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Abstract

The current extensive literature on irreversible investment decisions makes
the assumption of constant interest rate. In this paper we study the impact of
interest rate and revenue variability on the decision to carry out an
irreversible investment project. Given the generality of the considered
valuation problem, we first provide a thorough mathematical characterization
of the problem and develop some new results. Contrary to what previous
literature has suggested we establish that interest rate variability may have a
profound decelerating or accelerating impact on investment demand
depending on whether the current interest rate is below or above the long run
steady state interest rate. Moreover, and importantly, allowing for interest
rate uncertainty is shown to decelerate rational investment demand by raising
both the required exercise premium of the irreversible investment opportunity
and the value of waiting. Finally, we demonstrate that increased revenue
volatility strengthens the negative impact of interest rate uncertainty and vice
versa.
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1 Introduction

Most major investments are at least partly irreversible in the sense that firms cannot
disinvest so that expenditures are sunk costs. This is because most capital is industry-
or firm-specific so that it cannot be used in a different industry or by a different firm.
Even though investment would not be firm or industry-specific, they still could be partly
irreversible because of the ”lemons” problem, i.e. their resale value is often below their
purchase cost (cf. Dixit and Pindyck 1994, pp. 8–9). Since the seminal work by Arrow
1968 and Nickell 1974, 1978 who analyzed irreversible investments under certainty,
decisions about irreversible investments in the presence of various types of uncertainties
have been studied extensively (see e.g. Arrow and Fisher 1974, Baldursson and Karatzas
1997, Baldwin 1982, Bertola and Caballero 1994, Demers 1991, Henry 1974, Hu and
Øksendal 1998, Kobila 1993, McDonald and Siegel 1986, Øksendal 2001, and Pindyck,
1988, 1991, 2000). In these studies option pricing techniques are used to show that in
the presence of irreversibility the investment is undertaken when the net present value
is ”sufficiently high” compared with the opportunity cost. The various approaches and
applications are excellently reviewed and extended in the seminal book by Dixit and
Pindyck 1994. Finally, Bentolila and Bertola 1990, Brennan and Schwarz 1985, Dixit
1989, and Abel and Eberly 1996 have studied the implications of costly reversibility in
the case of labor, decision to open or close a mine, costly entry and exit, and investments,
respectively. In various contexts they show how in the presence of uncertainty even
small sunk costs may produce a wide range of inaction. For a further analysis of the
relationship between investment and uncertainty, see Caballero 1991. Bernanke 1983
and Cukierman 1980 have developed related models where firms have an incentive to
postpone irreversible investment so that they can wait for new information to arrive.

In these studies dealing with the impact of irreversibility in a variety of problems and
different types of frameworks the constancy of the discount rates has been one of the
most predominant assumptions. The basic motivation of this argument is that interest
rates are typically more stable (and consequently, less significant) than the revenue
dynamics. As Dixit and Pindyck 1994 state:

”Once we understand why and how firms should be cautious when deciding
whether to exercise their investment options, we can also understand why
interest rates seem to have so little effect on investment. (p. 13)”
”Second, if an objective of public policy is to stimulate investment, the sta-
bility of interest rates may be more important than the level of interest rates.
(p. 50)”

Although this argumentation is undoubtedly correct for short-lived investment projects,
many real investment opportunities have considerably long planning and exercise pe-
riods. If the exercise of such investment opportunities takes a long time, the assumed
constancy of the interest rate is quite questionable. This observation raises several
questions: Does interest rate variability matter and, if it does, in what way and how
much? What is the role of stochastic interest rate volatility from the point of view of
exercising irreversible investment opportunities? Most studies considering this problem
emphasize the role of uncertainty in general, not the role of variability. As Ingersoll and
Ross 1992 state:
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”..., even for the simplest projects with deterministic cash flows, interest rate
uncertainty has a significant effect on investment. (p. 3)”
”..., the effect of interest rate uncertainty is ubiquitous and critical to under-
standing investment at the macroeconomic level. (p. 3)”

However, not all instability is necessarily caused by uncertainty but one could also argue
that it is a natural process during the evolution towards the long run steady state of
the economy. As Pindyck (1991) argues:

”..., a major cost of political and economic instability may be its depressing
effect on investment. (p. 112)”

It is known from empirical research that interest rates fluctuate a lot over time and that
in the long run they follow mean reverting processes (for an up-to-date theoretical and
empirical survey in the field see e.g. Cochrane 2001). Since variability may be determin-
istic and/or stochastic, we immediately observe that interest rate variability in general
can be important from the point of view of exercising real investment opportunities.

Motivated by the argumentation that interest rates are neither constant nor deter-
ministic for long-lived investments, we explore in this paper the impact of interest rate
variability on the value and the optimal exercise policy of irreversible real investment
opportunities. The impact of interest rate variability on optimal forest rotation has
been analyzed in an accompanying paper by Alvarez and Koskela 2001. More precisely,
we proceed as follows. We start our analysis in section 2 by considering the case where
both the revenue and interest rate dynamics are variable but deterministic. We demon-
strate, among others, that when the current interest rate is above (below) the long run
steady state interest rate, then investment strategies based on the usual assumption of
constant discounting will underestimate (overestimate) both the value of waiting and
the required exercise premium of the irreversible investment policy. We also show a
natural though new result according to which differences tend to become smaller as the
growth rate of the interest rate process diminishes. In section 3 we extend our model
to cover the situation, where the underlying interest rate dynamics is stochastic and
demonstrate that interest rate uncertainty strengthens the effect of the interest rate
variability on the value of waiting and optimal exercise policy. Section 4 further ex-
tends the analysis in section 3 by allowing the revenue dynamics to follow a geometric
Brownian motion. We demonstrate that revenue uncertainty strengthens the negative
impact of interest rate uncertainty and vice versa. Finally, there is a brief concluding
section.

