u) f_{t}(s ; u) d s d u
$$

$$
\begin{aligned}
& =Z^{Z Z}\left(!_{1} i \quad!_{2} s\right) \exp { }^{i}!_{0}+!{ }_{1} s i \frac{1}{2}!{ }_{2} s^{2}+3 / 41^{\phi} f_{t}(s) f(u) d s d u
\end{aligned}
$$

Second, notice that since $f_{t}(s)$ is the pdf of a normal (with mean S_{t} and variance V), $\exp ^{\prime}!{ }_{0}+!{ }_{1}$ S i $\frac{1}{2}!{ }_{2} s^{2}+\frac{1}{2} 3 /{ }_{4}^{4} f_{t}(s)$ can be rewritten as a constant A_{t}^{α} times the pdf of a normal with mean ${ }^{1} \underset{t}{d}$ and variance $V{ }^{\text {a }}$

$$
\begin{aligned}
& =p \frac{1}{2^{1 / A /}} \exp !_{\tilde{A}}+!_{1} S i \frac{1}{2}!{ }_{2} S^{2}+\frac{1}{2} 3 / 4 / 4 \frac{1}{2} \frac{(S i S t}{} S^{2}!
\end{aligned}
$$

where

$$
{ }_{1}{ }_{t}^{\mathrm{a}}=\frac{!_{1} V+S_{t}}{!_{2} V+1}
$$

Furthermore, from equation (5) we have

$$
{ }^{\circledR} Y_{t}={ }^{Z} W_{t}(s ; u) f_{t}(s ; u) d s d u={ }^{Z} \exp ^{i^{\prime}}!_{0}+!_{1} s i \frac{1}{2}!{ }_{2} s^{2}+\frac{1}{2} 3 /{ }_{4}{ }^{\dagger} f_{t}(s) d s=A_{t}^{a}
$$

Hence
Z Z

B Gini coed cient and the variance of log income

 Let $W 2{ }^{f} \underline{W} ; \bar{W}^{\text {a/ }}$ denote income with density $f(W)$, distribution function $F(W)$ and mean $\mathrm{M} . \mathrm{F}(\mathrm{W})$ measures the share of the population with income lower than W. Let $Z(W)$ denote the cumulative share of total income earned by people with income lower than W. By de..nition:$$
\begin{equation*}
Z(W)=\frac{1}{M}_{\underline{W}}^{Z V} x f(x) d x \tag{16}
\end{equation*}
$$

The graph of the Lorenz curve has $\mathrm{F}(\mathrm{W})$ on the horizontal and $\mathrm{Z}(\mathrm{W})$ on the vertical axis. The Gini coed cient $\mathrm{G} 2[0 ; 1]$ is given by twice the area between the Lorentz curve and the 45-degree line.

$$
G=1 i_{0}^{Z 1} Z d F=2_{0}^{Z 1} F d Z i 1
$$

By change of variables, using $d Z=\frac{1}{\mathrm{M}} \mathrm{Wf}(\mathrm{W}) \mathrm{dW}$, this expression can be written as:

$$
G=\frac{2}{M}^{\overline{W V}} W f(W) F(W) d W_{i} 1
$$

w

Assume income to be log normally distributed so that $F(W)=C^{i} \frac{w_{i^{1}}{ }^{1 / 4}}{} \$$ and $M=$ $\mathrm{e}^{1+\frac{1}{2} 3 / 4}$, where $\mathrm{w}^{\prime} \ln W$ and ${ }^{1}$ and $3 / 4$ are the mean and variance of w. By change of variables $\left.v=\frac{w_{i}{ }^{1}}{3 / 4}\right) \quad d W=3 / e^{3 / V+1} d v$, the Gini coed cient can written as:
which maps the Gini coed cient to the variance of the log income distribution 3/4. Numerically evaluating this expression for dixerent values of $3 / 4$ shows that the relationship is virtually linear in the relevant range. Variances of log income of $0,0.1,0.2,0.3$ and 0.4 correspond to G ini coed cients of $52.05,56.33,60.39,64.20$ and 67.78 respectively.

R eferences

[1] A cemoglu, Daron \& J oshua A ngrist (1999). How large are Social Returns to Education? Evidence from Compulsory Schooling Laws. NBER W orking Paper No.7444.
[2] A rellano, Manuel and Steve Bond (1991). Some Tests of Speci..cation for Panel Data: M onte Carlo Evidence and an A pplication to Employment Equations. Review of Economic Studies, vol. 58 no.2, pp. 277-297.
[3] A rellano, M anuel and Stephen B ond (1998). Dynamic Panel Data Estimation Using DPD98 for Gauss. mimeo, available at: http:// www.cem...es/ ~arellano/
[4] Atkinson A.B. and A. Brandolini (1999). Promise and Pitfalls in the Use of "Secondary" Data-Sets: Income Inequality in OECD Countries. mimeo, available at: http:// www.nux.ox.ac.uk/ economics/ people/ atkinson.htm or: http:// www.bancaditalia.it/ pubblicazioni/ temidi
[5] Barro, Robert J. and X avier Sala-i-M artin (1999). E conomic Growth. Cambridge MA: MIT Press (..rst MIT Press edition, originally published by McGraw-Hill, 1995).
[6] Barro, Robert J. and J ong Wha Lee (1993). International Comparisons of Educational Attainment. Journal of Monetary Economics, vol. 32 no.3, pp.363-394 (dataset available at: http:// www.worldbank.org/ research/ growth/ ddbarlee.htm).
[7] Barro, Robert J. and Jong Wha Lee (1996). International Measures of Schooling Years and Schooling Quality. American Economic Review, vol. 86 issue 2 Papers and Proceedings May 1996, pp.218-223 (dataset available at: http://www.nber.org/data or http:// www.worldbank.org/ research/ growth/ ddbarle2.htm).
[8] Bénabou, Roland (1996). Inequality and Growth. In: NBER M acroeconomics Annual 1996, Ben S. Bernanke and Julio Rotemberg (eds.). Cambridge MA: MIT Press. Also available as NBER W orking Paper No.5658.
[9] Benhabib, Jess and M. Spiegel (1994). The Role of Human Capital in Economic Development: Evidence from A ggregate Cross-C ountry Data. J ournal of M onetary Economics, vol. 34 no.2, pp.143-174.
[10] Bils, Mark and Peter J. K Ienow (1998) Does Schooling Cause Growth or the Other Way Around? NBER Working Paper No.6393.
[11] Blundell, Richard and Stephen Bond (1998). Initial Conditions and Moment Re strictions in Dynamic Panel Data M odels. J ournal of E conometrics, vol. 87, pp.115143.
[12] Card, David (1999). The Causal Exect of Education on Earnings. Chapter 30 in the Handbook of Labor Economics, Volume 3, O. A shenfelter and D. Card (eds.). Amsterdam: Elsevier.
[13] Checchi, Daniele (1999). Does Educational Achievement Help to Explain Income Inequality? mimeo, Università degli Studi di Milano Bicocca. Available at http:// www.eco-dip.unimi.it/ pag_ pers/ checchi/ checchi1.htm.
[14] Checchi, Daniele (2000). Inequality in Incomes and Access to Education. A CrossCountry Analysis (1960-1995). mimeo, Università degli Studi di Milano Bicocca. A vailable at http:// www.eco-dip.unimi.it/ pag_ pers/ checchi/ checchi1.htm.
[15] Checchi, Daniele and Luca Flabbi (1999). Income and Educational Distribution Dataset: Various Countries in Panel Format (description of the dataset, data available at: http:// www.eco-dip.unimi.it/ pag_ pers/ checchi/ checchi.htm)
[16] Deininger, K laus and Lyn Squire (1996). A New Data Set M easuring Income Inequality. W orld Bank Economic Review, vol. 10 no.3, pp.565-591 (dataset available at: http:// www.worldbank.org/ research/ growth/ dddeisqu.htm).
[17] Gallup, J.L., J.D. Sachs and A.D. M ellinger (1999). Geography and economic de velopment. NBER W orking Paper No.6849.
[18] Heckman, James J. and Peter J. K Ienow (1997). Human Capital Policy. mimeo, University of Chicago. A vailable at: http:// www.klenow.com/.
[19] K atz, Lawrence F. and K evin M. M urphy (1992). Changes in Relative Wages, 19631987: Supply and Demand Factors. Quarterly J ournal of Economics, vol. 107 issue 1, pp.35-78.
[20] K rueger, Alan B. and Mikael Lindahl (2000). Education for Growth: Why and For Whom? NBER W orking Paper No.7591. Forthcoming in J ournal of Economic Literature, vol. 39 nr. 4 (Dec 2001).
[21] Kyriacou, George (1991). Level and Growth Exects of Human Capital: A Cross-Country Study of the Convergence Hypothesis. New York University C.V. Starr Center for Applied Economics Working Paper RR 9126 (www.econ.nyu.edu/ working) (dataset available on request).
[22] O'Neill, Donal (1995). Education and Income Growth: Implications for CrossCountry Inequality. J ournal of P olitical Economy, vol. 103 no.6, pp.1289-1301.
[23] P sacharopoulos, G. (1994). Returns to Investment in Education: A Global Update. W orld Development, vol. 22 no.9, pp.1325-1343.
[24] Quah, Danny (2001). Some simple arithmetic on how income inequality and economic growth matter. mimeo, LSE: 11 June 2001. Available at: http:// econ.Ise.ac.uk/ staw/dquah/ .
[25] Summers, Robert and Alan Heston (1991). The Penn World Table (Mark 5): An Expanded Set of International Comparisons, 1950-1988. Quarterly J ournal of E conomics, vol. 106 no.2, pp. 327-368 (the new dataset, mark 5.6a, is available at: http:// pwt.econ.upenn.edu or http:// www.nber.org/ data).
[26] Teulings, Coen N. (2001). Comparative Advantage, Relative W ages, and the Accumulation of Human Capital. mimeo, Erasmus University Rotterdam / Tinbergen Institute.
[27] Tinbergen, J an (1975). Income Distribution: A nalysis and Policies. Amsterdam: North Holland.

Table 1. Description of the main variables in the dataset

Variable	Obs	Mean	Std.Dev.	Min	Max	Description and source
y_{t}	1060	8.611	1.037	6.122	11.172	Log real GDP per worker, 1985 intl. prices, Chain index (PWT 5.6a).
Δy_{t}	429	0.021	0.027	-0.066	0.101	10 year changes in real GDP per worker. (annualized)
D_{t}	370	0.560	0.319	0.100	1.552	Variance of log income. Calculated from Gini coefficient income distribution (Deininger and Squire).
ΔD_{t}	92	0.000	0.017	-0.052	0.051	10 year changes in variance of income. (annualized)
S_{t}	775	4.240	2.848	0.040	12.000	Average years of education attained by the population over 25 years of age (Barro and Lee).
ΔS_{t}	328	0.066	0.066	-0.225	0.387	10 year changes in average years of education. (annualized)
V_{t}	662	12.657	5.834	1.043	35.823	Variance of the education distribution (rough estimate constructed on the basis of Barro and Lee data).
ΔV_{t}	273	0.249	0.297	-0.888	1.361	10 year changes in variance of education. (annualized)

Table 2. Return to education in several countries

PWT 5.0 country code	Country		Average years of schooling population over 25 year educ. level		Return to Education year ret. to educ	
123	Poland	POL	85	8.7	86	. 024
126	Sweden	SWE	80	9.45	81	. 026
114	Greece	GRC	85	6.89	85	. 027
118	Italy	ITA	85	5.75	87	. 028
107	Austria	AUT	85	7.17	87	. 039
115	Hungary	HUN	85	7.93	87	. 039
50	Canada	CAN	80	10.23	81	. 042
83	China	CHN	85	4.04	85	. 045
110	Denmark	DNK	90	11.21	90	. 047
89	Israel	ISR	80	9.11	79	. 057
85	India	IND	80	2.72	81	. 062
131	Australia	AUS	80	10.02	82	. 064
121	Netherlands	NLD	85	8.29	83	. 066
41	Tanzania	TZA	80		80	. 067
127	Switzerland	CHE	85	8.99	87	. 072
68	Bolivia	BOL	90	4.11	89	. 073
113	Germany West	DEU	90	8.83	88	. 077
53	Dom. Rep.	DOM	90	3.76	89	. 078
117	Ireland	IRL	85	7.87	87	. 079
78	Venezuela	VEN	90	4.89	89	. 084
75	Peru	PER	90	5.5	90	. 085
21	Kenya	KEN	80	2.46	80	. 085
77	Uruguay	URY	90	6.69	89	. 09
104	Thailand	THA	70	3.54	71	. 091
66	USA	USA	90	12	89	. 093
94	Malaysia	MYS	80	4.49	79	. 094
124	Portugal	PRT	85	3.45	85	. 094
29	Morocco	MAR	70		70	. 095
54	El Salvador	SLV	90	3.4	90	. 096
129	UK	GBR	70	7.66	72	. 097
97	Pakistan	PAK	80	1.74	79	. 097
61	Nicaragua	NIC	80	2.83	78	. 097
109	Cyprus	CYP	85	7.56	84	. 098
72	Ecuador	ECU	85	5.36	87	. 098
74	Paraguay	PRY	90	4.72	89	. 103
51	Costa Rica	CRI	90	5.4	89	. 105
92	Korea	KOR	85	8.03	86	. 106
67	Argentina	ARG	90	7.77	89	. 107
100	Singapore	SGP	75	4.38	74	. 113
98	Philippines	PHL	90	6.73	88	. 119
70	Chile	CHL	90	6.16	89	. 121
4	Botswana	BWA	80	2.29	79	. 126
62	Panama	PAN	90	7.55	89	. 126
125	Spain	ESP	90	6.25	90	. 13
60	Mexico	MEX	85	4.34	84	. 141
56	Guatemala	GTM	90	2.56	89	. 142
71	Colombia	COL	90	4.25	89	. 145
69	Brazil	BRA	90	3.56	89	. 154
86	Indonesia	IDN	80	3.09	81	. 17
58	Honduras	HND	90	3.68	89	. 172
20	Cote d'Ivoire	CIV	85		85	. 207
59	Jamaica	JAM	90	4.51	89	. 28