2 Irreversible Investment under Deterministic

Interest Rate Variability

In this section we consider the determination of an optimal irreversible investment
policy in the presence of deterministic interest rate variability. We proceed as follows:
First, we provide a set of sufficient conditions under which the optimal exercise date of
investment opportunity can be solved generally and in an interesting special case even
explicitly. Second, we demonstrate the relationship between the optimal exercise dates
with variable and constant discounting when the interest rate can be below or above
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the long-run steady state interest rate. Third, and finally, we show among others that
the value of investment opportunity is a decreasing and convex function of the current
interest rate.

In order to accomplish these tasks, we describe the underlying dynamics for the
value of investment Xt and the interest rate rt as

X ′
t = µXt, X0 = x (2.1)

and

r′t = αrt(1− βrt), r0 = r, (2.2)

where µ, γ, α, and β are exogenously determined positive constants. That is, we as-
sume that the revenues accrued from exercising the irreversible investment opportunity
increase at an exponential rate and that the interest rate dynamics follow a logistic
dynamical system which is consistent with the notion that the interest rate is a mean
reverting process. As usually, we denote as

A = µx
∂

∂x
+ αr(1− βr)

∂

∂r

the differential operator associated with the inter-temporally time homogeneous process
(Xt, rt).

Given these assumptions, we now plan to consider the optimal irreversible investment
problem

V (x, r) = sup
t≥0

[

e−
∫ t
0 rsds(Xt − c)

]

. (2.3)

As usually in the literature on real options, the determination of the optimal exercise
date of the irreversible investment policy can be viewed as the valuation of a perpetual
American forward contract on a dividend paying asset. However, in contrast to previous
models relying on constant interest rates, the valuation is now subject to a variable
interest rate and, therefore, constitutes a two-dimensional optimal timing (i.e. two-
dimensional optimal stopping) problem. The continuous differentiability of the exercise
payoff implies that (2.3) can also be restated as (cf. Øksendal 1998, p. 199, and Protter
1990, p. 71)

V (x, r) = (x− c) + F (x, r), (2.4)

where

F (x, r) = sup
t≥0

∫ t

0
e−

∫ s
0 rydy[µXs − rs(Xs − c)]ds (2.5)

is known as the early exercise premium of the considered irreversible investment oppor-
tunity. We can now prove the following.

Theorem 2.1. Assume that 1 > βµ, so that the percentage growth rate µ of the revenues
Xt is below the long run steady state β−1 of the interest rate rt. Then, for all (x, r) ∈
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C = {(x, r) ∈ R2
+ : rc > (r−µ)x} the optimal exercise date of the investment opportunity

t∗(x, r) = inf{t ≥ 0 : rtc− (rt − µ)Xt ≤ 0} is finite and the value

V (x, r) = e−
∫ t∗(x,r)
0 (Xt∗(x,r) − c)

constitutes the solution of the boundary value problem

(AV )(x, r)− rV (x, r) = 0 (x, r) ∈ C

V (x, r) = x− c
∂V

∂x
(x, r) = 1

∂V

∂r
(x, r) = 0 (x, r) ∈ ∂C.

In line with this finding, the early exercise premium F (x, r) satisfies the boundary value
problem

(AF )(x, r)− rF (x, r) + µx− r(x− c) = 0 (x, r) ∈ C

F (x, r) = 0
∂F

∂x
(x, r) = 0

∂F

∂r
(x, r) = 0 (x, r) ∈ ∂C.

Proof. See Appendix A.

Theorem 2.1 states a set of sufficient conditions under which the optimal investment
problem (2.3) can be solved in terms of the initial states (x, r) and the exogenous
variables of the problem. The non-linearity of the optimality condition implies that it
is typically very difficult, if possible at all, to solve explicitly the optimal exercise date
of the investment opportunity in the general case. Fortunately, there is an interesting
special case under which the investment problem can be solved explicitly. This case is
treated in the following.

Corollary 2.2. Assume that β−1 > µ and that µ = α. Then, for all (x, r) ∈ C =
{(x, r) ∈ R2

+ : rc > (r− µ)x} the optimal exercise date of the investment opportunity is

t∗(x, r) =
1

µ
ln

(

1 +
rc− (r − µ)x

rx(1− µβ)

)

.

In this case, the value reads as

V (x, r) =







x− c (x, r) ∈ R2
+\C

µx
r

(

x−βr(x−c)
x(1−µβ)

)1−1/(µβ)
(x, r) ∈ C,

(2.6)

and the early exercise premium reads as

F (x, r) =







0 (x, r) ∈ R2
+\C

µx
r

(

x−βr(x−c)
x(1−µβ)

)1−1/(µβ)
− (x− c) (x, r) ∈ C.

(2.7)

Moreover,
∂t∗

∂x
(x, r) = −

rc

µx(rx(1− µβ) + rc− (r − µ)x)
< 0

and
∂t∗

∂r
(x, r) = −

x

r(rx(1− µβ) + rc− (r − µ)x)
< 0.
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Proof. See Appendix B.