Education data from Barro and Lee. Return to education data from Bils and Klenow (1998).
Original sources return to education: Rosholm and Smith 1996 (Denmark), Calan and Reilly 1993 (Ireland),
Armitage and Sabot 1987 (Kenya and Tanzania), Alba-Ramirez and San Segundo 1995 (Spain), Arai 1994
(Sweden), Chiswick 1977 (Thailand), Krueger and Pischke 1992 (USA and Germany) and Psacharopoulos 1994
(all other countries); see Bils and Klenow for full references.

Table 3. Direct estimates of diminishing returns to schooling (OLS estimates)

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS excl. Jamaica	$\begin{gathered} \text { WLS } \\ (\mathrm{GDP} / \mathrm{w}) \end{gathered}$	WLS (GDP/w) excl. Jamaica	WLS (population)	WLS (population) excl. Jamaica
S_{t}	$\begin{array}{r} -0.00708 \\ (3.23) \end{array}$	$\begin{array}{r} -0.00638 \\ (3.68) \end{array}$	$\begin{array}{r} -0.00721 \\ (3.41) \end{array}$	$\begin{array}{r} -0.00649 \\ (3.86) \end{array}$	$\begin{array}{r} \hline-0.00673 \\ (3.18) \end{array}$	$\begin{array}{r} -0.00614 \\ (3.49) \end{array}$
(year=70)	$\begin{array}{r} -0.02297 \\ (0.81) \end{array}$	$\begin{array}{r} -0.01538 \\ (0.69) \end{array}$	$\begin{array}{r} -0.02100 \\ (0.75) \end{array}$	$\begin{array}{r} -0.01382 \\ (0.62) \end{array}$	$\begin{array}{r} -0.02247 \\ (0.85) \end{array}$	$\begin{array}{r} -0.01620 \\ (0.74) \end{array}$
(year=80)	$\begin{array}{r} -0.03538 \\ (2.49) \end{array}$	$\begin{array}{r} -0.02759 \\ (2.44) \end{array}$	$\begin{array}{r} -0.03542 \\ (2.52) \end{array}$	$\begin{array}{r} -0.02819 \\ (2.51) \end{array}$	$\begin{array}{r} -0.03556 \\ (2.55) \end{array}$	$\begin{array}{r} -0.02902 \\ (2.49) \end{array}$
(year=85)	$\begin{array}{r} -0.04061 \\ (3.06) \end{array}$	$\begin{array}{r} -0.03381 \\ (3.21) \end{array}$	$\begin{array}{r} -0.04012 \\ (3.13) \end{array}$	$\begin{array}{r} -0.03365 \\ (3.28) \end{array}$	$\begin{array}{r} -0.04270 \\ (3.30) \end{array}$	$\begin{array}{r} -0.03700 \\ (3.42) \end{array}$
Constant	$\begin{array}{r} 0.15663 \\ (10.33) \\ \hline \end{array}$	$\begin{array}{r} 0.14513 \\ (11.95) \\ \hline \end{array}$	$\begin{array}{r} 0.15725 \\ (10.50) \\ \hline \end{array}$	$\begin{array}{r} 0.14591 \\ (12.07) \\ \hline \end{array}$	$\begin{array}{r} 0.15451 \\ (10.34) \\ \hline \end{array}$	$\begin{array}{r} 0.14490 \\ (11.54) \\ \hline \end{array}$
Observations	49	48	49	48	49	48
R -squared	0.36	0.40	0.37	0.41	0.36	0.39

Absolute value of t statistics in parentheses. Dependent variable is the Return to Education as in table 2. WLS regressions are weighted by \log GDP per worker or log population size. The dummy for 1975, and the dummy for 1985 in column (6), was dropped because there were no observations.

Table 4. GDP growth equation

	$\begin{aligned} & \text { (1) } \\ & \text { OLS } \end{aligned}$	$\begin{aligned} & (2) \\ & \text { OLS } \end{aligned}$	(3) OLS (baseline model)	(4) OLS with V[educ]	$\begin{gathered} \text { (5) } \\ \text { WLS } \\ (\mathrm{GDP} / \mathrm{w}) \end{gathered}$	(6) WLS (population)
ΔS_{t}	0.08546	0.17025	0.24335	0.24508	0.24717	0.24814
	(4.11)	(3.25)	(3.84)	(3.09)	(3.94)	(3.99)
$\Delta\left(S_{t}^{2}\right)$		-0.00780	-0.00848	-0.00881	-0.00840	-0.00898
$\Delta S_{t}($ year $=70)$			-0.09705	-0.07495	-0.09901	-0.09956
$\Delta S_{t}($ year $=80)$			$\begin{array}{r} (1.87) \\ -0.06732 \end{array}$	$\begin{array}{r} (1.34) \\ -0.07423 \end{array}$	$\begin{array}{r} (1.95) \\ -0.07728 \end{array}$	$\begin{array}{r} (1.89) \\ -0.06933 \end{array}$
ΔV_{t}			(1.35)	$\begin{array}{r} (1.42) \\ -0.00461 \end{array}$	(1.60)	(1.39)
				(0.73)		
S_{t-1}	0.00297	0.00857	0.01217	0.00902	0.01231	0.01218
	(4.31)	(4.45)	(5.42)	(3.21)	(5.51)	(5.57)
$S_{t-1}{ }^{2}$		-0.00045	-0.00058	-0.00034	-0.00058	-0.00059
		(2.67)	(3.29)	(1.60)	(3.36)	(3.46)
$S_{t-1}($ year $=70)$			-0.00349	-0.00325	-0.00386	-0.00323
			(2.80)	(2.39)	(3.14)	(2.65)
$S_{t-1}($ year $=80)$			-0.00300	-0.00391	-0.00339	-0.00276
			(2.63)	(3.14)	(3.02)	(2.48)
V_{t-1}				$\begin{array}{r} 0.00037 \\ (1.03) \end{array}$		
y_{t-1}	-0.00616	-0.00787	-0.00839	-0.00723	-0.00848	-0.00812
	(2.99)	(3.74)	(4.04)	(2.81)	(4.07)	(4.08)
($\mathrm{year}=70$)	0.03449	0.03506	0.05590	0.05516	0.05769	0.05427
	(10.21)	(10.34)	(8.17)	(7.25)	(8.21)	(8.05)
(y ear=80)	0.02120	0.02179	0.04017	0.04659	0.04269	0.03832
	(6.54)	(6.82)	(5.77)	(6.12)	(5.99)	(5.61)
Constant	0.03816	0.04033	0.02715	0.02040	0.02735	0.02601
	(2.34)	(2.51)	(1.67)	(1.04)	(1.66)	(1.66)
Observations	292	292	292	250	292	292
R -squared	0.32	0.34	0.37	0.38	0.37	0.37
F-statistic ${ }^{1}$	11.29	9.56	11.08	4.65	11.27	11.29
p-value	0.0009	0.0022	0.0010	0.0321	0.0009	0.0009

Absolute value of t statistics in parentheses.
${ }^{1} \mathrm{H}_{0}$: Long-run effect (coefficient S_{t-1} divided by minus coefficient y_{t-1}) equals short-run effect (coefficient ΔS_{t}). The F-tests reject the null when the p -value is smaller than 0.05 .

Table 5. GDP growth equation: Dynamic panel data estimates

	(1) OLS in levels		(2) OLS in first difs (incons.)	(3) Arellano- Bond	(4) Blundell- Bond, 1-step	(5) Blundell- Bond, 2-step
S_{t}	0.24335	ΔS_{t}	0.21467	0.71161	0.37104	0.46365
	(3.84)		(2.48)	(1.03)	(4.26)	(6.33)
S_{t}^{2}	$\begin{array}{r} -0.00848 \\ (2.16) \end{array}$	$\Delta\left(S_{t}^{2}\right)$	$\begin{array}{r} -0.00744 \\ (1.31) \end{array}$	$\begin{array}{r} -0.06484 \\ (1.07) \end{array}$	$\begin{array}{r} -0.02025 \\ (4.09) \end{array}$	$\begin{array}{r} -0.02420 \\ (5.94) \end{array}$
$S_{t}{ }^{70}$	-0.09705	$\Delta S_{t}{ }^{70}$	-0.06567	0.07700	-0.06592	-0.07970
$S_{t}{ }^{80}$	(1.87) -0.06732	ΔS^{80}	(0.82) -0.05795	(0.04) -0.10613	(1.12) -0.02990	(1.59) -0.03461
	(1.35)		(0.95)	(0.10)	(0.48)	(0.66)
S_{t-1}	-0.05954	ΔS_{t-1}	-0.00040	-0.31410	-0.05333	-0.12747
	(1.04)		(0.01)	(0.32)	(0.70)	(2.28)
$S_{t-1}{ }^{2}$	0.00272	$\Delta\left(S_{t-1}{ }^{2}\right)$	$\begin{array}{r} 0.00002 \\ (0.00) \end{array}$	$\begin{array}{r} -0.01429 \\ (0.32) \end{array}$	$\begin{array}{r} 0.00225 \\ (0.41) \end{array}$	$\begin{array}{r} 0.00778 \\ (1.84) \end{array}$
$S_{t-1}{ }^{70}$	-0.02478	$\Delta S_{t-1}{ }^{70}$	0.00240	0.31557	-0.01259	-0.02127
	(0.48)		(0.04)	(0.37)	(0.29)	(0.77)
$S_{t-1}{ }^{80}$	-0.06210	$\Delta S_{t-1}{ }^{80}$	-0.02123	0.31499	-0.00615	-0.01405
	(1.15)		(0.26)	(0.17)	(0.10)	(0.28)
y_{t-1}	0.91608	Δy_{t-1}	0.11605	1.05351	0.71236	0.62961
	(44.07)		(1.37)	(1.54)	(7.62)	(7.53)
($\mathrm{yr}=70$)	0.55900				-0.20276	-0.20986
	(8.17)				(2.87)	(3.57)
($\mathrm{yr}=80$)	0.40168	($\mathrm{yr}=80$)	0.36002	0.22577	-0.59898	-0.61523
	(5.77)		(3.92)	(0.30)	(7.50)	(9.50)
Const.	0.27154	Const.	-0.26536	-0.64783	2.17565	2.81648
	(1.67)		(3.03)	(1.21)	(3.18)	(4.73)
Obs.	292	Obs.	184	184	286	286
R-sq	0.95	R-sq	0.26			
Nr of countries		Nr of countries		102	102	102