Corollary 2.2 shows that whenever the percentage growth rates at low values (i.e.
as (Xt, rt)→ (0, 0)) of the revenue and interest rate process coincide, that is, whenever
µ = α, both the value and the optimal exercise date of the irreversible investment policy
can be solved explicitly in terms of the current states (x, r) and the exogenous variables
of the problem. Another important implication of our Theorem 2.1 demonstrates how
the value and early exercise premium of our problem are related to their counterparts in
the absence of interest rate variability. This relationship is summarized in the following.

Corollary 2.3. Assume that the conditions β−1 > µ and r > µ are satisfied. Then,

lim
α↓0

V (x, r) = xr/µ sup
y≥x

[

y − c

yr/µ

]

= Ṽ (x, r), (2.8)

lim
α↓0

F (x, r) = xr/µ

[

sup
y≥x

[

y − c

yr/µ

]

−
x− c

xr/µ

]

= F̃ (x, r), (2.9)

and

lim
α↓0

t∗(x, r) =
1

µ
ln

(

rc

(r − µ)x

)

= t̃(x, r), (2.10)

where Ṽ (x, r) = supt≥0[e
−rt(Xt − c)] denotes the value,

F̃ (x, r) = sup
t≥0

∫ t

0
e−rs[rc− (r − µ)Xs]ds

the early exercise premium, and t̃(x, r) the optimal exercise date in the absence of in-
terest rate variability, respectively.

Proof. The alleged results are direct consequences of the proof of our Theorem 2.1.

Remark: It is worth observing that the value of the optimal investment policy in the
absence of interest rate variability can also be expressed as

Ṽ (x, r) =







x− c x ≥ rc/(r − µ)

µx
r

(

rc
(r−µ)x

)1−r/µ
x < rc/(r − µ)

.

Corollary 2.3 proves that the value, the early exercise premium, and the optimal
exercise date of the investment policy in the presence of interest rate variability tend
towards their counterparts in the presence of constant discounting as the growth rate
of the interest rate process tends to zero. This means interestingly that if the interest
rate process evolves towards its long run steady state β−1 at a very slow rate, then the
conclusions obtained in models neglecting interest rate variability will not be grossly in
error when compared with the predictions obtained in models taking into account the
variability of interest rates. In order to illustrate the potential quantitative role of these
qualitative differences we next provide some numerical computations. In Table 1 we
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have used the assumption that c = 1, µ = 1%, β−1 = 3%, r = 5% and x = 0.1 (implying
that t̃(0.1, 0.05) = 91.6291). Hence, in this case the long-run steady state of interest
is below the current interest rate. As Table 1 and Figure 1 illustrate, interest rate
variability affects both the exercise date and the value of waiting.

α t∗(0.1, 0.05) X(t∗(0.1, 0.05))− c

5% 109.779 0.498761
1% 102.962 0.4
0.5% 98.3206 0.336506
10−6 91.6306 0.250019

Table 1: The Optimal Exercise Date and Required Exercise Premium.
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Figure 1: The Optimal Exercise Date t̃(0.1, 0.05) as a function of α

In Table 2 we illustrate our results under the assumption that the long-run steady
state interest rate is above the current interest rate. More precisely, we assume that
c = 1, µ = 1%, β−1 = 3%, r = 1.5% and x = 0.1 (implying that t̃(0.1, 0.015) = 179.176).
In this case interest rate variability has the reverse effect on the exercise date and the
value of waiting.

α t∗(0.1, 0.015) X(t∗(0.1, 0.015))− c

5% 110.065 0.503061
1% 125.276 0.75
0.5% 138.629 1
10−6 179.158 1.99946

Table 2: The Optimal Exercise Date and Required Exercise Premium.

After having characterized a set of conditions under which the optimal investment
problem with variable discounting can be solved in terms of the initial states of the
system and exogenous variables and having provided explicit solutions in an interesting
special case, we now ask the following important, but thus far unexplored question:
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Figure 2: The Optimal Exercise Date t̃(0.1, 0.015) as a function of α

What is the relationship between the optimal exercise policy and the value of the in-
vestment opportunity with variable and constant discounting. Given the definitions of
the optimal policy and its value under future evolution of the interest rate, we are now
in the position to establish the following new set of results summarized in

Theorem 2.4. Assume that β−1 > µ and that r > µ. Then,

t∗(x, r) T t̃(x, r), V (x, r) T Ṽ (x, r) and F (x, r) T F̃ (x, r) when r T β−1.

Proof. See Appendix C.

Theorem 2.4 presents two qualitatively new important results, which characterize
the differences of the optimal exercise policy and the value of the investment opportunity
with constant and variable discounting. First, the required exercise premium and the
value of the investment opportunity is higher in the presence of variable discounting
than in the presence of constant discounting when the current interest rate is above
the long-run steady state interest rate. Second, the reverse happens when the current
interest rate is below the long-run steady state interest rate. More specifically, these
findings imply the following: When the current interest rate is above (below) the long run
steady state value, then the investment strategies based on the usual approach neglecting
the interest rate variability will underestimate (overestimate) both the value of waiting
and the required exercise premium of the irreversible investment policy.

In Theorem 2.4 we characterized qualitatively the differences of the optimal exercise
policy and the value of investment opportunities with constant and variable discounting.
In Figure 3, we illustrate these findings quantitatively in an example where the steady
state interest rate r̂ is 3% and the current interest rate is either above the steady state
interest rate (the l.h.s. of Figure 3) or below the steady state interest rate (the r.h.s. of
Figure 3). The solid lines describe the exercise dates in the presence of variable interest
rate while dotted lines the optimal exercise dates with constant discounting. One can
see from Figure 3 that when the current interest rate is above the steady state interest
rate, the difference between the exercise dates becomes larger the higher is the current
interest rate. Naturally, the reverse happens when the current interest rate is below the
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Figure 3: The Optimal Exercise Date t∗(x, r)

steady state interest rate. The differences between the exercise dates can be very large
if the variability of interest rate is big enough.