[^9]Table 6. GDP growth equation: the effect of measurement error

	(1) (2)5 year changes		(3) 10 year changes (baseline model)		(5) (6)20 year changes		(7) (8) 20 year changes, Kyriacou data	
ΔS_{t}								
$\Delta\left(S_{t}^{2}\right)$	(2.74)	$\begin{array}{r} (1.12) \\ -0.00293 \\ (1.02) \end{array}$	(4.11)	$\begin{array}{r} (3.84) \\ -0.00848 \\ (2.16) \end{array}$	(3.00)	$\begin{array}{r} (2.52) \\ -0.01655 \\ (1.77) \end{array}$	(4.37)	$\begin{array}{r} (2.46) \\ -0.00989 \\ (1.26) \end{array}$
$\Delta S_{t}($ year $=65)$		$\begin{array}{r} 0.09728 \\ (1.35) \end{array}$						
$\Delta S_{t}($ year $=70)$		$\begin{array}{r} -0.00882 \\ (0.18) \end{array}$		$\begin{array}{r} -0.09705 \\ (1.87) \end{array}$				
$\Delta S_{t}($ year $=75)$		$\begin{array}{r} 0.01557 \\ (0.28) \end{array}$						
$\Delta S_{t}($ year $=80)$		$\begin{array}{r} -0.01051 \\ (0.22) \end{array}$		$\begin{array}{r} -0.06732 \\ (1.35) \end{array}$				
$\Delta S_{t}($ year $=85)$		$\begin{array}{r} 0.04885 \\ (0.82) \\ \hline \end{array}$						
S_{t-1}	$\begin{array}{r} 0.00349 \\ (5.48) \end{array}$	$\begin{array}{r} 0.01441 \\ (6.21) \end{array}$	$\begin{array}{r} 0.00297 \\ (4.31) \end{array}$	$\begin{array}{r} 0.01217 \\ (5.42) \end{array}$	$\begin{array}{r} 0.00368 \\ (3.88) \end{array}$	$\begin{array}{r} 0.01176 \\ (4.21) \end{array}$	$\begin{array}{r} 0.00526 \\ (4.47) \end{array}$	$\begin{array}{r} 0.01074 \\ (3.15) \end{array}$
$S_{t-1}{ }^{2}$		$\begin{array}{r} -0.00064 \\ (3.89) \end{array}$		$\begin{array}{r} -0.00058 \\ (3.29) \end{array}$		$\begin{array}{r} -0.00062 \\ (2.29) \end{array}$		$\begin{array}{r} -0.00042 \\ (1.32) \end{array}$
$S_{t-1}($ year $=65)$		$\begin{array}{r} -0.00526 \\ (3.09) \end{array}$						
$S_{t-1}($ year $=70)$		$\begin{array}{r} -0.00510 \\ (3.03) \end{array}$		$\begin{array}{r} -0.00349 \\ (2.80) \end{array}$				
$S_{t-1}($ year $=75)$		$\begin{array}{r} -0.00447 \\ (2.89) \end{array}$						
$S_{t-1}($ year $=80)$		$\begin{array}{r} -0.00534 \\ (3.50) \end{array}$		$\begin{array}{r} -0.00300 \\ (2.63) \end{array}$				
$S_{t-1}($ year $=85)$		$\begin{array}{r} -0.00263 \\ (1.77) \\ \hline \end{array}$						
y_{t-1}	$\begin{array}{r} \hline-0.00706 \\ (3.79) \end{array}$	$\begin{array}{r} \hline-0.00913 \\ (4.80) \end{array}$	$\begin{array}{r} \hline-0.00616 \\ (2.99) \end{array}$	$\begin{array}{r} \hline-0.00839 \\ (4.04) \end{array}$	$\begin{array}{r} \hline-0.01179 \\ (4.42) \end{array}$	$\begin{array}{r} -0.01306 \\ (4.96) \end{array}$	$\begin{array}{r} \hline-0.01294 \\ (4.44) \end{array}$	$\begin{array}{r} -0.01354 \\ (4.61) \end{array}$
(year=65)	$\begin{array}{r} 0.03189 \\ (7.02) \end{array}$	$\begin{array}{r} 0.05489 \\ (6.08) \end{array}$						
(year=70)	$\begin{array}{r} 0.03398 \\ (7.71) \end{array}$	$\begin{array}{r} 0.05876 \\ (6.62) \end{array}$	$\begin{array}{r} 0.03449 \\ (10.21) \end{array}$	$\begin{array}{r} 0.05590 \\ (8.17) \end{array}$				
(year=75)	$\begin{array}{r} 0.02259 \\ (5.22) \end{array}$	$\begin{array}{r} 0.04379 \\ (4.87) \end{array}$						
(year=80)	$\begin{array}{r} 0.01977 \\ (4.62) \end{array}$	$\begin{array}{r} 0.04715 \\ (5.32) \end{array}$	$\begin{array}{r} 0.02120 \\ (6.54) \end{array}$	$\begin{array}{r} 0.04017 \\ (5.77) \end{array}$				
(year=85)	$\begin{array}{r} -0.00457 \\ (1.08) \end{array}$	$\begin{array}{r} 0.00631 \\ (0.66) \end{array}$						
Constant	$\begin{array}{r} 0.04808 \\ (3.25) \\ \hline \end{array}$	$\begin{array}{r} 0.03376 \\ (2.17) \\ \hline \end{array}$	$\begin{array}{r} 0.03816 \\ (2.34) \\ \hline \end{array}$	$\begin{array}{r} 0.02715 \\ (1.67) \\ \hline \end{array}$	$\begin{array}{r} 0.09750 \\ (4.87) \\ \hline \end{array}$	$\begin{array}{r} 0.09286 \\ (4.81) \\ \hline \end{array}$	$\begin{array}{r} 0.09354 \\ (4.48) \\ \hline \end{array}$	$\begin{array}{r} 0.08605 \\ (4.06) \\ \hline \end{array}$
Observations	607	607	292	292	97	97	79	79
R-squared	0.22	0.26	0.32	0.37	0.22	0.29	0.28	0.31

Absolute value of t statistics in parentheses.
Estimates in columns 1, 3 and 5 correspond to Krueger and Lindahl (2001) table 3. The results differ slightly because we use GDP per worker rather than GDP per capita as the dependent variable.

Table 7. Subsample robustness of the GDP growth equation

	(1) Without 10 countries with highest growth in education	(2) Without 10 countries with highest growth in GDP	(3) Without 10 countries with highest education level	(4) Without 10 countries with highest GDP	(5) Without 10 countries with lowest education level	(6) Without 10 countries with lowest GDP
ΔS_{t}	0.23695	0.18019	0.20674	0.22825	0.21525	0.23387
$\Delta\left(S_{t}^{2}\right)$	$\begin{array}{r} (3.34) \\ -0.01001 \\ (2.44) \end{array}$	$\begin{array}{r} (2.86) \\ -0.00981 \\ (2.47) \end{array}$	$\begin{array}{r} (2.81) \\ -0.00391 \\ (0.76) \end{array}$	$\begin{array}{r} (3.31) \\ -0.00653 \\ (1.47) \end{array}$	$\begin{array}{r} (3.26) \\ -0.00574 \\ (1.38) \end{array}$	$\begin{array}{r} (3.56) \\ -0.00696 \\ (1.71) \end{array}$
$\Delta S_{t}($ year $=70)$	-0.07701	-0.00388	-0.11270	-0.10193	-0.10266	-0.11475
$\Delta S_{t}($ year $=80)$	$\begin{array}{r} (1.30) \\ -0.05366 \end{array}$	$\begin{array}{r} (0.07) \\ 0.00191 \end{array}$	$\begin{array}{r} (1.99) \\ -0.06663 \end{array}$	$\begin{array}{r} (1.81) \\ -0.06577 \end{array}$	$\begin{array}{r} (1.94) \\ -0.08831 \end{array}$	$\begin{array}{r} (2.16) \\ -0.07981 \end{array}$
	(0.95)	(0.04)	(1.20)	(1.20)	(1.72)	(1.56)
S_{t-1}	$\begin{array}{r} 0.00993 \\ (4.28) \end{array}$	$\begin{array}{r} 0.00926 \\ (4.11) \end{array}$	$\begin{array}{r} 0.00900 \\ (2.92) \end{array}$	$\begin{array}{r} 0.01131 \\ (4.42) \end{array}$	$\begin{array}{r} 0.01084 \\ (4.16) \end{array}$	$\begin{array}{r} 0.01118 \\ (4.71) \end{array}$
$S_{t-1}{ }^{2}$	$\begin{array}{r} -0.00044 \\ (2.50) \end{array}$	$\begin{array}{r} -0.00042 \\ (2.47) \end{array}$	$\begin{array}{r} -0.00037 \\ (1.28) \end{array}$	$\begin{array}{r} -0.00056 \\ (2.73) \end{array}$	$\begin{array}{r} -0.00048 \\ (2.46) \end{array}$	$\begin{array}{r} -0.00048 \\ (2.64) \end{array}$
$S_{t-1}($ year $=70)$	$\begin{array}{r} -0.00284 \\ (2.27) \end{array}$	$\begin{array}{r} -0.00266 \\ (2.17) \end{array}$	$\begin{array}{r} -0.00161 \\ (0.94) \end{array}$	$\begin{array}{r} -0.00288 \\ (1.95) \end{array}$	$\begin{array}{r} -0.00359 \\ (2.61) \end{array}$	$\begin{array}{r} -0.00364 \\ (2.75) \end{array}$
$S_{t-1}($ year $=80)$	$\begin{array}{r} -0.00204 \\ (1.78) \\ \hline \end{array}$	$\begin{array}{r} -0.00183 \\ (1.62) \\ \hline \end{array}$	$\begin{array}{r} -0.00163 \\ (1.11) \\ \hline \end{array}$	$\begin{array}{r} -0.00231 \\ (1.74) \\ \hline \end{array}$	$\begin{array}{r} -0.00358 \\ (2.84) \\ \hline \end{array}$	$\begin{array}{r} -0.00353 \\ (2.90) \\ \hline \end{array}$
y_{t-1}	-0.00690	-0.00590	-0.00766	-0.00815	-0.00798	-0.00874
($\mathrm{year}=70$)	$\begin{array}{r} 0.05228 \\ (7.57) \end{array}$	$\begin{array}{r} 0.04693 \\ (6.94) \end{array}$	$\begin{array}{r} 0.05104 \\ (6.64) \end{array}$	$\begin{array}{r} 0.05416 \\ (7.36) \end{array}$	$\begin{array}{r} 0.05703 \\ (7.21) \end{array}$	$\begin{array}{r} 0.05828 \\ (7.60) \end{array}$
($\mathrm{year}=80$)	$\begin{array}{r} 0.03481 \\ (4.92) \end{array}$	$\begin{array}{r} 0.03057 \\ (4.36) \\ \hline \end{array}$	$\begin{array}{r} 0.03589 \\ (4.65) \\ \hline \end{array}$	$\begin{array}{r} 0.03822 \\ (5.18) \\ \hline \end{array}$	$\begin{array}{r} 0.04533 \\ (5.60) \\ \hline \end{array}$	$\begin{array}{r} 0.04420 \\ (5.67) \\ \hline \end{array}$
Constant	$\begin{array}{r} \hline 0.02054 \\ (1.21) \\ \hline \end{array}$	$\begin{array}{r} \hline 0.01657 \\ (1.01) \\ \hline \end{array}$	$\begin{array}{r} 0.02804 \\ (1.60) \\ \hline \end{array}$	$\begin{array}{r} \hline 0.02746 \\ (1.58) \\ \hline \end{array}$	$\begin{array}{r} 0.02665 \\ (1.55) \\ \hline \end{array}$	$\begin{array}{r} 0.03153 \\ (1.64) \\ \hline \end{array}$
Observations	269	268	265	268	272	266
R-squared	0.36	0.36	0.38	0.37	0.35	0.37
Countries excluded from the sample	Congo	Botswana	Canada	Canada	Benin Centr. Afr Rep	Centr. Afr. Rep.
	Egypt	Swaziland	USA	USA		Lesotho
	China	Hong Kong	Denmark	Bahrain	Gambia	Malawi
	Hong Kong	Japan	Finland	Kuwait	Mali	Mali
	Jordan	Korea	Sweden	Belgium	Mozambique	Niger
	Korea	Singapore	Australia	France	Niger	Rwanda
	Taiwan	Taiwan	New Zealand	Germany	Sierra Leone	Togo
	Austria	Malta	Czechoslovakia	Netherlands	Sudan	Uganda
	Cyprus Romania	Bulgaria Romania	East Germany Soviet Union	Switzerland Australia	Afghanistan Nepal	Zaire Myanmar