It is worth observing that if α = µ, then the required exercise premiums read as

P (x, r) = Xt∗(x,r) − c =
µc

β−1 − µ

[

1 +
x(1− βr)

βrc

]

(2.11)

and as

P̃ (x, r) = Xt̃(x,r) − c =
µc

r − µ
. (2.12)

Moreover, as intuitively is clear, P (x, β−1) = P̃ (x, β−1). That is, the required exercise
premiums coincide at the long run asymptotically stable steady state of the interest rate.
As we can observe from (2.11)

∂P

∂x
(x, r) =

µc

β−1 − µ

[

1− βr

βrc

]

T 0, r S β−1,

and
∂P

∂r
(x, r) = −

µc

β−1 − µ

[

x

r2βc

]

< 0.

Thus, the required exercise premium is a decreasing function of the current interest rate
r at all states. However, the sign of the sensitivity of the required exercise premium is
positive (negative) provided that the current interest rate r is below (above) the long run
steady state β−1. Before proceeding further in our analysis, we prove the following result
characterizing the monotonicity and curvature properties of the value of the investment
opportunity.

Lemma 2.5. Assume that the conditions of Theorem 2.1 are satisfied. Then, the value
of the investment opportunity is an increasing and convex function of the current rev-
enues x and a decreasing and convex function of the current interest rate r.

Proof. See Appendix D.

Later on we generalize these properties to cover the case of stochastic interest rate
and stochastic revenue.
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3 Interest Rate Uncertainty and Irreversible In-

vestment

In the analyzes we have carried out thus far, the underlying dynamics for the revenue
Xt and the interest rate rt has been postulated to be deterministic. The reason for this
was that we first wanted to show the impact of variable discounting on the investment
decisions in the simpler case without uncertainty. In this section we generalize our ear-
lier analysis by exploring the optimal investment decision in the presence of interest rate
uncertainty, i.e. when the interest rate process has certain properties, but fluctuates
stochastically. We proceed as follows. First, we characterize a set of sufficient conditions
for the optimality of investment strategy and second, we show how under certain con-
ditions the interest rate uncertainty has the impact of postponing the rational exercise
of investment opportunity.

We assume that the interest rate process {rt; t ≥ 0} is defined on a complete fil-
tered probability space (Ω, P, {Ft}t≥0,F) satisfying the usual conditions and that rt is
described on R+ by the (Itô-) stochastic differential equation

drt = αrt(1− βrt)dt+ σ(rt)dWt, r0 = r, (3.1)

where σ : R+ 7→ R+ is a sufficiently smooth mapping for guaranteeing the existence of a
solution for (3.1) (at least continuous; cf. Borodin and Salminen 1996, pp. 46–47). We
also assume that σ(r) > 0 for all r ∈ (0,∞), that∞ is an unattainable boundary for the
diffusion rt, and that 0 is either unattainable or exit for rt (cf. Borodin and Salminen
1996, pp. 14–19). It is now clear that in the present example given our assumptions on
the underlying dynamics the differential operator associated with the two-dimensional
process (Xt, rt) now reads as

Â =
1

2
σ2(r)

∂2

∂r2
+ µx

∂

∂x
+ αr(1− βr)

∂

∂r
.

If both boundaries are unattainable and
∫ ∞

0
m′(y)dy <∞,

where m′(r) = 2
σ2(r)S′(r)

denotes the density of the speed measure m of the diffusion rt
and

S′(r) = exp

(

−

∫

2αr(1− βr)

σ2(r)
dr

)

denotes the density of the scale function of the diffusion rt, then we know that the
diffusion rt will tend in the long run towards a random variable distributed according
to the stationary distribution with density (cf. Borodin and Salminen 1996, pp. 35–36)

p(r) =
m′(r)

∫∞

0 m′(y)dy
.

For example, if in the present example we have that σ(r) = ηr, where η > 0 is an
exogenous constant, then a stationary distribution exists provided that α > η2/2. In
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that case, the density of the stationary distribution reads as

p(r) =

(

2αβ

η2

)
θ
2 r

(θ−2)
2 e

− 2αβr

η2

Γ( θ2)
,

where θ/2 = 2α
η2 − 1.

Given these technical assumptions, we next consider the valuation of the irreversible
investment opportunity in the presence of interest rate uncertainty. More precisely, we
consider the optimal stopping problem

V̂ (x, r) = sup
τ

E(x,r)

[

e−
∫ τ
0 rsds(Xτ − c)

]

, (3.2)

where τ is an arbitrary Ft-stopping time. In line with our results of the previous section,
Dynkin’s theorem (cf. Karlin and Taylor 1981, pp. 297–313 and Øksendal 1998, pp.
118-120) implies that the optimal stopping problem (3.2) can also be rewritten as in
(2.4) with the exception that the early exercise premium now reads as

F̂ (x, r) = sup
τ

E(x,r)

∫ τ

0
e−

∫ s
0 rydy(µXs − rs(Xs − c))ds. (3.3)

Before proceeding in our analysis, we first present the following auxiliary result.