[^10]Table 8. Income inequality

	(1) OLS in levels	(2) OLS in levels	(3) FE in levels		(4) OLS in first difs	(5) OLS in first difs	$\begin{gathered} \text { (6) } \\ \text { WLS } \\ (\mathrm{GDP} / \mathrm{w}) \end{gathered}$	(7) WLS (popul)	(8) OLS with dums for def. ch.
S_{t}				ΔS_{t}	-0.09820		-0.05718	-0.05394	-0.01934
S_{t}^{2}	$\begin{array}{r} (2.47) \\ 0.00085 \\ (0.38) \end{array}$	$\begin{array}{r} (3.05) \\ 0.00170 \\ (0.78) \end{array}$	$\begin{array}{r} (1.62) \\ 0.00365 \\ (1.56) \end{array}$	$\Delta\left(S_{t}^{2}\right)$	$\begin{array}{r} (1.40) \\ 0.00320 \\ (0.66) \end{array}$	(1.96)	(2.01)	(1.94)	(0.77)
$S_{t}{ }^{60}$	$\begin{array}{r} -0.03155 \\ (0.95) \end{array}$								
$S_{t}{ }^{70}$	$\begin{array}{r} -0.02715 \\ (1.51) \end{array}$								
$S_{t}{ }^{80}$	$\begin{array}{r} 0.00623 \\ (0.41) \end{array}$								
V_{t}	$\begin{array}{r} 0.00065 \\ (0.20) \\ \hline \end{array}$	$\begin{array}{r} 0.00105 \\ (0.33) \\ \hline \end{array}$	$\begin{array}{r} -0.00070 \\ (0.20) \\ \hline \end{array}$	ΔV_{t}	$\begin{array}{r} 0.00094 \\ (0.13) \\ \hline \end{array}$	$\begin{array}{r} -0.00176 \\ (0.29) \\ \hline \end{array}$	$\begin{array}{r} -0.00169 \\ (0.29) \\ \hline \end{array}$	$\begin{array}{r} -0.00269 \\ (0.47) \\ \hline \end{array}$	$\begin{array}{r} 0.00065 \\ (0.13) \\ \hline \end{array}$
($\mathrm{yr}=60$)	$\begin{array}{r} 0.11027 \\ (0.60) \end{array}$	$\begin{array}{r} -0.05257 \\ (0.76) \end{array}$	$\begin{array}{r} \hline-0.00012 \\ (0.00) \end{array}$						
($\mathrm{yr}=70$)	$\begin{array}{r} 0.13346 \\ (1.37) \end{array}$	$\begin{array}{r} 0.00491 \\ (0.10) \end{array}$	$\begin{array}{r} -0.01062 \\ (0.44) \end{array}$	$(\mathrm{yr}=70)$	$\begin{array}{r} -0.00801 \\ (1.49) \end{array}$	$\begin{array}{r} -0.00846 \\ (1.59) \end{array}$	$\begin{array}{r} -0.00835 \\ (1.57) \end{array}$	$\begin{array}{r} -0.00779 \\ (1.53) \end{array}$	$\begin{array}{r} -0.00474 \\ (1.03) \end{array}$
$(\mathrm{yr}=80)$	$\begin{array}{r} -0.06782 \\ (0.67) \\ \hline \end{array}$	$\begin{array}{r} -0.02754 \\ (0.68) \\ \hline \end{array}$	$\begin{array}{r} -0.03376 \\ (1.79) \\ \hline \end{array}$	$(\mathrm{yr}=80)$	$\begin{array}{r} -0.00554 \\ (1.28) \\ \hline \end{array}$	$\begin{array}{r} -0.00562 \\ (1.30) \\ \hline \end{array}$	$\begin{array}{r} -0.00560 \\ (1.30) \\ \hline \end{array}$	$\begin{array}{r} -0.00459 \\ (1.11) \\ \hline \end{array}$	$\begin{array}{r} -0.00351 \\ (0.88) \\ \hline \end{array}$
1 \{inc \}	$\begin{array}{r} 0.09302 \\ (1.70) \end{array}$	$\begin{array}{r} 0.09840 \\ (1.81) \end{array}$	$\begin{array}{r} 0.25144 \\ (4.08) \end{array}$	$\Delta 1$ \{inc\}	$\begin{array}{r} 0.04095 \\ (3.89) \end{array}$	$\begin{array}{r} 0.04155 \\ (3.98) \end{array}$	$\begin{array}{r} 0.04169 \\ (3.89) \end{array}$	$\begin{array}{r} 0.04030 \\ (3.93) \end{array}$	
1\{hh\}	$\begin{array}{r} -0.04313 \\ (1.20) \end{array}$	$\begin{array}{r} -0.03647 \\ (1.03) \end{array}$	$\begin{array}{r} -0.00107 \\ (0.04) \end{array}$	$\Delta 1$ \{hh \}	$\begin{array}{r} -0.00059 \\ (0.11) \end{array}$	$\begin{array}{r} 0.00007 \\ (0.01) \end{array}$	$\begin{array}{r} -0.00008 \\ (0.01) \end{array}$	$\begin{array}{r} -0.00065 \\ (0.12) \end{array}$	
1 \{gr\}	$\begin{array}{r} 0.26680 \\ (6.98) \end{array}$	$\begin{array}{r} 0.26782 \\ (7.00) \end{array}$	$\begin{array}{r} 0.00693 \\ (0.13) \end{array}$	$\Delta 1\{\mathrm{gr}\}$ dumms	$\begin{array}{r} -0.00487 \\ (0.42) \end{array}$	$\begin{array}{r} -0.00527 \\ (0.46) \end{array}$	$\begin{array}{r} -0.00550 \\ (0.48) \end{array}$	$\begin{array}{r} -0.00458 \\ (0.42) \end{array}$	yes
Const.	$\begin{array}{r} 0.73888 \\ (10.48) \\ \hline \end{array}$	$\begin{array}{r} 0.76879 \\ (11.35) \\ \hline \end{array}$	$\begin{array}{r} 0.55529 \\ (5.48) \\ \hline \end{array}$	Const.	$\begin{array}{r} 0.01011 \\ (2.72) \\ \hline \end{array}$	$\begin{array}{r} 0.01056 \\ (2.90) \\ \hline \end{array}$	$\begin{array}{r} 0.01039 \\ (2.90) \\ \hline \end{array}$	$\begin{array}{r} 0.01008 \\ (2.85) \\ \hline \end{array}$	$\begin{array}{r} 0.00571 \\ (1.71) \\ \hline \end{array}$
Obs.	262	262	262	Obs.	77	77	77	77	77
R-sq	0.47	0.46	0.21	R-sq	0.29	0.29	0.28	0.27	0.63
Nr of countries			71	Nr of countries					
				F-stat ${ }^{1}$ p -value					$\begin{array}{r} 4.34 \\ 0.0000 \end{array}$