Lemma 3.1. Assume that there is a mapping J : R2
+ 7→ R+ satisfying the following

conditions

(i) J ∈ C1,2(R2
+)

(ii) min{J(x, r)− (x− c), rJ(x, r)− (ÂJ)(x, r)} = 0 for all (x, r) ∈ R2
+.

Then, J(x, r) ≥ V̂ (x, r) for all (x, r) ∈ R2
+. Consequently, if there is a mapping L :

R2
+ 7→ R+ satisfying the following conditions

(i) L ∈ C1,2(R2
+)

(ii) min{L(x, r), rL(x, r)− (ÂL)(x, r)− µx+ r(x− c)} = 0 for all (x, r) ∈ R2
+.

Then, L(x, r) ≥ F̂ (x, r) and, therefore, L(x, r) + (x− c) ≥ V̂ (x, r) for all (x, r) ∈ R2
+.

Proof. The result is a straightforward consequence of Theorem 2.1 in Øksendal and
Reikvam 1998.

Lemma 3.1 states a set of sufficient conditions which can be applied for the ver-
ification of the optimality of a proposed investment strategy. Unfortunately, multi-
dimensional optimal stopping problems of the type (3.2) are extremely difficult, if pos-
sible at all, to be solved explicitly in terms of the current states and the parameters of
the problem.

We can now also establish a qualitative connection between the deterministic stop-
ping problem (2.3) and the present stochastic problem (3.2). This is summarized in the
following theorem which could be called the fundamental qualitative characterization
of the value of an irreversible investment opportunity in the presence of interest rate
uncertainty.
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Theorem 3.2. Assume that 1 > βµ, so that the expected percentage growth rate µ of
the revenues Xt is below the long run steady state β−1 of the interest rate rt. Then,

V̂ (x, r) ≥ V (x, r) and F̂ (x, r) ≥ F (x, r) (3.4)

for all (x, r) ∈ R2
+ and, therefore, C ⊂ Ĉ = {(x, r) ∈ R2

+ : V̂ (x, r) > x − c}. Hence,
interest rate uncertainty increases both the required exercise premium and the value of
the irreversible investment opportunity and, consequently, postpones the optimal exercise
of investment opportunities.

Proof. See Appendix E.

Theorem 3.2 shows that given the conditions of our paper, both the value and the
rational exercise boundary of the investment opportunity is higher in the presence of
interest rate uncertainty than in the absence of it. It would be of interest to characterize
more precisely the difference between the optimal policy in the absence of uncertainty
with the optimal policy in the presence of uncertainty. Unfortunately, stopping problems
of the type (3.2) are seldom solvable and, consequently, the difference between the
optimal policies can typically be illustrated only numerically. In any case, this is an
area for further research.

Although Theorem 3.2 demonstrates that uncertainty decelerates rational invest-
ment when compared with the certain situation, it does not characterize the impact of
increased interest rate volatility on investment. In order to be able to present an un-
ambiguous characterization of the sign of the relationship between increased volatility
and the rational exercise of investment opportunities, we assume that the interest rate
process {r̂t; t ≥ 0} is described on R+ by the (Itô-) stochastic differential equation

dr̂t = α(r̂t)dt+ σ̂(r̂t)dWt, r̂0 = r, (3.5)

where σ̂ : R+ 7→ R+ is a sufficiently smooth mapping satisfying the inequality σ̂(r) ≥
σ(r). That is, r̂t can be interpreted as a diffusion evolving at the same rate as rt but
subject to greater stochastic fluctuations than rt (more volatile dynamics). Given this
definition, we define the value Ṽ : R2

+ 7→ R+ as

Ṽ (x, r) = sup
τ

E(x,r)

[

e−
∫ τ
0 r̂sds(Xτ − c)

]

, (3.6)

where τ is an arbitrary Ft-stopping time. Before establishing the sign of the relationship
between interest rate volatility and investment, we first present an important result
characterizing the form of the value function V̂ (x, r) as a function of the current revenues
x and the current interest rate r. This is accomplished in the following.

Lemma 3.3. (A) The value function V̂ (x, r) is increasing and convex as a function of
the current revenues x. That is, V̂x(x, r) > 0 and V̂xx(x, r) ≥ 0 for all (x, r) ∈ R2

+.
(B) Assume that σ(r) is continuously differentiable with Lipschitz-continuous derivative,
and that the standard Novikov-condition

Er

[

exp

(

1

2

∫ t

0
σ′

2
(rs)ds

)]

<∞

is satisfied for all (t, r) ∈ R2
+. Then, the value function V̂ (x, r) is decreasing and convex

as a function of the current interest rate r. That is, then V̂r(x, r) < 0, and V̂rr(x, r) ≥ 0
for all (x, r) ∈ R2

+.

11



Proof. See Appendix F.

Lemma 3.3 shows that typically the value function is an increasing and convex
function of the current revenues x and an decreasing and convex function of the current
interest rate r. This result is very important since it implies that the sign of the
relationship between interest rate volatility and investment in unambiguously negative.
More precisely,

Theorem 3.4. Assume that the conditions of part (B) of Lemma 3.3 are satisfied.
Then, for all (x, r) ∈ R2

+ we have

Ṽ (x, r) ≥ V̂ (x, r) and F̃ (x, r) ≥ F̂ (x, r),

where

F̃ (x, r) = sup
τ

E(x,r)

∫ τ

0
e−

∫ t
0 rsds[µXt − r̂t(Xt − c)]dt

denotes the early exercise premium in the presence of the more volatile interest rate
process r̂t. Moreover, {(x, r) ∈ R2

+ : V̂ (x, r) > (x − c)} ⊂ {(x, r) ∈ R2
+ : Ṽ (x, r) >

(x − c)}, that is, increased interest rate volatility postpones the optimal exercise of
investment opportunities.

Proof. The proof is analogous with the proof of Theorem 5.4. in Alvarez and Koskela
2001.

4 Interest Rate and Revenue Uncertainty

In the earlier section we characterized the value and optimal exercise of investment
opportunities when the underlying interest rate dynamics was assumed to be stochastic
and the revenue dynamics were deterministic. In order to further extend the analysis of
the previous section, we now assume that the interest rate dynamics follow the diffusion
described by the stochastic differential equation (3.1) and that the revenue dynamics
are described on R+ by the stochastic differential equation

dXt = µXtdt+ γXtdW̄t X0 = x, (4.1)

where W̄t is a Brownian motion independent of Wt and µ > 0, γ > 0 are exogenously
given constants. It is clear that given the stochasticity of the revenue dynamics, the
differential operator associated with the process (Xt, rt) now reads as

Āγ =
1

2
σ2(r)

∂2

∂r2
+

1

2
γ2x2

∂2

∂x2
+ µx

∂

∂x
+ αr(1− βr)

∂

∂r
.

Given the dynamics of the process (Xt, rt) we now plan to consider the following
valuation problem

V̄ (x, r) = sup
τ

E(x,r)

[

e−
∫ τ
0 r̂sds(Xτ − c)

]

, (4.2)

where τ is an arbitrary stopping time. In line with our previous findings, we can now
establish the following.
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Lemma 4.1. The value V̄ (x, r) is increasing and convex as a function of the current
revenues x. That is, V̄x(x, r) > 0 and V̄xx(x, r) ≥ 0 for all (x, r) ∈ R2

+. Moreover, if the
conditions of part (B) of Lemma 3.3 are satisfied, then the value V̄ (x, r) is increasing
and convex as a function of the current interest rate r. That is, then V̄r(x, r) < 0 and
V̄rr(x, r) ≥ 0 for all (x, r) ∈ R2

+.

Proof. It is now clear that the solution of the stochastic differential equation (4.1) is
Xt = xeµtMt, where Mt = eγW̄ (t)−γ2t/2 is a positive martingale. Consequently, all the
elements in the sequence of value functions Vn(x, r) presented in the proof of part (A)
of Lemma 3.3 are increasing and convex as functions of the current revenues x (cf. El
Karoui, Jeanblanc-Picqué, and Shreve 1998). This implies that the value function is
increasing and convex as a function of the current revenues x. The rest of the proof is
analogous with the proof of part (B) of Lemma 3.3.

The key implication of Lemma 4.1 is now presented in

Theorem 4.2. Assume that the conditions of Lemma 4.1 are satisfied, and that 1 > βµ,
so that the expected percentage growth rate µ of the revenues Xt is below the long run
steady state β−1 of the interest rate. Then, for all (x, r) ∈ R2

+ we have that

V̄ (x, r) ≥ V̂ (x, r) ≥ V (x, r) and F̄ (x, r) ≥ F̂ (x, r) ≥ F (x, r),

where

F̄ (x, r) = sup
τ

E(x,r)

∫ τ

0
e−

∫ t
0 rsds[rtc− (rt − µ)Xt]dt

denotes the early exercise premium in the presence of revenue and interest rate uncer-
tainty. Moreover, increased volatility γ increases the value of the investment opportunity
and postpones rational exercise.

Proof. See Appendix G.

Theorem 4.2 shows that revenue uncertainty strengthens the negative effect of in-
terest rate uncertainty and vice versa. Consequently, our results clearly verify the in-
tuitively clear result that uncertainty, independently of its source, slows down rational
investment demand by increasing the required exercise premium of a rational investor.

5 Conclusions

In this paper we have considered the determination of an optimal irreversible investment
policy with variable discounting and demonstrated several new results. We started our
analysis by considering the case of deterministic interest rate variability. First, we pro-
vided a set of sufficient conditions under which the optimal exercise date of investment
opportunity can be solved generally and in an interesting special case explicitly. Second,
we demonstrated the relationship between the optimal exercise dates with variable and
constant discounting when the interest rate can be below or above the long-run steady
state interest rate. Third, we showed that the value of the investment opportunity is a
decreasing and convex function of the current interest rate.
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We have also generalized our deterministic analysis in two respects. First, we have
explored the optimal investment decision in the presence of interest rate uncertainty, i.e.
when the interest rate process has certain properties, but fluctuates stochastically, and
second, we have allowed for revenue dynamics to follow geometric Brownian motion. In
this setting we characterized a set of sufficient conditions which can be applied for the
verification of the optimality of an investment strategy. Moreover, we have showed how
under certain plausible conditions the interest rate uncertainty postpones the rational
exercise of investment opportunity. Finally, and importantly, we demonstrated that
revenue uncertainty strengthens the negative impact of interest rate uncertainty and
vice versa.
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A Proof of Theorem 2.1

Proof. It is a simple exercise in ordinary analysis to demonstrate that

Xt = xeµt, rt =
reαt

1 + βr(eαt − 1)
,

e−
∫ t
0 rsds =

(

1 + βr(eαt − 1)
)−1/(αβ)

,

and that

d

dt

[

e−
∫ t
0 rsds(Xt − c)

]

= e−
∫ t
0 rsds(µXt − rt(Xt − c)). (A.1)

Given the solutions of the ordinary differential equations (2.1) and (2.2), we observe
that (A.1) can be rewritten as

(1+βr(eαt−1)))e
∫ t
0 rsds d

dt

[

e−
∫ t
0 rsds(Xt − c)

]

= µx(1−βr)+rce(α−µ)t−rx(1−βµ)eαt.