[^11]Table 9. Subsample robustness of the inequality equation

	(1) Without 10 countries with highest growth in education	(2) Without 10 countries with highest growth in GDP	(3) Without 10 countries with highest inequality growth	(4) Without 10 countries with highest education level	(5) Without 10 countries with highest GDP	(6) Without 10 countries with highest inequality	(7) Without 10 countries with lowest inequality
ΔS_{t}	-0.07871	-0.07214	-0.00494	-0.06751	-0.06705	-0.04840	-0.05793
	$\begin{array}{r} (2.22) \\ -0.00315 \end{array}$	(2.00) -0.00174	(0.17) 0.00083	(1.89) -0.00717	(2.03) -0.00005	(1.71) -0.00095	(1.82) -0.00111
ΔV_{t}	(0.45)	(0.26)	(0.16)	(0.86)	(0.01)	(0.16)	(0.16)
(year=70)	-0.00933	-0.00874	$\begin{array}{r} -0.00724 \\ (1.57) \end{array}$	$\begin{array}{r} -0.01193 \\ (1.87) \end{array}$	$\begin{array}{r} -0.00853 \\ (1.33) \end{array}$	$\begin{array}{r} -0.00967 \\ (1.84) \end{array}$	$\begin{array}{r} \hline-0.00831 \\ (1.36) \end{array}$
(year=80)	-0.00487	-0.00559	-0.00423	-0.00892	-0.00661	-0.00465	-0.00548
	(1.02)	(1.13)	(1.05)	(1.82)	(1.36)	(1.09)	(1.16)
$\Delta(\mathrm{def}=\mathrm{inc})$	0.04134	0.04150	0.02620	0.04344	0.04132	0.03678	0.04167
	(3.88)	(3.79)	(2.99)	(3.90)	(3.34)	(3.60)	(3.79)
$\Delta(\mathrm{def}=\mathrm{hh})$	-0.00038	-0.00020	0.01535	-0.00052	0.00088	0.00538	0.00028
	(0.07)	(0.03)	(2.88)	(0.08)	(0.15)	(0.94)	(0.05)
Δ (def=gr.)	-0.00527	-0.00516	-0.00723	-0.00419	-0.00292	-0.00624	-0.00549
	(0.45)	(0.43)	(0.77)	(0.34)	(0.17)	(0.56)	(0.45)
Constant	0.01152	0.01121	0.00252	0.01474	0.01241	0.00909	0.01068
	(2.98)	(2.84)	(0.73)	(2.98)	(2.81)	(2.55)	(2.61)
Obs.	69	66	61	64	64	73	70
R-squared	0.32	0.31	0.39	0.33	0.32	0.30	0.28
Countries excluded from the sample	Congo	Botswana	Guatemala	Canada	Canada	Gabon	Belgium
	Egypt	Swaziland	Brazil	USA	USA	Guinea Biss.	Hungary
	China	Hong Kong	Chile	Denmark	Bahrain	Lesotho	Uk
	Hong Kong	Japan	Venezuela	Finland	Kuwait	Malawi	Bulgaria
	Jordan	Korea	China	Sweden	Belgium	Sierra Leone	Czechoslov.
	Korea	Singapore	Hong Kong	Australia	France	South Africa	Romania
	Taiwan	Taiwan	Thailand	New Zealand	Germany	Zimbabwe	Latvia
	Austria	Malta	Australia	Czechoslov.	Netherlands	Guatemala	Slovak Rep.
	Cyprus	Bulgaria	New Zealand	E. Germany	Switzerland	Honduras	Slovenia
	Romania	Romania	Soviet Union	Soviet Union	Australia	Brazil	Ukraine

Absolute value of t statistics in parentheses.

Figure 1. Return to education, education and inequality

A. Diminishing returns to education

B. Returns to education and inequality

[^0]: * We would like to thank Mikael Lindahl and Daniele Checchi for sharing their datasets. We are also grateful to Robert Shimer, Giorgio Primiceri and Alan Krueger for helpful comments.

[^1]: ${ }^{1}$ Bils and K lenow (1999) argue that if endogenous growth is due to the role of education dixusing the most recent state of technology, then the education of new cohorts should be more valuable, leading to a negative correlation between growth and the return to experience.

[^2]: ${ }^{2}$ Because we do not need an expression for $!_{0}\left(S_{t} ; t\right)$ for our empirical application, it is not presented here. However, the declining marginal return to education implies that a below average educated worker gains from an increase in the mean level of human capital, whereas an above average worker looses out (in both cases, keeping constant the human capital of that worker).

[^3]: ${ }^{3} \mathrm{~T}$ his is a crucial assumption for the analysis. If V varies over time, the linear form of M incerian equation (1) would collapse, see Teulings (2001) for details. A n increase in V raises labor supply in both tails of the schooling distribution. This reduces relative wages in the tails. In the empirical sections, we shall adopt a pragmatic approach, by including V_{t} as an additive control variable in our regressions.

[^4]: ${ }^{4}$ In that case, the compression elasticity satis..es (dropping the time dependence for convenience)

 $$
 { }^{\circ}(S)={ }^{\circ}(0) \exp \left[{ }^{\circ}(0)!{ }_{1}(0) S\right]
 $$

[^5]: ${ }^{5}$ B arro and Lee calculate average years of education from attainment data (percentage of the population that have attained a certain level of schooling) combined with data on the typical duration of

[^6]: ${ }^{6}$ For interpolation we use $d_{t}=\frac{n}{n+p} x_{t_{i} p}+\frac{p}{n+p} x_{t+n}$, where n is the time span till the next observations and p .2 is the time span since the previous observation. For extrapolation we use the observation that is closest by. This procedure is ed cient if the Gini follows a random walk, as is almost true empirically.
 ${ }^{7}$ T he data are available at http:// www.princeton.edu/ ~tvanrens/ paper.

[^7]: ${ }^{8}$ O ne expects this result to be due to the restricted functional form of the model, using only a quadratic in education. We tried including a third order term, but the data contain insu \neq cient variation to allow reliable estimation.

[^8]: ${ }^{9} \mathrm{~T}$ his provides a lower bound on the exect of education on wage dispersion

 $$
 \mu_{1 t}=2^{-}{ }_{2}\left({ }^{-}{ }_{1}+{ }_{3}{ }_{3} t\right) V+2^{-}{ }_{2} \mathrm{~V}^{1=2_{3 / 4} / 2}=2^{-}{ }_{2}{ }^{-}{ }_{1}+{ }_{3}{ }_{3} t+V^{i} 1=2_{3 / 4 / 2} V
 $$

 An upper bound can be found by setting $1 / 2=1$ and $3 / 4$ equal to the total variance of log wages: $3 / 4=D_{t}^{1=2} \quad 0: 75$ from table 1. In that case $V^{i} 1=23 / 4 / 2=0: 21$, about half the size of ${ }_{1}{ }_{1}+{ }^{-}{ }_{3}$ t which is between 0.38 and 0.46 , see Table 5 . Hence, setting $1 / 2=0$ will not greatly axect the conclusions in the text.

[^9]: Absolute value of t statistics in parentheses, based on robust standard errors.

[^10]: Absolute value of t statistics in parentheses.

[^11]: Absolute value of t statistics in parentheses.
 ${ }^{1} \mathrm{H}_{0}$: Dummies for definitional changes jointly insignificant. The F-tests reject the null when the p-value is smaller than 0.05 .