Consider now the mapping f : R+ 7→ R defined as

f(t) = µx(1− βr) + rce(α−µ)t − rx(1− βµ)eαt.

It is now clear that f(0) = rc− (r − µ)x and that limt→∞ f(t) = −∞. Moreover, since

f ′(t) = (α− µ)rce(α−µ)t − αrx(1− βµ)eαt,

we find that f ′(t) < 0 for all t ≥ 0 whenever α ≤ µ and, therefore, that for any
initial state on C, the optimal stopping date t∗(x, r) satisfying the optimality condition
f(t∗(x, r)) = 0 exists and is finite (because of the monotonicity and the boundary
behavior of f(t)). Assume now that α > µ. Then, f ′(0) = (α−µ)rc−αrx(1−βµ) and
limt→∞ f ′(t) = −∞. Moreover, since

f ′′(t) = (α− µ)2rce(α−µ)t − α2rx(1− βµ)eαt,

we find that 0 = argmax{f(t)} provided that (α− µ)rc ≤ αrx(1− βµ) and that

t̃ =
1

µ
ln

(

(α− µ)c

αx(1− βµ)

)

provided that (α− µ)rc > αrx(1− βµ). However, since

f ′′(t̃) = −αrx(1− µβ)µeαt̃ < 0

we find that f ′(t) < 0 for all (x, r) ∈ R2
+ in that case as well and, therefore, that for any

initial state on C, the optimal stopping date t∗(x, r) satisfying the optimality condition
f(t∗(x, r)) = 0 exists and is finite.

Having established the existence and finiteness of the optimal exercise date t∗(x, r)
we now have to prove that the value satisfies the boundary value problem. Standard
differentiation yields (after simplifications)

∂V

∂x
(x, r) =

(

1 + βr(eαt
∗(x,r) − 1)

)−1/(αβ)
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and

∂V

∂r
(x, r) = −

(

1 + βr(eαt
∗(x,r) − 1)

)−1/(αβ) 1

α
(Xt∗(x,r) − c)(eαt

∗(x,r) − 1).

Applying these equations then proves that (AV )(x, r)−rV (x, r) = 0 for all C. Moreover,
since t∗(x, r) = 0 whenever (x, r) ∈ ∂C, we find that ∂V

∂x (x, r) = 1 and ∂V
∂r (x, r) = 0 for

all (x, r) ∈ ∂C. Our results on the early exercise premium F (x, r) are direct implications
of the definition (2.4).

B Proof of Corollary 2.2

Proof. As was established in the proof of Theorem 2.1, the optimal exercise date t∗(x, r)
is the root of the equation µXt∗(x,r) = rt∗(x,r)(Xt∗(x,r) − c), that is, the root of the
equation

µxeµt
∗(x,r)(1 + βr(eµt

∗(x,r) − 1)) = reµt
∗(x,r)(xeµt

∗(x,r) − c).

Multiplying this equation with e−µt∗(x,r) and reordering terms then yields

rx(µβ − 1)eµt
∗(x,r) = µx(βr − 1)− rc

from which the alleged result follows by taking logarithms from both sides of the equa-
tion. Inserting the optimal exercise date t∗(x, r) to the expression

V (x, r) = e−
∫ t∗(x,r)
0 rsds(Xt∗(x,r) − c)

then yields the alleged value. Our conclusions on the early exercise premium F (x, r)
then follow directly from (2.4). Finally, the comparative static properties of the optimal
exercise date t∗(x, r) can then be established by ordinary differentiation.

C Proof of Theorem 2.4

Proof. It is clear that since t̃(x, r) satisfies the condition µXt̃(x,r) = r(Xt̃(x,r)−c). Define

now the mapping f̂(t) = µXt − r(Xt − c). We then find that

f̂(t̃(x, r)) = µXt̃(x,r) − rt̃(x,r)(Xt̃(x,r) − c) = (r − rt̃)(Xt̃(x,r) − c) T 0, if r T β−1,

since rt T r for all t ≥ 0 when r S β−1. However, since f̂(t∗(x, r)) = 0 we find that

t∗(x, r) T t̃(x, r) provided that r T β−1.

Assume that r < β−1 and, therefore, that rt > r for all t ≥ 0. Since µx∂Ṽ
∂x (x, r) ≤

rṼ (x, r) and Ṽ (x, r) ≥ g(x) for all x ∈ R+ we find by ordinary differentiation that

d

dt

[

e−
∫ t
0 rsdsṼ (Xt, r)

]

= e−
∫ t
0 rsds

[

µXt
∂Ṽ

∂x
(Xt, r)− rtṼ (Xt, r)

]

≤ e−
∫ t
0 rsds [r − rt] Ṽ (Xt, r) ≤ 0
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for all t ≥ 0. Therefore,

Ṽ (x, r) ≥ e−
∫ t
0 rsdsṼ (Xt, r) ≥ e−

∫ t
0 rsdsg(Xt)

implying that Ṽ (x, r) ≥ V (x, r) when r < β−1. The proof in the case where r > β−1

is completely analogous. The conclusions on the early exercise premiums F (x, r) and
F̃ (x, r) follow directly from their definitions.

D Proof of Lemma 2.5

Proof. Consider first the discount factor e−
∫ t
0 rsds. Since

e−
∫ t
0 rsds =

(

1 + βr(eαt − 1)
)−1/(αβ)

,

we find by ordinary differentiation that

d

dr

[

e−
∫ t
0 rsds

]

= −
1

α

(

1 + βr(eαt − 1)
)−(1/(αβ)+1)

(eαt − 1) < 0

and that

d2

dr2

[

e−
∫ t
0 rsds

]

=
1

α

(

1

αβ
+ 1

)

(

1 + βr(eαt − 1)
)−(1/(αβ)+2)

β(eαt − 1)2 > 0

implying that the discount factor is decreasing and convex as a function of the current
interest rate. Since the maximum of a decreasing and convex mapping is decreasing
and convex, we find that the value is a decreasing and convex function of the current
interest rate r. Similarly, since the exercise payoff Xt − c is increasing and linear as
a function of the current state x, we find that the maximum, that is, the value of the
opportunity is increasing and convex as a function of the initial revenues x (by classical
duality arguments of nonlinear programming).

E Proof of Theorem 3.2

Proof. As was established in Lemma 2.5, the value of the investment opportunity is
convex in the absence of uncertainty. Consequently, we find that for all (x, r) ∈ C we
have that

(ÂV )(x, r)− rV (x, r) =
1

2
σ2(r)

∂2V

∂r2
(x, r) ≥ 0,

since (AV )(x, r)−rV (x, r) = 0 for all (x, r) ∈ C. Let τn be a sequence of stopping times
converging towards the stopping time τ ∗ = inf{t ≥ 0 : µXt ≤ rt(Xt − c)}. Dynkin’s
theorem then yields that

E(x,r)

[

e−
∫ τn
0 rsdsV (Xτn , rτn)

]

≥ V (x, r).

Letting n → ∞ and invoking the continuity of the value V (x, r) across the boundary
∂C then yields that

V (x, r) ≤ E(x,r)

[

e−
∫ τn
0 rsds(Xτn − c)

]

≤ V̂ (x, r)
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for all (x, r) ∈ C. However, since V (x, r) = x− c on R2
+\C and V̂ (x, r) ≥ x− c for all

x ∈ R2
+, we find that V̂ (x, r) ≥ V (x, r) for all x ∈ R2

+.

Assume that (x, r) ∈ C. Since V̂ (x, r) ≥ V (x, r) > (x − c), we find that (x, r) ∈
{(x, r) ∈ R2

+ : V̂ (x, r) > x− c} as well and, therefore, that C ⊂ {(x, r) ∈ R2
+ : V̂ (x, r) >

x− c}, thus completing the proof of our theorem.

F Proof of Lemma 3.3

Proof. (A) To establish the monotonicity and convexity of the value function V̂ (x, r) as
a function of the current revenues x, we first define the increasing sequence {Vn(x, r)}n∈N

iteratively as

V0(x, r) = (x− c), Vn+1(x, r) = sup
t≥0

E(x,r)

[

e−
∫ t
0 rsdsVn(Xt, rt)

]

.

It is now clear that since V0(x, r) is increasing and linear as a function of x and
Xt = xeµt, the value V1(x, r) is increasing and convex as a function of x by stan-
dard duality arguments from nonlinear programming theory. Consequently, all ele-
ments in the sequence {Vn(x, r)}n∈N are increasing and convex as functions of x. Since
Vn(x, r) ↑ V̂ (x, r) as n → ∞ (cf. Øksendal 1998, p. 200) we find that for all λ ∈ [0, 1]
and x, y ∈ R+ we have that

λV̂ (x, r) + (1− λ)V̂ (y, r) ≥ λVn(x, r) + (1− λ)Vn(y, r) ≥ Vn(λx+ (1− λ)y, r).

Letting n→∞ and invoking monotonic convergence then implies that λV̂ (x, r) + (1−
λ)V̂ (y, r) ≥ V (λx + (1 − λ)y, r) proving the convexity of V̂ (x, r). Similarly, if x ≥ y
then

V̂ (x, r) ≥ Vn(x, r) ≥ Vn(y, r) ↑ V̂ (y, r), as n→∞

proving the alleged monotonicity of V̂ (x, r) as a function of x.
(B) As was established in Alvarez and Koskela 2001, the assumed smoothness of the
diffusion coefficient σ(r), the Novikov-condition, and the strict concavity of the drift

αr(1 − βr) imply that the discount factor e−
∫ t
0 rsds is an almost surely decreasing and

strictly convex function of the current interest rate r and, consequently, that the value
function is decreasing and strictly convex as a function of the current interest rate r.

G Proof of Theorem 4.2

Proof. The proof of the first part of the theorem is analogous with the proof of Theorem
3.2. In order to establish that increased volatility γ increases the value and postpones
rational exercise, we observe that the convexity of the value implies that if γ̂ > γ and
(x, r) ∈ {(x, r) ∈ R2

+ : V̄ (x, r) > x− c}, then

((Āγ̂ − r)V̄ )(x, r) = ((Āγ̂ − Āγ + Āγ − r)V̄ )(x, r) =
1

2
(γ̂ − γ2)x2V̄xx(x, r) ≥ 0.

That is the value function V̄ (x, r) is r-subharmonic for the more volatile revenue process
on the continuation region {(x, r) ∈ R2

+ : V̄ (x, r) > x− c}. The rest of the proof is then
analogous with the proof of Theorem 3.2.
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